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Abstract—The paper deals with the problem of reconstructing powerful representation tool for delayed processes [18].[
the topological structure of a network of dynamical systemsA — |n many situations, when the topology to be reconstructed is
distance function is defined in order to evaluate the “closeess” 4 tree, the only observable nodes are the leaves. Then, the

of two processes and a few useful mathematical properties ar | th tical f Kis al t al tin stahd
derived. Theoretical results to guarantee the correctnessf the usual theoretical framework IS aimost always Set In S ar

identification procedure for networked linear systems withtree ~graph theory as in the Unweighted Pair Group Method with
topology are provided as well. Finally, the application of he Arithmetic mean (UPGMA)[[19]. Its application is mainly in
techniques to the analysis of an actual complex network, i.é0  the reconstruction of evolutionary trees, but it has beetelyi
high frequency time series of the stock market, is illustragd. employed also in many other areas: communication systems
and resource allocations. Theoretically, such a technique
guarantees an exact reconstruction of a tree topology anly o
the strong assumption that an ultrametric is defined among
Under the influence of improved numerical tools, #he considered nodes. An approach based on system theory
significant interest for complex systems has been shownénd identification tools is completely missing. Specifigall
many scientific fields. In particular, attention has beemu$et there are no approaches considering explicitly the pdigibi
on networks, highlighting the emergence of complicateaf dynamics among the nodes. While dynamical networks
phenomena from the connection of simple models. To tHisve been deeply studied and analyzed in automatic control
regard, a relevant impulse has been provided by the advantte=ry, the question of reconstructing an unknown network
in neural network theory, that has contributed to underiree of dynamical systems has not been formally investigated. In
importance of the connection topology in the realization déct, in most applicative scenarios the network is giventor i
complex dynamics |1]. As a consequence, graph theldry [B]the very objective of design. However, there are also some
has been successfully exploited to perform novel modelimgteresting situations where the network links are acyuall
approaches in several fields, such as Economics (see_E.g. iBknown, such as in biological neural networks, biochemica
[4], [5]), Biology (see e.qg.[[6],[17]) and Ecology (see e.gmetabolic pathways and financial markets. Even though an
[8l, [@l, [1Q]), especially when the investigated phenomeracyclical topology may seem a quite reductive choice, given
were characterized by spatial distribution and a multateri an intricate and connected topology, we may be interested
analysis technique is preferred [11], [12]. into “approximating” it with a tree. Such an approximation
To the best knowledge of the authors, there are very fewuld be considered “satisfactory” if the most important
theoretical results about the reconstruction of an unknowonnections were captured.
topology from data. In this paper, we will focus our attentioln this manuscript we will develop a rigorous mathematical
on tree topology networks. Though its reduced complexityethod to exactly identify the connections scheme of a
with respect to cyclic link structures, the tree connectiamnee topology network of noisy linear dynamical systems,
model turns out to be particularly suitable to represent moviding a theoretical background for linear network
large variety of processes. In particular, the tree networkodeling. In particular, in Sectiof]ll we will introduce
scheme results effective in the description of systems witlefinitions and preliminary results which are useful to
transportation, such as water and power supply, air and refilaracterize the mathematical framework. In Section |l
traffic, vascular systems of living organisms and channdl anur approach to topology reconstruction will be presented
drainage networks (see e.g. [13]) [9],[14].[15], [16]).idst and sufficient conditions for an exact identification will be
worth to highlight that this kind of models is deeply relatedeported as well. In Section]V the theoretical results will
to the idea of delay, that characterizes the connections les confirmed by practical implementations of the proposed
transportation media. It is also important to recall that itechnique, illustrated by means of numerical examples. In
linear dynamical system theory the transfer function is Section[¥, we will show that the identification of a tree

I. INTRODUCTION
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topology can provide useful information even for complex Definition 2: A LCMT is well-posedif ®, (w) > 0 for all
network. To this end, we will apply our technique to the;, and for allw

analysis of high frequency real data originated by a pddfol Assuming to have a complete statistical knowledge of each
of financial stocks. Some final conclusions in Seclioh VI wilprocess{ X },—1..._,, we are interested in the identification of

end the manuscript. the links, which describe the tree characterizing the nekwo
topology. To this aim, hereafter we introduce some prelanin

Notation: results, which can be exploited to define a mathematical tool

E[-]: mean operator; for the quantitative characterization of the connections.

Rxy (1) = E[X(t)Y(t + 7)]: cross-covariance function of Let us consider two stochastic processés X; and let

stationary processes; W;i(z) be a time-discrete SISO transfer function. Hence,

Rx (1) = Rxx(7): autocovariance; consider the quadratic cost

PXY = \/%: correlation index; )

Z(-): Zeta-transform of a signal; E [(EQ) } ’ (4)

Oxy(z) = Z(Rxy(7)): cross-power spectral density; where

D x(z) = Dxx(z): power spectral density;

with abuse of notationd y (w) = @ x (e™); eQ = Q(2)(X; — Wji(2) X))

[-] and|-]: ceiling and floor function respectively; _ ) ) ) _

(-)*: complex conjugate. a_nd Q(z) is an arbltra_ry stab_le z_and causally invertible time-
discrete transfer function weighting the error

[l. PROBLEM SET UP eji = X; — Wji(2)X; .

In this section we formally introduce a model to addreSﬁ]en’ the computation of the transfer functidﬁ?i(z) that

noisy linear dynamical sy;tems inter_cor_mected to fo”‘_" @ Minimizes the quadratic codil(4) is a well-known problem in
topology and we also p_rowde aquantitative tool to chara®e e niiic literature and its solution is referred to as thieir
the mutual dependencies. filter [18]

Let us consider a network ot time-discrete SISO linear
dynamical systems affected by additive noises. Therfl¢t)
be the transfer function of th¢-th system{X;(k)}rez and
{U;(k)}rez its output and input signals respectively an
{0j(k)}rez a zero-mean wide-sense stationary noise. Hence, Wislz) = Px, x; (2)
each system can be represented according to the model: 7 Dy, (2)

X;(k)=H;(2)Uj(k) +0;(k) Vi=1,...,n. (1) anditdoes notdepend up@p(z). Moreover, the minimized
cost is equal to

Proposition 3 (Wiener filter):The Wiener filter modeling
X; by X; is the linear stable filtetV;; minimizing the filtered
guantity [@). Its expression is given by

(®)

We stress that no assumptions on the causalityf gfz) have
been done. Moreover, let the property min F [eé] =
Eloje =0 i #i, @ =5 [ 1QWIP (Bx, )~ |2x,x, () PR () o

holds. Then, suppose that the input sighal of each node an%i the corresponding error
results the output of another process and that the systems o
the network are connected to form a tree topology, prevgntin éji = X — Wji(Z)Xi
the presence of cycles. _ ) )
In this paper we will formally address this kind of networiS not correlated withX;, i.e.
according to the following definition. El6;;X,] =0 ©6)

Definition 1: Consider the ensemble of a rooted tree topol- e '
ogy of n nodesN; and a corresponding set eflinear time- Proof: See, for example| [17][[18]. u
discrete SISO systems affected by noise, described aegprdi Since the weighting functionQ(z) does not affect the
to the model [(1). Namely, assum®; as the root node. Wiener filter, but only the energy of the filtered error, we can
Moreover, let{o; },-1,...,» be zero-mean wide-sense stationarghoose)(») equal toF;(z), the inverse of the spectral factor

random processes satisfying (2), i.e. mutually not coteela of ®x,(z), that is
zero-mean noises. Then, we defirieear Cascade Model Tree

(LCMT) a dynamical network defined by the equation system Dx,(2) = F; 1 (2)(F; 1 (2)" (7
X1 =Hi(2) X + 0 In particular, it is worth recalling thaf;(z) is stable and
(3) causally invertible[[20]. Therefore, the minimum of cds) (4
X, = H,(2)Xx, + 0n s assumes the value

where i;(z) = 0 and the sef{r,...,m,} is a permutation | ; pr2 | — 1 /'7r <1 Cexx (W) >dw. (®)
of {1,...,n}. i 2 Py, (w)Px; (w)

—T



Observe that, due to such choice®fz), the cost turns out [1l. M AIN RESULT

to explicitly depend on thecoherence functiorof the two | this section we exploit the coherence-based distance

Processes. (@I0) to derive sufficient conditions to guarantee the exact
|Px,x, (w)[? reconstruction of the topology of a dynamical network. Tis th
Cxix; (W) = Dy (W) Py, (@) (9)  end, we first need to introduce a few definitions and technical
7 J
lemmas.

Let us recall that the coherence function is not negative andpefinition 5: We define “path” fromN; to N; a finite
symmetric with respect ta. Moreover, it is also well-known sequence of > 0 nodesNy, , ..., N, such that

that the cross-spectral density satisfies the Schwartz aiity VN =N

and, thus, the coherence function results limited betwg&en e ¢

and 1. Therefore, according to the previous results, the cost’ %’” zn]c\j]JN are linked by an arc of the tree for—
@) turns out to be dimensionless and not depending on the’ 1 i 11 it y o

“energy” of the stochastic process&s and X ;.

The following result holds. © Nr # N“]’. fori #j. ,
Proposition 4: In a well-posed LCMT, the binary function In the following we consider LCMT networked systems. It
is worth underlining that a rooted tree is a pair made of a tree

and one of its noded/,.,, named as “root”. Hence, since a tree
is a connected graph, in a LCMT network there is always a
path between two nodes and, since there are no cycles, such

is a metric. . )
a path is also unique.

. |:>Iroqf: Thellonly non tnwa!) pr(;]perty to befllprovsd IS therhe presence of a special node labeled as “root” induces a
triangle inequality. LetV;;(z) be the Wiener filter between natural relation of “order” among the nodes in the following

X;,X; computed according t¢](5) and; the relative error.

1/2

i) = | [0 cxs@)as] o

2 J_,

. . way

The following relations hold: . .
e following refations hold Definition 6: Given a rooted tree, consider the path from
X3 = Ws1(2) X1 + e N, to another nodeV;. A node NV; is said to be an ancestor

of N; if N; # N; and if it belongs to the path fronV, to
. Nj;. Alternatively, we say thatV; is a descendant aW;. We
Xo = Wai(2) X1 + €21 also say thatV; is parent ofN; (or thatN; is a child of ;)

Since W3, (z) is the Wiener filter between the two processe'é in addition, NV; and V; are connected by an arc.

X, and X, it performs better at any frequency than any other It is straightforward to prove that the root is an ancestor to
linear filter. such aW32(Z)W21(Z) So we have all the other nodes and that every node but the root has gxactl

A one parent. Hereafter an important result about the cdioala
Doy, (W) < By, (W) + [Wag (W) 2Dy, (w)+ property in a LCMT is introduced.
F Dyyen, (W)W (W) + Wiz (W) Peyy ny (W) < Lemma 7:Given a LCMT 7, consider a nodéV; and a
. nodeN; # N; which is not a descendant of;. Then it holds
< (\/ (I)€32 (W) + |W32(w)| \% (I)em (w))Q VweR thatE[QJXZ] =0.
For the sake of simplicity we neglect to explicitly write ~ Proof: Let N, be the root of/" and Nz, , ..., N, the path

the argumenty in the following passages. Normalizing withffom NV to N;. Exploiting the linear dependencies among the
respect tod x,, we find signals of the LCMT,X, can be expressed in terms of the

noisesoy,, ..., Or,

X3 = Waa(2) Xy + €32

D, 1 .
T S g (Ve + Wizl /20y )? z
. .3 ’ . Xi = Z Wiﬂ'q Or, (11)
and considering the 2-norm properties —l

", \? h
(/ P, dw) < where
—7 (I)Xs

-1
s % T % Wiﬂ' - Hﬂ' .
< (/ (1)632 dw> + </ |q)X3X2|2 (1)621 dw> , / }:Ll;](:] .

—m * X3 —7 (I)qu)Xz (I)Xz

(12)

) Since N; is not a descendant d¥; and N; # N;, we have
where we have substituted the expressionliof,. Finally, that,, oj for ¢ =1,...,1, thus

observing that

2
0< 23t Elo;X)| = E

= Bx,Px,
we find [ |
The two following lemmas provide two important inequal-
ities about the coherence functions related to the network
m Signals.

l
05 Z Wiﬂ'q qu] =0 (13)

q=1

d(X1,X3) < d(X1, X2) + d(X2, X3).



Lemma 8:Consider a LCMT7 and three nodesv;, N; and

and Ny, guch that 1Px,x, 17 |[Hijl?|®x;,|?

« Ny is a descendant oV Cx,x, = Dy Dy, Dy Dy,

o N; is not a descendant @¥; and N; # N;. ’ ) ] o .
Then we have thaﬂxixg > Cx, x, - Moreover, if 7 is well- = 1H Ox, |Win, |2 + Z Win, |2®,. (19)
posed then the inequality is strict. Px, =2 !

Proof: Consider the path fronV; to IV, described by the
sequenceV,, , ..., N,. Exploiting the linear relation§11 ), the
processX;, can be expressed in terms_&f; and of the noises
acting on the noded/,, ..., N, which are all descendants of
N,;.

J

By inspection we have the assertion.

Now we are left to consider the case whekg is not a
descendant aN;. Then, alsaVy, is not a descendant o¥;. By
hypothesis,V; is not a descendant ¥y, either. Thus, they
must have a common ancestdi;, such that the two paths
! from N, to N, and fromNy to N; have onlyN,; in common.

X = Wper, X + ZWkﬂq Omq (14)  consider the path fronV,; to IV;, such that it is possible to
9=2 write
whereW; is defined as in[(12). Now, we intend to evaluate !
the coherence betweeX,; and X;. From the assumption on Xi = Wir, Xa + ZQWW Oy (20)
=

N;, it follows that V; is not on the path fromV; to V. In
other words,N; is not a descendant dV,, and N; # N,, Exploiting lemm&¥, we have
forg=1,...,1. We can write

Dy x |2
[©xx, | O, = 22l _ (21)
X Xk @Xq)Xk |(I) |2
' _ X, X4
Wi, [?|®x, x;, |2 - . 5 < (22)
T o o Wi £, Wi e, D, [Pt Tys Win, [0,
Xl X ke q=2 kmq Omq < CXkXd (23)

where the last equality holds because of Leniina 7 . Collecting _
the factor® x |Wy, |2, we obtain If Nqg = N;, we have the assertion. N; # N;, thenN; must
J T y

be a descendant @f,;. We are in a situation equivalent to case
< Cx.x. (16) A: there is a nodéV, such thatV; is one of its descendants.
- As a consequence, we can state that

|(I)Xin|2

Efl—z |Wk7|'q|2(b97r
ames 4 "7a
(bX'”(PXJ 1 + (DXJ"WICW1|2

Cx,x, =

Cx,x, < Cx, x;- (24)
where the inequality is strict 5} _, [Wix,|2®,, > 0.

Lemma 9:Consider a LCMTT and three different nodes'Combm;]n?dthel Iagt tvr\]/p inequalities, we conclude that the
N;, N; and N, such that emma holds also in this case. [ |

N hild of N All the preyious Iemmas_ are_ft_mctional to the show th_at the
* Vi 1S @ chiid oTN; coherence distancé{[10) is minimal between two contiguous
« Ni# Nj, N and it is not a descendant o, nodes, as summarized in this theorem.

Then Cy,x, > Cx,x,. Moreover, if T is well-posed the  Thegrem 10:Given a LCMTT, consider a nodéV, and a

inequality is strict. node N, # N, which is not directly linked to it. Then there

~ Proof: Assume thatX; = Hy;X; + or and let us gyists a nodeV, directly linked to N, such that
distinguish two possible scenarios.

case A d(Nga, Ne) < d(Na, Ny) (25)
First, consider the case whet¥; is a descendant ofV;.

Consider the path fronV; to N; described by the sequenc
of  nodesN,,, ..., N, whereN,, = N; and N, = N;. The f SO
processX; can be expressed in terms &f and of the noises of N,. Name N, the child of V, on the path linking it to

acting on the noded/,,, ..., N, which are all descendants of Ve- SmceNC_ is directly linked toN,, we haveN, # N..
N MoreoverN, is a descendant a¥.. We are allowed to apply

lemma [8) withN; = N,, N; = N. and N, = N, to have
the assertion.
Xj = Wim Xi + Z Win, 0r, - (17) Now, consider the case whepg, is not a descendant d¥,.
=2 N, can not be the root, otherwisk¥, would be one of its
Exploiting Lemmd¥ we can evaluate the following quantitiegdescendants. Thu®/, has a parent and let us nament..
2 2 2 2 N, can not beN,. because it is not directly linked tov,.
Cx,x, = E)Xig’“' = |WN1|(I)|H$| [®x.” _ Applying lemma [®) withN; = N, N; = N, and N, = N,
XA Xi =Xk and by the definition of the coherence distaricé (10), we have
_ Wim | Hi["®x, (18) the assertion.
(I)Xk | |

ewhere the inequality is strict if” is well-posed.
Proof: First, consider the case whep§, is a descendant

l




Theoreni ID can be fruitfully exploited to determine whethddowever, by the induction hypothesis, there is a unique MST
two processes in a well-posed LCMT are directly linked” among the noded';, ..., N,,. Thus we have thal’ = T".
Nonetheless, when we are dealing with data sampled fratimmediately follows the contradiction that = 7. ]
actual systems the computation @fthat is of the coherence So far, we have assumed that the dynamics of the network
function, is affected by the limited time horizon of the obis described by a rooted tree. Moreover, the previous tmeore
servations. However, the estimates of the spectral and-crgsroves that the topology structure can be correctly ideatifi
spectral densities converge to the actual values as the tievaluating the MST according to the distankcel (10). However,
horizon approaches infinity. Hence, in the following we wilho information is recovered about the root node. The folhawi
assume to sample the processes over a sufficiently large timsult shows that such an information is not necessary (or,
interval. equivalently, not recoverable). Indeed, from a modelinmipo

We are ready to show the main contribution of the paperof view, the choice of the root can be arbitrary (as long as

Theorem 11:Consider a well-posed LCMT and assume we are considering non-causal transfer functions linkimg t
to observe the signal¥; during a time horizort. Compute processesX;).
an estimate of the coherence based distadges: d(X;, X;) Theorem 12:Given a LCMTT whose root is the nod#/;
among the nodesV,; and evaluate the relative Minimumand given one of its childrefv;, it is possible to define another
Spanning Tree (MST). When approaches infinity, the cor- LCMT 7* with the same tree structure and described by the
responding topology is equivalent to the unique MST same processeky, k = 1,...,n, such that its root isV;.
associated to the coherence metric. Proof: Consider the Wiener Filtell;; modeling the

Proof: The proof consists in showing that the MJT signal X, seen as the output, wheXy; is the input
associated to the distande(10) is unique and corresponds to

the LCMT topology. We will prove this result by induction on Xj = WyiXs + eji (28)
the numbem of nodes of the LCMT. Now, consider a rooted tree with the same topology obut
The basic induction step consists in observing that theasemwith N; as the root. Defindd;; = Hj, and p; = g, for all
true forn = 2. k # i,j. Conversely, define

Now assume the theorem true for a LCMT witimodes. Given . .

a LCMT T with n + 1 nodes, remove one of its “leaves”. Hj =Wy & = i (29)

By leaf we mean a non-root node with no descendants. This Hf=0 0; = Xi. (30)

operation is always possible since any rooted tree withastle ) <how that the new dynamical network with as root and

two nodes has at least one leaf. Without loss of generadity, Hescribed by the filterd7* is an LCMT, we need to prove
the removed leaf bév,,.; and letN; be its parent. Now we that, forh # k

have a LCMTT" with n nodes and with the same topology of
T apart from the removed ai@, » + 1). Using the induction Eloj05] = 0. (31)
hypothesis, w/e "”O.W that the_ topology W. is given by the There are three possible scenarios.
unigue MSTT"” obtained considering the distances among t € — i andk — jorh=jandk =i, then
nodesNy, ..., N,,. Now compute '
Eloy,er] = 0. (32)

* =arg min d(X;, Xp41). (26)
JN+1 because of the Wiener Filter properties.

The solution of such a minimization problem is unique sindé h = i, j andk # i, j (or equivalentlyh # i, j andk = i, j),
the LCMT T is well posed. Because of lemma] 10, the ardien lemmdl7 can be applied.
(i*, N + 1) belongs to the topology of", so we conclude If i #i,j andk # i, j, then
i* = 1. Let T be the spanning tree obtained by adding the arc o o
(i, N +1) to T". So far, we have shown thdt represents the Eloi.0i] = Elonex] (33)
topology of 7. We have to prove that’ is the unique MST and we have the assertion becawgeand g, are two noise
related to the distancé {[10) among the nodés..., N, 1. signals of the original LCMTT. [ |
Suppose, by contradiction, that there is a minimum spanninglt is straightforward to show that, starting from an LCMT,
treeT # T with weight lesser or equal than the weight®f we can arbitrary define a LCMT* having an arbitrary node
The only arc of7 incident to the nodeV, ., is (i,n + 1). as root. Indeed, it is sufficient to iteratively apply Theoi&2
If there were another ar@k,»n + 1) in T we could replace it along the path starting from the original root to the new one.
with the arc(k, i) obtaining a spanning tree with inferior cost.
Indeed, by lemma&al]9, we would have IV. NUMERICAL EXAMPLES

A(Xp, Xi) < d(Xni1, X;). 27) In this section_ we introduce a s_uitable framework to il-
lustrate the application of the previous theoretical rsstd
So, if T is a minimum spanning tree, theX,,,; can be numerical analysis. It is worth observing that the previous
connected only toX;. Let 7’ be the tree obtained b§’ results have been developed for the most general classeaf lin
removing the arc(i,n + 1). 7" is the minimum spanning models. Indeed, no assumptions have been done on the order
tree for the nodedvy, ..., NV,, since it has been obtained fromand causality property of the considered transfer funstion
T removing the nodeV,,.; which has a single connection.Moreover, let us highlight that the coherence based arsalysi



Fig. 1. The figure illustrates the topology of the 10 nodesvoek analyzed in
the numerical examples paragraph. Each node is respoffisitdeprocessX ;,
while the arcs describe the connections among them, accptdithe linear
SISO model[{ll). For the data generation we have considergd tamsfer
functions of at most the second order. The noiggshave been assumed
to provide half the power of the affected processes. The kmmmve been
collected over 1000 time steps.

must be realized “off-line”, since the processes have to be
evaluated over their entire time span. Thus, because the
coherence function can be numerically computed only over— —
limited intervals, in the following examples we will consid ‘

sufficiently long time spans to reduce the numerical error.

Hence, let us build the O“gmal dynamlcal networks aCCOI’(]iTg. 2. A representative topological configuration of therfs@les network

ing the following rules: case considered of the numerical examples paragraph. Emepéx has been
) ] . designed according to the same assumptions of the ten nboderkef Figure
« each system is described according to the mddel (1); [@

« each transfer functiofl; is randomly generated and such
that it is causal and at most of the second order;
« the tree topology is randomly chosen; V. STOCK MARKET ANALYSIS

« the noisesy; are r-1umerically generated with a pseudo- |, the previous section we have illustrated how the distance
random algorithm; . (I0) can be successfully exploited to derive the exact wpol
« the noise-to-signal ratio of each system is equal to 0Ngs 3 tree network of linear systems affected by additive emis

Then, such networks are simulated over 1000 time steps al\rI](()ilnetheIess, since the above identification techniqueléstab

the related dat&; are collected. The corresponding coheren caich the most important linear dependencies with respect t

based distances are evaluated and used for the extractioﬁﬁgmedel'ng errod]{l), n the followmg we present the resul
the MST, that defines the link topology. obtained by the application of the previous method to theksto

market, that is a network of nonlinear systems charactrize
The above procedure will be first applied to a ten nodg, multiple dependencies.
network. In particular, to test the numerical reliability the Financial systems are, in general, very complex and degivin
topological identification technique, we repeat such &i8ly information from stock markets is a formidable and challeng
several times, so that a significant number of network COf¥g task, indeed. Moreover, it might seem very reductive the
figurations is considered. The corresponding results fit “&%empt to describe the dependencies among the price tiends
expectations and the real topology is correctly identifiad® (erms of linear SISO systems with a tree topology. In fact, we
time. In Fig.[1 one of the considered network configurationg,qiqd definitely expect multiple input influences, nondine
is depicted, while the related coherence based distana&mafg|ations and feedbacks. However, we can think of adopting
is reported in TablélI. a LCMT in order to detect what are the “strongest” links in
To provide a further test, a new set of similar simulations the network. As noted in_[3], such an information could be
performed with a network of fifty dynamical systems, undarsefully exploited to check if a given portfolio is balanced
the same assumptions used in the previous case. Higureo® In the following, we report the results obtained by the
presents one of the considered network configurations. Foagplication of our identification technique.
space limitation issue, we do not report in this manuschipt t A collection of 100 stocks of the New York Stock Exchange
corresponding coherence based distance matrix. Nonsthelbas been observed for four weeks (twenty market days), in
the computation of the related MST has successfully idextifithe lapse 03/03/2008 - 03/28/2008 sampling their pricesyeve
the real network topology in any of the performed simulation2 minutes. The stocks have been chosen on the fiost
stocks with highest trading volume according to the Stashdar



X1 X2 X3 Xy X5 X6 X7 Xs X9 Xi0
X, 0 0,7299 0,6675 0,7351 0,8316 0,8542 0,8297 0,7055 0,6548298,
X2 0,7299 0 0,8065 0,8353 0,6934 0,7358 0,8786 0,8483 0,8298B71D,
X3 0,6675 0,8065 0 0,8216 0,8744 0,8807 0,8750 0,8262 0,7841820,
X4 0,7351 0,8353 0,8216 0 0,8662 0,8722 0,7404 0,8502 0,8198039,
X5 0,8316 0,6934 0,8744 0,8662 0 0,8540 0,8919 0,8995 0,873(®B846,
X6 0,8542 0,7358 0,8807 0,8722 0,8540 0 0,8934 0,8984 0,8799449,
X7 0,8297 0,8786 0,8750 0,7404 0,8919 0,8934 0 0,8838 0,86948346,
Xs 0,7055 0,8483 0,8262 0,8502 0,8995 0,8984 0,8838 0 0,81678908,
X9 0,6549 0,8299 0,7841 0,8198 0,8730 0,8796 0,8694 0,8167 0 8719,

X0 | 0,8298 0,8717 0,8821 0,7039 0,8846 0,8944 0,8346 0,8908 718,8 0

TABLE |
THE COHERENCE BASED DISTANCE MATRIX ASSOCIATED TO THE NETWRK TOPOLOGY DEPICTED INFIG.[
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Fig. 3.  (color on line) The tree structure obtained using pghaposed identification technique. Every node represest®ck and the color represents the
business sector it belongs to. The considered sectoBaarec Material (yellow), Conglomerates (white), Healthcare (pink), Transportations
(dark blue),Technology (red), Capital Goods (orange),Utilities (brown tints), Consumer (violet tints), Financial (green tints),Energy
(gray tints) services (light blue tints). Using the industry classification givey Google, theFinancial sector has also been differentiated among
Insurance Companies (light green), Banks (average gremh)ngestment Companies (dark grees¥rvices have been divided in Information Technology

(cyan) and Retail (aquamarina)pnsumer in Food (plum) and Personal-care (purplejiergy in Oil & Gas (dark gray) and Well Equipment (light gray);
Utilities in Electrical (dark brown) and Natural Gas (lightown).

& Poor Index at the first day of observation and they am@ngle day. Finally, we have averaged such daily distances
reported in Tabl&]l. An a-priori organization of the comfgn over the whole observation horizon and the related resaits h
has been assumed in accordance with the sector and indub&gn exploited to extract the MST, providing the corresfromnd
group classification provided by Google Finafigehat is also market structure.

the source of our data. The whole observation horizon spang find useful to remark that the computation of the distances
almost the whole month of March. Hence, the correspondifgy smaller data sets is also better performing and that the
price series can not be considered stationary and thetistaltis averaging procedure provides the desired rejection ofdgen
tools can not be successfully employed to analyze the rasv datnd seasonal components. Notably, a similar idea, evenrié mo
In literature a variety of techniques for the suppression sbphisticated, is at the basis of the method developed ih [21
trends and periodic components in non-stationary timeeserto detrend non-stationary time series.

exists. However, we want to stress that the application ®he final topology is shown in Figuké 3. Every node represents
such procedures introduces an additional prefiltering @haa stock and the color represents the business sector otindus
which is responsible for the computational burden increasebelongs to. We note that the stocks are very satisfagtoril
Moreover, due to the pre- and post-market sessions, thgreuped according to their business sectors. We stresghnat

is a discontinuity between the end value of a day and tlaepriori classification in sectors is not a hard fact by ftsel
opening price of the next one. We have avoided those problearsl we are not trying to match it exactly. A company could
observing that the observation horizon is naturally dididewell be categorized in a sector because of its business, but,
into subperiods, namely weeks and days. In addition, aeingit the same time, could show a behaviour similar to and
market session can be considered a time period sufficiengiyplainable through the dynamics of other sectors. Actuall
short to assume that the influence of trends and seasomalwould be very interested into finding results of this kind.
factors are negligible. Thus, in our analysis, we have fo#ld Indeed, in those very cases, our quantitative analysis dvoul
the natural approach of dividing the historical series intprovide the greatest contributions detecting in an objecti
twenty subperiods corresponding to single days. Then, way something which is “counter-intuitive”. Thus, we just
considered the sessions separately, i.e. we have compgeduse such a-priori classification as a tool to check if the final
coherence-based distanc€s] (10) among the stocks for ewepology makes sense and if, at a general level, our approach



provides useful results. Despite this disclaim, it is worths]
noting that theFinancial (green tints)Consumer (violet
tints), Basic Materials (yellow), Energy (gray tints) [6]
andTransportation (dark blue) sectors are all perfectly
grouped, with no exceptions. In Figl 3, we note a subcluster-
ization of theFinancial sector, as well. Th&€onsumer
sector shows another prominent subclusterization irFthed

M. Naylora, L. Roseb, and B. Moyle, “Topology of foreigixahange
markets using hierarchical structure method®ysica A vol. 382, pp.
199-208, 2007.

M. Eisen, P. Spellman, P. Brown, and D. Botstein, “Cluséalysis
and display of genome-wide expression patterRsgc. Natl. Acad. Sci.
USA vol. 95, no. 25, pp. 14 863-8, 1998.

7] E. Ravasz, A. Somera, D. Mongru, Z. Oltvai, and A. Barahii£‘Hi-

erarchical organization of modularity in metabolic netk&t Science
vol. 297, p. 1551, 2002.

(plum) and Personal/Healthcare (purple) industries, [8 A Bunn, D. Urban, and T. Keitt, “Landscape connectiviti conser-

while the Energy sector presents an evident subclusteri-
zation into theoil & Gas (dark gray) andoil well [9]
Equipment (light gray). TheUtilities/Electricity
companies (dark brown) are, interestingly, a differentugro [10]
We also observe a big cluster of companies classified
as services (light blue tints). We have differentiated[1]
them in the two industrieRetail and Information
Technology using two slightly different colors, respectively[12]
aquamarine and cyan. We also note the presence of thre
Services companies which are isolated from the other oneglz3
v [Verizon], T [AT&T], and s [Sprint]. All of them are
telephone companies. This might suggest that this indust!
should show at least a slightly different dynamics from the
other service companies. Note also how thechnology [15]
sector (red) is almost perfectly grouped and hoeM, an IT 6]
company, even though classified as@rvices company, is
located in it. Finally, the two only automobile compani&g
andr [Ford] happen to be linked together. The analysis of thi&’]
four weeks of the month of March cleanly shows a taxonomigg
arrangement of the stocks even though the choice of a tree
structure might have seemed quite reductive at first though#®l
[20]

VI. CONCLUSIONS
[21]

This work has illustrated a simple but effective procedure
to identify the structure of a network of linear dynamical
systems when the topology is described by a tree. To the
best knowledge of the authors, the problem of identifying a
network has not yet been tackled in scientific literaturee Th
approach followed in this paper is based on the definition of
a distance function in order to evaluate if there exists aatir
link between two nodes. A few theoretical results are pregid
in particular to guarantee the correctness of the identifioa
procedure. An application of the technique to real data has
also shown that a tree topology can be sufficient to capture
information even in complex situations such as financiatksto
prices.
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Name [ Code Sector ]
3M Company MMM Conglomerates
Abbott LAboratories ABT Healthcare
Aes Corporation AES Utilities
Alcoa Inc. AA Basic Materials
Allegheny Technologies Inc. ATI Basic Materials
Allstate Corporation ALL Financial
Altria Group MO Consumer/Non-Cyclical
American Electric Power AEP Utilities
American Express AXP Financial
American International Group AIG Financial
Amgen Inc. AMGN Healthcare
Anheuser Busch BUD Consumer/Non-Cyclical
Apple Inc. AAPL Technology
AT&T T Services
Avon Products AVP Consumer/Non-Cyclical
Baker Hughes Inc. BHI Energy
Bank of America BAC Financial
Bank of New York Mellon BK Financial
Baxter International BAX Healthcare
Boeing BA Capital Goods
Bristol Myers Squibb BMY Healthcare
Burlington Northern Santa Fe BNI Transportation
Campbell Soup CPB Consumer/Non-Cyclical
Capital One Financial COF Financial
Caterpillar Inc. CAT Capital Goods
CBS CBS Services
Chevron CVX Energy
CIGNA Cl Financial
Cisco Systems CSCO Technology
Citigroup Inc C Financial
Clear Channel Communications] ~ CCU Services
Coca-Cola KO Consumer/Non-Cyclical
Colgate Palmolive CL Consumer/Non-Cyclical
Comcast CMCSA Services
Conoco Phillips COP Energy
Covidien cov Healthcare
CVS Caremark CVs Services
Dell Inc DELL Technology
Dow Chemical Company DOW Basic Materials
E.I. du Pont de Nemours DD Basic Materials
El Paso EP Utilities
EMC EMC Technology
Entergy ETR Utilities
Exelon EXC Utilities
Exxon Mobil XOM Energy
FedEx FDX Transportation
Ford Motor F Consumer Cyclical
General Dynamics GD Capital Goods
General Electric GE Conglomerates
General Motors GM Consumer Cyclical
Goldman Sachs Group GS Financial
Google Inc. GOOG Technology
Halliburton HAL Energy
Hartford Financial Services HIG Financial
H. J. Heinz HNZ Consumer/Non-Cyclical
Hewlett-Packard HPQ Technology
Home Depot HD Services
Honeywell International HON Capital Goods
Intel INTC Technology
International Business Machine: IBM Services
International Paper P Basic Materials
Johnson & Johnson JINJ Healthcare
JPMorgan Chase JPM Financial
Kraft Foods KFT Consumer/Non-Cyclical
Lehman Brothers Holding LEH Financial
McDonald’s MCD Services
Medtronic MDT Healthcare
Merck MRK Healthcare
Merril Lynch MER Financial
Microsoft MSFT Technology
Morgan Stanley MS Financial
Norfolk Souther Group NSC Transportation
NYSE Euronext NYX Financial
Oracle ORCL Technology
Pespi PEP Consumer/Non-Cyclical
Pfizer Inc. PFE Healthcare
Procter & Gamble PG Consumer/Non-Cyclical
Raytheon RTN Conglomerates
Regions Financial RF Financial
Rockwell Automation ROK Technology
Sara Lee SLE Consumer/Non-Cyclical
Schlumberger Limited SLB Energy
Southern SO Utilities
Sprint Nextel S Services
Target TGT Services
Texas Instruments Inc. TXN Technology
Time Warner TWX Services
Tyco International TYC Conglomerates
U. S. Bancorp USB Financial
United Parcel Service UPS Transportation
United Technologies UTX Conglomerates
UnitedHealth Group Inc. UNH Financial
Verizon Communications 4 Services
Wachovia WB Financial
Wal-Mart Stores WMT Services
Walt Disney DIS Services
Wells Fargo WFC Financial
Weyerhaeuser Company WY Basic Materials
Williams Companies WMB Utilities
Xerox XRX Technology
TABLE Il

LIST OF THE COMPANIES CONSIDERED IN THE ANALYSIS
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