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Abstract—A model predictive control law (MPC) is
given by the solution to a parametric optimization
problem that can be pre-computed offline, which
provides an explicit map from state to input that can
be rapidly evaluated online. However, the primary
limitations of these optimal ‘explicit solutions’ are
that they are applicable to only a restricted set of
systems and that the complexity can grow quickly with
problem size. In this paper we compute approximate
explicit control laws that trade-off complexity against
approximation error for MPC controllers that give
rise to convex parametric optimization problems.

The algorithm is based on the classic double-
description method and returns a polyhedral approx-
imation to the optimal cost function. The proposed
method has three main advantages from a control
point of view: it is an incremental approach, meaning
that an approximation of any specified complexity
can be produced, it operates on implicitly-defined
convex sets, meaning that the prohibitively complex
optimal explicit solution is not required and finally it
can be applied to any convex parametric optimization
problem.

A sub-optimal controller based on barycentric in-

terpolation is then generated from this approximate
polyhedral cost function that is feasible and stabiliz-
ing. The resulting control law is continuous, although
non-linear and defined over a non-simplical polytopic
partition of the state space. The non-simplical nature
of the partition generates significantly simpler approx-

imate control laws, which is demonstrated on several
examples.

I. INTRODUCTION

has become well-known that this optimization prob-
lem can be posed parametrically, with the measured
statex as the parameter

J*(z) == min{h(x,u) | g(z,u) <0} . (1)
In this paper we restrict our attention to those prob-
lems in whichJ*, h and g are convex functions.
Solving this parametric problem off-line results in
an explicit functionu*(z) mapping the measured
state to the optimal system input [8], [18], [33].
The on-line calculation of the control input then
becomes one of evaluating*(x) at the current
measured state, which can decrease the required
online computation time by several orders of mag-
nitude for some systems.

There are two main limitations of this approach.
The first is that only a restricted class of sys-
tems give rise to problems that can be reasonably
solved parametrically. For example, linear systems
with piecewise linear [5], [30] or quadratic cost
functions [8], piecewise affine systems (PWA) with
linear [4] and quadratic [7] cost functions and some
classes of polynomial systems [3]. If the control
law can be computed explicitly, then it is often the
case that the complexity of the control law (i.e. the
number of ‘pieces’) grows quickly with problem
size. The reader is referred to the recent surveys [1],
[20] for an overview.

In this paper, we propose a new algorithm for com-
puting inner and outer polyhedral approximations

Implementing a model predictive controller (MPC)of arbitrary convex sets, which we then put to work
requires the solution of an optimization problenapproximating the epigraph of the optimal cost
on-line at each sampling instant. In recent years,fitnctionepi (J*). The approach is based on the well

established double description method [13], [27],
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convex hulls. We extend this method so that it can
work on implicitly defined convex bodies, such as



the unknown cost function of a convex parametriapproximation approaches that generate triangula-
program (i.e. we compute the approximation withtions, and hence can directly compute a control law
out first computing the optimal solutiof*). « for the non-simplical regions produced by the

The incremental nature of the approach has a Veq,i)ouble—.description al'gorit.hm, which often produces
useful benefit from the explicit MPC point of view, Much simpler approximations.

Specifically, the common reason for such an agrhe remainder of the paper is organized as follows.
proximation is to generate a control law that can b8ection Il outlines the general problem of approxi-
evaluated in a given amount of time, or be storephation for convex and compact sets. Section Il pro-
in a given amount of space. Because the doublédes background on the double description method
description algorithm is incremental, it can simplyand the following section generalizes this so that
be run until the complexity of the approximationit can operate on implicitly defined convex sets
has reached the physical time or storage limits dfased on two oracles that need to be specified for
the on-line computational platform. However if ahe structure of the set in question and Section V
certificate of stability is desired, then there is #&hen studies the application of these tools to MPC.
minimum level of complexity required, althoughSection V-A introduces barycentric interpolation,
this level is normally quite small. which allows the computation of a control law

Several authors have proposed approximation 4/°m the approximate cost and finally Section VI
gorithms that produce simpler PWA control lawgProvides some computational examples.

at the cost of optimality. As is the case in this

paper, these approaches operate in a two-stage NOTATION

procedure: the epigraph of the optimal cost function . , , .

J* is approximated with a polyhedroh which will A polyhedronis the intersection qf a finite num-
determine the stability and performance propertid®" ©f halfspaces and polytope;s a bounded
of the approximate controller and then a feasiblBelynedron. If A is a subset ofR?, then P (A)
control law(z) is computed such thaf is a Lya- S the set{z | (a, x) <1, Va € A}, which is a
punov function for the resulting closed-loop systenf’g'yhedron if A is finite. If V' is a subset of
However, generating such a feasible control fais X+ then the convex hull of/”, conv (V) is the
not immediate given the polyhedral functiohand Ntersection of all convex sets containinig. If
so existing proposals either produce a triangulatiofy =, {v0:-- -+ v} i a finite set, theronv (V) =
and then interpolate the optimal control law aizi:o vidi [Ai 20, 3 A =1}

the vertices [6], [20], have a post-processing stdget S andC be convex and compact sets, then the
in which an exact parametric program is calcuHausdorff distance (S, C) is

lated based on the approximate cost [10], [23] )

or compute control laws based on sub—divisionf( €)=

of hypercqbes [19]. In all cases, the requirement max{sup inf ||z — yll,, sup inf ||y_x||2}

of computing a control law that can generate the zeSYyel yeC z€S

approximate cost places restrictions on the structure

of the cost approximation and generally causes H. PROBLEM STATEMENT AND PRELIMINARIES
significant increase in the achievable complexity.

In this paper, we introduce a new method of pos

processing an approximate polyhedral céstased

- N closed and bounded) sét C R?.
on barycentric interpolation, in order to compute finit S a1
feasible non—linear control lavii from any poly- Pefinition 1 g-approximation):Let ¢ C R® be a

hedral approximate cost. The main benefit is th&pmpact and convex set that contains the origin and

we do not have to restrict ourselves to considerin! fL_JI_I—d|menS|onaIdimC =d. Ifcis "’_‘ strictly
ositive real number, then the polytopeis called

Our goal is to find a polytop& that approximates
fo within a given tolerance a convex and compact



an e-approximationof C if p(S,C) < ¢, where scaled tangent of the norm-ball at the point,
p (-, -) is the Hausdorff distancé! is called an outer a = O

v, r—v*r) "

(inner) e—approximation ifC' C S (S C C). Remark 4:Note that the above optimization prob-
The following theorem states that searching for Eems are convex, since the s€tis assumed to be
polytopic approximation is well-founded. convex. For example, if’ is a polytope, then com-

Theorem 2 ([12], [31]): If C  R? is a convex puting extr requires a Iinear program amthxsep _
and compact set, then for every> 0, there exists @ quadratic. IfC contains linear and quadratic

c. a quadratic cost and linear constraints (Section V),

The goal of this paper is to approximate the convegt]en bothextr andmaxsep require the solution of

sets that arise in the computation of explicit Mp& second order cone problem.

control laws. In this case a description of the convekh€ next section gives a generic overview of the
setC, the epigraph of the optimal cost function, ilassic double description method as applied to
generally not knowrexplicitly, but only implicitly polytopes. The section following then generalizes
in terms of an optimization problem. While it isthe method using the above two functions so that it
possible in some cases to generate an explicit regan be used to compute ar-approximation of an
resentation of the sef, it is often computationally implicitly defined convex and compact set.
prohibitive and we seek to avoid it here. For this

reason, we don’t assume that a description of thg|| ¢ | assic DoUBLE DESCRIPTIONMETHOD
setC' is available, but only that we can evaluate its

support function, which is defined as The Minkowski-Weyl theorem states that every
) polytope can be represented either as a convex
6%(a | C):=sup{(a, z) [z € C} . combination of a finite number of points, or as the

In turn, the support function allows us to define tW(l)ntersectlon of a finite number of halfspaces. This

o . . . naturally leads to the following definition.
optimization problems that will be required. First, = " : o
given a vectora defining a direction, we must be Definition 5 ( [13], [27]): A pair (A, V) of finite
able to find an extreme point that maximizes thgetsA, V C R? is called adouble descriptiofDD)
linear function(a, ) over the seC. if the following relationship holds:

extr(a | C)e{zeC|{a, z)=6(a|C)} xz € P(A) if and only if x € conv (V)

] ] (.2) The classic double description method takes as
Second, given a pointz ¢ C, the function jnpyt a description of a polytope in terms of a
maxsep (¢ | C') returns a vecton defining a hyper- finjte set.4 and the goal is to compute all vertices
plane that maximally separatesrom C" (a, 2) > of P (A). This is accomplished in an incremental
landC C {z | (a, z) <1} fashion, beginning with a small subset c A
for which the vertices/” of P (A) can be directly
(a, 7) — 1 computed, i.e. so thdt4, V') is a DD-pair. During
argmax{’ ’ (] C)= 1} each iteration the setl’ = A U {a} is created
lall by adding one vectorn € A, or equivalently by
®) intersecting the polytopé(A) with the halfspace
Remark 3: A maximally separating hyperplane for{z | (a, z) <1} and the set of vertice¥” is up-
a pointz can be determined by finding the closdated so that(A’, V') remains a DD pair. This
est pointz € C to v in the 2-norm v* € procedure continues until all of has been inserted,
argmin, { (v — )" (v—x) | # € C'}. The normal at which point we have the DD pait4,V) and
of the separating hyperplane is then given by thierefore all verticed” of the polytopeP (A).

maxsep (z | C) €



The main operation of the algorithm is the updatinggorithm 1 Classic Double Description Method
of the set of verticey” so that(A4’, V') is a double Require: A finite setA := {a1,...,an} C R? such

description pair, which can be accomplished by a thatdim P (A) = d .,
direct application of the following Lemma. Ensure: A ml?lvm)al setV C R, such thatP (A) =
conv

Lemma 6 (DD Lemma [13])Let A,V C R? be 1: Obtain a DD pair({a; | i € K}, V), for some set
finite sets such tha{A,V) is a DD pair and K C{l,..., N} such thatV is minimal

dim P (A) = d. Let a be a vector inR? and 2 while K #{1,..., N} do
artition V' into three sets Select any indey from {1,..., N} \K
P Construct a DD pair

Vti={v]|{a, v) <1} %a! ;’(eulgjL}J’{‘j/}:}»:, ‘V/’/) using Lemma 6
VZ={v|(a,v)=1}

: end while
Vo i={v|{(a,v) >1}
If A" := AU {a}, then the pairA’,V’) is a DD
pair, whereV’' =Vt uV=uynew
(v ) eVt xV™,
VW= ¢ f(vT,v7) | v and v— Remark 7:The first step of Algorithm 1 is to

are adjacent iP(A) choose .a sef{ such that t.he list of verticgs qf
P({a; | i € K'}) can be easily computed, which is

R

2

where achieved by selecting exactiliy-1 elements:; such
Fot0m) (1—{a, v )t —(1—{(a,v))v™ thatP({a; |i€ K})is a simplex.
vLuT) = . . .
(a, vt —v7) Remark 8:The double description algorithm has
Furthermore, if/” is a set of minimal extreme pointsP€en extensively studied since its inception in
for P(A), thenV’ is minimal for P(A"). 1953 [27] and improvements have been made both

With Lemma 6 in hand, we can now state the doublftg)r the prf’;\ctlcal and. the 'WOI’St case complexity
. . . over the simple algorithm in Table 1. In order to
description method as shown in Algorithm 1. The . :
. : I achieve these improvements, the sétmust be
procedure is depicted in Figure 1, where one can see

. ; . ._,.—analyzed in a pre-processing phase. As will be seen
the insertion of one new halfspace into an emstmg} : . .
hypercube. the following sections, the method proposed in

this paper constructs the sgt as it runs and so
cannot do this pre-processing. As a result, the worst-
case complexity (the maximum number of vertices
over all iterations) will match that of the original
algorithm and will be doubly exponential in the size
of A, although this is rarely seen in practice.

Remark 9:Clearly, an efficient implementation of
the algorithm requires that the 36t in Lemma 6
be rapidly calculable. This calculation can be done
in time linear in the size of’™" and is not a

v,  function of the size of the setd or V' [15].

N Remark 10:Lemma 6 requires that the adjacency
Us relationships of the vertices be known. These can
_ , o _ easily and directly be determined from the incidence
Fig. 1. lllustration of a single iteration of the Double Depe . .
tion algorithm. map of thg polyhedron (which hglfspaces contain
which vertices). See [13] for details.
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Outer

W “approximation

A. Improvement of the Outer Approximation

Inner

swoamaton | ot s first assume that we are improving the outer
i approximation, and hence our task is to choose a
vectora* € A to decrease the approximation error

p(C,P (Ao U{a*})) <p(C,P(Ao)) .

Fig. 2. Inner and outer polytopic approximations of a conve;(rhe procedure that we WI_” use s t_o first chate the
set. vertex v* of P (Ap) that is a maximum distance
from C and hence is defining the current approxi-
mation error. We will then remove this vertex from
IV. IMPLICIT DOUBLE DESCRIPTION the approximation by computing the halfspace
that maximally separates from C.

Every convex and compact sétcan be described The current approximation erraris given by the
as the intersection of a possibly infinite set of halftfausdorff distance betweef (Ao) andC

spaces or as the convex hull of a set of points [29, , (¢ P(Ap)) = max minllz —yll, , (4)
Thm. 11.5];C = P(A) = conv (V) for some yeP(Ap) zeC

sets.A andV C R?. Computing a polytopic outer where we need only take the max ove(Ao) and
e—approximation can then be stated as finding @in overC and not vice versa becauékis a subset
finite subsetA of A such thatp (P (A),C) < €. of P(Ap). We now seek to evaluate (4) in order to
Equivalently, an inner approximation consists of getermine the point oP (Ao) that is farthest from
finite subsed” C V such thaip (conv (V) ,C) <e. (. By assumption we cannot do direct computations
Figure 2 illustrates the proposed inner and outglh ¢, but can only evaluate the support function,
polytopic approximations. which leads us to the following lemma.

The ideal would be to determine a sétC A of |Lemma 11:If ¢ c R? is a convex, compact and
minimal cardinality. Computing such a set, howfyll-dimensional set containing the origin arsdis
ever, is known to be NP-hard even in the simplesgt polytope such that' C S, then

case whenC is a polytope and the se# is 9

finite and known [26]. Therefore, we here adoptp(57 )y =
an heuristic and incremental approach based on the (a, v) —1
double description algorithm which nonetheless has ™%\~
very useful properties.

At a given stage of the proposed implicit DD ) o
algorithm, two DD pairs(4o, Vo) and (V7, A;) Proof: The Hausdorff distance is given by
are maintained such thatonv (V;) is an inner »(C,5) = max{q(y) [y € S}, whereq(y) :=
¢—approximation ofC' and P (Ao) an outer for min{[[z —yl[, | = € C'}. The functiong(-) is con-
someé > ¢. We proceed with the DD algorithm VeX and therefore the maximum is obtained at an
as in the previous section, alternatingly improvingxtreme point ofS' [29, Thm. 32.2]; p (C,8) =
either the inner or the outer approximation in eachax{¢(v) | v € extreme(S5) }. For a given extreme
iteration by adding either a halfspace to the outdl0intv € extreme(S), the minimum distance(v)
approximation P (Ap) or a vertex to the inner IS given by themaxsep function (3). =
conv (V7). The next section demonstrates how w&rom Lemma 11 one can see that the Hausdorff
choose an element ofl such that the outer ap-distancep (C, P (Ap)) is equal top(C,Vp) and
proximation improves and the section following dis€an therefore be computed through a finite number
cusses how we utilize the DD algorithm to likewiseof evaluations of themaxsep function applied to
improve the inner approximation. each element of/.

lall2

v € extreme(S)
a =maxsep (v | C)

whereextreme(S) are the vertices of.



Remark 12:Because the verticdg, are computed B. Improvement of the Inner Approximation
in an incremental fashion, it is not necessary to
evaluatemaxsep in Lemma 11 for eachv in Vo  All polytopes can be expressed either as the convex
in each iteration, but only those newly created igombination of their vertices, or as the intersection
Lemma 6,V"eW, of a finite number of halfspaces. This duality has
With Lemma 11 and the DD paifAp, Vo) in led to a number of algorithms that can operate on
hand, we can now determine the $ét c V,, of both representations equally well, and the double
vertices that define the current approximation errogiescription algorithm is one such. The dual version
i.e. p({v},C) = p(P(Ap),C) for all v € V*. s generally called the Beneath/Beyond algorithm
We proceed to choose a vertex e V* and and takes as input a finite set of points and re-
compute the halfspac® ({a*}) that maximally turns the list of halfspaces representing the convex
separates* from C. The classic double descriptionhull [2], [21].
algorithm from the previous section then provides Bemma 13 gives a useful and well-known result
mechanism to computé) so that(AoU{a*}, V) which allows the double-description algorithm to
is a DD pair. be used to compute an inequality description of a
1) Approximation of the Hausdorff DistancErom polytope as readily as it computes a vertex repre-
Lemma 11 we see that evaluating the current agentation.
proximation error betwee® (Ap) and C' requires |emma 13 (e.g. [13]):The finite setsd,V ¢ R?
the evaluation of thenaxsep function up to[Vo| form a DD pair (A4, V) if and only if (V, A) is a
times. In many cases, the evaluationmafsep is DD pair.
very expensive and so we wish to avoid or reducgys pagjc duality result can be used in order to
this if pos_S|bIe. In this section, we proyldeametho ugment the double description algorithm of the
of boundlng_ the Hausdorff d|_stance without mak'n%revious section, which computes outer approxima-
any evaluations of the functiafiaxsep. tions, in order to calculate an inner approximation
We have both an inner and an outer approximatidasy reversing the roles of vertices and halfspaces
of the setC’, which together give us an upper boundn the approach. In other words, assuii;, V;)
on the error betwee’ (Ap) and C: is a DD pair representing the polytoge(A;) =
conv (V) and we wish to compute the sef’
p(P(40),C) < p(P(Ao),conv (V1)) -, (3) so that (47, V; U {v}) is a DD pair for sonI1e
which holds becauseonv (V) C C. v. The double description Lemma 6 can be used
Since both the inner and outer approximations afer this purpose by simply passing it the DD pair
available as the DD pair§V;, A7) and (Ao, Vo) (Viu{v},A7).
respectively, it is relatively simple to compute thene can now make use of the double description

Hausdorff distance between them. mechanism in order to iteratively construct an inner
p(P(Ao),conv (Vy)) = max min |z — o], approxmatlon of thg set by mser_tlng one extrgme
vEVo zeP(A)) point v* of C' at a time. The choice of the point

(6) o* to insert in each iteration of the algorithm is

Equation 6 requires the solution of one quadrati®ade in an analogous fashion to the previous sec-
program (QP) of sizéA;| per vertex of the outer tion. Instead of computing the maximal separating
approximation. In each iteration of the algorithmhalfspace for each vertexof Vo, we compute the
the majority of these QPs will not change since thgxtreme point* of C' that is a maximal distance
method modifies the inner and outer approximatiorf§°m €ach hyperplane of the inner approximation
only locally. Those that do require re-computatio®'Sing theextr function.

are exactly those that depend on the new verticBemark 14:The approach presented here for com-
Ve created in Lemma 6. puting inner approximations is similar to that in [20]



where we proposed an |mp||c|t approach for po|yA|gor|thm 2 ImpIICIt Double Description Method

hedral projection based on the beneath/beyond prdequire: The functionsmaxsep and extr for some

cedure. We here extend this method to the com-
putation of simultaneous inner and outer polytopic

convex and compact sef’ and a desired
approximation errog > 0.

approximations for generic convex and compadnsure: DD pairs (Ao,Vo) and (Ar,Vr) such

sets. This simultaneous inner/outer approximation
also provides the significant benefit of much simpler
calculation of the current approximation error, as
was discussed in the previous section.

The proposed method is shown as Algorithm 2. One
can see that each iteration involves one improves:

that conv(V;) € C C P(Ap) and
p(P(Ao),conv (V7)) <.

1: Obtain DD pairs(Ao, Vo) and (Vi, Ar), such that
conv (Vi) CC C P(Ao)

2: while p (P (Ao),conv (V7)) > e do Eqn 6
/I Improve outer approximation
Computev € Vp farthest fromP (A;)  §IV-Al

ment of the outer and one of the inner approxima-+4:
tion (Lines3 to 8 and 10 to 15 respectively). For the 5f
outer improvement, the algorithm first approximates.
the Hausdorff distance betweeR (Ap) and C' g
using (5) or (6) in order to select a vertexe Vo

to ‘cut off’ from the polytope. It then computes ¢:
the hyperplane* that maximally separatesfrom

C on line 5, which also gives the true distance;;.
betweenv and C' as (a*, v) — §*(a* | C). If this

distance is larger than the desired approximatioa?:
then the DD pair is updated todo U {a*}, V) 1%

Separate from C' : a* := maxsep (v | C)
if p(v,C) > ethen
Ao = Ao U {a*}
ComputeVo s.t. (Ao, Vo) is a DD pair
Lemma 6
end if

/I Improve inner approximation

Computea € A; farthest fromconv (Vo)
§IV-Al

Compute poinw* beyonda : v* := extr (a | C)

if p(v*,conv(V;)) > e then

K Vi=Viu {U*}
using Lemma 6._ These steps are then repeated ) ComputeA; s.t.(Vi, A;) is a DD pair
the inner approximation DD paif’;, A;) until the Lemma 6
approximation error is below that desired. 16:  end if
17: end while
V. APPLICATION TOMODEL PREDICTIVE
CONTROL where
The interest in parametric programming in the (o, - un—1, 20, 2N) ::N )
control community has arisen from the ability to v —~ T
pose certain optimal control problems as parametric (@) + 2; (@i, ui) (8)
=

programs and thereby pre—compute the optimal

control law offline. In this paper, we are specificallyand X', ¢/ and Xr are convex constraints on the

interested in the following finite horizon optimalstates and inputs and the stage do& a strictly

control problem: convex function with[(0,0) = 0. A function
~v(+) : R — R is assumed to exist that is continuous,

J*(z) = min J(ug, ..., un_1,g,...,xy) Strictly increasing and has(0) = 0! such that
{wo,un -1} v(lz|l) < l(z,0) for all z. Under the standard
S. . w1 = Ax; + Bu,, assumptions that’z C X is an invariant set under
(i,u;) € X xU, the control lawu(x), Vv is a Lyapunov function for
Vi=0,...,N—1 the systemw* = Ax + Bpu(x) and that the decay
TN € Xp, rate of Vy is greater than the stage cost within
ZTo =X

@) li.e. vy is a K-function



the setX’r, the problem (7) generates a stabilizinglefined over a subset of the feasible set of )¢
control law when applied in a receding horizorX.

fashion [25]. The optimal control problem (7) canoyr goal is now to use this functiod to com-
be re-written as a parametric optimization problenyte an approximate feasible solutiah(z) :=
~ ~ T
u* (2) = axgmin {he,u) | g(,u) <0} (@) [Bl@) . dn-al@) ]’ to (9) and demon-

u strate that there exists a Lyapunov function for the
where v is a vector containing the sequence ofésulting approximate closed-loop systert =
inputsuy, ..., uny_1 and appropriate auxiliary vari- Az + Biig(z).
ables and the functionsd and g are convex. The The authors are aware of three proposals in the
system input is then given in a receding horizofiterature to tackle the problem of computing a
fashion byw(z), which is the first input in the function@ from an approximate cost, all of which
optimal control sequence of (7). See [1] for a survegotentially generate an approximate control law that
of papers providing details on the conversion froris significantly more complex than the approximate
the optimal control formulation (7) to the parametricost function. The first is simply to compute a tes-
optimization problem (9) for some important classeselation of each polytopic regioR;. One can then

of systems. interpolate uniquely amongst the vertices of each
Let J : R — R be a piecewise affine func- Simplical region of the tesselation, which results in
tion, where R is a polytopic subset ofX := & feasible piecewise affine function [6], [20]. While_
{z € R? | Ju, g(z,u) < 0}. Assume that the func- this approg_ch is easily_stafced and implemented,_ it
tion J has the property has a significant downside in that such a tesselation
can have exponentially more simplices than there
J*(x) < J(z) < J(z) + ey (|z]) ,Vz e R , were regionsR;. In [6] it was suggested that an

affine function be fit in a least-squares fashion to
for somee < 1. the optimizers.* (v) at the vertices of each region
The following sections will demonstrate that such &;. However, if a regionR; is not a simplex, then
PWA approximate function can be used to generatRere is no guarantee that the fitted function will
a stabilizing feasible explicit control law for thebe everywhere feasible and furthermore, the result-
MPC problem (7). Section V-D will then discussing control law will be discontinuous. The third
how to generate an appropriate PWA function usingpproach [10], [23] computes an approximate cost
the techniques developed in this paper. for the optimal control problem (7) in a recursive

fashion. After a sufficient number of iterations, the

approximate cost function is used as a ‘cost-to-
A. Barycentric Control Input go’ while the exact solution is computed in the

Using the techniques proposed in this paper, it {&St Phase, which then provides the approximate

possible to compute a PWA convex functioh control law. However, this last exact iteration can

that is of any specified complexity or error and©ntain & much larger number of regions than the

is an upper approximation of the optimal cost aPProximate cost function.

of (7) (Section V-D). LetJ be the piecewise affine In this section we propose a new method of com-

function puting a feasible solution based on Barycentric co-
ordinates, which does not generate any new regions.

Definition 15 (Barycentric function)Let S :=
where the polytopesk; form a convex partition: conv ({v1,...,v,}) C R? be a polytope. The set
R = UR; andint R; Nint R; = () for all i # j. Of functions wy(z), v € extreme(S) is called
We assume an approximation error @fJ*(z) <

J(x) < J*(x) + ey (|z|]), Yo € R and thatJ is

J(x):=ble+¢, freR; (10)



barycentricif three conditions hold for all: € S
wy(x) > 0 positivity (11a)
Z wy(x) =1 partition of unity (11b)
vEextreme(S)
Z vw,(z) = x linear precision (11c)

vEextreme(.S)

(a) Interpolation over a sim- (b) Barycentric interpolation

For each vertex € extreme(R;) and regionk;, plex. over a polytope.

we defineu*(v) to be an optimizer of (9) at the
point v. Note that each such is feasible, by the Fig. 3. Example of Barycentric interpolation over a simpler an
assumption thaR C X and so an appro riate*(v) a polytope. Note that the interpolation lies within the caxull

p = pprop of the extreme points.
can always be computed. If a set of barycentric
functions w,(z), v € extreme(R;) is available
for each regionR; in (10), then we can define an

. . ) . B. Stability of Barycentric Control Law
approximate solutiorii(«) by interpolating among

these points over the regioris. This section demonstrates that the proposed
o . : barycentric control law is stabilizing by construct-
u(z) = Z wvwy(z) , iz R ing a Lyapunov function for the approximate

vEextreme(R;)

closed-loop system™ = Az + Biig(x).

R K 16N hat th d . We first show that the approximate solutiaiiz)
emar -Note that the proposed approximatgg everywhere feasible with the following lemma,

controller W.i" be applied in a repeding horizon, e, proves thati(z) lies inside the convex hull
fashion, as is the case for the optimal control la f the optimizeru* () at each of the vertices dt
The controller is therefore defined only by the ﬁrSFor eachR € R

stepig(z) of the N-step prediction sequence. As is
the case in optimal MPC, the remaining— 1 steps Lemma 17:If k= conv (vo, ..., v;) € R, u*(v;)
of the prediction sequence are used only to proyg the optimizer of (9) for the state; and u is
recursive feasibility and stability of the resultingdefined as in (12), then

approximate receding horizon control law. - Yo U
Figure 3 shows two examples of the proposed (a(@) € conv ((u*(vo)> (u*(ym)>> ’

Barycentric interpolation. One can see that interpo-
lation across a simplex leads to an affine function,
whereas a more general polytope gives a smod@f all = € R.
and continuous function with the key property that  Proof: The statement holds if for eache R
it lies within the convex hull of the extreme pointsihere exists a set of positive multiplieks, . .., A,
which is proven in the next section. It is thissuch that
containment that allows Corollary 18 to prove that m
the approximate control law,(z) is feasible. (Nx ) - Z/\. ( Vi )
. . : - " u(x) A\ ur(v;)
The following section provides sufficient conditions
on the approximate polyhedral cost function for the

m . - .
resulting barycentric control law to be stabilizing.and 2 i=oAi = 1. The properties of barycentric

The techniques proposed in this paper (Algorithm é}mctmns (11) clearly satisfy this requirementm
can also, of course, be used to generate controlld@@mma 17 leads directly to the statement thgt)
that do not satisfy these conditions, but may neveis & feasible solution of the parametric program (9)
theless still be stabilizing. for all 2 € conv (R).

=0
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Corollary 18: The functionu is a feasible solution = Z wy(x)xf (v)

of (12) vEextreme(R)
g(z,@(x)) <0, forallz € R . wherez} (v) is the state that the system would be in
- at time if the input sequence(v), ..., uf_;(v)
Proof: Follows directly from Lemma 17 and that is optimal for the MPC problem (7) at state
the convexity ofg. were applied to the system.

m We can now evaluate the cost function for the sub-
optimal input sequence defined by the Barycentric

We now show that the cost functiohof (8) evalu- . S
interpolation:

ated for the barycentric approximate solutiof)

is no more sub-optimal than the PWA function used Nl
to generate it. Note that the barycentric interpolatiod (%(%)) = Va (Zn(2)) + Y _ (i (@), @ ()
will cause the cost/(@i(z))? to be a non-linear and =0
possibly non-convex function of the state. N
Lemma 19:If @ is the function defined in (12) =Wy Z oy (V)wy(2) | +
by barycentric interpolation from the polyhedral veextreme(R)
function J (10), then the following bounds hold N-1
5 l Z xr (v)w,(x),

J*(IE> < J(ﬂ(l‘)) < J(SE) R VreR . =0 vEextreme(R)

Proof: The solutiona is feasible f(_)r allz € Z wt (v)wy ()
R (Corollary 18) and so the cost functiof(4(z)) veexirome(R)

must be sub-optimal, which gives the lower bound
J*(x) < J(a(x)). Convexity of [ and Vi then gives the following

We now show that the upper bound holdstelation:

If the barycentric input sequencei(z) =
[do(x)T ... ﬂN_l(m)T]T is applied to the sys- < Z wy () (VN(azj\,(v)) +
tem that is currently in statee € R, then the vEextreme(R)
resulting state at time will be N—1
i1 Z Iz (v), uZ(v))>
() = A'w+ > A Biij(x) =
=0 = Y wy(@)J ()
i—1 vEextreme(R)
= A J * 5
= Azt ZA B Z uj (v)wy(2) By assumption/*(v) < J(v) for all v € R
j=0 vEextreme(R)
L < wy () (v)
= Z wv(x) A'z + Z AJB’U’;(’U) UEex‘g‘ﬂe(R)
vEextreme(R) j=0

Lemma 17 states that for eache R, the above
equation will lie within the convex hull of the ex-

_ _ treme points{(v, J(v)) | v € extreme(R) } Since
2We will use the shorthand notationJ(i(x)) to U . o ] ]
mean the evaluation of the cost function (8) forthe function/(z) is affine within the region?, this
J(to(2), ..., un—1(2),Zo(2),...,Zn(x)), where Zi(z) jmplies that the above equation simply equals)
is the state of the systemt = Az + Bu at time i given b h hull of ffi is th
that the state at time zero ig and the input sequence ecause the convex hull of an affine set Is the set

@o(z),...,%;_1(z) has been applied. itself, which gives the desired relation. |

(Linearity and partition of unity)
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The above lemma shows that the nonlinear, noeach simple vertex of S, letb,(z) be the function
convex cost function/(t(x)) inherits the approxi-
mation error of the PWA functioy used to create by(z) =

it. With this key result in place, we can then make

use of the approximate stability result given in [32]WNerea. is the area of the polytope (V' — {x})
v —ux, y) = 1};i.e. the area of the facet of the

which shows that/(u(z)) is a Lyapunov function WS )
for the approximate systemt = Az + Biio(z). polar dual ofS —.{x} corresponding to the ve.rtex
Note that the statement of the theorem has bedn~ %+ 1€ functionw,(z) = by (x)/3, b (x) is
changed to match the notation of this paper. ~ Parycentric over the polytop#.

Theorem 20 ([32]):Let J* : RY — R be the Proof: We provide here a brief sketch of the

cost function of the optimal control problem (7)Proof and refer the reader to [35] for details.

and a Lyapunov function for the systemt™ = The proof is based on Stokes theorem, which states
Az + Buj(z). The approximate value functionthat the surface integral over a compact set is zero.
J(@(x)) is a Lyapunov function for the systemConsider the surface integral of the polar dualSof

xt = Az + Big(z) if for all € R the condition the polytopeP (V — {x})

J*(x) < J(a(x)) < J*(x) + ([|=]]) holds. -

A Lyapunov function is insufficient to prove sta—fi(‘,_{x}) ydy = Ei:ami - ;aim =0,
bility for a constrained system, since the system (14)
must also be invariant or feasible for all time. As

discussed in [20], since level sets of Lyapunov funé¥here n; is the outward facing normal to thé"
tions are invariant [11], it is possible to determindacet of the polytope andy; is the area of the
an invariant subset oR given the vertices of each facet. From the definition of the polar dual, the

Qy

lo — 2|,

region R; with minor additional processing. normal of the%'th facet is proportional ta; —z [17].
Corollary 21 ( [20]): Wlth some minor algebraic manipulation, (14) leads
If Jin == min {.J(a(v)) | v € extreme(R) } and directly to the theorem statement. [ ]
the conditions of Theorem 20 are satisfied, then thhe areas of the facets of the polar duals can
set be pre-computed offline and stored. If there are
d + 1 facets incident with the vertex (i.e. v
I={zeR|Jx) < Jmin} is simplical), then the area of the polar facet is
det ([ao -+ aa41]), where{ao,...,aq41} are

the normals of the incident facets. If the vertex is
not simplical, then the area can be easily computed
by perturbing the incident facets [35]. Such compu-

_ _ tation is straightforward because both the vertices
C. Barycentric Functions and halfspaces of each region are available due the
(ejouble-description representation.

is invariant under the control lad(x).

Our goal is now to define an easily computabl
barycentric function for each polytopg; in (10).

If the polytopeR; is a simplex, then the barycentricD. Approximate Polyhedral Cost Function
function is unique, linear and trivially computed
and so we focus on the non-simplical case. In [3
a very elegant method of computing a barycentrig
function for arbitrary polytopes was proposed thaétability conditions of Theorem 20. We begin by
can be put to use here. defining the function

Lemma 22 (Barycentric coordinates for polytopes [35]):

Let S = conv (V) C R? be a polytope and for J(x) = J" (@) + ey ([[=]])

this section we demonstrate how the methods
eveloped in this paper can be used to compute an
pproximate PWA cost function that satisfies the
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for some0 < e < 1, which is clearly convex. One The convexity of/¢ and the seR provides a simple
can now see that the conditions of Theorem 20 atgght upper bound on the functiost¢ restricted to
equivalent to stating that the approximate functiothe domainR. If Je = MaX,cextreme(R) 4 (V),

J must lie betweeny* and J! := J*(z) +~ (||z||) thenJ¢(z) < J¢ for all z € R and we can simply

T () < J(2) < () < J\(z), forall z € R . EE:‘;nlg tz;\]eb?uunncotls)c:];?nvex set whose lower convex
The parameted < e¢ < 1 can be used to define .

a trade-off between the approximation error an“g o _

the complexity of the resulting controller, since all {(x J) ’ Fu, J*=J+1 2= h(z,u) + 6’Y(|J7||)}

e < 1 define stabilizing control laws. The implicit g(x,u) <0

double description algorithm can now be used ton {(z,J) |z € R} 17)

compute an outer approximation of the epigraph qf _ _
J¢ that is of sufficient accuracy that it also Iie;?\lOte that we shift the epigraph downwards by one

above J*. The remainder of this section outline<S® that the origin is in the strict interior of the set

how to achieve this goal. J¢ as required by Algorithm 2.

. . . .. ... The implicit double description Algorithm 2 can
The epigraph of/€ is a convex set defined implicitly
through a projection operation now be run on the bounded convex sEtThe

algorithm is stopped when the outer approximation

epi(J9) = lies entirely within the epigraph of the optimal cost
p Ju, g(z,u) <0, function J*. The piecewise affine function formed
() €REXR A b (au) + ev(|z]) [ ° by the lower convex hull of the outer approxima-

tion will then lie above the optimal cosf* and
(15) p

below the upper bound® and be defined over the

The methods described in this paper cannot be us&ﬂproximate feasible s&, and hence provides the
for the problem of approximatingpi (J€) directly, desired function.

since it is unbounded and so we first derive a
bounded convex set to which Algorithm 2 can be

applied. VI. EXAMPLES
The feasible set of (9) is defined by the projectio&. Linear MPC Example |
operation Consider the following simple two-dimensional ex-
X:={zeR?|3u, g(z,u) <0} ,  (16) ample:
which is convex and bounded by assumption. As a 4 [1 1} { 1 ]
. . T = T+ u ,
result, we can directly use Algorithm 2 to compute 0 1 0.5

an inner approximatiofk of X of any desired error |, .1t the input and state constraints| < 0.25,

ex, p(R,X) < ex. |lz|l, <5 and a horizonN of length 10 with the
Remark 23:An inner approximation of the feasiblestage cost taken to bz, u) = 2’z + 0.01u'u.

set with a Hausdorff error okr can also be The terminal control law:(x) was taken to be the
directly computed from the outer approximatiorLQR controlleru(z) := Kz for the unconstrained
generated in Section IV-A. IfP(A) is an outer system with the same weightings as the stage

e—approximation ofX, then costi(-,-). The terminal constraint setr is the
maximum invariant set for the closed-loop system
= P(A < ) )
R ( )@T{x iz < €} 2T = (A + BK)z and the terminal weight/y ()
= {z]a'z<1—¢la],Vac A} is the corresponding infinite-horizon cost Pz.

is an innere—approximation, where> is the Pon- The optimal control law in this case requirg$2
tryagin difference (see, for example, [22]). regions and can be seen in Figure 4. We here set
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an approximation erroe = 0.5 and compute a heat gains (people, computers, etc) and are assumed
stabilizing control law using the method proposetb be Gaussian and independent- A(0,1). The

in Section V that consists &b regions. The result- system matrices are given by

ing control law and sub-optimal cost functions are 0.8511  0.0541 0.0707] 0.35

shown in Figure 4. A:= (01293 0.8635 0.0055 B:= |0.03
0.0989  0.0032 0.7541 0.02

[0.1005 0.3973 0.5022]
E :=]0.0340 0.7555 0.2105
10.9019  0.0427  0.0555 |
The goal is to maintain the room temperature within
a given comfort range of5°C' with a probability

of 1 — a=99%:

P([l 0 0]x§5)217a (18)
P([1 0 0OJz=-5)>1-a, (19
where we note that the system is linearized around
an operating point of = 25°C.

We set up an MPC problem with a horizon of
five steps with the goal of minimizing the expected
value of the energy usage

N
§ 2

Uy )
i=0

where the input; is chosen to be an affine function
of the disturbancesy, ..., w;_1

(c) Approximate PWA cost (d) Optimal cost function
function J(z) J*(x)

J(x) =E

(2

T i wp =y Myjw; +vi

(e) ICostd fufnction J(u(z)) ® dJ(ﬁ x)) —J*&x) (glreen) =0

evaluate or approximate an = ue .. . . .
function @ P 7 (llzl)) = =7 (blue) and the optimization variables aié, . andv,. This

fo 4 A ot ol | a5 redions approach was originally suggested in [14] in the

ig. 4. pproximate control law ove35 regions for exam- : :

ple VI-A. Note that the barycentric interpolation is nondar context of stochastic programs with re.course,. but

and continuous across the non-simplical regions. Figurg 4(has recently generated a resurgence of interest in the

demonstrates that the sub-optimal controller is stable. robust and stochastic control community [9], [16],
[24]. The resulting optimization can be recast as an
equivalent second-order cone problem (SOCP) (e.g.

B. Stochastic MPC Example [34]):

We now study an example from [28], in which the _, _ T = e
linear modelz™ = Az + Bu + Ew represents a @ () = S T Zvi vi Ztraee (MM 5)
simplified building consisting of only one room. ! =0

The states: are the temperatures of the room, the V2erf (1 —2a) [|[A""'B .- A°B]||
internal and the external walls respectively, while _ i—l ‘

the inputu, € R specifies the desired level of heating +CA'z + Z CA’Bv; <0,
or cooling. The three disturbances< R? are the j=0

external temperature, solar radiation and internal Vi=0,...,5
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The proposed method, Algorithm 2, has been ajrigure 7 shows a plot of complexity (number of
plied to the epigraph of the optimal cost functidh regions) vs the approximation error of Algorithm 2.
and the resulting approximation error as a functioRigure 8 shows a time trajectory of the closed
of the number of regions is shown in Figure 6. Théoop system at various complexities ranging from
optimal and approximate cost function is showiT to 182 regions, which is significantly lower than
in Figure 5 for an approximation error df.01. the optimal explicit control law, which consists of
Note that stability has not been considered in thik2, 128 regions. Note that stability has not been
example. considered in this example.

p(epid, epid)

(a) Approximate cost func- (b) Optimal cost function
tion

Fig. 5. Plot of the optimal and approximate cost function fol
Example VI-B.

Note: Interior wall temperature is set to zero in the plot idesr
to generate a three dimensional figure.

10"

i i i i i
0 500 1000 1500 2000 2500 3000
Approximation complexity

Fig. 7. Approximation error of the four-state system of Exam-
ple VI-C vs the approximation complexity (number of polyhedral
regions in the PWA cost function). The optimal solution cetssi
of 12,128 regions. (The noise in the plot is due to numerical
errors.)

log(Approximation error)

& i i I
20 50 100 150 200 250 2r

Number of regions —#— 7 regions

—E— 37 regions

—— 84 regions

—+— 182 regions

- ® - Optimal solution (12,128 regions)

Fig. 6. Approximation error vs number of regions for Exam-
ple VI-B.

C. Linear MPC Example Il

State trajectory
)
&
T

Consider the following four—state system:

0.7 —=0.1 0.0 0.0 0.0 0.1 ol
ot = 02 —-05 0.1 0.0 - 0.1 1.0 " sl
0.0 0.1 01 0.0 [° 0.1 0.0
05 0.0 05 05 0.0 0.0 3R 4 6 8 10 12 12 16

Step number

States and control inputs are constrained <

5, |lull, < 5 and we seek to solve the MPCFig. 8. Example trajectory of the approximate and optimal
problem (7) minimizing the stage coéftr,u) = solutions of Example VI-C for various approximation levels.

l|lz|| . + ||u||,, with a prediction horizon ofV = 5.



VIl. CONCLUSION

(1]

This paper has proposed a simple, constructive tech-

nique for generating inner and/or outer pontopic[

approximations of convex sets of any specified com-
plexity. The algorithm is computationally efficient, (3
in that it is based on the well-established double-
description algorithm and requires the solution of

only a single convex optimization problem per
facet (vertex) of the outer (inner) approximation.

(4]

This is a key improvement over existing methods,
which require a number of optimization problems

to be solved equal to the complexity of tbptimal

(5]

solution, which can often be many orders of mag-
nitude larger than the approximation, if it is com-
putable at all. The algorithm operates in a greedyjs)
optimal incremental fashion, in that it updates the
approximation at each step with the facet (vertex)

that minimizes the Hausdorff distance between thé’

approximation and the set to be approximated.

The proposed implicit double-description algorithm[8]
can be employed to synthesize sub-optimal, stabiliz-

ing explicit control laws for convex MPC problems.
The key benefit is that the complexity, or number

(9]

of pieces, in the resulting piecewise polynomial
control law can be pre-specified, which is equivalent
to stating that any given memory or online computt0l
tational bounds can be met for a given embedded

processor.

A proof of stability and invariance of the result-

(11]

ing sub-optimal closed-loop system was provided!?2]

Invariance, or feasibility, follows directly from the
construction of the control law, which is based o

r113] K. Fukuda and A. Prodon.

barycentric interpolation, as well as the assumed
convexity of the system constraints. Stability is
based on a classic result [32], and it was shown
that if the approximation is sufficiently close, ther‘tm]

the conditions given in [32] will be satisfied. Fur-

thermore, the algorithm will always satisfy the
conditions of [32] after a finite number of iterations[15]
The main limitation of the method is that this finite
number cannot be determined a priori, although®]
several examples (Section VI) demonstrate that this

number is generally not too large.

1 A. Bemporad and M. Morari.
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