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Parameter Space Design of Repetitive

Controllers for Satisfying a Robust

Performance Requirement

Burak Demirel∗, and Levent G̈uvenç∗†

Abstract

A parameter space procedure for designing chosen parameters of a repetitive controller to satisfy

a robust performance criterion is presented. Using this method, low order robust repetitive controllers

can be designed and implemented for plants that possibly include time delay, poles on the imaginary

axis and discontinuous weights. A design and simulation study based on a high speed atomic force

microscope position control example is utilized to illustrate the method presented in this paper.

Index Terms

Repetitive control; Parameter space method; Robust performance; Atomic force microscope (AFM)

control

I. INTRODUCTION

REPETITIVE controllers are used to accurately track a periodic reference signal or to

reject a periodic disturbance with a known period by introducing a highly frequency

selective gain through a positive feedback loop which contains a time delay element as this is

a generator of periodic signals. The delay time is equal to the known period of the repetitive

reference (or disturbance) signal. Repetitive control system is a special type of servo-system

but its basic structure is based on the Internal Model Principle of Francis and Wonham [1].
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Significant improvements in the tracking accuracy or disturbance rejection characteristics of

systems subject to periodic exogenous signals can be achieved using repetitive control. The idea

of repetitive control was first created by Inoue et al [2] to replace conventional motion control

techniques in the control of a proton synchrotron magnet power supply. Until recently, it has

been widely utilized in many application areas including control of hard disc drives [3], control

of optical disc drives [4], control of noncircular tuning [5], trajectory control of industrial robot

arms [6], [7], motor speed control [8], high precision rotational control [9], control of material

testing machine [10], control of cold rolling process [11],suppression of torque vibration in

motors [12], reduction of waveform distortion in PWM inverter or UPS [13]–[15] and accurate

position control of piezoelectric actuators [16], [17].

The earlier papers in the literature have generally focusedon the stability analysis in both

continuous time [18], [19] and discrete time systems [20]. Tsao and Tomizuka [5] have analyzed

the robust stability of repetitive control systems appliedto plants with unstructured modeling

error. In order to achieve a specified level of nominal performance, Srinivasan et al [21] have

utilized the Nevanlinna-Pick interpolation method to modify repetitive controller design by means

of optimizing a measure of stability robustness. Peery andÖzbay have modifiedH∞optimal

design approach presented in [22] and then applied the extension of this methodology based on

Youla parameterization to repetitive control systems in [23]. Moon et al [4] have developed a

robust design methodology for parametric uncertainty in interval plants under repetitive control.

Similarly, Roh and Chung [24] have created a new synthesis method based on Kharitonov’s

theorem for repetitive control systems with uncertain parameters. Weiss et al [25]–[27] have

made a stability and robustness analysis for MIMO repetitive control systems based onH∞

control theory.µ analysis has been used for assessing stability and performance robustness of

SISO continuous time repetitive control systems by Güvenc¸ [28]. µ synthesis has been applied

to sampled data repetitive controller design by Li and Tsao [29].

The repetitive controller design approach presented in this paper is a continuation of the work

presented in Aksun Güvenç and Güvenç [30] on repetitivecontroller design based on mapping the

nominal performance and robust stability frequency domainconstraints to controller parameter

space where a servo-hydraulic material testing machine application was used. This work, in

contrast, treats the robust performance constraint. Additionally, the efficiency of methodology is

illustrated by using a high speed AFM scanner application. Moreover, the repetitive controller
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design approach presented in this paper is significantly different from those of the abovemen-

tioned references including the application ofH∞ methods. The significant advantages of the

approach here in comparison withH∞ methods are: (i) the ease of visualization due to the

graphical representation of the solution in the parameter space approach and the capability and

ease of doing multi-objective optimization by simply intersecting solution regions for different

objectives, (ii) the determination of a solution region rather than one specific solution for the

control system satisfying a frequency domain constraints (this makes it easier to design non-

fragile controllers as changes in controller parameters will not violate the chosen objectives

so long as the parameters are within the solution region), (iii) the determination of controller

parameters that guarantee robust performance, (iv) being able to treat plants with time delay and

poles on the imaginary axis, (v) not having to use rational, continuous weights in the robust

performance specifications, and (vi) obtaining fixed structure low order repetitive controller filters

that are easily implementable. There are also some shortcomings of the proposed design method

in comparison to the methods that exist in the literature including H∞ methods such as: i) the

method can simultaneously accommodate the design of only two controller parameters due to

its graphical display of the solution region, ii) the methoddoes not result in a single analytical

solution and the methods used do not look mathematically elegant as a constructive frequency-

by-frequency design approach is used.

It is difficult to apply standard robust control methods likeH∞ control to repetitive controller

design for robust performance as the repetitive control system is infinite dimensional due to

the presence of the inherent time delay in the controller. Robust control methods such asH∞

optimal control have been extended to infinite dimensional systems and applied to repetitive

control (see [21] and [23], for example). However, very highorder weighting functions need

to be used in the robust controller synthesis. Consequently, the resulting repetitive controller

filters also have high order. Model order reduction techniques are used to reduce the order of the

repetitive controller filters in an actual implementation.Some of the most powerful characteristics

of the proposed method are that the weights used in the designdo not need to be continuous

functions of frequency and that plants can have time delay and/or poles on the imaginary axis

because the computations are naturally carried out only at the frequencies of interest. Secondly,

the choice of the frequency grid used is not a problematic issue for the repetitive control

design procedure presented here as the main design frequencies are exactly known and are
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the fundamental frequency of the periodic exogenous signal(reference or disturbance) with the

periodτd and its harmonics. The largest harmonic frequency considered is chosen to be close to

the bandwidth of the repetitive control system which is limited by the bandwidth of the actuator

used in the implementation. The method presented here is forSISO systems; however, it can be

used to design controllers for MIMO systems where one loop ata time design is possible.

Paper Organization:

The organization of the rest of the paper is as follows: Section 2 gives some basic information

on robust repetitive controller design. In Section 3, the technique of mapping robust performance

frequency domain specifications into repetitive controller parameter space is explained in detail.

Then, a numerical example of a high speed AFM scanner position control application is utilized

in order to demonstrate the effectiveness of the proposed method in Section 4. The paper ends

with conclusions in Section 5.

II. REPETITIVE CONTROL BASICS

Consider the repetitive control structure shown in Fig. 1 where Gn is the nominal model

of the plant,∆m is the normalized unstructured multiplicative model uncertainty, WT is the

multiplicative uncertainty weighting function andτd is the period of the periodic exogenous

signal.q(s) andb(s) are filters used for tuning the repetitive controller. Repetitive control systems

can track periodic signals very accurately and can reject periodic disturbances very satisfactorily.

This is due to the fact that the positive feedback loop in Fig.1 is a generator of periodic signals

with periodτd for q(s) = 1. A low pass filter with unity d.c. gain is used forq(s) for robustness

of stability [18], [25].

The repetitive controller design involves the design of thetwo filtersq(s) andb(s) seen in Fig.

1. In the frequency domain, the ideal low-pass filterq(jω) would be 1 in the frequency range of

interest and zero at higher frequencies. This is not possible andq(jω) will have negative phase

angle which will makeq(jω) differ from 1, resulting in reduced accuracy. So as to improve the

accuracy of the repetitive controller, a small time advanceis customarily incorporated intoq(s)

to cancel out the negative phase of its low-pass filter part within its bandwidth. This small time

advance can easily be absorbed by the much larger time delayτd corresponding to the period

of the exogenous input signal and does not constitute an implementation problem (see Fig. 2).
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Fig. 1: Repetitive control structure.

The main objective of the usage of the dynamic compensatorb(s) is improving the relative

stability, the transition response and the steady state accuracy in combination with the low-pass

filter q(s). Consider the function of frequency given by

R(ω) ,

∣

∣

∣

∣

q(jω)
[

1− b(jω)
G(jω)

1 +G(jω)

]

∣

∣

∣

∣

, (1)

which is called the regeneration spectrum in [19].R(ω) < 1 − ǫ for all ω ∈ [0,∞) and some

positive ǫ is a sufficient condition for stability [19]. Moreover,R(ω) can be utilized to obtain

a good approximation of the locus of the dominant characteristic roots of the repetitive control

system for large time delay, thus resulting in a measure of relative stability, as well. Accordingly,

the compensatorb(s) is designed to approximately invertG/(1 + G) within the bandwidth of

in an effort to minimizeR(ω). The dynamic compensatorb(s) can be selected as only a small

time advance or time advance multiplied by a low-pass filter in order to minimizeR(ω). In

order to makeR(ω) < 1, the time advance in the filterb(s) is chosen to cancel out the negative

phase ofG/(1 + G). This small time advance can easily be absorbed by the much larger time

delay τd corresponding to the period of the exogenous input signal and does not constitute an

implementation problem (see Fig. 2).

The q(s) and b(s) filters are thus expressed as

q(s) = qp(s)e
τqs , (2)

and

b(s) = bp(s)e
τbs . (3)
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Fig. 2: Modified repetitive control structure.

The time advancesτq and τb are firstly chosen to decrease the magnitude ofR(ω) given in

Eq. (1). Then, the design focuses on pairs of chosen parameters in qp(s) or bp(s) to satisfy a

frequency domain bound on the robust performance criterion. If L denotes the loop gain of a

control system, its sensitivity and complementary sensitivity transfer functions are

S ,
1

1 + L
, (4)

and,

T ,
L

1 + L
. (5)

The parameter space design, presented in the following section, aims at satisfying the condition

|WSS|+ |WTT | < 1 , ∀ω ∈ [0,∞) , (6)

which is similar to satisfying the robust performance requirement‖ |WSS| + |WTT | ‖∞< 1

whereWS andWT are sensitivity and complementary sensitivity function weights.

The loop gain of the repetitive control system seen in Figs. 1and 2 is given by

L = Gn

(

1 +
qp

1− qpe(−τd+τq)s
bpe

(−τd+τq+τb)s
)

. (7)

The robust performance design requires

|WS(ω)S(jω)|+ |WT (ω)T (jω)| =
∣

∣

∣

∣

WS(ω)

1 + L(jω)

∣

∣

∣

∣

+

∣

∣

∣

∣

WT (ω)L(jω)

1 + L(jω)

∣

∣

∣

∣

< 1 , ∀ω ∈ [0,∞) , (8)

or equivalently,

|WS(ω)|+ |WT (ω)L(jω)| < |1 + L(jω)| , ∀ω ∈ [0,∞) , (9)

to be satisfied.
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III. M APPING ROBUST PERFORMANCEFREQUENCY DOMAIN SPECIFICATIONS INTO

REPETITIVE CONTROLLER PARAMETER SPACE

In the present section, a repetitive controller design procedure based on mapping the robust

performance frequency domain performance specification given in Eq. (9) with an equality sign

into the chosen repetitive controller parameter plane at a chosen frequency is described.

Consider the robust performance problem given in Fig. 3 illustrating Eq. (9) with an equality

sign (called the robust performance point condition). Apply the cosine rule to the triangle with

vertices at the origin,−1 andL in Fig. 3 to obtain

(|WS(ω)|+ |WT (ω)L(jω)|)2 = |L(jω)|2 + 12 + 2|L(jω)| cos θL . (10)

Equation (10) is a quadratic equation in|L(jω)| and its solutions are

|L(jω)| = (− cos θL + |WS(ω)||WT (ω)|)±
√
∆M

1− |WT (ω)|2
, (11)

where

∆M = cos2 θL + |WS(ω)|2 + |WT (ω)|2 − 2|WS(ω)|2|WT (ω)|2 cos θL − 1 . (12)

Only, positive and real solutions for|L| are allowed, i.e.,∆M ≥ 0 in Eq. (11) must be satisfied.

The point condition solution procedure is outlined below.

M1. Define the set of frequencies to be used as

Ω =
{

ω1, ω2, . . . , ωn;ωn+1, ωn+2, . . . , ωm;ωm+1, ωm+2, . . . , ωl

}

, ωk =
2πk

τd
, k = 1, 2, . . . , l

where ω1 = 2π/τd is the frequency of the periodic exogenous input andωk = 2πk/τd is

the chosen bandwidth of repetitive control (limited by the bandwidth of the actuator used).

Frequenciesωm+1 to ωl are high frequencies where significant model uncertainty exists (ωm+1 >

10ωn) and the intermediate frequenciesωn+1 to ωm.

Remark: It should be noted that the inherent time delay in a repetitive control system will

improve performance only at the fundamental frequencyω1 = 2π/τd and its harmonics. Repet-

itive control will worsen performance at frequencies between the fundamental frequencies and

harmonics. For this reason, repetitive control is only usedin the presence of a periodic external

input (reference or disturbance) as it will result in degraded performance for non-periodic

external inputs. For that reason, the weights (WS andWT ) can be assumed to be zero outside

the finite setΩ given in step M1. Once the design is complete, the designer checks the|S|
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Fig. 3: Illustration of the point condition for robust performance.

plot at low frequencies and the|T | plot at high frequencies to make sure that the magnitude

envelopes corresponding to intermediate frequencies (between the harmonics) are at an acceptable

level. Another approach will be to specify weights for intermediate frequencies in between the

fundamental frequency and harmonics. A major deficiency of parameter space methods is that one

needs to use a large number of frequencies in the setΩ to make sure that the robust performance

condition will not be violated at frequencies outside ofΩ. In the case of repetitive control, this

problem is less severe at low frequencies where the designeris interested mainly in reducing the

sensitivity function at the fundamental frequency and its harmonics. A large number of frequency

points can be used at higher frequencies above the bandwidthof the repetitive controlled system.

M2. Choose a specific frequency valueω = ωi ∈ Ω, i = 1, 2, . . . , l from setΩ in step M1.

|WS(ω)|,|WT (ω)| and |G(ω)| at a frequencyω are known at this point.

M3. Let θL ∈ [0, 2π]. Evaluate∆M by using Eq. (12) and select the active range ofθL where

∆M ≥ 0 is satisfied. For all values ofθL in the active range:

M3a. Evaluate|L| by using Eq. (11). Keep only the positive solutions.

M3b. EvaluateL = |L|ejθL.

M3c. Solve for the corresponding repetitive controller filtersqp(jω) andbp(jω) at the chosen

frequencyω by utilizing

qp(jω) =
L(jω)−G(jω)

L(jω)−G(jω)[1− b(jω)]
e(τd−τq)jω , (13)

and

bp(jω) = [L(jω)−G(jω)]
[1− q(jω)e−τdjω

q(jω)e−τdjω

]

e−τbjω . (14)

December 2, 2014 DRAFT
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M3d. Using the specific structure ofqp(jω) or bp(jω), back solve for the two chosen controller

parameters within them. For example,qp(s) and bp(s) can be chosen as a multiplication of the

second order controllers given by

qp(s) =
n
∏

i=1

q5is
2 + q4is+ q3i

q2is2 + q1is+ q0i
, and bp(s) =

n
∏

i=1

b5is
2 + b4is + b3i

b2is2 + b1is + b0i
. (15)

There are six tunable parameters forn = 1 in Eq. (15) which can be used to represent different

types of controllers. These six tunable parameters areq5i, q4i, q3i, q2i, q1i and q0i for qp(s).

For n = 1, the controller structure in (15) consists of some well-known controller types such as

proportional-integral-derivative (PID), lead-lag controller, first or second order filters as illustrated

in Table 1. If the performance of the filters which are utilized in the repetitive controller for

n = 1 is unsatisfactory,n can be increased and new higher order filters can be synthesized. For

the filter structure choice in Eq. (15), the back solution procedure uses

Re[qp(jω)] =
(q3i−q5iω

2)(q0i−q2iω
2)+q1iq4iω

2

(q0i−q2iω2)2+(q1iω)2
,

Im[qp(jω)] =
q4iω(q0i−q2iω

2)−q1iω(q3i−q5iω
2)

(q0i−q2iω2)2+(q1iω)2
,

(16)

and

Re[bp(jω)] =
(b3i−b5iω

2)(b0i−b2iω
2)+b1ib4iω

2

(b0i−b2iω2)2+(b1iω)2
,

Im[bp(jω)] =
b4iω(b0i−b2iω

2)−b1iω(b3i−b5iω
2)

(b0i−b2iω2)2+(b1iω)2
.

(17)

M4. The solution in step M3 above results in a closed curve which is plotted for solving two

of the twelve parametersq0i to q5i and b0i to b5i. Plot the closed curve obtained in the chosen

controller parameter space. Either the inside (drawn with asolid boundary) or outside (drawn

with a dashed boundary) of this curve is a solution of Eq. (8) at the chosen frequency (see the

ellipses in Fig. 5, for example). The region obtained is the point condition solution in the chosen

repetitive controller parameter plane at the frequency chosen in step M2.

M5. Go back to step M2 and repeat the procedure at a different frequency until all frequencies

in setΩ are used.

M6. Plot the intersection of all point condition solutions for all frequencies in setΩ. This is

the overall solution region for the robust performance requirement.

As the solution procedure only uses frequency response dataand is numerical in nature,

plants with time delay or poles on the imaginary axis and discontinuous weights do not pose

any problems. Note that solution regions for nominal performance |WSS| < 1 for all ω ∈

December 2, 2014 DRAFT



10

TABLE I: Controller Coefficients Table

Control Action n q5i q4i q3i q2i q1i q0i

P 1 0 0 K 0 0 1

PD 1 0 KTd K 0 0 1

PI 1 0 K KTi 0 1 0

PID 1 KTd K KTi 0 1 0

Lag (β > 1) 1 0 KT K 0 βT 1

Lead (0 < α < 1) 1 0 KT K 0 αT 1

1st Order Filter 1 0 0 K 0 τ 1

2nd Order Filter 1 0 0 Kω2 1 2ζω ω2

[0,∞) and for robust stability|WTT | < 1 for all ω ∈ [0,∞) can easily be obtained using the

algorithm above by settingWS = 0 andWT = 0, respectively. It is then possible to concentrate

on nominal performance at low frequencies, robust performance at intermediate frequencies

and robust stability at high frequencies, obtaining three solution regions. The overall solution

region in the controller parameter space is then determinedby the intersection of all three

regions for nominal performance, robust performance and robust stability. This procedure is

easily programmable and quickly results in a controller parameter space representation of the

solution. The controller parameter space presentation obtained offers the ease of visualization of

parameter space methods (see Fig. 5) when one accepts the shortcoming of treating only two

controller parameters at a time. Multi-objective design can easily be formed in parameter space

as it amounts simply to intersection of individual solutionregions. It is also possible to determine

the final design (or tuning point) by optimizing some other criteria, such as nominal time domain

performance within the solution region obtained. In contrast to H∞ optimal control synthesis,

there is no relationship between the order of repetitive control filters and the complexity of

weights in this proposed method. The main strength of this method is that low-order, easily

implementable repetitive control filters are specified fromthe beginning.

It is possible that for certain data sets|WS|, |WT |, G, ω; no solutions to the solution procedure

outlined above exist. Nonexistence of a solution for a specific frequencyω could be because of
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nonexistence of a positive∆M in Eq. (12) or nonexistence of a positive solution|L| in Eq. (11).

Nonexistence of a solution usually results from a weight|WS| or |WT | that is too restrictive.

The solution procedure, which is programmed in an interactive fashion, results in no solution

points in this case. Then, the user will know that his robust performance requirement at that

frequency was too restrictive and has the choice of relaxingthis requirement. Note that solutions

might exist at all individual frequencies, however; their intersection in Step M6 resulting in the

overall solution region, might still be empty. In that case,the user must change the sensitivity

and complementary sensitivity weights at the problematic frequencies.

IV. NUMERICAL EXAMPLE

In this part of the paper, the high speed atomic force microscope (AFM) scanner which is

designed and modeled in [31] is utilized as a numerical example to explain the methodology of

the multi-objective parameter space approach for SISO repetitive controller design. The second

order and fourth order mathematical models of this high speed AFM scanner are given in [31]. In

this example, the fourth order model is used because it includes the first mode of the piezoelectric

stack in the vertical direction. The transfer function of the AFM scanner is given by

G(s) =
K(s2 + 2ζ2ω2s+ ω2

2)

(s2 + 2ζ1ω1s+ ω2
1)(s

2 + 2ζ3ω3s+ ω2
3)

, (18)

whereK = 1×1012nm/V includes the power amplifier and sensor gain. The systemseen in (18)

has two resonant frequencies and one anti-resonant frequency. The numerical values of these

frequencies are given asf1 = 40.9 kHz, f2 = 41.6 kHz andf3 = 120 kHz and can be seen

in Fig. 4. The numerical values of the relative damping coefficients are given asζ1 = 0.016,

ζ2 = 0.016 and ζ3 = 0.17. The dynamic compensatorb(s) is chosen as a pure time advance as

b(s) = bp(s)e
τb = e3×10−6s . (19)

The low-pass filterq(s) is chosen as

q(s) = qp(s)e
τqs =

a0
s2 + a1s+ a0

e7.5×10−6s . (20)

The parameters ofqp(s) given in Eq. (20) are chosen asq51 = q41 = 0, q21 = 1, q31 = q01 = a0

and q11 = a1 in the general form (15) in order to obtain unity d.c. gain. Phase advance is also

added to this low-pass filter phase cancellation. Thus, a decrease in the steady state error is

aimed. The region in theq01−q11 controller parameter space are computed for three cases which
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Fig. 4: The Bode magnitude plot of high speed AFM-scanner with the mapping frequencies for

the nominal performance, robust performance and robust stability.

TABLE II: Desired Sensitivity Magnitude Upper Bounds atτd = 0.0005sec

Frequency Range k f = k/τd(kHz) WS WT

Low (NP) 1 2 500 0

Low (NP) 2 4 225 0

Low (NP) 3 6 115 0

Low (NP) 4 8 75 0

Intermediate (RP) 40 80 3.3 0.001

Intermediate (RP) 50 100 4.5 0.045

Intermediate (RP) 55 110 4.5 0.001

Intermediate (RP) 60 120 1.5 0.005

Intermediate (RP) 70 140 1.5 0.01

High (RS) 80 160 0 0.05

High (RS) 90 180 0 0.05

High (RS) 100 200 0 0.05

are respectively the nominal performance at low frequencies (WT = 0), robust performance at

intermediate frequencies and robust stability at high frequencies (WS = 0).

December 2, 2014 DRAFT



13

1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

2

3

4

5

6

7
x 10

10

q
11

q
01

(a) |WSS| < 1 and |WTT | < 1, ∀ω ∈ [0,∞)

1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

2

3

4

5

6

7
x 10

10

q
11

q
01

(b) |WSS|+ |WTT | < 1, ∀ω ∈ [0,∞)

Fig. 5: Parameter space region of the low-pass filterqp(s).
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Fig. 6: Simulation results for triangular wave input at2 kHz.

The sensitivity constraints are specified at a set of discrete frequencies. The periodic input

command of the high speed AFM scanner has a period ofτd sec. The specific numerical values of

the chosen weights used in the computation of the controllerparameters are seen in Table 2. The

frequencies corresponding to the weights in Table 2 are shown with dots in the Bode magnitude

plot of Fig. 4. The overall region calculated for nominal performance, robust performance and

stability robustness can be seen in Fig. 5b. The method in Aksun Güvenç and Güvenç [30] where
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the solution region is obtained by intersecting the nominalperformance and stability robustness

plots is presented in Fig. 5a for allowing easy comparison with an existing method. Note that

the sufficient stability conditionR(ω) < 1 for all ω ∈ [0,∞) was also mapped and nominal

stability is thus satisfied for the two solution regions shown in Fig. 5. Also note that the results

in reference [30] are for the more conservative problem where nominal performance and robust

stability solution regions are found separately. This conservatism is reduced by the method in

the present paper where the robust performance condition inEq. (6) is handled directly. The

method in this paper is more general in nature and contains the method of [30] as a special case.

The mathematical model of the high-speed AFM scanner cannotbe fitted very well for

frequencies above160 kHz. A uniform weight for the robust stability requirement for frequencies

above this value is chosen here as|T | < 0.05 for f ≥ 160 kHz. This corresponding discontinuous

weight WT has been shown graphically with red-colored cross sign in Fig. 4. The relative

multiplicative error|(G−Gn)/Gn| has to be below the weight specified in the stability robustness

considerations given in Fig 4. The intersection of the regions, which are calculated in order for

the nominal performance, the robust performance and the robust stability requirements, in the

q01 − q11 controller parameter space is filled with green color. The designation procedure is

concluded by choosing a point in the controller parameter plane given in Fig. 5. The solution

within this region is chosen arbitrarily in this example andis point is marked with a cross in Fig.

5. The simulation result for a triangular wave input with theperiod 2 kHz and amplitude can

be seen in Fig. 6. This result shows the effectiveness of the repetitive controller in decreasing

the steady state error while tracking a periodic input signal.

V. CONCLUSION

A multi-objective parameter space repetitive controller design procedure for satisfying a robust

performance objective was presented here. The main idea wasto use a simple easily imple-

mentable structure for the repetitive controller filters and compute solution regions in the chosen

controller parameter space where frequency domain specifications on the nominal performance

at low frequencies (WT = 0), robust performance at intermediate frequencies and robust stability

at high frequencies (WS = 0) are satisfied. The abovementioned method is well suited to the

structure of a repetitive control system with discrete frequencies of interest and the computations

were also quite fast. The proposed method is successfully applied to the infinite dimensional
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nature of the repetitive control system with its inherent time delay. The effectiveness of the

proposed method was demonstrated by carrying out a design and simulation study for high

speed AFM scanner position control problem.
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