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Abstract—The paper deals with the problem of reconstructing
the topological structure of a network of dynamical systems. A
distance function is defined in order to evaluate the “closeness”
of two processes and a few useful mathematical properties are
derived. Theoretical results to guarantee the correctnessof the
identification procedure for networked linear systems with tree
topology are provided as well. Finally, the application of the
techniques to the analysis of an actual complex network, i.e. to
high frequency time series of the stock market, is illustrated.

I. I NTRODUCTION

Under the influence of improved numerical tools, a
significant interest for complex systems has been shown in
many scientific fields. In particular, attention has been focused
on networks, highlighting the emergence of complicated
phenomena from the connection of simple models. To this
regard, a relevant impulse has been provided by the advances
in neural network theory, that has contributed to underlinethe
importance of the connection topology in the realization of
complex dynamics [1]. As a consequence, graph theory [2]
has been successfully exploited to perform novel modeling
approaches in several fields, such as Economics (see e.g. [3],
[4], [5]), Biology (see e.g. [6], [7]) and Ecology (see e.g.
[8], [9], [10]), especially when the investigated phenomena
were characterized by spatial distribution and a multivariate
analysis technique is preferred [11], [12].
To the best knowledge of the authors, there are very few
theoretical results about the reconstruction of an unknown
topology from data. In this paper, we will focus our attention
on tree topology networks. Though its reduced complexity
with respect to cyclic link structures, the tree connection
model turns out to be particularly suitable to represent a
large variety of processes. In particular, the tree network
scheme results effective in the description of systems with
transportation, such as water and power supply, air and rail
traffic, vascular systems of living organisms and channel and
drainage networks (see e.g. [13], [9], [14], [15], [16]). Itis
worth to highlight that this kind of models is deeply related
to the idea of delay, that characterizes the connections as
transportation media. It is also important to recall that in
linear dynamical system theory the transfer function is a

powerful representation tool for delayed processes [17], [18].
In many situations, when the topology to be reconstructed is
a tree, the only observable nodes are the leaves. Then, the
usual theoretical framework is almost always set in standard
graph theory as in the Unweighted Pair Group Method with
Arithmetic mean (UPGMA) [19]. Its application is mainly in
the reconstruction of evolutionary trees, but it has been widely
employed also in many other areas: communication systems
and resource allocations. Theoretically, such a technique
guarantees an exact reconstruction of a tree topology only on
the strong assumption that an ultrametric is defined among
the considered nodes. An approach based on system theory
and identification tools is completely missing. Specifically,
there are no approaches considering explicitly the possibility
of dynamics among the nodes. While dynamical networks
have been deeply studied and analyzed in automatic control
theory, the question of reconstructing an unknown network
of dynamical systems has not been formally investigated. In
fact, in most applicative scenarios the network is given or it
is the very objective of design. However, there are also some
interesting situations where the network links are actually
unknown, such as in biological neural networks, biochemical
metabolic pathways and financial markets. Even though an
acyclical topology may seem a quite reductive choice, given
an intricate and connected topology, we may be interested
into “approximating” it with a tree. Such an approximation
could be considered “satisfactory” if the most important
connections were captured.
In this manuscript we will develop a rigorous mathematical
method to exactly identify the connections scheme of a
tree topology network of noisy linear dynamical systems,
providing a theoretical background for linear network
modeling. In particular, in Section II we will introduce
definitions and preliminary results which are useful to
characterize the mathematical framework. In Section III
our approach to topology reconstruction will be presented
and sufficient conditions for an exact identification will be
reported as well. In Section IV the theoretical results will
be confirmed by practical implementations of the proposed
technique, illustrated by means of numerical examples. In
Section V, we will show that the identification of a tree
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topology can provide useful information even for complex
network. To this end, we will apply our technique to the
analysis of high frequency real data originated by a portfolio
of financial stocks. Some final conclusions in Section VI will
end the manuscript.

Notation:
E[·]: mean operator;
RXY (τ)

.
= E[X(t)Y (t + τ)]: cross-covariance function of

stationary processes;
RX(τ)

.
= RXX(τ): autocovariance;

ρXY
.
= RXY√

RXRY
: correlation index;

Z(·): Zeta-transform of a signal;
ΦXY (z)

.
= Z(RXY (τ)): cross-power spectral density;

ΦX(z)
.
= ΦXX(z): power spectral density;

with abuse of notation,ΦX(ω) = ΦX(eiω);
⌈·⌉ and⌊·⌋: ceiling and floor function respectively;
(·)∗: complex conjugate.

II. PROBLEM SET UP

In this section we formally introduce a model to address
noisy linear dynamical systems interconnected to form a tree
topology and we also provide a quantitative tool to characterize
the mutual dependencies.

Let us consider a network ofn time-discrete SISO linear
dynamical systems affected by additive noises. Then, letHj(z)
be the transfer function of thej-th system,{Xj(k)}k∈Z and
{Uj(k)}k∈Z its output and input signals respectively and
{̺j(k)}k∈Z a zero-mean wide-sense stationary noise. Hence,
each system can be represented according to the model:

Xj(k) = Hj(z)Uj(k) + ̺j(k) ∀j = 1, . . . , n . (1)

We stress that no assumptions on the causality ofHj(z) have
been done. Moreover, let the property

E[̺j̺i] = 0 ∀j 6= i , (2)

holds. Then, suppose that the input signalUi of each node
results the output of another process and that the systems of
the network are connected to form a tree topology, preventing
the presence of cycles.
In this paper we will formally address this kind of network
according to the following definition.

Definition 1: Consider the ensemble of a rooted tree topol-
ogy of n nodesNj and a corresponding set ofn linear time-
discrete SISO systems affected by noise, described according
to the model (1). Namely, assumeNi as the root node.
Moreover, let{̺j}j=1,...,n be zero-mean wide-sense stationary
random processes satisfying (2), i.e. mutually not correlated
zero-mean noises. Then, we defineLinear Cascade Model Tree
(LCMT) a dynamical network defined by the equation system







X1 = H1(z)Xπ1
+ ̺1

. . .

Xn = Hn(z)Xπn
+ ̺n ,

(3)

whereHi(z) ≡ 0 and the set{π1, . . . , πn} is a permutation
of {1, . . . , n}.

Definition 2: A LCMT is well-posedif Φ̺j
(ω) > 0 for all

̺j , and for allω
Assuming to have a complete statistical knowledge of each

process{Xi}i=1,...,n, we are interested in the identification of
the links, which describe the tree characterizing the network
topology. To this aim, hereafter we introduce some preliminary
results, which can be exploited to define a mathematical tool
for the quantitative characterization of the connections.

Let us consider two stochastic processesXi, Xj and let
Wji(z) be a time-discrete SISO transfer function. Hence,
consider the quadratic cost

E
[

(εQ)
2
]

, (4)

where

εQ
.
= Q(z)(Xj −Wji(z)Xi)

andQ(z) is an arbitrary stable and causally invertible time-
discrete transfer function weighting the error

eji
.
= Xj −Wji(z)Xi .

Then, the computation of the transfer function̂W (z) that
minimizes the quadratic cost (4) is a well-known problem in
scientific literature and its solution is referred to as the Wiener
filter [18].

Proposition 3 (Wiener filter):The Wiener filter modeling
Xj by Xi is the linear stable filter̂Wji minimizing the filtered
quantity (4). Its expression is given by

Ŵji(z) =
ΦXiXj

(z)

ΦXi
(z)

(5)

and it does not depend uponQ(z). Moreover, the minimized
cost is equal to

minE
[

ε2Q
]

=

=
1

2π

∫ π

−π

|Q(ω)|2
(

ΦXj
(ω)− |ΦXjXi

(ω)|2Φ−1

Xi
(ω)

)

dω ,

and the corresponding error

êji
.
= Xj − Ŵji(z)Xi

is not correlated withXi, i.e.

E[êjiXi] = 0 . (6)

Proof: See, for example, [17], [18].
Since the weighting functionQ(z) does not affect the

Wiener filter, but only the energy of the filtered error, we can
chooseQ(z) equal toFj(z), the inverse of the spectral factor
of ΦXj

(z), that is

ΦXj
(z) = F−1

j (z)(F−1

j (z))∗ . (7)

In particular, it is worth recalling thatFj(z) is stable and
causally invertible [20]. Therefore, the minimum of cost (4)
assumes the value

minE[ε2Fj
] =

1

2π

∫ π

−π

(

1−
|ΦXjXi

(ω)|2

ΦXi
(ω)ΦXj

(ω)

)

dω . (8)



Observe that, due to such choice ofQ(z), the cost turns out
to explicitly depend on thecoherence functionof the two
processes:

CXiXj
(ω)

.
=

|ΦXjXi
(ω)|2

ΦXi
(ω)ΦXj

(ω)
. (9)

Let us recall that the coherence function is not negative and
symmetric with respect toω. Moreover, it is also well-known
that the cross-spectral density satisfies the Schwartz inequality
and, thus, the coherence function results limited between0
and 1. Therefore, according to the previous results, the cost
(8) turns out to be dimensionless and not depending on the
“energy” of the stochastic processesXi andXj .

The following result holds.
Proposition 4: In a well-posed LCMT, the binary function

d(Xi, Xj)
.
=

[

1

2π

∫ π

−π

(

1− CXiXj
(ω)

)

dω

]1/2

(10)

is a metric.
Proof: The only non trivial property to be proved is the

triangle inequality. LetŴji(z) be the Wiener filter between
Xi, Xj computed according to (5) andeji the relative error.
The following relations hold:

X3 = Ŵ31(z)X1 + e31

X3 = Ŵ32(z)X2 + e32

X2 = Ŵ21(z)X1 + e21.

SinceŴ31(z) is the Wiener filter between the two processes
X1 andX3, it performs better at any frequency than any other
linear filter, such asŴ32(z)Ŵ21(z). So we have

Φe31 (ω) ≤ Φe32(ω) + |Ŵ32(ω)|
2Φe21(ω)+

+ Φe32e21 (ω)Ŵ
∗
32(ω) + Ŵ32(ω)Φe21e32(ω) ≤

≤ (
√

Φe32(ω) + |Ŵ32(ω)|
√

Φe21(ω))
2 ∀ ω ∈ R.

For the sake of simplicity we neglect to explicitly write
the argumentω in the following passages. Normalizing with
respect toΦX3

, we find

Φe31

ΦX3

≤
1

ΦX3

(
√

Φe32 + |Ŵ32|
√

Φe21)
2

and considering the 2-norm properties
(
∫ π

−π

Φe31

ΦX3

dω

)
1
2

≤

≤

(
∫ π

−π

Φe32

ΦX3

dω

)
1
2

+

(
∫ π

−π

|ΦX3X2
|2

ΦX3
ΦX2

Φe21

ΦX2

dω

)
1
2

,

where we have substituted the expression ofŴ32. Finally,
observing that

0 ≤
|ΦX3X2

|2

ΦX3
ΦX2

≤ 1,

we find

d(X1, X3) ≤ d(X1, X2) + d(X2, X3).

III. M AIN RESULT

In this section we exploit the coherence-based distance
(10) to derive sufficient conditions to guarantee the exact
reconstruction of the topology of a dynamical network. To this
end, we first need to introduce a few definitions and technical
lemmas.

Definition 5: We define “path” fromNi to Nj a finite
sequence ofl > 0 nodesNπ1

, ..., Nπl
such that

• Nπ1
= Ni

• Nπl
= Nj

• Nπi
andNπi+1

are linked by an arc of the tree fori =
1, ..., l− 1

• Nπi
6= Nπj

for i 6= j.

In the following we consider LCMT networked systems. It
is worth underlining that a rooted tree is a pair made of a tree
and one of its nodesNr, named as “root”. Hence, since a tree
is a connected graph, in a LCMT network there is always a
path between two nodes and, since there are no cycles, such
a path is also unique.
The presence of a special node labeled as “root” induces a
natural relation of “order” among the nodes in the following
way

Definition 6: Given a rooted tree, consider the path from
Nr to another nodeNj . A nodeNi is said to be an ancestor
of Nj if Ni 6= Nj and if it belongs to the path fromNr to
Nj . Alternatively, we say thatNj is a descendant ofNi. We
also say thatNi is parent ofNj (or thatNj is a child ofNi)
if, in addition,Nj andNi are connected by an arc.

It is straightforward to prove that the root is an ancestor to
all the other nodes and that every node but the root has exactly
one parent. Hereafter an important result about the correlation
property in a LCMT is introduced.

Lemma 7:Given a LCMT T , consider a nodeNj and a
nodeNi 6= Nj which is not a descendant ofNj. Then it holds
thatE[̺jXi] = 0.

Proof: Let Nr be the root ofT andNπ1
, ..., Nπl

the path
from Nr to Ni. Exploiting the linear dependencies among the
signals of the LCMT,Xi can be expressed in terms of the
noises̺π1

, ..., ̺πl

Xi =

l
∑

q=1

Wiπq
̺πq

(11)

where

Wiπq
=

l−1
∏

h=q

Hπh
. (12)

SinceNi is not a descendant ofNj andNi 6= Nj , we have
that ̺πq

6= ̺j for q = 1, ..., l, thus

E[̺jXi] = E

[

̺j

l
∑

q=1

Wiπq
̺πq

]

= 0 (13)

The two following lemmas provide two important inequal-
ities about the coherence functions related to the network
signals.



Lemma 8:Consider a LCMTT and three nodesNi, Nj

andNk such that

• Nk is a descendant ofNj

• Ni is not a descendant ofNj andNi 6= Nj .

Then we have thatCXiXj
≥ CXiXk

. Moreover, ifT is well-
posed then the inequality is strict.

Proof: Consider the path fromNj to Nk described by the
sequenceNπ1

, ..., Nπl
. Exploiting the linear relations (1 ), the

processXk can be expressed in terms ofXj and of the noises
acting on the nodesNπ2

, ..., Nπl
which are all descendants of

Nj .

Xk = Wkπ1
Xj +

l
∑

q=2

Wkπq
̺πq

(14)

whereWiπq
is defined as in (12). Now, we intend to evaluate

the coherence betweenXi andXj. From the assumption on
Ni, it follows thatNi is not on the path fromNj to Nk. In
other words,Ni is not a descendant ofNπq

andNi 6= Nπq

for q = 1, ..., l. We can write

CXiXk
=

|ΦXiXk
|2

ΦXi
ΦXk

=

=
|Wkπ1

|2|ΦXiXj
|2

ΦXi
[ΦXj

|Wkπ1
|2 +

∑l
q=2

|Wkπq
|2Φ̺πq

]
(15)

where the last equality holds because of Lemma 7 . Collecting
the factorΦXj

|Wkπ1
|2, we obtain

CXiXk
=

|ΦXiXj
|2

ΦXi
ΦXj

[

1 +
P

l
q=2

|Wkπq |2Φ̺πq

ΦXj
|Wkπ1

|2

] ≤ CXiXj
(16)

where the inequality is strict if
∑l

q=2
|Wkπq

|2Φ̺πq
> 0.

Lemma 9:Consider a LCMTT and three different nodes
Ni, Nj andNk such that

• Nk is a child ofNj

• Ni 6= Nj , Nk and it is not a descendant ofNk

Then CXjXk
≥ CXiXk

. Moreover, if T is well-posed the
inequality is strict.

Proof: Assume thatXk = HkjXj + ̺k and let us
distinguish two possible scenarios.
case A
First, consider the case whereNj is a descendant ofNi.
Consider the path fromNi to Nj described by the sequence
of l nodesNπ1

, ..., Nπl
whereNπ1

= Ni andNπl
= Nj. The

processXj can be expressed in terms ofXi and of the noises
acting on the nodesNπ2

, ..., Nπl
which are all descendants of

Ni.

Xj = Wjπ1
Xi +

l
∑

q=2

Wjπq
̺πq

. (17)

Exploiting Lemma 7 we can evaluate the following quantities

CXiXk
=

|ΦXiXk
|2

ΦXi
ΦXk

=
|Wjπ1

|2|Hkj |
2|ΦXi

|2

ΦXi
ΦXk

=

=
|Wjπ1

|2|Hkj |
2ΦXi

ΦXk

(18)

and

CXjXk
=

|ΦXjXk
|2

ΦXj
ΦXk

=
|Hkj |

2|ΦXj
|2

ΦXj
ΦXk

=

=
|Hkj |

2

ΦXk

[

ΦXi
|Wjπ1

|2 +

l
∑

q=2

|Wjπq
|2Φ̺πq

]

(19)

By inspection we have the assertion.
Now we are left to consider the case whereNj is not a
descendant ofNi. Then, alsoNk is not a descendant ofNi. By
hypothesis,Ni is not a descendant ofNk, either. Thus, they
must have a common ancestorNd, such that the two paths
from Nd to Nk and fromNd to Ni have onlyNd in common.
Consider the path fromNd to Ni, such that it is possible to
write

Xi = Wiπ1
Xd +

l
∑

q=2

Wiπq
̺πq

. (20)

Exploiting lemma 7, we have

CXiXk
=

|ΦXiXk
|2

ΦXi
ΦXk

= (21)

=
|ΦXkXd

|2

ΦXk

[

ΦXd
+
∑l

q=2
|Wjπq

|2Φ̺πq

] ≤ (22)

≤ CXkXd
(23)

If Nd = Nj , we have the assertion. IfNd 6= Nj, thenNj must
be a descendant ofNd. We are in a situation equivalent to case
A: there is a nodeNd such thatNj is one of its descendants.
As a consequence, we can state that

CXkXd
≤ CXkXj

. (24)

Combining the last two inequalities, we conclude that the
lemma holds also in this case.

All the previous lemmas are functional to the show that the
coherence distance (10) is minimal between two contiguous
nodes, as summarized in this theorem.

Theorem 10:Given a LCMTT , consider a nodeNa and a
nodeNb 6= Na which is not directly linked to it. Then there
exists a nodeNc directly linked toNa such that

d(Na, Nc) ≤ d(Na, Nb) (25)

where the inequality is strict ifT is well-posed.
Proof: First, consider the case whereNb is a descendant

of Na. NameNc the child of Na on the path linking it to
Nb. SinceNc is directly linked toNa, we haveNb 6= Nc.
MoreoverNb is a descendant ofNc. We are allowed to apply
lemma (8) withNi = Na, Nj = Nc andNk = Nb to have
the assertion.
Now, consider the case whereNb is not a descendant ofNa.
Na can not be the root, otherwiseNb would be one of its
descendants. ThusNa has a parent and let us name itNc.
Nb can not beNc because it is not directly linked toNa.
Applying lemma (9) withNi = Nb, Nj = Nc andNk = Na

and by the definition of the coherence distance (10), we have
the assertion.



Theorem 10 can be fruitfully exploited to determine whether
two processes in a well-posed LCMT are directly linked.
Nonetheless, when we are dealing with data sampled from
actual systems the computation ofd, that is of the coherence
function, is affected by the limited time horizon of the ob-
servations. However, the estimates of the spectral and cross-
spectral densities converge to the actual values as the time
horizon approaches infinity. Hence, in the following we will
assume to sample the processes over a sufficiently large time
interval.

We are ready to show the main contribution of the paper.
Theorem 11:Consider a well-posed LCMTT and assume

to observe the signalsXj during a time horizont. Compute
an estimate of the coherence based distancesdij = d(Xi, Xj)
among the nodesNj and evaluate the relative Minimum
Spanning Tree (MST). Whent approaches infinity, the cor-
responding topology is equivalent to the unique MSTT
associated to the coherence metric.

Proof: The proof consists in showing that the MSTT
associated to the distance (10) is unique and corresponds to
the LCMT topology. We will prove this result by induction on
the numbern of nodes of the LCMT.
The basic induction step consists in observing that theoremis
true forn = 2.
Now assume the theorem true for a LCMT withn nodes. Given
a LCMT T with n + 1 nodes, remove one of its “leaves”.
By leaf we mean a non-root node with no descendants. This
operation is always possible since any rooted tree with at least
two nodes has at least one leaf. Without loss of generality, let
the removed leaf beNn+1 and letNi be its parent. Now we
have a LCMTT ′ with n nodes and with the same topology of
T apart from the removed arc(i, n+ 1). Using the induction
hypothesis, we know that the topology ofT ′ is given by the
unique MSTT ′ obtained considering the distances among the
nodesN1, ..., Nn. Now compute

i∗ = arg min
j<N+1

d(Xi, Xn+1). (26)

The solution of such a minimization problem is unique since
the LCMT T is well posed. Because of lemma 10, the arc
(i∗, N + 1) belongs to the topology ofT , so we conclude
i∗ = i. Let T be the spanning tree obtained by adding the arc
(i, N +1) to T ′. So far, we have shown thatT represents the
topology ofT . We have to prove thatT is the unique MST
related to the distance (10) among the nodesN1, ..., Nn+1.
Suppose, by contradiction, that there is a minimum spanning
tree T̄ 6= T with weight lesser or equal than the weight ofT .
The only arc ofT̄ incident to the nodeNn+1 is (i, n + 1).
If there were another arc(k, n+ 1) in T̄ we could replace it
with the arc(k, i) obtaining a spanning tree with inferior cost.
Indeed, by lemma 9, we would have

d(Xk, Xi) < d(Xn+1, Xi). (27)

So, if T̄ is a minimum spanning tree, thenXn+1 can be
connected only toXi. Let T̄ ′ be the tree obtained bȳT
removing the arc(i, n + 1). T̄ ′ is the minimum spanning
tree for the nodesN1, ..., Nn since it has been obtained from
T̄ removing the nodeNn+1 which has a single connection.

However, by the induction hypothesis, there is a unique MST
T ′ among the nodesN1, ..., Nn. Thus we have that̄T ′ = T ′.
It immediately follows the contradiction that̄T = T .

So far, we have assumed that the dynamics of the network
is described by a rooted tree. Moreover, the previous theorem
proves that the topology structure can be correctly identified
evaluating the MST according to the distance (10). However,
no information is recovered about the root node. The following
result shows that such an information is not necessary (or,
equivalently, not recoverable). Indeed, from a modeling point
of view, the choice of the root can be arbitrary (as long as
we are considering non-causal transfer functions linking the
processesXj).

Theorem 12:Given a LCMTT whose root is the nodeNj

and given one of its childrenNi, it is possible to define another
LCMT T ∗ with the same tree structure and described by the
same processesXk, k = 1, ..., n, such that its root isNi.

Proof: Consider the Wiener FilterWji modeling the
signalXj , seen as the output, whenXi is the input

Xj = WjiXi + eji. (28)

Now, consider a rooted tree with the same topology ofT but
with Ni as the root. DefineH∗

k = Hk and ̺∗k = ̺k for all
k 6= i, j. Conversely, define

H∗
j = Wji ̺∗j = eji (29)

H∗
i ≡ 0 ̺∗i = Xi. (30)

To show that the new dynamical network withNi as root and
described by the filtersH∗

k is an LCMT, we need to prove
that, forh 6= k,

E[̺∗h̺
∗
k] = 0. (31)

There are three possible scenarios.
If h = i andk = j or h = j andk = i, then

E[̺∗h̺
∗
k] = 0. (32)

because of the Wiener Filter properties.
If h = i, j andk 6= i, j (or equivalentlyh 6= i, j andk = i, j),
then lemma 7 can be applied.
If h 6= i, j andk 6= i, j, then

E[̺∗h̺
∗
k] = E[̺h̺k] (33)

and we have the assertion because̺h and ̺k are two noise
signals of the original LCMTT .

It is straightforward to show that, starting from an LCMTT ,
we can arbitrary define a LCMTT ∗ having an arbitrary node
as root. Indeed, it is sufficient to iteratively apply Theorem 12
along the path starting from the original root to the new one.

IV. N UMERICAL EXAMPLES

In this section we introduce a suitable framework to il-
lustrate the application of the previous theoretical results to
numerical analysis. It is worth observing that the previous
results have been developed for the most general class of linear
models. Indeed, no assumptions have been done on the order
and causality property of the considered transfer functions.
Moreover, let us highlight that the coherence based analysis
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Fig. 1. The figure illustrates the topology of the 10 nodes network analyzed in
the numerical examples paragraph. Each node is responsiblefor a processXj ,
while the arcs describe the connections among them, according to the linear
SISO model (1). For the data generation we have considered only transfer
functions of at most the second order. The noises̺j have been assumed
to provide half the power of the affected processes. The samples have been
collected over 1000 time steps.

must be realized “off-line”, since the processes have to be
evaluated over their entire time span. Thus, because the
coherence function can be numerically computed only over
limited intervals, in the following examples we will consider
sufficiently long time spans to reduce the numerical error.

Hence, let us build the original dynamical networks accord-
ing the following rules:

• each system is described according to the model (1);
• each transfer functionHj is randomly generated and such

that it is causal and at most of the second order;
• the tree topology is randomly chosen;
• the noises̺ j are numerically generated with a pseudo-

random algorithm;
• the noise-to-signal ratio of each system is equal to one.

Then, such networks are simulated over 1000 time steps and
the related dataXj are collected. The corresponding coherence
based distances are evaluated and used for the extraction of
the MST, that defines the link topology.

The above procedure will be first applied to a ten node
network. In particular, to test the numerical reliability of the
topological identification technique, we repeat such analysis
several times, so that a significant number of network con-
figurations is considered. The corresponding results fit the
expectations and the real topology is correctly identified each
time. In Fig. 1 one of the considered network configurations
is depicted, while the related coherence based distance matrix
is reported in Table I.

To provide a further test, a new set of similar simulations is
performed with a network of fifty dynamical systems, under
the same assumptions used in the previous case. Figure 2
presents one of the considered network configurations. For a
space limitation issue, we do not report in this manuscript the
corresponding coherence based distance matrix. Nonetheless,
the computation of the related MST has successfully identified
the real network topology in any of the performed simulations.

Fig. 2. A representative topological configuration of the 50nodes network
case considered of the numerical examples paragraph. The example has been
designed according to the same assumptions of the ten node network of Figure
1.

V. STOCK MARKET ANALYSIS

In the previous section we have illustrated how the distance
(10) can be successfully exploited to derive the exact topology
of a tree network of linear systems affected by additive noises.
Nonetheless, since the above identification technique is able to
catch the most important linear dependencies with respect to
the modeling error (4), in the following we present the results
obtained by the application of the previous method to the stock
market, that is a network of nonlinear systems characterized
by multiple dependencies.

Financial systems are, in general, very complex and deriving
information from stock markets is a formidable and challeng-
ing task, indeed. Moreover, it might seem very reductive the
attempt to describe the dependencies among the price trendsin
terms of linear SISO systems with a tree topology. In fact, we
should definitely expect multiple input influences, nonlinear
relations and feedbacks. However, we can think of adopting
a LCMT in order to detect what are the “strongest” links in
the network. As noted in [3], such an information could be
usefully exploited to check if a given portfolio is balancedor
not. In the following, we report the results obtained by the
application of our identification technique.
A collection of 100 stocks of the New York Stock Exchange
has been observed for four weeks (twenty market days), in
the lapse 03/03/2008 - 03/28/2008 sampling their prices every
2 minutes. The stocks have been chosen on the first100
stocks with highest trading volume according to the Standard



X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0 0,7299 0,6675 0,7351 0,8316 0,8542 0,8297 0,7055 0,6549 0,8298
X2 0,7299 0 0,8065 0,8353 0,6934 0,7358 0,8786 0,8483 0,8299 0,8717
X3 0,6675 0,8065 0 0,8216 0,8744 0,8807 0,8750 0,8262 0,7841 0,8821
X4 0,7351 0,8353 0,8216 0 0,8662 0,8722 0,7404 0,8502 0,8198 0,7039
X5 0,8316 0,6934 0,8744 0,8662 0 0,8540 0,8919 0,8995 0,8730 0,8846
X6 0,8542 0,7358 0,8807 0,8722 0,8540 0 0,8934 0,8984 0,8796 0,8944
X7 0,8297 0,8786 0,8750 0,7404 0,8919 0,8934 0 0,8838 0,8694 0,8346
X8 0,7055 0,8483 0,8262 0,8502 0,8995 0,8984 0,8838 0 0,8167 0,8908
X9 0,6549 0,8299 0,7841 0,8198 0,8730 0,8796 0,8694 0,8167 0 0,8715
X10 0,8298 0,8717 0,8821 0,7039 0,8846 0,8944 0,8346 0,8908 0,8715 0

TABLE I
THE COHERENCE BASED DISTANCE MATRIX ASSOCIATED TO THE NETWORK TOPOLOGY DEPICTED INFIG. 1
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Fig. 3. (color on line) The tree structure obtained using theproposed identification technique. Every node represents astock and the color represents the
business sector it belongs to. The considered sectors areBasic Material (yellow),Conglomerates (white),Healthcare (pink),Transportations
(dark blue),Technology (red), Capital Goods (orange),Utilities (brown tints),Consumer (violet tints), Financial (green tints),Energy
(gray tints) Services (light blue tints). Using the industry classification givenby Google, theFinancial sector has also been differentiated among
Insurance Companies (light green), Banks (average green) and Investment Companies (dark green);Services have been divided in Information Technology
(cyan) and Retail (aquamarina),Consumer in Food (plum) and Personal-care (purple);Energy in Oil & Gas (dark gray) and Well Equipment (light gray);
Utilities in Electrical (dark brown) and Natural Gas (lightbrown).

& Poor Index at the first day of observation and they are
reported in Table II. An a-priori organization of the companies
has been assumed in accordance with the sector and industry
group classification provided by Google FinanceR©, that is also
the source of our data. The whole observation horizon spans
almost the whole month of March. Hence, the corresponding
price series can not be considered stationary and the statistical
tools can not be successfully employed to analyze the raw data.
In literature a variety of techniques for the suppression of
trends and periodic components in non-stationary time series
exists. However, we want to stress that the application of
such procedures introduces an additional prefiltering phase,
which is responsible for the computational burden increase.
Moreover, due to the pre- and post-market sessions, there
is a discontinuity between the end value of a day and the
opening price of the next one. We have avoided those problems
observing that the observation horizon is naturally divided
into subperiods, namely weeks and days. In addition, a single
market session can be considered a time period sufficiently
short to assume that the influence of trends and seasonal
factors are negligible. Thus, in our analysis, we have followed
the natural approach of dividing the historical series into
twenty subperiods corresponding to single days. Then, we
considered the sessions separately, i.e. we have computed the
coherence-based distances (10) among the stocks for every

single day. Finally, we have averaged such daily distances
over the whole observation horizon and the related results have
been exploited to extract the MST, providing the corresponding
market structure.
We find useful to remark that the computation of the distances
for smaller data sets is also better performing and that the
averaging procedure provides the desired rejection of trends
and seasonal components. Notably, a similar idea, even if more
sophisticated, is at the basis of the method developed in [21]
to detrend non-stationary time series.
The final topology is shown in Figure 3. Every node represents
a stock and the color represents the business sector or industry
it belongs to. We note that the stocks are very satisfactorily
grouped according to their business sectors. We stress thatthe
a-priori classification in sectors is not a hard fact by itself
and we are not trying to match it exactly. A company could
well be categorized in a sector because of its business, but,
at the same time, could show a behaviour similar to and
explainable through the dynamics of other sectors. Actually,
we would be very interested into finding results of this kind.
Indeed, in those very cases, our quantitative analysis would
provide the greatest contributions detecting in an objective
way something which is “counter-intuitive”. Thus, we just
use such a-priori classification as a tool to check if the final
topology makes sense and if, at a general level, our approach



provides useful results. Despite this disclaim, it is worth
noting that theFinancial (green tints),Consumer (violet
tints), Basic Materials (yellow), Energy (gray tints)
andTransportation (dark blue) sectors are all perfectly
grouped, with no exceptions. In Fig. 3, we note a subcluster-
ization of theFinancial sector, as well. TheConsumer
sector shows another prominent subclusterization in theFood

(plum) and Personal/Healthcare (purple) industries,
while the Energy sector presents an evident subclusteri-
zation into theOil & Gas (dark gray) andOil Well

Equipment (light gray). TheUtilities/Electricity
companies (dark brown) are, interestingly, a different group.
We also observe a big cluster of companies classified
as Services (light blue tints). We have differentiated
them in the two industriesRetail and Information

Technology using two slightly different colors, respectively
aquamarine and cyan. We also note the presence of three
Services companies which are isolated from the other ones:
V [Verizon], T [AT&T], and S [Sprint]. All of them are
telephone companies. This might suggest that this industry
should show at least a slightly different dynamics from the
other service companies. Note also how theTechnology
sector (red) is almost perfectly grouped and howIBM, an IT
company, even though classified as aServices company, is
located in it. Finally, the two only automobile companiesGM
andF [Ford] happen to be linked together. The analysis of this
four weeks of the month of March cleanly shows a taxonomic
arrangement of the stocks even though the choice of a tree
structure might have seemed quite reductive at first thought.

VI. CONCLUSIONS

This work has illustrated a simple but effective procedure
to identify the structure of a network of linear dynamical
systems when the topology is described by a tree. To the
best knowledge of the authors, the problem of identifying a
network has not yet been tackled in scientific literature. The
approach followed in this paper is based on the definition of
a distance function in order to evaluate if there exists a direct
link between two nodes. A few theoretical results are provided,
in particular to guarantee the correctness of the identification
procedure. An application of the technique to real data has
also shown that a tree topology can be sufficient to capture
information even in complex situations such as financial stock
prices.
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Name Code Sector

3M Company MMM Conglomerates
Abbott LAboratories ABT Healthcare

Aes Corporation AES Utilities
Alcoa Inc. AA Basic Materials

Allegheny Technologies Inc. ATI Basic Materials
Allstate Corporation ALL Financial

Altria Group MO Consumer/Non-Cyclical
American Electric Power AEP Utilities

American Express AXP Financial
American International Group AIG Financial

Amgen Inc. AMGN Healthcare
Anheuser Busch BUD Consumer/Non-Cyclical

Apple Inc. AAPL Technology
AT&T T Services

Avon Products AVP Consumer/Non-Cyclical
Baker Hughes Inc. BHI Energy
Bank of America BAC Financial

Bank of New York Mellon BK Financial
Baxter International BAX Healthcare

Boeing BA Capital Goods
Bristol Myers Squibb BMY Healthcare

Burlington Northern Santa Fe BNI Transportation
Campbell Soup CPB Consumer/Non-Cyclical

Capital One Financial COF Financial
Caterpillar Inc. CAT Capital Goods

CBS CBS Services
Chevron CVX Energy
CIGNA CI Financial

Cisco Systems CSCO Technology
Citigroup Inc C Financial

Clear Channel Communications CCU Services
Coca-Cola KO Consumer/Non-Cyclical

Colgate Palmolive CL Consumer/Non-Cyclical
Comcast CMCSA Services

Conoco Phillips COP Energy
Covidien COV Healthcare

CVS Caremark CVS Services
Dell Inc DELL Technology

Dow Chemical Company DOW Basic Materials
E.I. du Pont de Nemours DD Basic Materials

El Paso EP Utilities
EMC EMC Technology

Entergy ETR Utilities
Exelon EXC Utilities

Exxon Mobil XOM Energy
FedEx FDX Transportation

Ford Motor F Consumer Cyclical
General Dynamics GD Capital Goods
General Electric GE Conglomerates
General Motors GM Consumer Cyclical

Goldman Sachs Group GS Financial
Google Inc. GOOG Technology
Halliburton HAL Energy

Hartford Financial Services HIG Financial
H. J. Heinz HNZ Consumer/Non-Cyclical

Hewlett-Packard HPQ Technology
Home Depot HD Services

Honeywell International HON Capital Goods
Intel INTC Technology

International Business Machines IBM Services
International Paper IP Basic Materials
Johnson & Johnson JNJ Healthcare

JPMorgan Chase JPM Financial
Kraft Foods KFT Consumer/Non-Cyclical

Lehman Brothers Holding LEH Financial
McDonald’s MCD Services
Medtronic MDT Healthcare

Merck MRK Healthcare
Merril Lynch MER Financial

Microsoft MSFT Technology
Morgan Stanley MS Financial

Norfolk Souther Group NSC Transportation
NYSE Euronext NYX Financial

Oracle ORCL Technology
Pespi PEP Consumer/Non-Cyclical

Pfizer Inc. PFE Healthcare
Procter & Gamble PG Consumer/Non-Cyclical

Raytheon RTN Conglomerates
Regions Financial RF Financial

Rockwell Automation ROK Technology
Sara Lee SLE Consumer/Non-Cyclical

Schlumberger Limited SLB Energy
Southern SO Utilities

Sprint Nextel S Services
Target TGT Services

Texas Instruments Inc. TXN Technology
Time Warner TWX Services

Tyco International TYC Conglomerates
U. S. Bancorp USB Financial

United Parcel Service UPS Transportation
United Technologies UTX Conglomerates

UnitedHealth Group Inc. UNH Financial
Verizon Communications VZ Services

Wachovia WB Financial
Wal-Mart Stores WMT Services

Walt Disney DIS Services
Wells Fargo WFC Financial

Weyerhaeuser Company WY Basic Materials
Williams Companies WMB Utilities

Xerox XRX Technology

TABLE II
L IST OF THE COMPANIES CONSIDERED IN THE ANALYSIS
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