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H∞ filter for bilinear systems using LPV approach

B. Gérard, H. Souley Ali, M. Zasadzinski, and M. Darouach ∗

Abstract

The aim of this paper is to present an LPV (Linear Paramater Varying) approach
for the design of a functional filter for bilinear systems with a disturbance attenuation
specification. The unbiasedness requirement on the observation error is guaranteed by
the solution of Sylvester equations obtained by parametrizing the filter gain matrix.
This parametrization leads to a non convex optimization problem which is overcome
by introducing a constraint on the gain matrix. To take into account the whole
set of the inputs in the filter design, an LPV approach is used to obtain the gain
matrix guaranteeing the quadratic stability of the observation error and a given level
of disturbance attenuation. This approach is then applied to the high gain observer
design in order to consider the level of disturbance attenuation.

Keywords : Bilinear systems, observability, functional filter, high gain filter, H∞ perfor-
mance, LPV approach.

1 Introduction

As many physical processes may be appropriately modeled as bilinear systems, such sys-
tems have attracted an increasing attention of many researchers as in [21, 16]. The main
reason is that some important actual processes, as nuclear kinetics, cannot be modeled
realistically by the classical linear systems, while bilinear systems fit these processes with
more accuracy. Furthermore, bilinear systems offer considerable intrinsic theoretical prob-
lems since they form an intermediary class between the linear and the general nonlinear
systems.

For the study of observability and the design of observers for bilinear systems, the
influence of control inputs is crucial [27]. Some observers can have a linear estimation error
[14], [13] and [28]. It has been shown in [13] and [28] that these observers are equivalent to
an unknown input observer [6] for a specific linear system, then these observers have strong
existence conditions. When bilinear systems are uniformly observable, Williamson [27] has
proposed observers requiring differentiators of control inputs, while in [2] the observers need
on-line integration of a differential Riccati matrix equation. Gauthier et al. [11] suggested
to use the canonical form of an observable bilinear system to design a straightforward high
gain observer. In [3], the authors propose to modified the high gain observer methodology
by writing the observer gain as a function of the state estimate. In [20], a high gain observer
is computed using LMIs (Linear Matrix Inequalities) techniques. When the bilinear system
is not uniformly observable, the observers proposed in the literature include explicitly the
values of the bounds of the control inputs (see [7], [24], [26], [17], [18], [23]). These observers
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are appropriated since the bilinear system is detectable for all admissible inputs, i.e. the
unobservable states with respect to some non universal inputs (see [15]) is stable.

In this work, the control inputs and their derivatives are considered to be bounded, this
assumption is generally not too conservative for the state estimation of physical systems.
With the hypothesis of boundedness, an LPV approach can be used as in [12]. Indeed,
considering the control inputs as a varying parameter allows to look for a bilinear filter
adapted to the whole domain of reachability associated to the system dynamics. The
LPV approach enables to introduce performance specifications like disturbance attenuation
in the filter design. In this paper, a new approach is presented to solve the functional
filter problem, which is less conservative than the one given in [23] where the input was
considered as uncertainties. Even if LPV approach is classical, parametrization of observers
for bilinear systems with this approach hasn’t been done yet according to our knowledge.
Moreover, it is shown that the LPV approach provides a methodology enabling to choose
the tuning parameter to optimize the disturbance attenuation in the high gain observer
design.

This paper is organized as follows. First the formulation of the problem is presented
in Section 2. In Section 3, for the functional filter, we present two parametrizations of the
filter matrices and the LPV approach is used to determine the gain matrix ensuring the
quadratic stability of the observation error and optimizing the disturbance attenuation.
Then in Section 4, a “high gain”-like observer dedicated to uniformly observable system is
studied with the LPV approach which enables to ensure the stability of the filtering error
and to optimize the disturbance attenuation contrary to classical “high gain” approach.
Simulation results are shown in Section 5 and conclusions are drawn in Section 6.
Notations. Throughout this paper, ‖x‖ =

√
xT x is the Euclidean vector norm. A† is

a generalized inverse of matrix A satisfying A = AA†A [19] and (∗) represents a term
induced by symmetry.

2 Problem statement

Let us consider bilinear systems of the following form





ẋ = A0x +
m∑

i=1

Aiuix + Ru + Bw

y = Cx + Dw

z = Lx

(1)

where x ∈ IRn is the state vector, u =
[

u1 . . . um
]T ∈ IRm is the vector of control inputs,

y∈ IRp is the output. The vector w ∈ IRq represents the unknown disturbance vector with
bounded energy. z ∈ IRr is the vector to be estimated where r 6 n. As usual, let us
consider ẑ ∈ IRr a given estimate of z (given in sections 3 and 4) and e ∈ IRr is the
filtering error with e = z − ẑ. Without loss of generality, the control inputs are assumed
to be bounded, i.e. u ∈ Ω where

Ω =
{
u : t → IRm | ∀t ∈ IR+, ui

min 6 ui
6 ui

max, µi
min 6 u̇i

6 µi
max, i = 1, . . . ,m

}
.

To characterize the disturbance attenuation, we introduce the following definition that
can be seen as a generalization of the H∞ norm for linear systems to nonlinear ones (see
[25]).
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Definition 1. Let γ > 0, if ∀w ∈ L2[0,∞), with zero initial conditions,

Jew =

∫ ∞

0

(
‖e‖2 − γ2 ‖w‖2

)
dt 6 0, (2)

then the mapping from w to e is said to have L2 gain less than or equal to γ. ■

The design of the filter for bilinear system (1) is stated as follows.

Problem 1. In this paper, the problem is to design a filter such that

1. the filtering error e is quadratically stable for u : t 7→ IRm ∈ Ω and w = 0,
2. the mapping from the disturbance input w to the filtering error e has L2 gain less

than a given scalar γ for u ∈ Ω (see definition 1). ■

Before designing the filter, we recall the following bounded real lemma for LPV system.

Lemma 1. [10, 4] The LPV system
{

ė = A(u)e + B(u)w
s = Ce + Dw

(3)

with u ∈ Ω is quadratically stable and has a disturbance attenuation inferior to a given
scalar γ if there exists a matrix P (u) = P (u)T > 0 and a matrix F such that the following
inequality 



(1, 1) P (u) − F + A
T (u)F T FB(u) C

T

∗ −F − F T FB(u) 0
∗ ∗ −γ2I D

T

∗ ∗ ∗ −I


 < 0 (4)

is satisfied ∀ u ∈ Ω, with (1, 1) = Ṗ (u)+FA(u)+A
T (u)F T . ▽

3 Functional LPV filter design with gain parametrization

In this section, for bilinear systems in the general form (1), we propose the following
functional filter 




η̇=H0η+
m∑

i=1

H iuiη+J0y +
m∑

i=1

J iuiy+Gu

ẑ=η+Ey

(5)

where η ∈ IRr is the state vector of the filter and ẑ ∈ IRr is the estimate of z (with r 6 n).
The filtering error is defined as follows

e = z − ẑ = Lx − ẑ = e − EDw (6)

where e = Ψx − η and Ψ = L − EC. (7)

From (6), note that the time derivative of the error e is a function of the time derivative
of the disturbances w. To avoid the use of ẇ, we introduce the operator from w to e with
the following state space realization





ė = (H0 +

m∑

i=1

uiH i)e + (ΨR − G)u + (ΨA0 − H0Ψ − Υ0C − H0EC)x

+

m∑

i=1

(ΨAi − H iΨ − ΥiC − H iEC)uix

+(LB − ECB − Υ0D − H0ED −
m∑

i=1

(ΥiD + H iED)ui)w

e = e − EDw

(8)
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with
Υi = J i − H iE for i = 0, . . . ,m. (9)

To satisfy the stability condition required in problem 1, the observer must be unbiased
i.e. the dynamic of the filtering error must be independant of the state x and u (see [22],
p. 176). Then the following Sylvester equations

ΨAi − H iΨ − ΥiC − H iEC = 0 i = 0, . . . ,m (10)

must hold and matrix G must be chosen as

G = ΨR. (11)

These Sylvester equations are related to unbiased observer. Using (7), equation (10)
becomes [5]

LAi − ECAi − H iL − ΥiC = 0 i = 0, . . . ,m. (12)

Notice that equation (12) can be rewritten in the following compact form

NF = AL (13)

where N , F and AL are given by

N =
[
E H0 . . . Hm Υ0 . . . Υm

]
, FT =

[
AT

C L̃T C̃T
]
, AL = LÃ, (14)

with

Ã =
[
A0 . . . Am

]
, AC = CÃ, L̃ =




L 0
. . .

0 L


 , C̃ =




C 0
. . .

0 C


 .

Equation (13) admits a solution N if and only if the following condition is satisfied [19]

rank
[
AT

L FT
]T

= rankF (15)

and the general solution of (13) is given by [19]

N = ALF† + Z(Iα −F F†) (16)

where Z is an arbitrary matrix parameter with appropriate dimension and α = p + (m +
1)(r + p). From equation (16), matrices E, H i and Υi are given by

E = E1 + ZE2, H i = H i
1 + ZH i

2, Υi = Υi
1 + ZΥi

2, (17)

with

E1 = ALF†ME , H i
1 = ALF†MHi , Υi

1 = ALF†MΥi ,

E2 = (Iα −F F†)ME , H i
2 = (Iα −F F†)MHi , Υi

2 = (Iα −F F†)MΥi

and

MHi =
[
0T

p×r 0T
(i−1)r×r

Ir 0T
(m+1−i)r×r

0T
(m+1)p×r

]T
,

MΥi =
[
0T

p×p 0T
(m+1)r×p

0T
(i−1)p×p

Ip 0T
(m+1−i)p×p

]T
,
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ME =
[
Ip 0T

(m+1)r×p
0T
(m+1)p×p

]T
.

In the sequel of this paper, it is assumed that the condition of unbiasedness (15) is
fulfilled. Using (11) and (17), system (8) can be rewritten as follows





ė = (H0
1 + ZH0

2 +
m∑

i=1

ui(H i
1 + ZH i

2))e

+(LB − (E1 + ZE2)CB − (Υ0
1+ZΥ0

2)D − (H0
1 + ZH0

2 )(E1 + ZE2)D︸ ︷︷ ︸
Γ0

−
m∑

i=1

((Υi
1 + ZΥi

2)D + (H i
1 + ZH i

2)(E1 + ZE2)D︸ ︷︷ ︸
Γi

)ui)w

e = e − (E1 + ZE2)Dw.

(18)

Notice that Γi is quadratic in the gain Z, i.e. we have quadratic terms such ZH i
2Z. To

use an LMI-LPV approach based on lemma 1 in the filter design, the expressions of Γi in
(18) must be linear in the gain matrix Z. This linearization can be made by introducing
one of the two following constraints which lead to two different parametrizations of the
gain matrix Z : ZE2D = 0 (section 3.1) and ED = 0 (section 3.2).

3.1 First case : filter design with the constraint ZE2D = 0

The matrix parameter Z is chosen such that

ZE2D = 0. (19)

The matrix parameter Z is then given by Z = Z1

(
Iα − E2D(E2D)†

)
, where Z1 is an

arbitrary matrix of appropriate dimensions, so Γi becomes (see (18))

Γi = (H i
1 + Z1

(
Iα − E2D(E2D)†

)
H i

2)E1)D (20)

and equations (17) can be written as

E = E11+Z1 E21, H i = H i
11+ Z1H

i
21, Υi = Υi

11 + Z1 Υi
21 (21)

where E11 = E1, H i
11 = H i

1, Υi
11 = Υi

1, E21 = ΦME , H i
21 = ΦMHi and Υi

21 = ΦMΥi , with

Φ =
(
Iα − E2D(E2D)†

)
(Iα −F F†). (22)

Taking the constraint (19) into account, the system (18) is parametrized as follows

{
ė = (Au1(u) + Z1Az1(u))e + (Bu1(u) + Z1Bz1(u))w

e = Ce + D1w
(23)

where

Au1(u) = H0
11 +

m∑

i=1

uiH i
11, C = Ir, (24a)

Az1(u) = H0
21 +

m∑

i=1

uiH i
21, D1 = −E11D (24b)
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Bu1(u) = LB − E11CB−
(
Υ0

11+

m∑

i=1

uiΥi
11 +

(
H0

11 +
m∑

i=1

uiH i
11

)
E11

)
D, (24c)

Bz1(u) = −E21CB −
(

Υ0
21 +

m∑

i=1

uiΥi
21 +

(
H0

21 +
m∑

i=1

uiH i
21

)
E11

)
D. (24d)

To reduce the conservatism in the choice of the Lyapunov matrix P (u) in lemma 1,
we consider that matrix P (u) has the following structure similar to the structure of the
bilinear system (1), where Pi are constant matrices

P (u) = P 0+

m∑

i=1

uiP i, Ṗ (u)=

m∑

i=1

u̇iP i (25)

and we define the following vector ρ

ρT =
[
ρ1 . . . ρm ρm+1 . . . ρ2m

]T
=
[
u1 . . . um u̇1 . . . u̇m

]T
. (26)

Using (25) and (26), we can define new parameter dependent matrices P̃ , P , Âρ1, Âz1,

B̂ρ1 and B̂z1 as follows

P̃ (ρ) = P 0 +

m∑

i=1

ρiP i = P (u), (27a)

P (ρ) =

m∑

i=1

ρm+iP i = Ṗ (u), (27b)

Âρ1(ρ) = H0
11 +

m∑

i=1

ρiH i
11 = Au1(u), (27c)

Âz1(ρ) = H0
21 +

m∑

i=1

ρiH i
21 = Az1(u), (27d)

B̂ρ1(ρ) = LB−E11CB−
(
Υ0

11+

m∑

i=1

ρiΥi
11 +

(
H0

11+
m∑

i=1

ρiH i
11

)
E11

)
D=Bu1(u), (27e)

B̂z1(ρ) = −E21CB −
(

Υ0
21 +

m∑

i=1

ρiΥi
21 +

(
H0

21 +
m∑

i=1

ρiH i
21

)
E11

)
D=Bz2(u). (27f)

Thus, one can see that the parameter ρ belongs to the following convex polytope P

P = [u1
min, u

1
max] × . . . × [um

min, u
m
max] ×

[
µ1

min, µ
1
max

]
× . . . × [µm

min, µ
m
max] . (28)

Let S be the set of ν = 22m vertices of polytope P given by

S =
{

β =
[
β1 . . . βi . . . β2m

]T∈ IR2m | ∀ i ∈ [1, m] ,

βi ∈
{
ui

min, u
i
max

}
and ∀ i ∈ [m + 1, 2m] , βi ∈

{
µi

min, µ
i
max

}}
. (29)

Using notation and definition of (27), the following theorem gives the gain matrix Z1

used in (23) through LMIs by using the information on the control inputs, their derivatives
and the structure of the system.
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Theorem 1. Assume that condition (15) holds. If there exist matrices P i ∈ IRr×r (for

i = 0, . . . ,m), F ∈ IRr×r and Y ∈ IRr×α such that, for j = 1, . . . , ν, P̃ (β
j
) = P̃ (β

j
)T > 0

and



(1, 1)j (1, 2)j FB̂ρ1(β
j
) + Y B̂z1(β

j
) Ir

∗ −F − F T FB̂ρ1(β
j
) + Y B̂z1(β

j
) 0

∗ ∗ −γ2Iq −D
T

1

∗ ∗ ∗ −C


 < 0, (30)

where

(1, 1)j = P (β
j
) + FÂρ1(β

j
) + Y Âz1(β

j
) + ÂT

ρ1(β
j
)F T + ÂT

z1(β
j
)Y T ,

(1, 2)j = P̃ (β
j
) − F + ÂT

ρ1(β
j
)F T + Âz1(β

j
)T Y T

and β
j ∈ S (see (29)), then the filter (5) for the bilinear system (1) has a filtering error e

which is quadratically stable and a L2 gain attenuation from w to e less than γ, with the
gain matrix Z1 given by Z1 = F−1Y . •

Proof. Under the condition (15), the system (23) represents the filtering error of the filter

(5). If the LMIs (30) has a solution for each element β
j

of S given by the equation (29)
(see [1]), then F + F T > 0 and F is invertible, thus Z1 can be determined.

Using Y = FZ1, if LMIs (30) are satisfied on the ν vertices of polytope S then the
inequality (4) in lemma 1 holds with the system (3) replaced by the system (23).

Using lemma 1, the filtering error e of filter (5) is quadratically stable and a L2 gain
attenuation from w to e less than γ is guaranteed for u ∈ Ω.

Once the gain Z1 is computed, filter matrices H i, Υi and E are given by (21), then J i

is derived from (9) and G is given by (11).
From the above results, the H∞ filter design problem is reduced to find a parameter

matrix Z1 to stabilize the system (23) and to guarantee the L2 gain attenuation between
w and e. Notice that in order to have the degrees of freedom provided by the gain matrix
Z1, matrix Φ in (22) must satisfy Im(Z1) 6⊂ ker(Φ) and particularly Φ 6= 0. Generally
the problem 1 may be solved even if Φ = 0; in fact LMIs (30) can have a solution even if
Φ = 0. The following theorem gives a sufficient condition for Φ 6= 0.

Theorem 2. Let Φ be given by (22) and q, p, m, r, n be the dimensions of vectors w, y,
u, z and x respectively. If q < p + (m + 1)(p + r − n), then Φ 6= 0. ■

Proof. Im((Iα −FF†)T ) = ker(FT ) so

dim(Im(Iα −FF†)) > α − (m + 1)n. (31)

Since ker(Iα − (E2D(E2D)†) = Im(E2D), we have

dim(ker(Iα − (E2D(E2D)†)) = rank(E2D) 6 q. (32)

With α = p + (m + 1)(r + p), if q < p + (m + 1)(p + r − n) holds, then (31) and (32)
yield Im(Iα −F F†) 6⊂ ker

(
Iα − E2D(E2D)†

)
, which implies that Φ 6= 0.

Remark 1. As n, m, p and q are fixed by the structure of the system, the only way to
increase the possibilities to have Φ 6= 0 is to increase r, i.e. increase the dimension of the
filter. ⋄
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3.2 Second case : filter design with the constraint ED = 0

Now, the matrix parameter Z is chosen such that ED = 0, then we have Γi = 0 (see (18)).
From ED = 0 and equation (13), we obtain

N F = [ 0 AL ] = AL (33)

with F = [ D F ] where DT =
[

DT 0 0
]
. Equation (33) has a solution N if and only if

rank

[
0 AL

D F

]
= rank

[
D F

]
. (34)

Under condition (34), all the solutions N are given by [19]

N = ALF†
+ Z2(Iα −F F†

) (35)

where Z2 is an arbitrary matrix of appropriate dimension.
Matrices E, H i and Υi are then given by

E = E12 + Z2E22, H i = H i
12 + Z2H

i
22, Υi = Υi

12 + Z2Υ
i
22, (36)

where

E12 = ALF†
ME , H i

12 = ALF†
MHi , Υi

12 = ALF†
MΥi ,

E22 = (Iα −F F†
)ME , H i

22 = (Iα−F F†
)MHi , Υi

22 = (Iα−F F†
)MΥi .

Using (36), the system (18) becomes

{
ė = (Au2(u) + Z2Az2(u))e + (Bu2(u) + Z2Bz2(u))w

e = Ce + D2w
(37)

where

Au2(u) = H0
12 +

m∑

i=1

uiH i
12, C = Ir, (38a)

Az2(u) = H0
22 +

m∑

i=1

uiH i
22, D2 = 0, (38b)

Bu2(u) = LB−E12CB −
(
Υ0

12 +

m∑

i=1

uiΥi
12

)
D, (38c)

Bz2(u) = −E22CB −
(
Υ0

22 +
m∑

i=1

uiΥi
22

)
D. (38d)

From the above developments, the H∞ filter synthesis is equivalent to the determina-
tion of Z2 stabilizing the system (37) and ensuring the L2 gain attenuation between w and
e. This can be obtained from theorem 1 by replacing the rank condition (15) by the rank
condition (34) and system (23) by system (37).

Remark 2. Similarly to the case where ZE2D = 0, to have degrees of freedom introduced

by gain matrix Z2, we must have (Iα −F F†
) 6= 0. ⋄
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4 LPV approach for the design of a “high gain”-like filter

for bilinear systems

To show the efficiency of the LPV filter design given in section 3, we propose to apply
the well-known high gain filter [11] to the bilinear system (1). This filter is based on the
choice of a parameter called θ in the literature. In this section, we employ the expression
“high gain”-like filter since we use an LPV approach to design θ in order to introduce the
disturbance attenuation criterion given in definition 1.

In this section, like in [11], let us consider that system (1) is uniformly observable,
then from [27], there exists Q ∈ IRn×n (with detQ 6= 0) such that the bilinear system (1)
has the canonical form in the new basis, i.e. x̃ = Qx, that is, with (Ai, C) →

Q
(Ãi, C̃),

the companion form for (Ã0, C̃) and the lower triangular form for Ãi (i = 1, . . . ,m). This
form comes from the full rank of observability matrix (see [27]) and is especially adapted
for the high gain observer. From [11] (see also [9, 8]), the high gain observer is given by





˙̂x = A0x̂ +

m∑

i=1

Aiuix̂ + Ru − S−1
∞ (θ)CT (Cx̂ − y)

ẑ = Lx̂

(39)

and is an exponential observer for system (1) where S∞(θ) = S
T

∞(θ) = Q−1S∞(θ)Q−T is
solution to the following Lyapunov equation (based on the companion form)

− θS∞(θ) − A
T
S∞(θ) − S∞(θ)A + C̃T C̃ = 0, (40)

and where A ∈ IRn×n is the antishift matrix and the parameter θ ∈ IR∗+ is high enough.
An analytic methodology to find θ0 “high enough” (such for all θ > θ0 the stability of

the filtering error is ensured) is given in the proof of theorem 3 in [11]. Some θ < θ0 can
ensure the stability, moreover the analytic approach does not enable to give a criteria to
choose θ with respect to disturbance attenuation. In [11] and [8] it is proved that, given
θ1, if S−1

∞ (θ1) is a gain ensuring an exponential stability then for all θ > θ1, S−1
∞ (θ) is a

gain ensuring an exponential stability.
Moreover the dynamics of the observation error ẽ = x − x̂ can be seen as an LPV

system {
˙̃e = A(u, θ)ẽ + B(θ)w

e = Lẽ
(41)

where u is considered as a varying “parameter” and

A(u, θ) = A0+
m∑

i=1

Aiui−S−1
∞ (θ)CT C (42a)

B(θ) = B − S−1
∞ (θ)CT D. (42b)

Now we look for a value of the tuning parameter θ, guaranteeing both the quadratic
stability of the observation error and the optimal disturbance attenuation (see definition
1). To do that, we use an LPV approach based on lemma 1 which requires the following
notations

Â(ρ, θ)=A0 +

m∑

i=1

ρiAi − S−1
∞ (θ)CT C = A(u, θ). (43)

Using notations of (27a), (27b) and (43), the following theorem ensures the quadratic
stability of the “high gain”-like filter (39) and the L2 gain attenuation from w to e.

9



Theorem 3. For a given θ, if there exist matrices P i ∈ IRn×n (for i = 0, . . . ,m), F ∈
IRn×n, such that, for j = 1, . . . , ν, P̃ (β

j
) = P̃ (β

j
)T > 0 and




(1, 1) (1, 2) FB(θ)
∗ −F − F T FB(θ)
∗ ∗ −γ2Iq


 < 0 (44)

with

(1, 1) = P (β
j
) + F Â(β

j
, θ) + ÂT (β

j
, θ)F T + LT L,

(1, 2) = P̃ (β
j
) − F + Â(β

j
, θ)T F T

and β
j ∈ S, then the system (39) is an exponential observer for the system (1) and the

mapping from the disturbance input w to the filtering error e has L2 gain less than a given
scalar γ (see definition 1). •

Proof. For the given θ, using (25), (26) and (27), matrix inequality




(1, 1) (1, 2) FB(θ)
∗ −F − F T FB(θ)
∗ ∗ −γ2Iq


 < 0 (45)

with

(1, 1) = Ṗ (u) + FA(u, θ) + A(u, θ)T F T + LT L,

(1, 2) = P (u) − F + A(u, θ)T F T ,

holds if the LMIs (44) are satisfied for the ν vertices of the convex polytope P (see (28)),

i.e. for each element β
j

of S given by equation (29) (see [1]). Therefore applying lemma
1 to the LPV system (41) (with A(u) = A(u, θ), B(u) = B(θ), C(u) = L and D(u) = 0 in
(3), for all u ∈ Ω) ensures that the system (41) is quadratically stable for w = 0 and the
mapping from the disturbance input w to the filtering error e has L2 gain less than the
scalar γ. This proves the theorem.

Remark 3. In [11], the canonical form associated to uniform observability is explicitly
used to prove the stability of the high gain observer. In the “high gain”-like filter presented
below, the stability of the filtering error is guaranteed by LMIs (44), thus the requirement
of uniform observability becomes unnecessary. ⋄

Remark 4. Theorems 1 and 3 remain valid for nonlinearities of form xf(u) in system
(1), if f(u) and its derivatives are bounded. ⋄

5 Illustrative example

To illustrate our results, let us consider the following bilinear system





ẋ =

[
0 1
−1 0

]
x +

[
1 0
2 1

]
ux

y =
[
1 0

]
x + w

z = x

(46)
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where x and y represent respectively the state and the output. The problem is to estimate
z, minimizing the influence of the disturbance w on the filtering error e. Signals u and u̇

are bounded as follows : −1 6 u 6 1 and −10 6 u̇ 6 10.
The states x1 and x2 are given in figure 1. The filtering errors e1 and e2, the control

input u and the disturbance w are given in figure 2. For the lack of space, without
developing, we give the disturbance attenuation gain obtained of the filter (5) obtained
with constraint (19), γ = 4.225 and with the constraint ED = 0, γ = 5.09, respectively.

In this example, matrix D is of full row rank, so the constraint ED = 0 implies that
E = 0, whereas the constraint ZE2D = 0 gives more degrees of freedom in the filter
design (in this case, the filter matrix E can be different from zero). Contrary to this
numerical example, if matrix D is not of full row rank, the gain Z is not constrained to
verify ZE2D = 0 and the relation ED = 0 can be used in the filter design with E 6= 0.

The plot of γmin(θ) obtained in LMIs (44) enables us to determine graphically the
value θopt. Figure 3 shows that the minimal of γmin is 6.4 for θ = θopt = 3.5 and thus

(S−1
∞ (θopt)C

T )T = [ 7 12.5 ]T . Notice that the methodology proposed in [11] yields a lower
bound for θ0 = 19.12. In this way, this figure has permitted to make the choice of θ taking
the disturbance attenuation into account. For a too small θ, the filtering error is not
stable. For values of θ near the minimal value guaranteeing the stability of the filtering
error, the optimal γmin is very high (γ tends to ∞ when θ tends to the limit value enabling
the stability of the filtering error).

6 Conclusion

This paper has presented a computationally tractable solution to the H∞ functional filter-
ing problem via an LPV approach for bilinear systems. By choosing appropriate Lyapunov
functions, sufficient conditions for asymptotic stability and H∞ disturbance attenuation
have been provided in terms of LMIs. The proposed designs are shown to be efficient via a
numerical example. The different design procedures which are presented enable to enlarge
to bilinear systems filtering the applicability of the LMI-LPV approach.
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