
Systems Engineering Group
Department of Mechanical Engineering
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven
The Netherlands
http://se.wtb.tue.nl/

SE Report: Nr. 2009-01

Aggregative Synthesis of

Distributed Supervisors based on

Automaton Abstraction

Rong Su, Jan H. van Schuppen and Jacobus E. Rooda

ISSN: 1872-1567

SE Report: Nr. 2009-01
Eindhoven, January 2009

SE Reports are available via http://se.wtb.tue.nl/sereports

Abstract

Achieving nonblockingness in supervisory control imposes a major challenge when the
number of states of a target system is large, often owing to synchronous product of many
relatively small local components. To overcome this difficulty, in this paper we first
present a distributed supervisory control problem, then provide an aggregative synthesis
approach that computes nonblocking distributed supervisors. The key to the success of
this approach is a newly developed automaton abstraction technique, that removes irrele-
vant internal transitions at each synthesis stage so that nonblocking supervisor synthesis
can be carried out on relatively small abstracted models.

1 Introduction

Since the automaton-based Ramadge-Wonham (RW) supervisory control paradigm first
appeared in the control literature in 1982, which was subsequently summarized in [1] [2],
there has been a large volume of literature on it. One of the main challenges of RW su-
pervisor synthesis is to achieve nonblockingness when a target system has a large number
of states, often resulted from synchronous product of many relatively small local compo-
nents. To overcome this computational difficulty, many approaches have been proposed
recently. For example, in [4] the authors introduce the concept of interface invariance in
their hierarchical interface-based supervisory control approach. A very large nonblocking
control problem may be solved, e.g. the system size reaches 1021 in the AIP example [4].
Nevertheless, designing an interface that can remain invariant during synthesis is rather
difficult, which requires lots of experience and domain knowledge of the target system.
In [5] a supervisor synthesis approach for state feedback control is proposed based on the
concept of state tree structures. It has been shown in [5] that a system with 1024 states
can be well handled. Nevertheless, this approach is essentially a centralized approach.
Besides, it does not consider partial observation.

Recently attentions have been paid to modular/distributed supervisory control mainly
for two reasons: potentially low synthesis complexity and high implementation flexibility,
although modular/distributed control may result in less permissiveness than centralized
control can achieve, e.g. [6] [8] [21] [19] [15] [20]. In this paper we first present a dis-
tributed supervisory control problem then we propose an aggregative synthesis approach
to compute a supremal nonblocking state-normal supervisor of a nondeterministic dis-
tributed plant model under deterministic specifications. The key to the effectiveness of
this approach is an automaton abstraction technique proposed in [10]. Such an abstrac-
tion technique does not have the drawback possessed by observers [3] used in [23] [6] [21]
[7] and [19], where the alphabet of the codomain of a natural projection cannot be chosen
arbitrarily - for the sake of obtaining the observer property, which in many cases results
in the size of an abstraction not being small enough for subsequent supervisor synthesis.
It is also different from automaton abstraction techniques proposed in [8] [22] [14] [15]
and [20], where [8] requires an abstracted model weakly bisimilar to the original model,
and [22] [20] are aimed for conflict equivalence, [14] for supervision equivalence and [15]
for synthesis equivalence. All of these approaches require to use silent events in order to
preserve appropriate equivalence relations. In our abstraction technique, no silent event
is required and the construction is much simpler than using rewriting rules as used in [22]
[14] [15] and [20].

We make two contributions in this paper. First, we present an algorithm to compute
supremal nonblocking state-normal supervisors defined in [10]. Second, we propose an
aggregative synthesis approach to compute a deterministic nonblocking distributed su-
pervisor for a distributed system, where local components are nondeterministic and local
specifications are deterministic. The algorithm for the supremal nonblocking state-normal
supervisor is utilized at each stage of aggregative synthesis to compute an appropriate
local supervisor, where the relevant local plant model is obtained by the proposed au-
tomaton abstraction technique. Although the idea of aggregation has been used in, e.g.
[25] [21] [15] [20], their abstraction techniques are different from ours.

This paper is organized as follows. In Section II we first review relevant concepts and
operations proposed in [10], then put forward a distributed supervisory control problem.
After that, we present an approach for aggregative synthesis of distributed supervisors

2

based on abstractions of nondeterministic automata in Section III. As an illustration, the
proposed synthesis approach is applied to a cluster tool system in Section IV. Conclusions
are stated in Section V. All long proofs are presented in the Appendix.

2 A Distributed Supervisor Synthesis Problem

In this section we first review basic concepts of languages and nondeterministic finite-state
automata. Then we present a distributed supervisor synthesis problem.

2.1 Concepts of Languages and Nondeterministic Finite-State Automata

Let Σ be a finite alphabet, and Σ∗ denote the Kleene closure of Σ, i.e. the collection
of all finite sequences of events taken from Σ. Given two strings s, t ∈ Σ∗, s is called a
prefix substring of t, written as s ≤ t, if there exists s′ ∈ Σ∗ such that ss′ = t, where
ss′ denotes the concatenation of s and s′. We use ǫ to denote the empty string of Σ∗

such that for any string s ∈ Σ∗, ǫs = sǫ = s. A subset L ⊆ Σ∗ is called a language.
L = {s ∈ Σ∗|(∃t ∈ L) s ≤ t} ⊆ Σ∗ is called the prefix closure of L. L is called prefix
closed if L = L. Given two languages L, L′ ⊆ Σ∗, LL′ := {ss′ ∈ Σ∗|s ∈ L ∧ s′ ∈ L′}.

Let Σ′ ⊆ Σ. A mapping P : Σ∗ → Σ′∗ is called the natural projection with respect to
(Σ, Σ′), if

1. P (ǫ) = ǫ

2. (∀σ ∈ Σ)P (σ) :=

{

σ if σ ∈ Σ′

ǫ otherwise

3. (∀sσ ∈ Σ∗)P (sσ) = P (s)P (σ)

Given a language L ⊆ Σ∗, P (L) := {P (s) ∈ Σ′∗|s ∈ L}. The inverse image mapping of
P is

P−1 : 2Σ′∗

→ 2Σ∗

: L 7→ P−1(L) := {s ∈ Σ∗|P (s) ∈ L}

Given L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2, the synchronous product of L1 and L2 is defined as:

L1||L2 := P−1
1 (L1) ∩ P−1

2 (L2) = {s ∈ (Σ1 ∪ Σ2)
∗|P1(s) ∈ L1 ∧ P2(s) ∈ L2}

where P1 : (Σ1 ∪Σ2)
∗ → Σ∗

1 and P2 : (Σ1 ∪Σ2)
∗ → Σ∗

2 are natural projections. Clearly, ||
is commutative and associative. Next, we introduce automaton product and abstraction.

A nondeterministic finite-state automaton is a 5-tuple G = (X, Σ, ξ, x0, Xm), where X
stands for the state set, Σ for the alphabet, ξ : X × Σ → 2X for the nondeterministic
transition function, x0 for the initial state and Xm for the marker state set. As usual,
we extend the domain of ξ from X × Σ to X × Σ∗. If for any x ∈ X and σ ∈ Σ, ξ(x, σ)
contains no more than one element, then G is called deterministic. Let

B(G) := {s ∈ Σ∗|(∃x ∈ ξ(x0, s))(∀s′ ∈ Σ∗) ξ(x, s′) ∩ Xm = ∅}

3 A Distributed Supervisor Synthesis Problem

Any string s ∈ B(G) can lead to a state x, from which no marker state is reachable, i.e.
for any s′ ∈ Σ∗, ξ(x, s′) ∩ Xm = ∅. We say G is nonblocking if B(G) = ∅. For each
x ∈ X , we define another set

NG(x) := {s ∈ Σ∗|ξ(x, s) ∩ Xm 6= ∅}

and call NG(x0) the nonblocking set of G, which is simply the set of all strings recognized
by G. For the notation simplicity, we use N(G) to denote NG(x0). It is possible that

B(G) ∩ N(G) 6= ∅, due to nondeterminism. Let φ(Σ) be the collection of all finite-state
automata over Σ.

Given two nondeterministic automata Gi = (Xi, Σi, ξi, x0,i, Xm,i) ∈ φ(Σi) (i = 1, 2), the
product of G1 and G2, written as G1 × G2, is an automaton in φ(Σ1 ∪ Σ2) such that

G1 × G2 = (X1 × X2, Σ1 ∪ Σ2, ξ1 × ξ2, (x0,1, x0,2), Xm,1 × Xm,2)

where ξ1 × ξ2 : X1 × X2 × (Σ1 ∪ Σ2) → 2X1×X2 is defined as follows,

(ξ1 × ξ2)((x1, x2), σ) :=

ξ1(x1, σ) × {x2} if σ ∈ Σ1 − Σ2

{x1} × ξ2(x2, σ) if σ ∈ Σ2 − Σ1

ξ1(x1, σ) × ξ2(x2, σ) if σ ∈ Σ1 ∩ Σ2

Clearly, × is commutative and associative. ξ1×ξ2 is extended to X1×X2× (Σ1∪Σ2)
∗ →

2X1×X2 . By a slight abuse of notations, from now on we use G1 ×G2 to denote its reach-
able part, which contains all states reachable from (x1,0, x2,0) by ξ1 × ξ2 and transitions
among these states. It is clear that N(G1 × G2) = N(G1)||N(G2). Next, we introduce
automaton abstraction.

Definition 2.1. Given G = (X, Σ, ξ, x0, Xm), let Σ′ ⊆ Σ and P : Σ∗ → Σ′∗ be the
natural projection. A marking weak bisimulation relation on X with respect to Σ′ is an
equivalence relation R ⊆ {(x, x′) ∈ X × X |x ∈ Xm ⇐⇒ x′ ∈ Xm} such that,

(∀(x, x′) ∈ R)(∀s ∈ Σ∗)(∀y ∈ ξ(x, s))(∃s′ ∈ Σ∗)P (s) = P (s′)∧ (∃y′ ∈ ξ(x′, s′)) (y, y′) ∈ R

The largest marking weak bisimulation relation on X with respect to Σ′ is called marking
weak bisimilarity on X with respect to Σ′, written as ≈Σ′,G. �

Marking weak bisimulation relation is the same as weak bisimulation relation described
in [17], except for the special treatment on marker states. From now on, when G is clear
from the context, we simply use ≈Σ′ to denote ≈Σ′,G. We now introduce abstraction.

Definition 2.2. Given G = (X, Σ, ξ, x0, Xm), let Σ′ ⊆ Σ. The automaton abstraction
of G with respect to the marking weak bisimulation ≈Σ′ is an automaton G/ ≈Σ′ :=
(Y, Σ′, η, y0, Ym) where

1. Y := X/ ≈Σ′ := {< x >:= {x′ ∈ X |(x, x′) ∈≈Σ′}|x ∈ X}

2. y0 :=< x0 >

3. Ym := {y ∈ Y |y ∩ Xm 6= ∅}

4. η : Y × Σ′ → 2Y , where for any (y, σ) ∈ Y × Σ′,

η(y, σ) := {y′ ∈ Y |(∃x ∈ y)(∃u, u′ ∈ (Σ − Σ′)∗) ξ(x, uσu′) ∩ y′ 6= ∅}

4

�

The time complexity of computing G/ ≈Σ′ is mainly resulted from computing X/ ≈Σ′ ,
which can be done by using a state partition algorithm similar to the one presented in
[27]. The complexity has been shown in [10] to be O(1

2n(n − 1) + mn2 log n), where n
is the number of states and m for the number of transitions in G. We now introduce a
binary relation that will be used frequently later.

Definition 2.3. Given Gi = (Xi, Σi, ξi, xi,0, Xi,m) (i = 1, 2), we say G1 is nonblocking
preserving with respect to G2, denoted as G1 ⊑ G2, if

1. B(G1) ⊆ B(G2) and N(G1) = N(G2)

2. for any s ∈ N(G1) and x1 ∈ ξ1(x1,0, s), there exists x2 ∈ ξ2(x2,0, s) such that,

NG2
(x2) ⊆ NG1

(x1) ∧ [x1 ∈ X1,m ⇐⇒ x2 ∈ X2,m]

G1 is nonblocking equivalent to G2, denoted as G1
∼= G2, if G1 ⊑ G2 and G2 ⊑ G1. �

Def. 2.3 says that, if G1 is nonblocking preserving with respect to G2 then their nonblock-
ing behaviors are equal, but G2’s blocking behavior may be larger. The third condition
is used to guarantee that nonblocking preserving is preserved under automaton product
and abstraction. If, in addition, G2 is nonblocking preserving with respect to G1, then
they are nonblocking equivalent. Next, we discuss synthesis of a distributed supervisor.

2.2 A Distributed Supervisor Synthesis Problem

We first provide concepts of state controllability, state observability, state normality, and
nonblocking supervisor, which are introduced in [10]. Then we present a distributed su-
pervisor synthesis problem.

Given G = (X, Σ, ξ, x0, Xm), for each x ∈ X let

EG : X → 2Σ : x 7→ EG(x) := {σ ∈ Σ|ξ(x, σ) 6= ∅}

Thus, EG(x) is simply the set of all events allowable at x in G. We now bring in the
concept of state controllability. Let Σ = Σc ∪Σuc, where the disjoint subsets Σc and Σuc

denote respectively the set of controllable events and the set of uncontrollable events. Let
L(G) := {s ∈ Σ∗|ξ(x0, s) 6= ∅}.

Definition 2.4. Given a nondeterministic finite-state automaton G = (X, Σ, ξ, x0, Xm)
and Σ′ ⊆ Σ, let A = (Y, Σ′, η, y0, Ym) ∈ φ(Σ′) and P : Σ∗ → Σ′∗ be the natural projection.
A is state-controllable with respect to G and Σuc if

(∀s ∈ L(G × A))(∀x ∈ ξ(x0, s))(∀y ∈ η(y0, P (s)))EG(x) ∩ Σuc ∩ Σ′ ⊆ EA(y)

�

5 A Distributed Supervisor Synthesis Problem

We can check that, A is state controllable implies that L(G×A)Σuc ∩L(G) ⊆ L(G×A).
Thus, it is always true that state controllability implies language controllability of the
product G × A described in the RW paradigm. But the converse statement is not true
unless both A and G are deterministic. We now introduce the concept of state observ-
ability. Let Σ = Σo ∪Σuo, where the disjoint subsets Σo and Σuo denote respectively the
set of observable events and the set of unobservable events. Let Po : Σ∗ → Σ∗

o be the
natural projection.

Definition 2.5. Given a nondeterministic finite-state automaton G = (X, Σ, ξ, x0, Xm)
and Σ′ ⊆ Σ, let A = (Y, Σ′, η, y0, Ym) ∈ φ(Σ′). A is state-observable with respect to G
and Po if for any s, s′ ∈ L(G × A) with Po(s) = Po(s

′), we have

(∀(x, y) ∈ ξ×η((x0, y0), s))(∀(x′, y′) ∈ ξ×η((x0, y0), s
′))EG×A(x, y)∩EG(x′)∩Σ′ ⊆ EA(y′)

�

Def. 2.5 says that, if A is state observable then for any two states (x, y) and (x′, y′) in G×A
reachable by two strings s and s′ having the same projected image (i.e. P (s) = P (s′)),
any event σ allowed at (x, y) and x′ must be allowed at y′ as well. We can check that, if
A is state-observable then

(∀s, s′ ∈ L(G×A))(∀σ ∈ Σ)Po(s) = Po(s
′)∧ sσ ∈ L(G×A)∧ s′σ ∈ L(G) ⇒ s′σ ∈ L(G×A)

Thus, state observability implies language observability of the product G × A. But the
converse statement is not always true unless both A and G are deterministic. Notice
that, if Σo = Σ, namely every event is observable, A may still not be state-observable,
owing to nondeterminism. In many applications we are interested in an even stronger
observability property called state normality which is defined as follows.

Definition 2.6. Given a nondeterministic finite-state automaton G = (X, Σ, ξ, x0, Xm)
and Σ′ ⊆ Σ, let A = (Y, Σ′, η, y0, Ym) ∈ φ(Σ′) and P : Σ∗ → Σ′∗ be the natural projection.

A is state-normal with respect to G and Po if for any s ∈ L(G×A) and s′ ∈ P−1
o (Po(s))∩

L(G × A), we have that, for any (x, y) ∈ ξ × η((x0, y0), s
′) and s′′ ∈ Σ∗,

Po(s
′s′′) = Po(s) ∧ ξ(x, s′′) 6= ∅ ⇒ η(y, P (s′′)) 6= ∅

�

We can check that, if A is state-normal with respect to G and Po, then

L(G) ∩ P−1
o (Po(L(G × A))) ⊆ L(G × A)

which means L(G × A) is language normal with respect to L(G) and Po. The converse
statement is not true unless both A and G are deterministic. Furthermore, we can check
that state normality implies state observability. But the converse statement is not true.
We now introduce the concept of supervisor.

Definition 2.7. Given G ∈ φ(Σ) and H ∈ φ(∆) with ∆ ⊆ Σ′ ⊆ Σ, an automaton
S ∈ φ(Σ′) is a nonblocking supervisor of G under H , if S is deterministic and the following
conditions hold:

1. N(G × S) ⊆ N(G × H)

2. B(G × S) = ∅

6

3. S is state-controllable with respect to G and Σuc

4. S is state-observable with respect to G and Po �

The first condition of Def. 2.7 says that the closed-loop system G× S complies with the
specification H in terms of language inclusion. Because of this condition we only consider
H to be deterministic. The use of a nondeterministic specification is described in, e.g.
[18]. Later we will use the term ‘nonblocking state-normal supervisor’ (NSN), when we
want to emphasize that S is state-normal with respect to G and Po. It has been shown
in [10] that the set

CN (G, H) := {S ∈ φ(Σ′)|S is a NSN supervisor of G w.r.t. H ∧ L(S) ⊆ L(G)}

contains a unique element Ŝ such that for any S ∈ CN (G, H), we have N(S) ⊆ N(Ŝ).

We call Ŝ the supremal nonblocking state-normal supervisor of G under H . In practice
it is of our primary interest to compute such a supremal NSN supervisor, which will be
discussed in the next section.

Definition 2.8. A distributed system with respect to given alphabets {Σi|i ∈ I} is a set of
nondeterministic finite-state automata G := {Gi = (Xi, Σi, ξi, xi,0, Xi,m) ∈ φ(Σi)|i ∈ I}.
Each Gi (i ∈ I) is called the ith component of G, and Σi = Σi,c ∪ Σi,uc = Σi,o ∪ Σi,uo,
where disjoint subsets Σi,c and Σi,uc comprise respectively the controllable events and
uncontrollable events, and disjoint subsets Σi,o and Σi,uo comprise respectively the ob-
servable events and unobservable events. �

We make the following assumption:

(∀i, j ∈ I) i 6= j ⇒ Σi,c ∩ Σj,uc = ∅ ∧ Σi,o ∩ Σj,uo = ∅ (A1)

namely there is no event, which is controllable in Gi but uncontrollable in Gj (i 6= j);
and there is also no event, which is observable in Gi but unobservable in Gj (i 6= j). For
many applications this is a mild assumption and can be easily satisfied. There may exist
cases in which a single event may have different controllability or observability properties
in different components. Although it is still possible to deal with these cases by applying
aggregative synthesis, we choose not to do that in this paper because it may create extra
complications that are not helpful for conveying our main idea of aggregative synthesis.

Distributed Supervisory Control Problem: Given a distributed system G = {Gi ∈
φ(Σi)|i ∈ I} and a set of specifications H = {Hj ∈ φ(∆j)|∆j ⊆ ∪i∈IΣi ∧ j ∈ J}, where
J is an index set and each Hj is a deterministic automaton, synthesize a collection of
deterministic finite-state automata

S = {Sk ∈ φ(Γk)|Γk ⊆ ∪i∈IΣi ∧ k ∈ K}

where K is an index set, such that the following conditions hold,

1. N((×i∈IGi) × (×k∈KSk)) ⊆ N((×i∈IGi) × (×j∈JHj))

2. B((×i∈IGi) × (×k∈KSk)) = ∅

3. ×k∈KSk is state-controllable with respect to ×i∈IGi and ∪i∈IΣi,uc

7 A Distributed Supervisor Synthesis Problem

4. ×k∈KSk is state-normal with respect to ×i∈IGi and Po : (∪i∈IΣi)
∗ → (∪i∈IΣi,uo)

∗

If such a collection S exists, then it is called a nonblocking distributed supervisor of G
under H, where each Sk is a local supervisor of G under H. �

Next, we present an aggregative approach to synthesize a nonblocking distributed super-
visor.

3 Aggregative Synthesis of Nonblocking Distributed

Supervisors

We first discuss how to compute a supremal nonblocking state-normal supervisor S of a
nondeterministic plant model G under a deterministic specification H . Then we present
an aggregative synthesis approach for a nonblocking distributed supervisor.

3.1 Computation of Supremal Nonblocking State-Normal Supervisor

Let G = (X, Σ, ξ, x0, Xm) be a nondeterministic automaton, and H = (Z, ∆, δ, z0, Zm)
be a deterministic automaton with ∆ ⊆ Σ. We would like to synthesize the supremal
nonblocking state-normal supervisor S = (Y, Σ, η, y0, Ym). By the previous discussion we
know that such a supremal supervisor exists. Let Po : Σ∗ → Σ∗

o be the natural projection.
We now present an algorithm to compute S.

Given a deterministic finite-state automaton S = (Y, Σ, η, y0, Ym), let χ(S, G) = (Q, Σ, ̺, q0, Q
′
m)

be an automaton, where

Q := {(x, y) ∈ X × Y |(∀s ∈ Σ∗
uc) [ξ(x, s) 6= ∅ ⇒ η(y, s) 6= ∅]

∧ (∃s ∈ Σ∗) ξ × η((x, y), s) ∩ (Xm × Ym) 6= ∅}

Qm = Q∩(Xm×Ym) and ̺ : Q×Σ∗ → 2Q : (q, s) 7→ ̺(q, s) := (ξ×η(q, s))∩Q. From the
construction, it is possible that some states of χ(S, G) may not be reachable via ̺. For a
slight abuse of notation, we use χ(S, G) to denote its reachability part under ̺. If χ(S, G)
is the same as G× S under automaton isomorphism [24], then G× S is nonblocking and
state-controllable with respect to G and Σuc. Let

ϕ(χ(S, G)) := {q ∈ Q|(∃σ ∈ Σ) ̺(q, σ) ⊂ ξ × η(q, σ)}

which contains every state q in χ(S, G) that requires event disabling in the sense that
there exists at least one transition σ ∈ Σ allowed at q in G × S, but not at q in χ(S, G),
namely ξ×η(q, σ)−̺(q, σ) 6= ∅. Define ̟(χ(S, G)) = (W, Σ, θ, w0, Wm) as an automaton,
where

W := {q ∈ Q|(∃s ∈ Σ∗) ̺(q, s) ∩ ϕ(χ(S, G)) 6= ∅} ∪ {d}

with d /∈ X × Y , Wm := {d}, w0 := (x0, y0) and θ : W × Σ → 2W , where,

8

(∀w ∈ W)(∀σ ∈ Σ) θ(w, σ) :=

̺(w, σ) if w ∈ Q ∧ ξ × η(w, σ) ⊆ Q
̺(w, σ) ∪ {d} if w ∈ Q ∧ ξ × η(w, σ) * Q
{d} if w = d

The automaton ̟(χ(S, G)) contains every string sσ ∈ Σ∗ that can ‘move out of χ(S, G)’
in the sense that s reaches some state q in χ(S, G), where a transition σ is allowed at
q in G × S but not at q in χ(S, G). Owing to nondeterminism, it is still possible that
̺(q, σ) 6= ∅, when ̺(q, σ) ⊂ ξ × η(q, σ). We can check that, if χ(S, G) is state-normal
with respect to G and Po, then no string in N(̟(χ(S, G))) has the same projected image
as some string in L(χ(S, G)) (or equivalently in N(χ(S, G)) because χ(S, G) is required
to be nonblocking). We now present the following algorithm to compute the supremal
nonblocking state-normal supervisor.

Procedure for Supremal Nonblocking State-Normal Supervisor (PSNSNS)

1. Inputs: nondeterministic G ∈ φ(Σ) and deterministic H ∈ φ(∆), where ∆ ⊆ Σ.

2. Initialization: let S0 be a deterministic recognizer of N(G × H).

3. For each k = 0, 1, 2, · · · , if N(χ(Sk, G)) ∩ P−1
o (Po(N(̟(χ(Sk, G))))) 6= ∅ then

• Let Sk+1 be a deterministic recognizer of N(χ(Sk, G))−P−1
o (Po(N(̟(χ(Sk, G)))))

Otherwise, terminate and output S as a deterministic recognizer of N(χ(Sk, G))
with B(S) = ∅. �

Proposition 3.1. PSNSNS terminates within a finite number of steps. �

The proof is presented in the Appendix. From the proof of Prop. 3.1 we can derive that,
the maximum number of states at each stage of PSNSNS is O(|X ||Z|2|X||Z|), which is the
maximum size of GNH , where |X | and |Z| denote the sizes of X and Z respectively. Since
H is deterministic, we can minimize the size of Z by simply using the canonical recognizer
of N(H). The complexity of PSNSNS is very similar to the algorithm SCOP presented
in [9], which computes supremal nonblocking controllable and normal supervisors. The
only difference is that, in SCOP the plant model G is deterministic - thus, the size of
X can be minimized by simply using the canonical recognizer of N(G). In our case we
cannot do that because G is nondeterministic. We have the following result, whose proof
is in the Appendix.

Theorem 3.2. When PSNSNS terminates, the nonempty output S is the supremal non-
blocking state-normal supervisor of G under H . �

Theorem 3.2 shows that we can use PSNSNS to compute the supremal nonblocking state-
normal supervisor, whenever a plant model G and a deterministic specification H is given.
We will use this result in aggregative synthesis of nonblocking distributed supervisor,
which is described next.

9 Aggregative Synthesis of Nonblocking Distributed Supervisors

3.2 Aggregative Synthesis of Nonblocking Distributed Supervisors for Standardized Au-
tomata

In this section we will apply automaton abstraction in supervisor synthesis. To this
end we bring in a new event symbol τ , which does not belong to any alphabet, and is
always treated as uncontrollable and unobservable. We call a nondeterministic finite-state
automaton Gτ = (X, Σ ∪ {τ}, ξ, x0, Xm) standardized if

1. x0 /∈ Xm ∧ (∀x ∈ X) [ξ(x, τ) 6= ∅ ⇐⇒ x = x0] ∧ (∀σ ∈ Σ) ξ(x0, σ) = ∅

2. (∀x ∈ X)(∀σ ∈ Σ ∪ {τ})x0 /∈ ξ(x, σ)

A standardized automaton is nothing but an automaton, in which x0 is not marked, τ
is only defined at x0, which only has outgoing τ transitions and no incoming transition.
For notation simplicity, from now on we assume that every alphabet Σ contains τ , unless
specified otherwise, and we use φ(Σ) to denote the collection of all standardized automata
over Σ. Only when we want to discuss the relationship between an automaton and its
standardized version, we bring in the superscript τ . We can easily check that, abstraction
of a standardized automaton is still standardized and the product of two standardized
automata is also standardized. The reason to introduce standardized automata is to ob-
tain the following results.

Proposition 3.3. [10] Given G ∈ φ(Σ), let Σ′ ⊆ Σ, P : Σ∗ → Σ′∗ be the natural pro-
jection. Then we have P (B(G)) ⊆ B(G/ ≈Σ′) and P (N(G)) = N(G/ ≈Σ′). �

Proposition 3.4. [10] Given Σ1 and Σ2, let G1 ∈ φ(Σ1), G2 ∈ φ(Σ2) and Σ′ ⊆ Σ1 ∪Σ2.
If Σ1 ∩ Σ2 ⊆ Σ′, then we have (G1 × G2)/ ≈Σ′⊑ (G1/ ≈Σ1∩Σ′) × (G2/ ≈Σ2∩Σ′). �

If relevant automata are not standardized, then Prop. 3.3 and Prop. 3.4 may not hold,
which will make the proposed aggregative synthesis based on automaton abstraction fail.
We also need the following result.

Proposition 3.5. [10] Given Σ and Σ′, let G1, G2 ∈ φ(Σ) and G3 ∈ φ(Σ′). If G1
∼= G2

then G1 × G3
∼= G2 × G3. �

To discuss aggregative synthesis of a nonblocking distributed supervisor, we first consider
a 2-component distributed system. Then we extend it to a general distributed system.
We have the following result.

Theorem 3.6. Given Gi ∈ φ(Σi) (i = 1, 2) and two specifications H1 ∈ φ(∆1) with
∆1 ⊆ Σ1 and H2 ∈ φ(∆2) with ∆2 ⊆ Σ1 ∪ Σ2, let Σ′ ⊆ Σ1 and Σ1 ∩ (Σ2 ∪ ∆2) ⊆ Σ′.
Suppose there exist a nonblocking state-normal supervisor S1 ∈ φ(Σ1) of G1 under H1,
and a nonblocking state-normal supervisor S2 ∈ φ(Σ2 ∪Σ′) of ((G1 ×S1)/ ≈Σ′)×G2 un-
der H2. Then S1×S2 is a nonblocking state-normal supervisor of G1×G2 under H1×H2.�

The proof is given in the Appendix. Theorem 3.6 allows us to synthesize a distributed
supervisor in an aggregate way. Without loss of generality, suppose I = {1, 2, · · · , n}.

10

We put an order on those local components, say (G1, G2, · · · , Gn). Let H = {Hj|j ∈ J}
be the collection of specifications. Then we perform the following construction.

Aggregate Synthesis of Standardized Distributed Supervisor (ASSDS)

1. Inputs: standardized G = {Gi ∈ φ(Σi)|i ∈ I} and H = {Hj ∈ φ(∆j)|j ∈ J}.

2. Initially set W1 := G1, J1 := {j ∈ J |∆j ⊆ Σ1}, Q1 := J1 and T1 := Σ1.

3. For k = 1, · · · , n,

(a) If Jk 6= ∅, let Vk := ×j∈Jk
Hj . Otherwise, set Vk as a recognizer of Σ∗

k.

(b) Synthesize the supremal NSN supervisor Sk of Wk under Vk (by PSNSNS).

(c) Terminate when Sk is empty or k = n. Otherwise, updates the following.

(d) Set Ik+1 := {i ∈ I|k + 1 ≤ i ≤ n}, ΣIk+1
:= ∪i∈Ik+1

Σi, Θk+1 := ∪j∈J−Qk
∆j .

(e) Choose ΣAk
⊆ Tk with (ΣIk+1

∪Θk+1)∩Tk ⊆ ΣAk
. Let Ak := (Wk×Sk)/ ≈ΣAk

.

(f) Wk+1 := Ak × Gk+1.

(g) Qk+1 := {j ∈ J |∆j ⊆ ∪k+1
i=1 Σi}.

(h) Jk+1 := Qk+1 − Qk

(i) Tk+1 := ΣAk
∪ Σk+1.

4. When terminate upon k, output S = {S1, S2, · · · , Sk}. �

To explain ASSDS, suppose n = 3 and the ordering of components is G1, G2, G3. Sup-
pose there are r ∈ N specifications: H1, H2, · · · , Hr. Among these specifications, sup-
pose specifications H1, · · · , Hm (m ≤ r) ‘touch’ only G1 in the sense that ∆i ⊆ Σ1 for
i = 1, 2, · · · , m, and specifications Hm+1, · · · , Hk touch only G1 and G2 but not G3,
namely ∆j ⊆ Σ1 ∪Σ2 and ∆j ∩Σ3 = ∅ for j = m + 1, 2, · · · , k, and Hk+1, Hk+2, · · · , Hr

touch not only G1 and G2 but also G3, namely ∆j ⊆ Σ1∪Σ2∪Σ3 and ∆j∩Σ3 6= ∅ for j =
k+1, 2, · · · , r. What ASSDS does is as follows. First, it computes the supremal nonblock-
ing state-normal supervisor S1 of W1 = G1 under the specification V1 = H1 × · · · × Hm.
When {H1, · · · , Hm} = ∅, ASSDS simply sets V1 to be the canonical recognizer of Σ∗

1.
In this case only nonblockingness of the closed-loop behavior is the synthesis goal. To
achieve a nonblocking supervisor S2, an abstraction A1 of G1 × S1 = W1 × S1 is created.
The alphabet ΣA1

is chosen by whatever convenient reasons, as long as the condition
Σ1 ∩ (Σ2 ∪ Σ3 ∪r

i=m+1 ∆i) ⊆ ΣA1
⊆ Σ1 holds. The reason of imposing this condition is

that in the subsequent computation we can always use A1 to replace G1×S1. If we do not
want A1 to lose too much information about controllability during abstraction, we can set
Σ1,c ⊆ ΣA1

. Of course, too many events remaining in ΣA1
may result in an abstraction

with few states being removed from G1. So there is a tradeoff issue that we need to
deal with when we choose ΣA1

, and such a tradeoff is, in our opinion, case-dependent.
We now have a plant A1 × G2 and a specification V2 = Hm+1 × · · · × Hk. By the pre-
vious description we can compute the supremal nonblocking state-normal supervisor S2

of W2 = A1 × G2 under V2. Suppose S2 exists, then we can create an abstraction A2

of A1 × G2 × S2 = W2 × S2, and a new plant W3 = A2 × G3. We then synthesize the
supremal nonblocking state-normal supervisor S3 of W3 under V3 = Hk+1 × · · · × Hr.

Theorem 3.7. Let S = {S1, · · · , Sn} be computed by ASSDS, where none of Sk (k =
1, 2, · · · , n) is empty. Then S is a nonblocking distributed supervisor of G under H. �

11 Aggregative Synthesis of Nonblocking Distributed Supervisors

Proof: We claim that, for any k with 1 < k ≤ n, Sk × · · · × Sn is a nonblocking state-
normal supervisor of Ak−1 × Gk × · · · × Gn under Vk × · · · × Vn. We show this claim by
using induction on k.
(1) Base case: When k = n, since Sn is a nonblocking state-normal supervisor of
Wn = An−1 × Gn under Vn, the claim is true.
(2) Hypothesis: Suppose the claim holds for k > 2.
(3) Induction part: We need to show that the claim holds for k − 1. Since Ak−1 =
(Wk−1×Sk−1)/ ≈ΣAk−1

= (Ak−2×Gk−1×Sk−1)/ ≈ΣAk−1
and Sk−1 is a nonblocking state-

normal supervisor of Wk−1 = Ak−2 × Gk−1 under Vk−1 and Tk−1 ∩ (ΣIk
∪ Θk) ⊆ ΣAk−1

,
by Theorem 3.6 and the induction hypothesis, we get that, Sk−1 ×Sk × · · ·×Sn is a non-
blocking state-normal supervisor of Ak−2 ×Gk−1 ×Gk × · · · ×Gn under Vk−1 × · · · × Vn.
Thus, the induction part is true, which means the claim is true.
By the claim we get that, S2 × · · · × Sn is a nonblocking state-normal supervisor of
A1 ×G2 × · · ·×Gn under V2 × · · · ×Vn. Since A1 = (W1 ×S1)/ ≈ΣA1

= (G1 ×S1)/ ≈ΣA1

and S1 is a nonblocking state-normal supervisor of G1 under V1, by Theorem 3.6 we
get that S1 × · · · × Sn is a nonblocking state-normal supervisor of G1 × · · · × Gn under
V1 × · · · × Vn = ×j∈JHj . Thus, the theorem follows. �

Although during the above construction S contains the same number of local supervisors
as that of local components, several may not impose any control on the system. This can
be checked whenever a local supervisor Sk is computed, and Sk imposes no control if and
only if L(Sk) = L(Wk). In that case we simply remove those local supervisors from S
during online supervisory control.

Clearly, the ordering is important not only for the computational complexity purpose
but also for the existence of a distributed supervisor. Given a distributed system G,
some ordering of local components may yield empty distributed supervisory control un-
der ASSDS. How to choose a good ordering is an interesting and important problem.
Currently, we adopt a heuristic ordering procedure, which says that, for any two compo-
nents next to each other in an ordering, they must share events. The rationality of this
heuristics is that strongly coupled components (in terms of interactions through event
sharing) should always be ordered close to each other. For example, suppose we have
three components: a motor, a conveyor belt and a robot, where the motor drives the
conveyor belt to move goods which are picked up by the robot. Given two orderings: (1)
the motor, the conveyor belt and the robot; (2) the motor, the robot and the conveyor
belt, it seems more reasonable for us to prefer ordering (1) to ordering (2) because there
is no direct connection between the motor and the robot. This heuristics is used in the
example provided in Section IV. We are still searching for other heuristic procedures that
may work better than this simple one.

By imposing an ordering over local components we may also attain a limited power of
reusing local supervisors when some local component is added to the target system or
dropped out of it, as often encountered in system reconfiguration. For example, suppose
we have a distributed supervisor {S1, · · · , Sn} with respect to an ordering (G1, · · · , Gn).
If we change or remove Gk (1 ≤ k ≤ n), we only need to redesign local supervisors

{Sr, · · · , Sn}, where r = max{1, k}. If we add some component Ĝ after Gk and before

Gk+1, then we only need to redesign local supervisors associated with {Ĝ, Gk+1, · · · , Gn}.
Thus, a certain degree of implementation flexibility is achieved.

12

3.3 Synthesis of Nonblocking Distributed Supervisors of Non-Standardized Distributed
Systems

In the previous subsection we present an aggregative approach to synthesize a nonblocking
distributed supervisor of a distributed system G under a set of deterministic specifications
H. Nevertheless, all relevant automata are required to be standardized, for the sake of us-
ing automaton abstraction effectively. It is our great interest to know how to synthesize a
nonblocking distributed supervisor for a distributed system modeled by non-standardized
automata. To this end we present a simple procedure. But before that we first introduce
the concepts of standardization and de-standardization. To avoid unnecessary confusion,
we want to emphasize that, in this section we assume that τ is not contained in any
alphabet, and φ(Σ) denotes the collection of all non-standardized automata, whose al-
phabet is Σ.

Definition 3.8. Given a nondeterministic finite-state automaton G = (X, Σ, ξ, x0, Xm),
we say an automaton Gτ = (Xτ , Σ ∪ {τ}, ξτ , xτ

0 , Xτ
m) is G-standardized if

1. Xτ = X ∪ {xτ
0}, where xτ

0 /∈ X

2. Xτ
m = Xm

3. (∀x ∈ X ∪ {xτ
0})(∀σ ∈ Σ ∪ {τ}) ξτ (x, σ) :=

ξ(x, σ) if x ∈ X and σ ∈ Σ
x0 if x = xτ

0 and σ = τ
∅ otherwise

�

The only difference between Gτ and G is that, the former contains a new state xτ
0 and

a new transition from xτ
0 to x0. As we have seen in the previous subsection, this new

transition plays a crucial role in automaton abstraction, thus a crucial role in aggregative
synthesis. From now on we use µ(G) to denote the G-standardized automaton Gτ . Next,
we introduce the concept of destandardization, which is used to convert a standardized
automaton into a nonstandardized one.

Definition 3.9. Let Sτ = (Y τ , Σ ∪ {τ}, ητ , yτ
0 , Y τ

m) be a deterministic standardized
automaton. We say an automaton S = (Y, Σ, η, y0, Ym) is Sτ -destandardized if

1. Y := Y τ − {yτ
0}

2. Ym := Y τ
m

3. y0 ∈ ητ (yτ
0 , τ)

4. η : Y × Σ → 2Y : (x, σ) 7→ η(x, σ) := ητ (x, σ) �

Since Sτ is deterministic, ητ (yτ
0 , τ) contains only one element. Thus, S is well defined.

The only difference between Sτ and its destandardized version S is that, the latter con-
tains no transition τ . From now on we use ν(Sτ) to denote the Sτ -destandardized au-
tomaton S. We have the following result.

13 Aggregative Synthesis of Nonblocking Distributed Supervisors

Theorem 3.10. Given a distributed system G = {Gi ∈ φ(Σi)|i ∈ I} and a collection
of deterministic specifications H = {Hj ∈ φ(∆j)|∆j ⊆ ∪i∈IΣi ∧ j ∈ J}, let Gτ :=
{µ(Gi)|i ∈ I} be the standardized distributed system and Hτ := {µ(Hj)|j ∈ J} for
the standardized deterministic specifications. If there exists a nonblocking distributed
supervisor Sτ := {Sτ

k ∈ φ(Γτ
k)|Γτ

k ⊆ ∪i∈I(Σi ∪ {τ}) ∧ k ∈ K} of Gτ under Hτ , then
S := {ν(Sτ

k)|k ∈ K} is a nonblocking distributed supervisor of G under H. �

Proof: Let P : (∪i∈IΣi ∪ {τ})∗ → (∪i∈IΣi)
∗, P τ

o : (∪i∈IΣi ∪ {τ})∗ → (∪i∈IΣi,o)
∗ and

Po : (∪i∈IΣi)
∗ → (∪i∈IΣi,o)

∗ be the natural projections. By the definitions of automaton
product, standardization and destandardization, we get that

N(×i∈IGi ×k∈K ν(Sτ
k))

= P (N(×i∈Iµ(Gi) ×k∈K Sτ
k))

⊆ P (N(×i∈Iµ(Gi) ×j∈J µ(Hj))) because Sτ is a nonblocking supervisor of Gτ under Hτ

= N(×i∈IGi ×j∈J Hj)

and

B(×i∈IGi ×k∈K ν(Sτ
k)) = P (B(×i∈Iµ(Gi) ×k∈K Sτ

k)) = P (∅) = ∅

Since ×i∈Iµ(Gi) = µ(×i∈IGi) and ×k∈KSτ
k = µ(×k∈Kν(Sτ

k)), where equality ‘=’ is in
the sense of DES-isomorphism [24], by the definitions of standardization and automa-
ton product, we get that: (1) ×k∈KSτ

k is state-controllable with respect to ×i∈IG
τ
i and

∪i∈IΣi,uc ∪ {τ} if and only if ×k∈Kν(Sτ
k) is state-controllable with respect to ×i∈IGi

and ∪i∈IΣi,uc; (2) ×k∈KSτ
k is state-observable with respect to ×i∈IG

τ
i and P τ

o if and
only if ×k∈Kν(Sτ

k) is state-observable with respect to ×i∈IGi and Po; and (3) ×k∈KSτ
k

is state-normal with respect to ×i∈IG
τ
i and P τ

o if and only if ×k∈Kν(Sτ
k) is state-normal

with respect to ×i∈IGi and Po. Thus, the theorem follows. �

Theorem 3.10 allows us to use the following procedure to synthesize a nonblocking dis-
tributed supervisor of a non-standardized distributed system under deterministic specifi-
cations.

Aggregate Synthesis of Non-Standardized Distributed Supervisor (ASNSDS):

1. Inputs: G = {Gi ∈ φ(Σi)|i ∈ I = {1, 2, · · · , n}} and H = {Hj ∈ φ(∆j)|j ∈ J}

2. Create Gτ = {µ(Gi)|i ∈ I} and Hτ = {µ(Hj)|j ∈ J}

3. Apply ASSDS on Gτ and Hτ to compute Sτ = {Sτ
k |k ∈ K = {2, 3, · · · , n}}

4. Output S = {ν(Sτ
k)|k ∈ K} �

At this point we can see that, introducing the notion of τ and the concept of standardized
automata, which are crucially important for automaton abstraction, does not impose
any restriction on supervisor synthesis. Next, we use a concrete example to show the
effectiveness of ASNSDS.

14

4 Example - A Cluster Tool

A cluster tool is an integrated manufacturing system used for wafer processing. It con-
sists of load locks for wafer entering and leaving the system, chambers, where wafers are
processed, buffers between different clusters in the system, and transportation robots for
moving wafers in the system [26]. To illustrate the effectiveness of the proposed aggrega-
tive synthesis procedure, we consider the following cluster tool depicted in Figure 1, which
consists of one entering load lock (Lin) and one exit load lock (Lout), nine chambers (C11,
C12, C21, C22, C31, C32, C41, C42, C43), three one-slot buffers (B1, B2, B3), and four
transportation robots (R1, R2, R3 and R4). Wafers are transported into the system from
the entering load lock by the robot R1, then moved through designated chambers for pro-
cessing based on pre-specified routing sequences by relevant robots located in different
clusters. Finally, processed wafers are transported out of the system through exit load
lock by R1. As an illustration, we choose the following routing sequence:

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
��������
����
����
����
����

����
����
����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

B3

Load Locks

B2B1 C42

C43

R4

C12

R1

C22

R2

C32

R3

C11 C21 C31 C41

Figure 1: Structure of Cluster Tool

Lin → C11 → B1 → C21 → B2 → C31 → B3 → C41 → C42 → C43 → B3 → C32 → B2

→ C22 → B1 → C12 → Lout

Without supervision the system may be blocked owing to wafers competing for buffer
slots. Our goal is to synthesize a distributed supervisor that can guarantee continuous
wafer processing, namely blocking should never happen. To this end, we first model the
system as follows.

For simplicity we assume that the entering load lock Cin behaves like an infinite wafer
source and the exit load lock Cout like an infinite wafer sink. Figure 2 depicts the models
of load locks. We assume that in each chamber a wafer is first dropped in by a relevant

Figure 2: Load Locks

15 Example - A Cluster Tool

robot, then processed and finally picked up by the relevant robot. Since each chamber
has the same automaton model, except for different alphabets, we only provide the model
for one chamber, which is depicted in Figure 3, where, when i = 1, 2, 3, we have j = 1, 2,

Figure 3: Model of Chamber Cij

and when i = 4, we have j = 1, 2, 3. Notice that each chamber behaves like a one-slot
buffer, except that it contains an internal transition Processij . If robot Ri tries to pick
when the chamber is empty, or drop when the chamber is full, the component will become
deadlock. By modeling in such a way we will force a nonblocking supervisor to prevent
inappropriate pick or drop actions to happen. The models of robots are depicted in
Figure 4. Finally we model each buffer Bi (i = 1, 2, 3) as a component, whose model is

Figure 4: Models of Robots

provided in Figure 5. It says that, buffer overflow or underflow will result in deadlock.
In these models we assume that all events of the robots are controllable and observable,
and events

Process11, Process12, Process21, Process22, Process31, Process32, Process41, Process42, Process43

are uncontrollable and unobservable. The local specifications are depicted in Figure 6.

16

Figure 5: Model of Buffer Bi

Figure 6: Models of Local Specifications

We now apply the proposed procedure ASNSDS to compute a nonblocking distributed
supervisor. First, each component is standardized. Let

Gτ
1 := µ(C41) × µ(C42) × µ(C43) × µ(R4) × µ(B3)

Gτ
2 := µ(C31) × µ(C32) × µ(R3) × µ(B2)

Gτ
3 := µ(C21) × µ(C22) × µ(R2) × µ(B1)

Gτ
4 := µ(C11) × µ(C12) × µ(R1) × µ(Lin) × µ(Lout)

and

Hτ
1 := µ(H41) × µ(H42) × µ(H43) × µ(H44)

Hτ
2 := µ(H31) × µ(H32) × µ(H33) × µ(H34)

Hτ
3 := µ(H21) × µ(H22) × µ(H23) × µ(H24)

Hτ
4 := µ(H11) × µ(H12) × µ(H13) × µ(H14)

Based on the structure of this system and the previously described heuristic ordering
procedure, we simply order {Gτ

i |i = 1, 2, 3, 4} as indicated by their individual subscripts.
Then we apply ASDS with the inputs {Gτ

i |i = 1, 2, 3, 4} and {Hτ
i |i = 1, 2, 3, 4}. For the

illustration purpose, we go through some details of ASDS. Since only Hτ
1 touches Gτ

1 , we
synthesize the supremal nonblocking state-normal supervisor Sτ

1 of Gτ
1 under Hτ

1 . The
relevant computational results are listed as follows:

17 Example - A Cluster Tool

Gτ
1 (209, 729) ; Hτ

1 (17, 65) ; Sτ
1 (112, 222)

where in each tuple (x, y), x denotes the number of states and y for the number of
transitions. Next, we compute the abstraction of S1. To this end we choose the alphabet
ΣA1

= ΣB3
because, to control Gτ

2 we intend to use only controllable events in B3 and
Gτ

2 , although controllable events of B3 actually describe behaviors of robots R3 and R4.
Once ΣA1

is chosen, we compute the abstraction

A1 := (Gτ
1 × Sτ

1)/ ≈ΣA1
(15, 24)

Since only Hτ
2 touches A1 and Gτ

2 , we use A1×Gτ
2 as the plant and Hτ

2 for the specification
to synthesize Sτ

2 . The results are listed as follows:

A1 × Gτ
2 (985, 4053) ; Hτ

2 (17, 65) ; Sτ
2 (140, 288)

Next, we choose ΣA2
= ΣB2

and compute the abstraction

A2 := (A1 × Gτ
2 × Sτ

2)/ ≈ΣA2
(15, 24)

We use A2 × Gτ
3 as the plant and Hτ

3 for the specification to synthesize Sτ
3 . The results

are as follows:

A2 × Gτ
3 (985, 4053) ; Hτ

3 (17, 65) ; Sτ
3 (140, 288)

Then we choose ΣA3
= ΣB1

and compute the abstraction

A3 := (A2 × Gτ
3 × Sτ

3)/ ≈ΣA3
(15, 24)

Finally, we use A3 ×Gτ
4 as the plant and Hτ

4 for the specification to synthesize Sτ
4 , whose

results are listed as follows:

A3 × Gτ
4 (253, 913) ; Hτ

3 (17, 65) ; Sτ
4 (68, 126)

By Theorem 3.10 we get that S = {ν(Sτ
1), ν(Sτ

2), ν(Sτ
3), ν(Sτ

4)} is the nonblocking dis-
tributed supervisor of the cluster tool system. After using our tool for nonconflict test
[11], we confirm that S is nonconflicting with the overall plant model, which is the prod-
uct of all components (i.e. load locks, robots, chambers and buffers). We can see that, the
maximum size of automata in the above computation is (985, 4053), much smaller than
the size of the product of all component models. Therefore, the proposed aggregative
synthesis approach is computationally much more efficient than centralized synthesis. By
looking at the sizes of A1, A2 and A3, which happen to be the same owing to symmetry
of the system model and our choice of the routing sequence, we can see how abstraction
keeps the overall complexity low during aggregative synthesis.

18

5 Conclusions

In this paper we first present a distributed supervisory control problem. Then after
introducing an algorithm PSNSNS for computing supremal nonblocking state-normal su-
pervisors, we provide an aggregative synthesis procedure ASDS to derive nonblocking
distributed supervisors, which solves that distributed supervisory control problem. By
using an automaton abstraction technique, a large number of internal transitions at each
synthesis stage are removed, which can help us avoid high complexity incurred by com-
position of automata. Although ASDS requires all automata to be standardized, we
have shown in Theorem 4 that, by using a simple conversion procedure as indicated in
ASNSDS, we can apply the same aggregative synthesis approach to synthesize distributed
supervisors for systems modeled by non-standardized automata. Thus, the requirement
of standardized automata in ASDS does not really impose any practical constraint on
applications. Besides the potential computational advantage of aggregative synthesis,
we can also achieve a certain degree of implementation flexibility in terms of attaining
reusability of some local supervisors when the structure of a target system changes.

Acknowledgement: We would like to thank Dr. Albert T. Hofkamp of the Systems
Engineering Group at Eindhoven University of Technology for coding all algorithms men-
tioned in this paper. We have used his code to generate the solution of the cluster tool
example of Section IV.

1. Proof of Prop. 3.1: Let G = (X, Σ, ξ, x0, Xm) and H = (Z, ∆, δ, z0, Zm). We first
construct a new automaton GH = (U, Σ, λ, u0, Um), where

• U = (X × Z) ∪ X

• Um = Xm × Zm

• u0 := (x0, z0)

• λ : U × Σ → 2U , where for any (u, σ) ∈ U × Σ,

λ(u, σ) :=

{

ξ × δ(u, σ) if u = (x, z) ∧ ξ × δ(u, σ) 6= ∅
ξ(x, σ) if u = (x, z) ∧ ξ(x, σ) 6= ∅ ∧ δ(z, σ) = ∅ ∨ u = x ∈ X

Some states in GH may not be reachable. For slight abuse of notation, we use GH to
denote only the reachable sub-automaton. From GH we construct another automaton
GNH = (V, Σ, γ, v0, Vm), where

• V = U × 2U

• Vm = Um × 2U

• v0 = (u0, {u ∈ U |(∃s ∈ Σ∗)u ∈ λ(u0, s) ∧ Po(s) = ǫ})

• γ : V × Σ → 2V , where for any v = (u, Uu) ∈ V and σ ∈ Σ,

γ(v, σ) := {(u′, {û ∈ U |(∃u′′ ∈ Uu)(∃s ∈ Σ∗)Po(s) = Po(σ)∧ û ∈ λ(u′′, s)})|u′ ∈ λ(u, σ)}

Again, for slight abuse of notation we use GNH to denote the reachable sub-automaton.
We now present the following procedure:

1. Let V 0 := {(u, Uu) ∈ V |u /∈ X}

19 Conclusions

2. For k = 1, 2, · · · ,

(a) V̂ k := {v ∈ V k−1|(∀s ∈ Σ∗
uc) γ(v, s) ⊆ V k−1 ∧ (∃σ1, · · · , σn ∈ Σ)(∃v1, · · · , vn ∈

V k−1) v1 ∈ γ(v, σ1) ∧ vn ∈ Vm ∧ (∀i ∈ {2, · · · , n}) vi ∈ γ(vi−1, σi)}

(b) V k := {(u, Uu) ∈ V̂ k|(∀(u′, Uu′) ∈ V − V̂ k)Uu 6= Uu′}

(c) Termination when V k = V k−1

We use GNH(V k) to denote a sub-automaton of GNH , whose state set is V k and V k
m =

V k ∩ Vm. We claim that in PSNSNS, for each k, N(Sk) = N(GNH(V k)). To show this
claim we use induction.
By the construction of GNH we have N(S0) = N(G × H) = N(GNH(V 0)). We assume
that, up to j ≤ k−1, N(Sj) = N(GNH(V j)), We will show that N(Sk) = N(GNH(V k)).
Suppose it is not true. Then we have two cases to consider.
Case 1: N(Sk) − N(GNH(V k)) 6= ∅. Suppose s ∈ N(Sk) − N(GNH(V k)). Since
s ∈ N(Sk) ⊆ N(Sk−1) = N(GNH(V k−1)), we have two subcases to consider.

Subcase 11: γ(v0, s) ∩ V̂ k = ∅. Since s ∈ N(GNH(V k−1)), we get that there exists
v = (u, Uu) ∈ γ(v0, s) ∩ V k−1 such that there exist s′ ∈ Σ∗

uc and v′ = (u′, Uu′) ∈ γ(v, s′)
such that v′ /∈ V k−1. By the construction of V k−1, we get that

ss′ /∈ N(GNH(V k−1)) = N(Sk−1) = N(Sk−1 × G)

Since s ∈ N(Sk−1) ⊆ N(Sk−1) = N(Sk−1 × G) and s′ ∈ Σ∗
uc, we can derive that s /∈

N(χ(Sk−1, G)), which means s ∈ N(̟(χ(Sk−1, G))). Thus,

s /∈ N(Sk) = N(χ(Sk−1, G)) − P−1
o (Po(N(̟(χ(Sk−1, G)))))

which contradicts the assumption that s ∈ N(Sk). Thus, Subcase 11 is not true.

Subcase 12: For any (u, Uu) ∈ γ(v0, s) ∩ V̂ k, there exists v′ = (u′, Uu′) ∈ V − V̂ k such

that Uu = Uu′ . Thus, there exists s′ ∈ N(GNH(V k−1)) such that (u′, Uu′) ∈ γ(v0, s
′)

and Po(s) = Po(s
′). There are two possibilities: (1) there exists s′′ ∈ Σ∗

uc such that
γ(v′, s′′) * V k−1. Then by the proof of Subcase 11 we get that s′ ∈ N(̟(χ(Sk−1, G))).

Since Po(s) = Po(s
′), we get that s /∈ N(Sk) - contradiction. (2) For any s′′ ∈ Σ∗, if

γ(v′, s′′) ∩ Vm 6= ∅ then s′s′′ /∈ N(GNH(V k−1)). Suppose u′ = (x, z) and let

θx,s′ := {s′s′′ ∈ N(G × H)|s′′ ∈ Σ∗}

Then θx,s′ ∩ N(GNH(V k−1)) = ∅, which means θx,s′ ∩ N(Sk−1 × G) = ∅. Thus, s′ ∈
N(̟(χ(Sk−1, G))). Since Po(s) = Po(s

′), we get that

s /∈ N(Sk) = N(χ(Sk−1, G)) − P−1
o (Po(N(̟(χ(Sk−1, G)))))

Again, we have a contradiction. Thus, Subcase 12 does not hold, which means Case 1
is not true.
Case 2: N(GNH(V k)) − N(Sk) 6= ∅. Suppose s ∈ N(GNH(V k)) − N(Sk). Since
s ∈ N(GNH(V k)) ⊆ N(GNH(V k−1)) = N(Sk−1) = N(Sk−1 × G) but s /∈ N(Sk), we
have

s /∈ N(χ(Sk−1, G)) − P−1
o (Po(N(̟(χ(Sk−1, G)))))

Thus, we have two subcases to consider.
Subcase 21: s /∈ N(χ(Sk−1, G)). Since s ∈ N(Sk−1) = N(Sk−1 × G), we get that,

there exist (x, y) ∈ ξ × ηk−1((x0, y
k−1
0), s) and s′ ∈ Σ∗

uc such that ξ(x, s′) 6= ∅ but

ηk−1(y, s′) = ∅. Thus, we get that ss′ /∈ N(Sk−1) = N(GNH(V k−1)) with s′ ∈ Σ∗
uc

and ss′ ∈ L(GNH(V 0)). Thus, there exists v = (u, Uu) ∈ γ(v0, s) such that v ∈ V k−1

but γ(v, s′) * V k−1, which means v /∈ V̂ k. Therefore, v /∈ V k because V k ⊆ V̂ k. So

s /∈ N(GNH(V k)) - contradicting the assumption that s ∈ N(GNH(V k)). Thus, Subcase

20

21 does not hold.
Subcase 22: s ∈ N(χ(Sk−1, G)) ∩ P−1

o (Po(N(̟(χ(Sk−1, G))))). Since

s ∈ P−1
o (Po(N(̟(χ(Sk−1, G)))))

there exists s′ ∈ N(̟(χ(Sk−1, G))) such that Po(s
′) = Po(s). By the construction of

̟(χ(Sk−1, G)), we get that there exist t, t′ ∈ Σ∗, x ∈ X and σ ∈ Σ such that s′ = tσt′

and for any t′′ ≤ t, (ξ × ηk−1((x0, y
k−1
0), t′′)) ∩ Qk−1 6= ∅, x ∈ ξ(x0, t), ξ(x, σ) 6= ∅

but (ξ × ηk−1((x0, y
k−1
0), tσ)) * Qk−1. There are two possibilities: (1) tσ /∈ N(Sk−1) =

N(GNH(V k−1)); (2) tσ ∈ N(Sk−1). For (1) we can derive that, there exists v ∈ γ(v0, tσ)

such that v /∈ V k−1, which means v /∈ V̂ k. Thus, P−1
o (Po(tσ))∩N(GNH (V k)) = ∅. Since

Po(tσ) ≤ Po(s
′) = Po(s), we get that s /∈ N(GNH(V k)) - contradicting to the assumption

that s ∈ N(GNH(V k)). For (2), there exists (x, y) ∈ ξ × ηk−1((x0, y
k−1
0), t) ∩ Qk−1 such

that there exists (x′, y′) ∈ ξ × ηk−1((x, y), σ) and (x′, y′) /∈ Qk−1. Since (x′, y′) /∈ Qk−1,
we have two possibilities to consider: (2.1) there exists t′′ ∈ Σ∗

uc such that ξ(x, t′′) 6= ∅
but ηk−1(y, t′′) = ∅, which means tσt′′ /∈ N(Sk−1) = N(GNH(V k−1)) with t′′ ∈ Σ∗

uc

and tσt′′ ∈ L(G). Thus, there exists v ∈ γ(v0, tσ) such that γ(v, t′′) * V k−1, which

means v /∈ V̂ k. Thus, we can derive that s /∈ N(GNH(V k)) - contradiction. (2.2)
For any t′′ ∈ Σ∗, ξ × ηk−1((x′, y′), t′′) ∩ (Xm × Y k−1

m) = ∅. Therefore, there exists
v ∈ γ(v0, tσ)∩V k−1 such that, for any t′′ = σ1 · · ·σn and v1, · · · , vn ∈ V , if v1 = γ(v, σ1),
vn ∈ Vm and vi ∈ γ(vi−1, σi) (i = 2, · · · , n), then there exists vj /∈ V k−1. This means

v /∈ V̂ k. Again, we can derive that s /∈ N(GNH(V k)) - contradiction. Thus, Subcase 22
does not hold, and so is Case 2.
Since in either case we derive a contradiction, it must be true that N(Sk) = N(GNH(V k)),
and the induction is complete, which means the claim is true. Since V is finite, there must
exist a k ∈ N such that V k = V k−1. Thus, from the claim we have N(Sk) = N(Sk−1),
which means PSNSNS terminates no later than k. �

2. Proof of Theorem 3.2: Suppose PSNSNS terminates at k ∈ N. We first show that S is
a nonblocking state-normal supervisor in (1). Then in (2) we show that S is supremal.
(1) Let S = (Y, Σ, η, y0, Ym). By the definition of PSNSNS, we get that N(S) =
N(χ(Sk, G)). Since

N(χ(Sk, G)) ⊆ N(χ(Sk−1, G)) ⊆ · · · ⊆ N(S0) ⊆ N(G × H)

we have N(G × S) = N(G) ∩ N(S) ⊆ N(G) ∩ N(G × H) ⊆ N(G × H).
To show that S is state-normal with respect to G and Po, by Def. 2.6 we need to show

that for any s ∈ L(G × S) and s′ ∈ P−1
o (Po(s)) ∩ L(G × S), we have

(∀(x, y) ∈ ξ×η((x0, y0), s
′))(∀s′′ ∈ Σ∗)Po(s

′s′′) = Po(s) ⇒ [ξ(x, s′′) 6= ∅ ⇒ η(y, s′′) 6= ∅]

Suppose it is not true. Then we get that, there exist s ∈ L(G×S) and s′ ∈ P−1
o (Po(s))∩

L(G × S) such that

(∃(x, y) ∈ ξ × η((x0, y0), s
′))(∃s′′ ∈ Σ∗)Po(s

′s′′) = Po(s) ∧ ξ(x, s′′) 6= ∅ ∧ η(y, s′′) = ∅

Let s′′ = tσt′, where η(y, t) 6= ∅ but η(y, tσ) = ∅ (such a σ must exist). Since S
is a recognizer of N(χ(Sk, G)) and B(S) = ∅, we have s′t ∈ L(χ(Sk, G)) but s′tσ /∈
L(χ(Sk, G)). Because s′s′′ ∈ L(G) we have s′tσ ∈ L(G).Thus, we have s′t ∈ L(Sk). Let
Sk = (Y k, Σ, ηk, yk

0 , Y k
m) and χ(Sk, G) = (Qk, Σ, ̺k, qk

0 , Qk
m). Suppose yk ∈ ηk(yk

0 , s′t)
and x′ ∈ ξ(x, t). There are two cases to consider. Case 1: (x′, yk) ∈ Qk. Then since
ξ(x′, σ) 6= ∅ but ̺k((x′, yk), σ) = ∅, we get that (x′, yk) ∈ ϕ(χ(Sk, G)). In ̟(χ(Sk, G))
we have d ∈ θ((x′, yk), σ). Thus, s′tσ ∈ N(̟(χ(S, G))), and s′tσt′ ∈ N(̟(χ(S, G))) as
well. Since P (s) = P (s′s′′) = P (s′tσt′), we get that s ∈ N(P−1

o (Po(N(̟(χ(Sk, G)))))).
On the other hand, since s ∈ L(G × S), we get that s ∈ N(χ(Sk, G)). Thus,

N(χ(Sk, G)) ∩ N(P−1
o (Po(N(̟(χ(Sk, G)))))) 6= ∅

21 Conclusions

But this contradicts the assumption that N(χ(Sk, G))∩N(P−1
o (Po(N(̟(χ(Sk, G)))))) =

∅, because the procedure terminates at k. Case 2: (x′, yk) /∈ Qk. Clearly, (x0, y
k
0) ∈ Qk.

Thus, there must exist (x′′, y′′k) ∈ ξ × ηk((x0, y
k
0), t′′) ∩ Qk with t′′σ′ ≤ s′t such that

ξ(x′′, σ′) 6= ∅ but ̺k((x′′, y′′k), σ′) = ∅. Since t′′σ ≤ s′t ≤ s′′, we can use the same
argument as in case 1 to derive that

N(χ(Sk, G)) ∩ N(P−1
o (Po(N(̟(χ(Sk, G)))))) 6= ∅

which contradicts our assumption that

N(χ(Sk, G)) ∩ N(P−1
o (Po(N(̟(χ(Sk, G)))))) = ∅

Thus, in either case we get that, S must be state-normal with respect to G and Po.
To show that S is state-controllable with respect to G and Σuc, by Def. 2.4 we need to
show that

(∀s ∈ L(G × S))(∀x ∈ ξ(x0, s))(∀y ∈ η(y0, s))EG(x) ∩ Σuc ⊆ ES(y)

Suppose it is not true. Then

(∃s ∈ L(G × S))(∃x ∈ ξ(x0, s))(∃y ∈ η(y0, s))EG(x) ∩ Σuc * ES(y)

Since S is a recognizer of χ(Sk, G) and B(S) = ∅, we get that

s ∈ L(χ(Sk, G)) ⊆ L(Sk)

Suppose ηk(yk
0 , s) = {yk} (because η is deterministic). Then we have two cases to con-

sider. Case 1: (x, yk) ∈ Qk. Then we have EG(x) ∩ Σuc * ESk(yk), contradicting the

definition of χ(Sk, G). Case 2: (x, yk) /∈ Qk. Then there exist s′, s′′ ∈ Σ∗ and σ ∈ Σ such
that s′σs′′ = s, x′ ∈ ξ(x0, s

′σ), x ∈ ξ(x′, s′′), (x′, q′k) ∈ ̺k(qk
0 , s′) but ̺((x′, q′k), σ) = ∅.

Since s ∈ L(χ(Sk, G)), by using the argument as in proving state-normality, we can derive
that

N(χ(Sk, G)) ∩ N(P−1
o (Po(N(̟(χ(Sk, G)))))) 6= ∅

which contradicts the assumption that N(χ(Sk, G))∩N(P−1
o (Po(N(̟(χ(Sk, G)))))) = ∅.

Thus, in either case, S is state-controllable with respect to G and Σuc.
Finally, we need to show that B(G × S) = ∅. Suppose it is not true. Then

(∃s ∈ Σ∗)(∃(x, y) ∈ ξ × η((x0, y0), s))(∀s′ ∈ Σ∗) ξ × η((x, y), s′) ∩ (Xm × Ym) = ∅

Since S is a recognizer of χ(Sk, G) and B(S) = ∅, we get that s ∈ L(χ(Sk, G)) ⊆ L(Sk).
Thus, there exists yk ∈ ηk(yk

0 , s). There are two cases to consider.
Case 1: (x, yk) ∈ Qk. from the fact that

(∀s′ ∈ Σ∗) ξ × η((x, y), s′) ∩ (Xm × Ym) = ∅

and the fact that S is a recognizer of χ(Sk, G), we can derive that, for any s′ ∈ Σ∗,
̺((x, yk), s′) ∩ Qk

m = ∅. But this contradicts the definition of χ(Sk, G).
Case 2: (x, yk) /∈ Qk. Then by using the same argument as proving Case 2 for state-
controllability, we can derive that

N(χ(Sk, G)) ∩ N(P−1
o (Po(N(̟(χ(Sk, G)))))) 6= ∅

which contradicts the assumption that N(χ(Sk, G))∩N(P−1
o (Po(N(̟(χ(Sk, G)))))) = ∅.

Thus, in either case we have B(G × S) = ∅.
(2) To show that S is the supremal nonblocking state-normal supervisor of G under H ,
suppose there is another supremal supervisor called S′ with N(S′) ⊆ N(G). we will use
induction to show that N(S′) ⊆ N(Sj) for each j ∈ N. clearly, N(S′) ⊆ N(S0). Suppose
it is true that N(S′) ⊆ N(Sj), we need to show that N(S′) ⊆ N(Sj+1). To this end we
first make two claims
Claim 1: N(S′) ⊆ N(χ(Sj, G)). To show Claim 1, suppose it is not true. Then there
exists s ∈ N(S′) but s /∈ N(χ(Sj , G)). Clearly, s ∈ N(Sj) because N(S′) ⊆ N(Sj). Since
S′ is state-controllable with respect to G and Σuc, we get that

(∀x ∈ ξ(x0, s))(∀y′ ∈ η′(y′
0, s))EG(x) ∩ Σuc ⊆ ES′(y′)

22

Since N(S′) ⊆ N(Sj) and both S′ and Sj are deterministic, we have, for any yj ∈

ηj(yj
0, s), ES′(y′) ⊆ ESj (yj). Thus, EG(x) ∩ Σuc ⊆ ESj (yj), which means (x, yj) ∈ Qj .

Thus, s ∈ N(χ(Sj , G)), contradicting the assumption that s /∈ N(χ(Sj , G)). Therefore,
the claim is true.
Claim 2: N(S′)∩N(P−1

o (Po(N(̟(χ(Sj , G)))))) = ∅. To show such a claim, notice that
N(S′) ⊆ N(Sj) and both S′ and Sj are deterministic. Thus,

N(̟(χ(Sj , G))) ⊆ N(̟(χ(S′, G)))

Since S′ is state-normal with respect to G and Σuo, we have

N(S′) ∩ N(P−1
o (Po(N(̟(χ(S′, G)))))) = ∅

Therefore, the claim is true.
From Claims 1 and 2 we have

N(s′) ⊆ N(χ(Sj , G)) − N(P−1
o (Po(N(̟(χ(Sj , G)))))) = N(Sj+1)

In particular, N(S′) ⊆ N(χ(Sk, G)) = N(S). Since S has been shown to be a nonblocking
state-normal supervisor of G under H , we get that S is actually the supremal nonblocking
state-normal supervisor of G under H . �

3. Proof of Theorem 3.6: We first show that N(G1×G2×S1×S2) ⊆ N(G1×G2×H1×H2).
To this end let P ′

1 : Σ∗
1 → Σ′∗ be the natural projection. We have

N(((G1 × S1)/ ≈Σ′) × G2 × S2) ⊆ N(((G1 × S1)/ ≈Σ′) × G2 × H2)

because S2 is a nonblocking supervisor of ((G1 × S1)/ ≈Σ′) × G2 under H2

⇒ N((G1 × S1)/ ≈Σ′)||N(G2 × S2) ⊆ N((G1 × S1)/ ≈Σ′)||N(G2 × H2)

⇒ P ′
1(N(G1 × S1))||N(G2 × S2)) ⊆ P ′

1(N(G1 × S1))||N(G2 × H2) by Prop. 3.3

⇒ N(G1 × S1)||P
′
1(N(G1 × S1))||N(G2 × S2)) ⊆ N(G1 × S1)||P

′
1(N(G1 × S1))||N(G2 × H2)

⇒ N(G1 × S1)||N(G2 × S2)) ⊆ N(G1 × H1)||N(G2 × H2))

because N(G1 × S1) = N(G1 × S1)||P
′
1(N(G1 × S1)) and N(G1 × S1) ⊆ N(G1 × H1)

⇒ N(G1 × G2 × S1 × S2) ⊆ N(G1 × G2 × H1 × H2)

Next, we show that B(G1 ×G2 ×S1 ×S2) = ∅. To this end let P ′ : (Σ1 ∪Σ2)
∗ → Σ′∗ be

the natural projection. We have

B(((G1 × S1)/ ≈Σ′) × G2 × S2) = ∅

Since S2 is a nonblocking supervisor of ((G1 × S1)/ ≈Σ′) × G2 under H2

⇒ B(((G1 × S1)/ ≈Σ′) × ((G2 × S2)/ ≈Σ2∪Σ′)) = ∅

because G2 × S2
∼= (G2 × S2)/ ≈Σ2∪Σ′ and by Prop. 3.5

⇒ B((G1 × S1 × G2 × S2)/ ≈Σ2∪Σ′) = ∅ because (Σ2 ∪ Σ′) ∩ Σ1 = Σ′ and Prop. 3.4

⇒ P ′(B(G1 × G2 × S1 × S2)) = ∅ by Prop. 3.3

⇒ B(G1 × G2 × S1 × S2) = ∅ by the property of natural projection P ′

We now show that S1×S2 is state-controllable with respect to G1×G2 and Σ1,uc∪Σ2,uc.
Suppose it is not true. Then by Def. 2.4, there exist s ∈ L(G1 × G2 × S1 × S2),
(x1, x2) ∈ ξ1 × ξ2((x1,0, x2,0), s) and (y1, y2) ∈ η1 × η2((y1,0, y2,0), s) such that

EG1×G2
(x1, x2) ∩ (Σ1,uc ∪ Σ2,uc) * ES1×S2

(y1, y2)

which means

(∃σ ∈ Σ1,uc ∪ Σ2,uc) ξ1 × ξ2((x1, x2), σ) 6= ∅ ∧ η1 × η2((y1, y2), σ) = ∅

There are two cases to consider.
Case 1: σ ∈ Σ1,uc − (Σ′∪Σ2,uc). By the assumption (A1) we get that σ ∈ Σ1− (Σ2∪Σ′).
Since η1×η2((y1, y2), σ) = ∅, we get that η1(y1, σ) = ∅. Clearly, ξ1(x1, σ) 6= ∅. Thus, we
get EG1

(x1)∩Σ1,uc * ES1
(y1), contradicting the assumption that S1 is state-controllable

23 Conclusions

with respect to G1 and Σ1,uc.
Case 2: σ ∈ (Σ1,uc ∩ Σ′) ∪ Σ2,uc. Clearly, η1(y1, σ) 6= ∅ because, otherwise, as proved in
Case 1, S1 is not state-controllable with respect to G1 and Σ1,uc. Since η1×η2((y1, y2), σ) =
∅, we get that η2(y2, σ) = ∅. Clearly, ξ1 × η1((x1, y1), σ) 6= ∅. Let P1 : (Σ1 ∪Σ2)

∗ → Σ∗
1

be the natural projection, and ξ′ be the transition map of (G1 × S1)/ ≈Σ′ . Since both
G1 and S1 are standardized, by Def. 2.2 we get that

< x1, y1 >∈ ξ′(< x1,0, y1,0 >, P1(s)) ∧ ξ′(< x1, y1 >, σ) 6= ∅

Thus, we have

(< x1, y1 >, x2) ∈ ξ′ × ξ2((< x1,0, y1,0 >, x2,0), s) ∧ ξ′ × ξ2((< x1, y1 >, x2), σ) 6= ∅

from which we get that

E((G1×S1)/≈Σ′)×G2
(< x1, y1 >, x2) ∩ ((Σ1,uc ∪ Σ2,uc) ∩ Σ′) * ES2

(y2)

But this contradicts that S2 is state-controllable with respect to ((G1 × S1)/ ≈Σ′) × G2

and (Σ1,uc ∪ Σ2,uc) ∩ Σ′. Thus, in either case we have S1 × S2 is state-controllable with
respect to G1 × G2 and Σ1,uc ∪ Σ2,uc.
Finally, we show that S1 × S2 is state-normal with respect to G1 × G2 and the natural
projection Po : (Σ1 ∪Σ2)

∗ → (Σ1,o ∪Σ2,o)
∗. Suppose it is not true. Then by Def. 2.6 we

get that there exist s ∈ L(G1×G2×S1×S2) and s′ ∈ P−1
o (Po(s))∩L(G1×G2×S1×S2)

such that there exist (x1, x2, y1, y2) ∈ ξ1 × ξ2 × η1 × η2((x1,0, x2,0, y1,0, y2,0), s
′) and s′′ ∈

(Σ1 ∪ Σ2)
∗ with

Po(s
′s′′) = Po(s) ∧ ξ1 × ξ2((x1, x2), s

′′) 6= ∅ ∧ η1 × η2((y1, y2), s
′′) = ∅

Clearly, there exist t, t′ ∈ (Σ1 ∪ Σ2)
∗ and σ ∈ Σ1 ∪ Σ2 such that s′′ = tσt′ and

η1 × η2((y1, y2), t) 6= ∅ ∧ η1 × η2((y1, y2), tσ) = ∅

There are two cases to consider.
Case 1: σ ∈ Σ1 − (Σ2 ∪ Σ′). From η1 × η2((y1, y2), tσ) = ∅ we get that η1(y1, tσ) = ∅.
Let P1,o : Σ∗

1 → Σ∗
1,o be the natural projection. By the assumption (A1), we have

P1 ◦ Po = P1,o ◦ P1. Thus, we get P1(s) ∈ L(G1) and P1(s
′) ∈ P−1

1,o (P1,o(P1(s))) ∩ L(G1)

such that (x1, y1) ∈ ξ1 × η1((x1,0, y1,0), P1(s
′)) and P1(s

′′) ∈ Σ∗
1 with

P1,o(P1(s
′s′′)) = P1,o(P1(s)) ∧ ξ1(x1, P1(s

′′)) 6= ∅ ∧ η1(y1, P1(s
′′)) = ∅

which contradicts the assumption that S1 is state-normal with respect to G1 and P1,o.
Case 2: σ ∈ Σ2 ∪ Σ′. Clearly, η1(y1, tσ) 6= ∅ because, otherwise, as proved in Case 1,
S1 is not state-normal with respect to G1 and P1,o. So from η1 × η2((y1, y2), tσ) = ∅ we
have η2(y2, tσ) = ∅. Let

P2 : (Σ1 ∪ Σ2)
∗ → (Σ2 ∪ Σ′)∗ and P2,o : (Σ2 ∪ Σ′)∗ → ((Σ2 ∪ Σ′) ∩ (Σ1,o ∪ Σ2,o))

∗

be the natural projection. By the assumption (A1), we have P2 ◦ Po = P2,o ◦ P2. Since
all automata are standardized and s ∈ L(G1 × G2 × S1 × S2), we get that

P2(s) ∈ L(((G1 × S1)/ ≈Σ′) × G2 × S2)

Use a similar way we can derive that

P2(s
′) ∈ P−1

2,o (P2,o(P2(s))) ∩ L(((G1 × S1)/ ≈Σ′) × G2 × S2)

and (< x1, y1 >, x2, y2) ∈ ξ′ × ξ2 × η2((< x1,0, y1,0 >, x2,0, y2,0), P2(s
′)) and P2(s

′′) ∈
(Σ2 ∪ Σ′)∗ with

P2,o(s
′s′′) = P2,o(s) ∧ ξ′ × ξ2((< x1, y1 >, x2), P2(s

′′)) 6= ∅ ∧ η2(y2, P2(s
′′)) = ∅

But this contradicts that S2 is state-normal with respect to ((G1 × S1)/ ≈Σ′) × G2 and
P2,o. Thus, in either case we have S1×S2 is state-normal with respect to G1×G2 and Po.�

24

Bibliography

[1] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event
systems. SIAM J. Control and Optimization, 25(1):206–230, 1987.

[2] W.M. Wonham and P.J. Ramadge. On the supremal controllable sublanguage of a
given language. SIAM J. Control and Optimization, 25(3):637–659, 1987.

[3] K.C. Wong and W.M. Wonham. Hierarchical control of discrete-event systems. Dis-
crete Event Dynamic Systems: Theory and Applications, 6(3):241–273, 1996.

[4] R.J. Leduc, M. Lawford and W.M. Wonham. Hierarchical interface-based supervisory
control-part II: parallel case. IEEE Trans. Automatic Control, 50(9):1336–1348,
2005.

[5] C. Ma and W.M. Wonham. Nonblocking supervisory control of state tree structures.
IEEE Trans. Automatic Control, 51(5):782–793, 2006.

[6] L. Feng and W.M. Wonham. Computationally efficient supervisor design: modularity
and abstraction. In Proc. 8th International Workshop on Discrete Event Systems
(WODES06), pages 3–8, 2006.

[7] K. Schmidt, H. Marchand and B. Gaudin. Modular and decentralized supervisory
control of concurrent discrete event systems using reduced system models. In Proc.
8th International Workshop on Discrete Event Systems (WODES06), pages 149–154,
2006.

[8] R. Su and J.G. Thistle. A distributed supervisor synthesis approach based on
weak bisimulation. In Proc. 8th International Workshop on Discrete Event Systems
(WODES06), pages 64–69, 2006.

[9] W. M. Wonham. Supervisory Control of Discrete-Event Systems. Systems Control
Group, Dept. of ECE, University of Toronto. URL: www.control.utoronto.ca/DES,
July 1, 2007.

[10] R. Su, J.H. van Schuppen and J.E. Rooda. Model abstraction of nondeterministic
finite state automata in supervisor synthesis. Submitted to IEEE Trans. Automatic
Control, November, 2008. It also appears in SE Technical Report No. 2008-3, Sys-
tems Engineering Group, Department of Mechanical Engineering, Eindhoven Uni-
versity of Techonology, Eindhoven, The Netherlands, 2008. ISSN 1567-1872. URL:
http://se.wtb.tue.nl/sereports.

[11] R. Su, J.H. van Schuppen, J.E. Rooda and A.T. Hofkamp. Nonconflict check
by using sequential automaton abstractions. Submitted to Automatica, Novem-
ber, 2008. It also appears in SE Technical Report No. 2008-10, Systems En-
gineering Group, Department of Mechanical Engineering, Eindhoven Univer-
sity of Techonology, Eindhoven, The Netherlands, 2008. ISSN 1567-1872. URL:
http://se.wtb.tue.nl/sereports.

[12] M. Fabian and B. Lennartson. On non-deterministic supervisory control. In Proc.
35th IEEE Conference on Decision and Control, pages 2213–2218, 1996.

[13] H. Flordal and R. Malik. Modular nonblocking verification using conflict equivalence.
In Proc. 8th International Workshop on Discrete Event Systems (WODES06), pages
100–106, 2006.

[14] H. Flordal, R. Malik, M. Fabian and K. Akesson. Compositional synthesis of max-
imally permissive supervisors using supervisor equivalence. In Discrete Event Dy-
namic Systems, 17(4):475-504, 2007.

25

[15] R. Malik and H. Flordal. Yet another approach to compositional synthesis of discrete
event systems. In Proc. 9th International Workshop on Discrete Event Systems
(WODES08), pages 16–21, 2008.

[16] R.C. Hill, D.M. Tilbury and S. Lafortune. Modular supervisory control with
equivalence-based conflict resolution. In Proc. 2008 American Control Conference
(ACC08), pages 491–498, 2008.

[17] R. Milner. Operational and algebraic semantics of concurrent processes. Handbook of
theoretical computer science (vol. B): formal models and semantics, pp. 1201-1242,
MIT Press, 1990

[18] A. Overkamp. Supervisory control using failure semantics and partial specifications.
IEEE Trans. Automatic Control, 42(4):498-510, 1997.

[19] K. Schmidt and C. Breindl. On maximal permissiveness of hierarchical and modular
supervisory control approaches for discrete event systems. In Proc. 9th International
Workshop on Discrete Event Systems (WODES08), pages 462–467, 2006.

[20] R.C. Hill, D.M. Tilbury and S. Lafortune. Modular supervisory control with
equivalence-based conflict resolution. In Proc. 2008 American Control Conference
(ACC08), pages 491–498, 2008.

[21] R. Hill and D. Tilbury. Modular supervisory control of discrete-event systems with
abstraction and incremental hierarchical construction. In Proc. 8th International
Workshop on Discrete Event Systems (WODES06), pages 399–406, 2006.

[22] H. Flordal and R. Malik. Modular nonblocking verification using conflict equivalence.
In Proc. 8th International Workshop on Discrete Event Systems (WODES06), pages
100–106, 2006.

[23] P.N. Pena, J.E.R. Cury and S. Lafortune. Testing modularity of local supervisors:
an approach based on abstractions. In Proc. 8th International Workshop on Discrete
Event Systems (WODES06), pages 107–112, 2006.

[24] R. Su and W.M. Wonham. Supervisor reduction for discrete-event systems. Discrete
Event Dynamic Systems, 14(1):31-53, 2004

[25] R. Su and W.M. Wonham. Global and local consistencies in distributed fault diag-
nosis for discrete-event systems. IEEE Trans. Automatic Control, 50(12):1923-1935,
2005

[26] J. Yi, S. Ding, M.T. Zhang, M.T. and P. van der Meulen. Throughput analysis
of linear cluster tools. In proc. 3rd IEEE International Conference on Automation
Science and Engineering (CASE2007), pages 1063-1068, 2007.

[27] J.C. Fernandez. An implementation of an efficient algorithm for bisimulation equiv-
alence. Science of Computer Programming, 13(2-3): 219-236, 1990

26 Bibliography

