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Robust Output-Feedback MPC With Integral Action
Christian Løvaas, María M. Seron, and Graham C. Goodwin, Fellow, IEEE

Abstract—In this paper, we propose a robust output-feedback
model predictive control (MPC) design for a class of open-loop
stable systems, having non-vanishing output disturbances, hard
constraints and linear-time invariant model uncertainty. Integral
action is included in the proposed design by utilizing a linear
estimator for both the output disturbance and the system state.
The main distinction from previous work on robust MPC design
(with integral action) is that we establish robust convergence in
the face of both imperfect state information and dynamic model
uncertainty.

Index Terms—Model predictive control (MPC), robust control.

I. INTRODUCTION

A large portion of the literature on model predictive control
(MPC) has been aimed at developing, so called, robust

MPC policies. These utilize a description of the model uncer-
tainty and are aimed at guaranteeing both constraint satisfac-
tion and closed-loop stability. For example, the latter two design
objectives have been achieved by many authors, subject to the
following two assumptions (see, e.g., [1]–[6]): (i) a state-space
model with an associated parametric uncertainty description is
available (e.g., multi-model or polytopic); and (ii) the state of
the actual system is measured at each time step. Note, however,
that both these assumptions are difficult to meet, since, in prac-
tice, one usually only has input-output data.

There has also been some recent work that aims to address
the, arguably more realistic, setup of linear robust control, in
which the (constrained) open-loop system is described by a
feedback interconnection of a rational transfer function and
an unknown, possibly infinite dimensional, dynamical system
(see, e.g., [7]–[15]). For example, in the work presented in [14],
the present authors have proposed a robust output-feedback
MPC design for systems with constraints and unstructured
model uncertainty; this procedure minimizes a quadratic upper
bound on a nominal cost function, and contains the designs in
[16], [17] as special cases (obtained by choosing an associated
“pre-stabilizing” feedback gain to be optimal with respect to
the nominal cost).
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Whilst the MPC designs in, for example, [14], [16]–[18]
apply to systems with integrating (and unstable) poles, they do
not explicitly incorporate integral action. In particular, these
designs require the system model to be stabilizable. Hence,
they can not be applied to control the augmented system model
obtained when one, for example, utilizes the standard output
disturbance model in order to achieve integral action (c.f.
[19], [20]). Indeed, in the latter case, it is necessary to steer
the original system model towards a time-varying, (generally)
non-zero steady-state estimate which accounts for the (gener-
ally) non-zero disturbance estimate. Moreover, the objective is
usually to converge to a disturbance estimate which depends on
both the actual disturbance and the model uncertainty. Hence,
to establish robust stability of MPC with integral action, it
is necessary to establish robust convergence to a steady-state
which depends on uncertain quantities. Such a stability result
has, however, to the authors’ knowledge, not previously ap-
peared in the literature—at least not in the present context of
imperfect state information and dynamic model uncertainty
(see, e.g., [19]–[24]).

In the current paper, we present such a stability result for
a class of square, open-loop stable systems, having hard con-
straints, linear-time invariant model uncertainty and non-van-
ishing output disturbances. The robust MPC design we propose
is based on (i) a single quadratic programme (QP) and (ii) a
linear estimator utilizing a standard output disturbance model
in order to estimate both the output disturbance and the system
state. In order to ensure robust closed-loop stability whenever
the QP is feasible at the initial time, we impose “tighter” con-
straints on the predictions, and we choose the cost function pa-
rameters off-line so as to satisfy a linear matrix inequality con-
dition.

The paper outline is as follows: Section II establishes nota-
tion and sets up the control problem. Section III parameterizes
a novel class of robust output-feedback policies. Section IV pro-
poses a procedure which, via an off-line optimization problem,
selects an MPC policy within the parameterized class. Numer-
ical examples are presented in Section IV-C [33]–[36]. Con-
cluding remarks are given in Section V. Appendices A and B
contain proofs, and Appendix C explains how our results can be
generalized to open-loop unstable dynamics.

II. PRELIMINARIES

A. Notation and Terminology

The set of real numbers is denoted and the set of non-nega-
tive integers is denoted . The Hilbert space of all real, square-
summable, one-sided (vector) sequences is de-
noted and the associated extended space is denoted [25].
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Fig. 1. Uncertain system.

We use (or ) to denote the subset of (or ) con-
sisting of sequences , , which also satisfy

, , where . Similar to [14], to represent
model uncertainty, we use, linear-time invariant (LTI), possibly
biased, operators belonging to the fol-
lowing set:

(1)

Here, denotes the usual -norm of a transfer function,
denotes the response of a system with transfer function

to the input , and denotes the set of all causal
transfer functions having an exponentially decaying impulse re-
sponse, that is,

.
Throughout we will use to denote the transfer func-
tion associated with a given operator . More-
over, denotes , (or ) denotes the iden-
tity matrix of dimension (or of appropriate dimension),

denotes the Minkowski sum of the sets and (i.e.,
) and denotes the Pon-

tryagin difference of the sets and (i.e.,
). We will also use the following definition:

Definition 2.1: A set is robustly invariant for the system
with input (and output

) if: , (and,
in addition, , ).

B. System Description

We consider a system of the form shown in Fig. 1, where
is a constant output disturbance, is a vanishing output distur-
bance, is an unknown operator, and where
is a rational transfer function with state-space representation of
the form

(2)

We use to denote the state of the system . The
dynamics may then be expressed as follows:

(3a)

(3b)

(3c)

where is the control input, is the measured
system output and is the response of to . The
system is subject to constraints which we express in state space
coordinates as follows:

(4)

Here, , and are matrices of appropriate dimension and
is a given polyhedral set (with the origin contained

in the interior). Note that we consider an “augmented state”
in (4), so as to allow for the possible inclusion of rate

constraints on the control input. Furthermore, the constraints (4)
are consistent with the domain of , and the output disturbances
are contained in some given sets, in the sense that the following
standing assumptions hold:

Assumption 2.1: We have the implication that
.

Assumption 2.2: For given convex sets , ,
we have and .

C. Problem Formulation

The (main) goal of the MPC design considered here is to steer
the measured output to zero whilst respecting the given con-
straints. To this end, we shall assume that (i) the system is square
(c.f. , ) and that (ii) the system matrix is
stable.1 We also require to be such that the open-loop system
transfer function

(5)
is well-defined and invertible at one. That is, we define the set
of admissible perturbations as follows:

(6)

where the set is as defined in (1). The invertibility
of allows us to define “setpoints” for , , and

, which correspond to , and depend on the uncertain/
unknown operator , as follows:

(7a)

(7b)

(7c)

(7d)

The proposed MPC design is aimed at robustly stabilizing the
system in the following sense:

Definition 2.2: A causal control policy (based on the mea-
sured output ) is said to robustly stabilize the system (3) if the
following holds for the closed-loop signals:

(8)

for all .

1As explained in Appendix C, our results extend to the general case when �
has no eigenvalues equal to one.
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Remark 2.1: In view of (5), we may interpret as the
nominal model of the system. The assumption
together with the transfer functions , ,
constitute a description of the model uncertainty associated with

.
Remark 2.2: Note that our problem formulation covers the

problem of tracking a given nonzero setpoint, say ,
provided we make a simple re-definition of the system output
and the constant output disturbance, that is, we consider

and . Also, to satisfy Assumption 2.2, we
use .

III. A CLASS OF ROBUST MPC POLICIES

In this section we parameterize a class of robustly stabilizing
MPC policies; each policy within the class satisfies a robust sta-
bility test which we present in Section III-E.

A. The State- and Steady-State Target Estimator

Consider the following linear state estimator based on the
standard output disturbance model (see [19], [20], [26]):

(9)

where

(10)

and where is an appropriately selected observer gain
such that is stable (i.e., all its eigenvalues are strictly inside
the unit disk). The dynamics of the associated estimation error,
that is

(11)

are

(12)

To enable robust constraint satisfaction we will require the fol-
lowing assumption.

C0 We have available a (convex) set which is robustly
invariant for the system (12) with input .

In the sequel we shall assume that the estimation error is con-
tained within the invariant set . However, the error will not
necessarily converge to zero. Specifically, its (desired) steady
state value is [c.f. (7c)]

(13)

Accordingly, it will be convenient to introduce the auxiliary
variable

(14)

with dynamics

(15)

where .
At each time step, the MPC policy uses the estimate ob-

tained from (9) to compute the following estimates of, respec-
tively, the steady-state control input and the steady-state state
estimate:

(16)

(17)

An adjustment of is then calculated by optimizing a cri-
terion (to be introduced below). In closed-loop we have

(18)

where is determined by the MPC policy. For later reference
we introduce the following variables, which we shall make fre-
quent use of in our closed-loop analysis:

(19)

(20)

(21)

(22)

The dynamics of the various variables introduced above are
then, as shown in Appendix A

(23a)

(23b)

where

(24)

(25)

(26)

(27)

(28)

(29)
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B. The Candidate Policy

As in [14], the MPC policies we consider “inherit” their ro-
bustness properties from an associated candidate policy, namely,
the policy given by . Hence, we require the closed-loop
system obtained by use of (c.f. (18)) to be robustly
stable in the sense that it satisfies the following small-gain con-
dition (c.f. the Small-Gain Theorem, [25]):

C1 We have , where the
various matrices are as in (23).2

To enable selection of the constraints to be imposed over the
prediction horizon, we also require that there exist appropriate
(invariant) constraint sets. This condition is called C2 and is
expressed next using the matrices of the following system:

(30a)

(30b)

C2 We have available a non-empty (polyhedral) set
which is robustly invariant for the system

(31)

with input and output , where

(32)

(33)

(34)

(35)

(36)

Here, denotes a selectable integer satisfying ,
is as in (4), and are as in Assumption 2.2 and is as
in C0. In (31), the matrices are as in (23).

Remark 3.1: Note that (33), (34) constitute a well-known
constraint tightening recursion for the system (30) (c.f. [17],
[27]), and that, subject to C0, we have , .
The integer and the above stated requirements on the set
are amongst the novel features introduced in this paper. As will
become clearer below, their purpose is to allow us to adapt the
approach in [27] and impose suitably selected constraints on the

-step predicted value of (see (30b),
(35) and (42), (43) below). Note that, once the integer

2Note that � is stable by our choice of �.

has been selected such that the resulting set contains the
origin (in its interior), then it is a linear programming problem to
compute the set as the maximal set which satisfies the above
conditions (see, e.g., [28]). Further comments on the integer
are given in Remark 3.3.

Remark 3.2 (Choosing Subject to C0-C2): It is important
to note that any stabilizing choice of will lead to satisfaction
of conditions C0-C2 provided the sets and (and hence the
set ) and the transfer matrices and are suffi-
ciently small (i.e., whenever the uncertain quantities are suf-
ficiently small). Also note that choosing subject to C1 is a
standard static output feedback gain problem. For example,
it is possible to compute and “small” ellipsoids satisfying
both C0 and C1 using convex optimization, by following the
approach to multi-objective linear control proposed in [29], and
similarly in Chapter 3.6 of [13].

C. The Constraints

At each time step, the prediction based control policy is pa-
rameterized as an -step open-loop prediction of the candidate
policy , that is

(37)

where is the predicted control input, and where
are the “degrees of freedom” in the opti-

mization problem. In the sequel we use
to denote the degrees of freedom, and we impose the following
(tightened) constraints on the predicted nominal trajectory,
in order to ensure both constraint satisfaction and recursive
feasibility:

(38)

(39)

(40)

(41)

(42)

(43)

where is as in (21), is the control prediction horizon satis-
fying

(44)

(45)

and where the integer and the sets, , , and ,
are as in C2.

Remark 3.3 (Choosing ): It can be shown that if C2
holds using and , then C2 also holds using

and . Thus, to identify all possible choices
of (given and the set ), we may increment
until there does not exist a corresponding invariant set (e.g.,
because the set is empty).
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Note that the various constraint sets and Pontryagin differ-
ences are polyhedral and may be computed efficiently. Hence
the above constraints (38)–(43) may be expressed as follows:

(46)

using and some matrices, , and
. In what follows, we will frequently write these constraints as

using the set-valued map:

(47)

As shown in the following theorem, the set has an inter-
esting invariance property which, amongst other things, guaran-
tees robust recursive feasibility.

Theorem 3.1 (Robust Recursive Feasibility): Let C2 hold and
consider any and any such that

(48)

where the set is as defined in (36), then, the following holds:

where and

(49)

Proof: We need to show that, if is feasible at time
, and , , then choosing

is feasible at time .
To this end, we express the trajectories obtained in (38)–(43) at
time as a perturbation of the trajectories obtained at
time , as follows:

(50)

(51)

(52)

(53)

(54)

Feasibility at time implies ,
, and , and thus it follows from (32)–(34), (44),

(50), (51), and that ,
(i.e., the constraints (41) hold at time

using ). Similarly, feasibility at time implies
, , and

, and thus it follows from (44) and (52),
(53) that , . To see that the
constraint is satisfied, we use (54), and
the fact that the terminal constraint set, , is robustly invariant
for the system with input

. This invariance property follows from C2 as can
be seen by using properties of the Pontryagin difference [28] as
follows:

D. The Cost Function and the LMI Condition

Similar to [14], we consider a cost function of the following
quadratic form:

(55)

where is some positive definite matrix satisfying the fol-
lowing LMI condition.

Condition 3.1: The cost function matrix is such that,
for some scalar , and some symmetric matrix

, the following holds:

(56)

where

(57)

(58)

(59)

and where [see (23)]

(60)
with and as defined in Theorem 3.1.

Regarding the existence of a matrix satisfying the above
condition we have the following result, which may be proven as
in [14]:

Theorem 3.2: There exists a satisfying Condition 3.1 if and
only if C1 holds.
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In Section IV, we propose a semi-definite program (SDP)
which may be used to compute a matrix that satis-
fies Condition 3.1 and is as “close” as possible to the matrix

of the following nominal cost:

(61)

subject to , , ,
, , , where , and where
, and are selectable weighting matrices.

We also show that such a matrix may be chosen to satisfy
, provided model uncertainty is “sufficiently

small” (Theorem 4.1).

E. The Robust MPC Policy

The resulting robust MPC policy is as follows:
Algorithm 3.1: At time , given , and ,

compute (16), (21)

and update the estimator using (9). Then apply to the system
(3).

Note that the above is a standard QP with degrees of
freedom and that the online computational requirements are thus
similar to conventional MPC. The following stability test shows
that the MPC policy robustly stabilizes the system provided the
QP is feasible at the initial time.

Theorem 3.3 (Robust Stability Test): Suppose that C0, C1,
C2 and Condition 3.1 hold and

(62)

where

(63)

then Algorithm 3.1 robustly stabilizes the system (3).
Proof: See Appendix B.

IV. ROBUST MIXED OBJECTIVE MPC DESIGN

A. Upper Bound on the Nominal Cost

To compute the cost function matrix , subject to Con-
dition 3.1, as an “optimal” upper bound on the given nominal
cost function matrix in (61), we adapt the pro-
cedure proposed in [13], [14] and consider the following SDP:

(64)
where

and where the criterion satisfies

(65)

(66)

for a (small) selectable positive scalar .
Remark 4.1: We note that nominal cost function matrix

in (61) satisfies

Accordingly, any feasible solution, , to (64) satisfies
. The criterion (65) is motivated and studied in further

detail in [13] and Section IV-C-2 below. As a general guide-
line, we suggest choosing the associated scalar to be a few
orders of magnitude less than the singular values of the matrix

. In the numerical example below we use .
In the sequel, we use to denote a feasible and (near) op-

timal solution to (64). For nominal performance purposes, we
would like the value chosen for to be a “tight” upper bound
on . Fortunately, as shown in the following technical
result, this will always be the case when the model error is “suf-
ficiently small”.

Theorem 4.1: Suppose C1 holds. For any given ,
there exists a , such that, if we make the assignment

, then

Proof: See the proof of Theorem 3.7 in [13].
Remark 4.2: Note that replacing with

amounts to “shrinking” the uncertainty by
a factor [see Remark 2.1], or, equivalently, scaling the matrix

in (60) to yield .
B. Proposed MPC Design

By use of we obtain the following robust design
procedure.

Algorithm 4.1: Off-line: (i) Determine the observer gain ,
the integer and the sets, and , such that C0, C1 and C2
hold. (ii) Choose any integer . (iii) Choose weighting
matrices , and for the nominal cost func-
tion (61). (iv) Solve problem (64) to determine a (near) optimal
and feasible . Set .

On-line: Implement Algorithm 3.1 using initial estimates
such that (62) holds.

By straightforward application of previous results, we note
that the proposed algorithm has the following key properties.

Theorem 4.2 (Properties of Algorithm 4.1): (Feasibility) If
the first off-line (on-line) step of Algorithm 4.1 is feasible then
the remaining off-line (on-line) steps are feasible.

(Robust Stability) Algorithm 4.1 robustly stabilizes the
system (3).
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(Convergence to Nominal Cost) For any , there exists
a , such that if the off-line steps of Algorithm 4.1 are
carried out using , then

.

C. Numerical Example

1) : We consider a discretized version of the “ill-condi-
tioned” distillation column model employed in [30]. Specifi-
cally, we let the open-loop transfer function be of the form

where ,
, and where the nominal model is

a zero-order hold discretizisation (with sampling time )
of

Also, we consider unit bound input constraints and output dis-
turbances described by use of and

in Assumption 2.2.
To capture this system description, we choose

, , and

. Note that As-
sumption 2.1 then holds and that, via our choice ,
we restrict attention to operators which are such that

. In (2), we choose the fol-
lowing minimal, balanced state space representation of :

��

������ � �� ���	

 � �� � �

������ � �� ���
�� � �� � �
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���	��	 � �� ���	��� � ��
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����� ��	
�� �
����� � �� ������� � ��

�
��

� 
����� ��	��� � �� ���		� � ��

� � �� ����

For our estimator design we choose

(67)

and

(68)

Fig. 2. Sets � � � � � � in C2 when � � 
 and is as in (68).

where3

(69)

(70)

That is, following [31], we take the set to be an invariant ap-
proximation of the minimal robustly invariant set for the system

with input . Condition C0 thus
holds. Moreover, since ,
it follows that C1 also holds. Next, to satisfy C2, we consider

and we then obtain the sets, , , , shown in Fig. 2.
Hence, since we only have input constraints (i.e., ) and

, we choose (and ) to satisfy C2.
In Algorithm 4.1, we choose , and

. Nominal responses of the resulting instance
of Algorithm 4.1, obtained when , ,
and , are shown in Fig. 3. For compar-
ison purposes, Fig. 3 also shows: (i) the associated open-loop re-
sponse (obtained when ); and (ii) the closed-loop
response of an associated “nominal” MPC (NOMPC) design,
namely, Algorithm 4.1 but using the nominal cost function ma-
trix , rather than the associated upper bound .
It can be seen that both Algorithm 4.1 and the NOMPC design
significantly improve on the open-loop system response, and re-
move the steady-state error caused by the output disturbance .
We also note that Algorithm 4.1 seems only to be slightly con-
servative as compared with the NOMPC design. Moreover, un-
like Algorithm 4.1, the NOMPC design is not robustly stable,
as illustrated next. In Fig. 4 the simulation of Fig. 3 is repeated
using non-zero, admissible realizations of , and ,
namely, ,
and described by and

[see (1)]. Hence, it follows by Theorem 3.3 that
Algorithm 4.1 will be closed-loop stable. On the other hand, the
NOMPC design, which uses the nominal cost, fails severely for

3In (70), we have added a small hypercube so that the resulting set� contains
the origin in its interior (c.f. [31]).
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Fig. 3. Nominal responses: Open-loop response (�-solid) and closed-loop re-
sponses, � � �� � � � and � � �� � � �, of NOMPC (�-solid) and
Algorithm 4.1 (solid), when � � ������������� �� ��.

Fig. 4. Perturbed responses: Open-loop response (�-solid) and closed-loop re-
sponses, � � �� � � � and � � �� � � �, of NOMPC (�-solid) and
Algorithm 4.1 (solid), when � � ��������������� ��.

this particular admissible realization of . In particular, the con-
trol inputs become oscillatory. From simulations over a longer
time interval, we note that these oscillations eventually converge
to a periodic motion which frequently hits the input constraints.

2) : To illustrate Theorem 4.1, we next repeat the cost
function computations of the preceding example using different
values for . Specifically, we consider for a set of

[see Remark 4.2]. (When we recover the robust
design in Figs. 3 and 4). Let denote
the “added weighting” obtained for a particular . Theorem 4.1
shows that (the trace of) goes to zero as goes to zero.
This is confirmed by the top plot in Fig. 5.

Given a particular , let denote the underlying feed-
back gain of Algorithm 4.1, and let denote the closed-
loop transfer function associated with and the LQR
problem with cost (61), that is

Fig. 5. �� 	�
� increases (slowly) as the model uncertainty, parameter-
ized by �, increases.

Fig. 6 Sets � � � � � � � � � � � � � � � � � in C2 when � � �
and � � �.

The bottom plot in Fig. 5 shows how the norm of
evolves with . Note that practically no increase occurs on
the interval .4 Also note from Fig. 5 that we
actually have . Hence, the added
weighting incorporated in Algorithm
4.1 may be rather large and still result in excellent nominal
performance with respect to the given weighting matrices ,

, . This very important property is made possible by the
fact that the added weighting may be associated with direc-
tions in the solution space of the optimization problem that
are orthogonal to the nominal solution. As an example, we
note that although we actually have

[see (66)]. Thus
the added weighting is almost ortoghonal to the rows of the
matrix . Also note from Fig. 5 that the feedback gain

4The 	 norm of a transfer function �	�
 is given by ��	�
� �
		�
��
 ������� 	� 
�	� 
��
 .
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Fig. 7 Open-loop response (�-solid) and closed-loop responses of Algorithm
4.1 with (solid) and without (dashed) the constraint �� � � ��.

corresponding to the robust design in Figs. 3, 4 achieves an
norm of 4.54 which is only 0.38 above the optimum of 4.16,
and far less than the norm of the “open-loop dynamics”,
that is, .

3) : To illustrate the output constraint handling capabilities
of the proposed design, we consider an uncertain version of the
non-minimum phase system studied in [32], that is

with ,
and

and in Assumption 2.2. For the
observer gain we consider a Kalman filter design given
by .
We note that this leads to satisfaction of C1, since

. As above, we take
the associated set in C0 to be an invariant approximation
of the minimal choice for , namely with

and [see (68)–(70)]. To satisfy C2
we use Algorithm 6.2 in [28] to compute an invariant for the
system in (31), where we take . This results in a set
described by 12 linear inequalities. The associated sequence of
“output sets” are shown in Fig. 6. In Algorithm 4.1, we choose

, , and . Closed-loop
responses of the resulting instance of Algorithm 4.1, obtained
when , , and ,
are shown in Fig. 7. To illustrate the trade-off between per-
formance and constraint satisfaction, Fig. 7 also shows the
closed-loop responses of another instance of Algorithm 4.1
obtained by omitting the output constraint (i.e., by considering

).

V. CONCLUSION

We have proposed a robust output-feedback MPC design for a
class of square, open-loop stable systems, having non-vanishing
output disturbances, hard constraints and linear-time invariant
model uncertainty. The design incorporates a novel closed-loop
stability test and minimizes a quadratic upper bound on a nom-
inal cost function at each time step. An important distinction
relative to previous work is that we have proven robust conver-
gence to the correct steady-state in the face of both imperfect
state information and dynamic model uncertainty. As shown in
Appendix C, the proposed design can easily be generalized to
a class of open-loop unstable systems by means of a pre-stabi-
lization technique (i.e., by changing the candidate policy). On
the other hand, it seems to be a challenging topic for future
work to generalize our results to incorporate different distur-
bance models and non-square systems.

APPENDIX A
THE MATRICES , , , ,

The dynamics of in (23) follow from (15). To verify the
dynamics of in (23), consider

(71)

(72)

(73)

(74)

where we have made use of (3), (9), (11), (16)–(18), (25), the
identity

and the fact that so that (c.f. (13),
(14) and (25)).

The matrices and in (28), (29) are defined to be such
that

(75)

(76)

To verify this, we make use of (13), (14) and the identity

(77)
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(which follows from ) and consider:

(78)

(79)

(80)

and

(81)

It remains to verify (23b). This can be done by using (19) and
(75) as follows:

(82)

(83)

(84)

APPENDIX B
PROOF OF THEOREM 3.3

To prove Theorem 3.3 we will need the following two lemmas
which relate to .

Lemma B.1: Consider any and any realiza-
tion of such that . For some
transfer function , satisfying ,
and some sequence , we have

(85)

Proof: By definition

(86)

(87)

(88)

where

(89)

and where . Since , it only
remains to show that is also in . To this end, note that, since

, we have

(90)

for some scalar . Hence

(91)

(92)

(93)

Lemma B.2: Let be any scalar satisfying , and con-
sider any and any realization of
such that . For some scalar and all

, we have

(94)

Proof: Let denote the usual (time) truncation operator,
that is

(95)

By Lemma B.1 and causality, we have, for any

(96)

To proceed will use the fact that, since , there
exists such that . Hence

(97)

(98)

(99)

(100)

where . Note that the second inequality
follows by the basic inequality

[which holds for any since

]. The third inequality follows from
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. This completes the proof since does
not depend on .

We are now in a position to prove Theorem 3.3.
Proof: As a first step, note from Theorem 3.1 that the set

is invariant for the closed-loop system, that is

(101)

Hence, robust constraint satisfaction follows from (34) and (41),
that is, (101) implies . To prove that both

and are in (i.e., (8)), for
any admissible uncertainty , consider the “storage function”
candidate

(102)

(103)

where

(104)

(105)

Note from (56) that the function is non-negative
and from (63) that it is well-defined for all

. Also note that, whenever (56) holds, there exists
a scalar and a sufficiently large scalar such that

(106)

where

(107)

and where is as in (23). For some sufficiently small scalar
, and for any , we thus have that

This inequality may be rearranged using (23), (60) and
to obtain

Furthermore, since is a feasible solution to the op-
timization problem at time [see Theorem 3.1], a lower
bound on the first term on the left hand side is

Thus, we have established the “dissipation inequality”

for all . Summing the above inequality over the interval
, , and using , leads to

(108)

Furthermore, use of Lemma B.2 yields

(109)
Since , and (109) holds for any , it
follows that , and since (from (75))

(110)

(111)

this completes the proof.
APPENDIX C

EXTENSION TO UNSTABLE SYSTEMS

Here we generalize the results of Section III by considering a
more general candidate policy, namely, , where

is a suitably selected feedback gain. In closed-loop, we have

(112)

where is determined by the MPC policy (introduced below).
Note that we recover (18) when . By considering (112) we
can address the case when is unstable, provided the following
assumption holds:

Assumption C.1: The matrix is full rank, and the
matrices [see (10)] and

(113)

are stable.
In view of (112), we propose the following generalization

of Algorithm 3.1 (however we keep the state- and steady-state
target estimator of Section III):
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Algorithm C.1: At time , given , and ,
compute (16), (21)

and update the estimator using (9). Then apply to the system
(3). Here, the set is as explained in Section III but using

[see (113)] and in
(38)–(45).

By following the lines of Section III (but using Algorithm C.1
instead of Algorithm 3.1) we obtain the following generalized
version of Theorem 3.3 (i.e., we recover Theorem 3.3 when

).
Theorem C.1 (Robust Stability Test): Let Assumption C.1, C0

and (62) hold. Suppose that C1 and Condition 3.1 hold using

(114)

(115)

in (23), and that C2 holds using

(116)

in (30)–(36). Then Algorithm C.1 robustly stabilizes the system
(3).

Proof: Using the substitutions described above the result
may be proven in the same manner as Theorem 3.3. In partic-
ular, note that “natural” generalizations of Theorems 3.1 and 3.2
hold.
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