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Robust Finite-Horizon Control for a Class of
Stochastic Nonlinear Time-Varying Systems
Subject to Sensor and Actuator Saturations

Zidong Wang, Daniel W. C. Ho, Hongli Dong, and Huijun Gao

Abstract—This technical note addresses the robust finite-horizon
output feedback control problem for a class of uncertain discrete stochastic
nonlinear time-varying systems with both sensor and actuator saturations.
In the system under investigation, all the system parameters are allowed
to be time-varying, the parameter uncertainties are assumed to be of the
polytopic type, and the stochastic nonlinearities are described by statis-
tical means which can cover several classes of well-studied nonlinearities.
The purpose of the problem addressed is to design an output feedback
controller, over a given finite-horizon, such that the disturbance at-
tenuation level is guaranteed for the nonlinear stochastic polytopic system
in the presence of saturated sensor and actuator outputs. Sufficient con-
ditions are first established for the robust performance through in-
tensive stochastic analysis, and then a recursive linear matrix inequality
(RLMI) approach is employed to design the desired output feedback con-
troller achieving the prescribed disturbance rejection level. Simula-
tion results demonstrate the effectiveness of the developed controller design
scheme.

Index Terms—Actuator saturation, discrete time-varying systems, finite-
horizon, robust control, sensor saturation, stochastic nonlinear sys-
tems.

I. INTRODUCTION

For several decades, stochastic control and nonlinear control are
arguably two of the most active research areas in systems and control,
and many different kinds of nonlinear stochastic systems have been
investigated in the literature, see [3], [11], [17], [18], [20], [27] and
the references therein. Among various descriptions of nonlinearities,
the so-called stochastic nonlinearities characterized by statistical
moments has gained particular attention since they encompass several
well-studied nonlinearities in stochastic systems [16]. On the other
hand, in practical control systems, sensors and actuators cannot pro-
vide unlimited amplitude signal due primarily to the physical, safety
or technological constraints. Because of their theoretical significance
and practical importance, the problems of filtering and control with
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actuator saturation have been extensively studied, see, e.g., [5], [9],
[14], [21]. Comparing to the vast literature with respect to actuator
saturation, the associated results for sensor saturation have been
relatively few probably because of the technical difficulty, see [4],
[22], [28]. It should be mentioned that very few results have dealt
with the systems with simultaneous presence of actuator and sensor
saturations [6] although such a presence is quite typical in engineering
practice. It is noted that most existing results for nonlinear stochastic
control problems with or without saturation have been concerned with
time-invariant system over the infinite horizon.

Virtually all model for real-time systems should be time-varying es-
pecially those after digital discretization. In recent years, time-varying
stochastic systems have stirred considerable research attention due
mainly to the insights of their engineering applications, see e.g., [1],
[10], [18], [19], [24], [27]. In most existing literature concerning
time-varying stochastic systems, however, it has been implicitly
assumed that the actuators and sensors can always provide unlim-
ited amplitude signals and therefore ignored the possible effect of
amplitude saturation. Very recently, the set-membership filtering
problem has been addressed for a class of discrete linear time-varying
systems with sensor saturation in [23]. Unfortunately, to the best of
the authors’ knowledge, the finite-horizon �� control problem for
discrete time-varying nonlinear stochastic systems with polytopic
uncertainties has not been adequately investigated, not to mention the
case where the actuator and/or sensor saturations are also involved. It
is, therefore, the purpose of this technical note to shorten such a gap
by employing the recursive linear matrix inequality (RLMI) approach.
Note that the RLMI approach has been proposed in [7], [8] which can
be used to deal with finite-horizon control and filtering problems for
time-varying systems.

In this technical note, we aim to investigate the robust �� dynamic
output-feedback controller design problem for a class of uncertain
discrete stochastic nonlinear time-varying systems with both sensors
and actuators subject to saturation, where all the system parameters
are time-varying, the parameter uncertainty is of polytopic type, and
the stochastic nonlinearities are described by statistical means. Note
that the system model addressed is quite comprehensive to cover
time-varying parameters, stochastic nonlinearities, actuator and sensor
saturation as well as parameter uncertainties, hence reflecting the
reality closely. The problem addressed represents the first of few
attempts to deal with the finite-horizon control problem for stochastic
systems with both actuator and sensor saturation. The algorithm
developed is computationally appealing in terms of the RLMIs which
are suitable for online applications.

Notation: The notation used in the technical note is fairly standard.
The superscript “� ” stands for matrix transposition, � denotes the
�-dimensional Euclidean space, ��� is the set of all real matrices
of dimension � � �, and � and 0 represent the identity matrix and
zero matrix, respectively. The notation � � � means that � is real
symmetric and positive definite; the notation ��� refers to the norm of
a matrix� defined by ��� � ������� and ���� stands for the usual
�� norm. In symmetric block matrices or complex matrix expressions,
we use an asterisk � to represent a term that is induced by symmetry,
and ��	
�� � �� stands for a block-diagonal matrix. In addition, �	�

and �	�
� will, respectively, mean expectation of 	 and expectation
of 	 conditional on 
. The set of all nonnegative integers is denoted by
� and the set of all nonnegative real numbers is represented by �.
����� represents the trace of a matrix �. Matrices, if their dimensions
are not explicitly stated, are assumed to be compatible for algebraic
operations.

0018-9286/$26.00 © 2010 IEEE
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II. PROBLEM FORMULATION

Consider the following uncertain discrete stochastic nonlinear time-
varying system with both the sensor and actuator saturations:

��� � �� � ����������� ����������������

�������� �� �	
���
� ���
���

����� � �������� � ������� �� �	
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(1)

where ���� � � is the state vector; ����� � � is the output;
���� � � is the control input, and
��� � � is the disturbance input
which belongs to �� �����. All the system matrices in (1) are appro-
priately dimensioned, of which 
��� is a known time-varying matrix,
and �������, �������, 	���

� ���, 	���
� ��� are unknown time-varying

matrices which contain polytopic uncertainties (see e.g., [15]) given as
follows:
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where � is a given convex bounded polyhedral domain described by �
vertices
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trices for � � �� 
� � � � � � .
The nonlinear stochastic functions ������� �� and ������� �� are

described by their statistical characteristics as follows [16]:
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where ��
, ��
, �


� and 

 ��� � � �� 
� � � �� 
� � � � � �� are known

matrices.
The saturation function ���� 	 � �� � is defined as

���� � � ��� ���� ��� ���� � � � ��� ���� �
� (7)

with �
��
� � ������
���� 	�
����� 
�

�, where �
���� is the ���
element of the vector ����, the saturation level.

Definition 1 [12]: A nonlinearity � 	 � �� � is said to satisfy
a sector condition if

����������
� ���������� 
 �� �� � � (8)

for some real matrices ��� �� �
��� , where � � �� � �� is a

positive-definite symmetric matrix. In this case, we say that � belongs
to the sector ��� ���.

As in [22], [23], [28], assuming that there exist diagonal matrices
��� �� and ��� �� such that � 
 �� � � 
 �� and � 
 �� �

� 
 ��, then the saturation functions �������� and �������� in (1)
can be decomposed into a linear and a nonlinear part as

�������� ���
�������� �������� (9)

�������� ������� � �������� (10)

where �������� and �������� are two nonlinear vector-valued
functions satisfying two sector conditions, respectively, with
�� � �� �� � � and �� � �� �� � �, which can be de-
scribed as follows:
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 � (11)
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 � (12)

where � � �� ���� � � �� � ��.
In this technical note, we consider the following time-varying full-

order dynamic output feedback controller for the system (1):
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(13)

where ����� � � is the controller state, �����, ����� and 
����
are controller parameters to be designed. In this case, the closed-loop
system becomes
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Our aim in this technical note is to design a finite-horizon dynamic
output feedback controller of the form (13) such that, for the given
disturbance attenuation level � � �, the positive definite matrix  and
the initial state ����, the saturated output ����� satisfies the following
�� performance constraint:

! 	� �������
�
	
����� � �

��
�����	
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� �
�
�
� ��� ����� �� (16)

The finite-horizon control problem in the presence of actuator and
sensor saturations addressed above is referred to as the robust finite-
horizon�� control problem for the uncertain nonlinear discrete time-
varying stochastic system (1).
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III. MAIN RESULTS

Lemma 1 (S-Procedure): Let ������ ������ � � �� ����� be quadratic
functions of � � �� ����� � ������ � � �� �� � � � � �, with�� � � �

� .
Then, the implication ����� � �� � � � � ����� � �� ����� � � holds
if there exist ��� � � � � �� � � such that
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Theorem 1: Let the disturbance attenuation level 
 � �, fami-
lies of scalars ������������ � �� ������������ � �, a posi-
tive definite matrix � � � and the controller feedback gain matrices
�
���������� , ������������ � ������������ be given. For the
system (1) subject to the sensor and actuator saturation (9) and (10),
the�� performance index requirement defined in (16) is achieved for
all nonzero ���� if, with the initial condition � ��� � 
� ��, there exist
a family of positive definite matrices �� ����������� satisfying the
following recursive matrix inequalities:
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Proof: Define
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Taking (5) into consideration, we have
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and then obtain from (14) that
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where�� and ���� are defined in (24), shown at the bottom of the page.
Summing up (23) on both sides from 0 to � � � with respect to �,

we obtain
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Hence, the �� performance index defined in (16) is given by
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Noting that � ��� � � and the initial condition � ��� � �� ��, we have
� � � when the following inequality holds:
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 (27)

Noticing the sensor saturation constraint in (11), we have
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In the same way, we have from the actuator saturation constraint in
(12) that
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Therefore, what we need to do is to find a condition under which (27)
holds subject to the constraints (29) and (32). By using the S-procedure
described in Lemma 1, such a sufficient condition under which (29) and
(32) imply (27) is that there exist positive scalars �� and �� such that

�� � ���	�	�� � ���	�	�� � � (34)

which is equivalent to (18). The proof is now complete.
Up to now, the analysis problem has been dealt with for the ��

output feedback control problem for a class of stochastic nonlinear dis-
crete time-varying systems with sensor and actuator saturation con-
straints. In the following, we proceed to solve the controller design
problem by developing a RLMI approach.

Theorem 2: Let a disturbance attenuation level � � � and a
positive definite matrix � � � be given. The robust �� con-
troller (13) can be designed for system (1) with sensor and actuator
saturation constraints if there exist families of positive definite ma-
trices ���	��������� � ���	���������, families of positive
scalars ����	������� � �� �� 
 �� �� � � � � ��� ����	������� �

�� ����	������� � � and families of real-valued matrices
����	������� � ����	������� and ����	������� satisfying the
initial condition
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Here, �����	�, �����	�, ����
� �	�, ����

� �	� are the matrices at the ���
vertex of the polytope.

Proof: Since the set of system matrices ���� �
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vertexes of the polytope. By considering (15) together with (19), one
can easily see that (18) holds if and only if
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Subsequently, we choose the variables � �	� and ����	� that can be
decomposed as follows:
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 (41)

By Schur Complement [2], (36) is equivalent to

�
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which, by the property of matrix trace, can be rewritten as

�� �
� �	�� �	 � ����	���� � ���	�
 (43)

Noticing (43) and using Schur Complement [2], (40) can be rewritten
as (44), shown at the bottom of the next page. It follows that (44) is
guaranteed by (37) after some straightforward algebraic manipulations,
and the proof of this theorem is then complete.

By means of Theorem 2, the algorithm for designing the robust con-
troller can be outlined as follows.

The controller design algorithm:
Step 1. Give the�� performance index �, the positive definite ma-

trix � and the state initial condition �
���. Select the initial
values for matrices ������� ������ which satisfy the con-
dition (35) and set 	 
 �.

Step 2. For the sampling instant 	, solving the RLMIs (36)
and (37) to obtain the values of matrices ���	 �
�����	� ��� as well as the desired controller parameters
����	�� ���	�� ���	��.
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Fig. 1. Actuator output.

Fig. 2. Sensor output.

Step 3. Set � � � � � and obtain ����� � ��� ���� � ��� by the
parameter update formula (38).

Step 4. If � � � , then go to Step 2, else go to Step 5.
Step 5. Stop.

Remark 1: In Theorem 2, the robust �� finite-horizon controller
is designed by solving a series of recursive linear matrix inequalities
(RLMIs) where both the current system measurement and previous
system states are employed to control the current system state. Such a
recursive control process is particularly useful for real-time implemen-
tation such as online process control. On the other hand, we point out
that our main results can be extended to deal with the model predictive
control problems for Markovian jumping systems [13], [25], [26] over
a finite-horizon. Other research topics would be to research into more
general nonlinear systems and investigate the corresponding filtering
problem over an infinite horizon when the system parameters become

Fig. 3. State evolution � �.

Fig. 4. System output � �.

time-invariant and the steady-state behavior is of interest. The results
will appear in the near future.

IV. AN ILLUSTRATIVE EXAMPLE

Consider the following discrete time-varying stochastic nonlinear
systems with sensor and actuator saturations:
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���� ��� � �
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���� � ������� �� � �������


��� � ����� ��� 	
����� � ����

(45)
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�������� ������� �������� ������ � �� �
����� �� � � ��

� (44)
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Fig. 5. State evolution � � when the saturation gets severe.

where �������� and �������� are saturation functions described as
follows:

�������� � ����� if �������� � ���� � ��������

�������� � �������� if ���� � ��������

�������� � ��������� if ���� � ���������

(46)

�������� � ����� if �������� � ���� � ��������

�������� � �������� if ���� � ��������

�������� � ��������� if ���� � ��������	

(47)

In this example, we have 
 � � � �. Take the saturation values
as ������� � �	�� and ������� � �	�� with the state initial value
	���� � 
 �	�� ��	� � � �� and 
 � 
��� ��� ��. The exogenous
disturbance input is selected as ���� � �	� �������, and other param-
eters are chosen as � � �	�, �� � �	�, � � �	� and �� � �	�.

The nonlinear functions ������� �� and ������� �� are given as fol-
lows:

������� �� �
�	�

�	�
� ��	�����������

� �	������������

������� �� � �	�� ��	����������� � �	������������

where ����� �
 � �� �� is the 
�� element of ����, and ����� �
 � �� ��
are zero mean, uncorrelated Gaussian white noise processes with unity
variances that is also uncorrelated with ����. It can be easily checked
that the above class of stochastic nonlinearities satisfies (4) and (5) with

������� ��

������� ��

 �� ������ �� �� ������ �� � ����

�

�	�

�	�

�	�


 �	� �	� �	� � �
� ���

�	�� �

� �	��
����

Let � � �	� and choose the parameters’ initial values satisfying (35).
The uncertain parameter � is unknown but assumed to belong to the
known range 
��	� �	� �. According to controller design algorithm,
the RLMIs in Theorem 2 can be solved recursively subject to given
initial conditions and prespecified performance indices.

The simulation results are shown in Figs. 1–5, where Fig. 1 plots the
actuator output and Fig. 2 depicts the sensor output. Note that both the

actuator and sensor outputs are saturated. Fig. 3 shows the state sim-
ulation results of the closed-loop system (14), and the system output
����� is depicted in Fig. 4. When the saturation level are changed to
������� � �	�� and ������� � �	��, the state simulation for system
(14) is given in Fig. 5, from which we can observe that 1) the satura-
tions do influence the control performances; and 2) the saturation range
would have a serious impact on the feasibility of the RLMIs.

V. CONCLUSION

In this technical note, the problem of robust �� output feedback
control has been discussed for a class of polytopic uncertain stochastic
nonlinear discrete time-varying systems with both sensors and actua-
tors subject to saturation. Sufficient conditions have been derived for
the closed-loop system under consideration to satisfy the �� perfor-
mance constraint. A robust �� output feedback controller has then
been designed by solving a set of recursive LMIs. A numerical simu-
lation example has been used to demonstrate the effectiveness of the
control technology presented in this technical note.
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Comments on “A Multichannel IOS Small Gain Theorem
for Systems With Multiple Time-Varying

Communication Delays”

Björn S. Rüffer, Member, IEEE, Rudolf Sailer, and Fabian R. Wirth

Abstract—The small-gain condition presented by Polushin et al. may be
replaced by a strictly weaker one to obtain essentially the same result. The
necessary minor modifications of the proof are given. Using essentially the
same arguments, a global version of the result is also presented.

Index Terms—Generalized small-gain condition, input-to-output
stability, Lyapunov stability, networked control systems, time-varying
communication delays.

I. INTRODUCTION

In [1] Polushin et al. have presented a small-gain type condition that
ensures input-output stability for networked systems in the presence of
time delays. In this note we show that the small-gain condition by Po-
lushin et al. can be replaced by a less restrictive one. As an extension
we obtain a global version of the result, with a global small-gain con-
dition resembling the one of Dashkovskiy et al. [2]. By means of an
example we show that the modified small-gain conditions are indeed
less restrictive than the original one. For brevity we adopt the problem
formulation and notations from [1].

It should be noted that in a recent paper [3] a small-gain theorem
for large-scale systems under the presence of time-delays has been
presented. In contrast to [1] it does not explicitly take into account
multiple communication channels. However, it is based on the weaker
“cycle-gains are contractions” small-gain condition as in Corollary 2.4.

II. THE GENERALIZED SMALL-GAIN THEOREM

Based on the setup and notation in [1] we formulate our generalized
small-gain condition in a very compact form. We use [1.X] to reference
equation/assumption/or result X in [1].

A. Modified Notation

We need a few notations before we can state our main theorem. We
write
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