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On Input-to-State Stability of Stochastic Retarded
Systems With Markovian Switching

Lirong Huang and Xuerong Mao

Abstract—This note develops a Razumikhin-type theorem on �� mo-
ment input-to-state stability of hybrid stochastic retarded systems (also
known as stochastic retarded systems with Markovian switching), which
is an improvement of an existing result. An application to hybrid stochastic
delay systems verifies the effectiveness of the improved result.

Index Terms—Input-to-state stability (ISS), Markov chain, Razumikhin-
type theorems, stochastic systems, time delay.

I. INTRODUCTION

Since Markov jump linear systems were firstly introduced in early
1960s (see, e.g., [16] and [25]), the hybrid systems driven by contin-
uous-time Markov chains have been widely employed to model many
practical systems where they may experience abrupt changes in system
structure and parameters such as failure prone manufacturing, power
systems, solar-powered systems and battle management in command,
control and communication systems (see [1], [4], [14], [16], [21], and
references therein). An area of particular interest has been the stability
analysis of this class of hybrid systems and its applications to auto-
matic control (see, e.g., [3], [8], and [16]). When time delays and envi-
ronmental noise are taken into account, which are often encounterd in
real systems and may be the cause of poor performance and instability,
the hybrid systems are described with stochastic functional differen-
tial equations with Markovian switching and called hybrid stochastic
retarded systems (HSRSs). One of the most important HSRSs that fre-
quently appear in engineering is those called hybrid stochastic delay
systems (HSDSs), which are also known as stochastic delay systems
with Markovian switching (SDSwMS) and described with stochastic
differential delay equations with Markovian switching (see, e.g., [14],
[15] and [24]).

Recently, hybrid stochastic retarded systems (HSRSs) have been
widely used since stochastic modelling plays an important role in
many branches of science and engineering. Consequently, stability
analysis of HSRSs and HSDSs has been studied by many works, see,
e.g., [7], [13]–[15], [24], and [25]. Among the key results, Mao et al.
([15]) and Huang et al. ([7]) proposed the Razumikhin-type theorems
on stability of hybrid stochastic retarded systems and their applica-
tions to hybrid stochastic delay systems. The Razumikhin method is
developed to cope with the difficulty arisen from the large, fast varying
and nondifferentiable time delays (see, e.g., [14] and [15]). The
Razumikhin-type techniques have been applied to establish stability
criteria for stochastic functional differential equations (see [12] and
[6]). Since the results for non-switched systems cannot be simply
extended to systems with jumps and switching (see, e.g., [8] and
[16]), Razumikhin-type Theorems for HSRSs and their applications
are developed in [15] and [7]. However, some conditions of results
in [15] and [7] may be too conservative. This note is to improve the

Manuscript received January 22, 2009; revised March 17, 2009. First pub-
lished July 24, 2009; current version published August 05, 2009. This work was
supported by the UK ORSAS and University of Strathclyde. Recommended by
Associate Editor Z. Wang.

The authors are with the Department of Mathematics and Statistics, Univer-
sity of Strathclyde, Glasgow G1 1XH, U.K. (e-mail: lirong@stams.strath.ac.u;
xuerong@stams.strath.ac.uk).

Digital Object Identifier 10.1109/TAC.2009.2022112

Razumikhin-type theorem proposed in [7] and make it more applicable
(see Remark 3.2 and Example 4.1).

II. NOTATION

Throughout the note, unless otherwise specified, we shall employ
the following notation. Let ���� � �������� � be a complete proba-
bility space with a filtration ������� satisfying the usual conditions
(i.e., it is right continuous and �� contains all -null sets) and ��� be
the expectation operator with respect to the probability measure. Let
���� � ������� � � � � ������� be an �-dimensional Brownian motion
defined on the probability space. If �� � are real numbers, then � � �

denotes the maximum of � and �, and � � � stands for the minimum
of � and �. Let � � � denote the Euclidean norm in ��. Let � � � and
	��	�� ��	��� denote the family of all continuous ��-valued func-
tions 
 on �	�� �� with the norm 


 � 
����
���� 
 	� � � � ��.
Let 	�

� ��	�� ��	��� be the family of all ��-measurable bounded
	��	�� ��	���-valued random variables � � ����� 
 	� � � � ��.
For 
 � � and � � �, denote by �

�

� ��	�� ��	��� the family of all
��-measurable 	��	�� ��	���-valued random processes � � ����� 

	� � � � �� such that 
�������� ������� � �. We let 
 de-
note the class of continuous strictly increasing functions � from ��

to �� with ���� � �. Let 
� denote the class of functions � � 

with ���� � � as � � �. Functions in 
 and 
� are called class

 and 
� functions, respectively. If � � 
, its inverse function is
denoted by ��� with domain ��� �����. We denote by � � �
 and
� � 	
 if � � 
 and � is convex and concave, respectively. In this
note, a function � 
 �� � �� � �� is said to be of class 
� if for
each fixed � the mapping ���� �� is of class 
 and for each fixed � the
function ���� �� is decreasing to zero on � as � � �. We also let �	

�

denote the class of essentially bounded functions � 
 �� � �	 with

�
� � �

 
����� ������ � �.

Let ����� � � �� be a right-continuous Markov chain on the prob-
ability space taking values in a finite state space � � ��� �� � � � � ��
with generator � � ��
����� given by

� ������� � � 
 ���� � �� �
�
��� ���� if � �� �

� � �

�� ���� if � � �

where � � � and �
� � � is the transition rate from � to � if � �� �

while �

 � 	
� ��
 �
� . Assume that the Markov chain ���� is in-

dependent of the Brownian motion ����. It is known that almost all
sample paths of ���� are right-continuous step functions with a finite
number of simple jumps in any finite subinterval of �� 
� �����.

Let us consider an �-dimensional HSRS

����� �  ���� �� ����� �
������� !���� �� ����� �
��������� (1)

on � � � with initial data �� � ����� 
 	� � � � �� � � �
	�
� ��	�� ��	��� and ���� � �� � �, where �� � ����� �� 
 	� �

� � �� is regarded as a 	��	�� ��	���-valued random variable and
�
 � �

	
� the disturbance input. Moreover,  
 	��	�� ��	�������

� � �	 � �� and ! 
 	��	�� ��	��� � �� � � � �	 � ����

are measurable functions with  ��� �� �� �� � � and !��� �� �� �� � �
for all � � �. So (1) admits a trivial solution ���	 �� � �. We assume
that  and ! are sufficiently smooth so that (1) has a unique solution
on � � 	� (see, e.g., [10], [12], [14], and [24] ), which is denoted
by ���	 ��� ����� or ���	 �� ��� in this note. It should be noted that (1)
is a very general type of equation and includes stochastic differential
equations, stochastic delay differential equations, integro-differential
equations and those with Markovian switching. Much more equations
are also included in (1) (see, e.g., [5] and [23]).

Let 	������ � �� � �	��� denote the family of all nonnegative
functions � ��� �� �� on������� that are twice continuously differ-
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entiable in � and once in �. If � � ����������������, define an
operator associated with system (1),�, from ������ �����������
to � by

�� ���� �� 	�

� ����� �� 	� � ����� �� 	�
���� �� 	� ���

�
	



��
��

� �� ���� �� 	� ��������� �� 	������ �� 	� ���

�

�

���

�	�� ��� �� �� (2)

where

����� �� 	� �
�� ��� �� 	�

��

����� �� 	� �
�� ��� �� 	�

���
� � � � �

�� ��� �� 	�

���

������ �� 	� �
��� ��� �� 	�

��	��� ���

�

The purpose of this note is to develop the Razumihkin-type theorem
on ��
 moment input-to-state stability (ISS) of HSRSs and its appli-
cations. For definitions of ��
 moment stability and input-to-state sta-
bility, readers are referred to, e.g., [6], [7], [9], [11], [17], [19], [20],
and [21]. Let us introduce the definition of ��
 moment ISS of HSRSs,
which is consistent with the definition of ISS for deterministic systems
(see, e.g., [9], [17], and [19]–[22]).

Definition 2.1: The system (1) is said to be ��
 �� � �� moment
input-to-state stable (ISS) if there exist � � �� and � � � such that
the solution ���� � ���� �� ��� satisfies

������
 � �� ���
� �� � �������� 	� 
 � (3)

for any essentially bounded input �� � ��� and any initial data � �
��
� ����� ������, �� � �.

III. RAZUMIKHIN-TYPE THEOREM ON ISS OF HSRSS

As the main result of this note, we present a Razumikhin-type the-
orem on �th moment ISS of HSRSs (1) as follows.

Theorem 3.1: Let � � �, � � ���, � � �� and � � �. Assume
that there exists a function � � ������� ��� � ����� such that

�����
� � � ��� �� 	�

� �����
�� 	��� �� 	� � �� � ������� � (4)

and, moreover, for all 	 � 	 � � ,

�� ��� �� 	� � ����������� ������� 	� (5)

for all � 
 � and those � � �

� ����� ������ satisfying

���

��

� ������ �� ��  � ! "������ �� 	� (6)

on �� � � � �, where � � �� � � � �� is a nonnegative
function such that there is �� � �� with ���� 	� 
 ������� and
�������� �������#�����
� � � for all 	 � �; " � �� � �� � � � �
is a function such that "��� �� 	��� ��� �� 	� 
 $����� for all ��� �� 	� �
�� � ������� � with $ � �� and �������� $�����#�����
� � �.
Then system (1) is �th moment ISS.

In order to prove this theorem, let us present the following useful
lemmas.

Lemma 3.1: Let � ��� � � ������ �� ����� for � 
 �, then � ��� is
continuous on � 
 �.

Proof: For any initial data � � ��
� ����� ������, write ���� �

���� �� and extend ���� to ���� �� by setting ���� � ���� � �� for
all � � ���� ��. For convenience of the readers, the generalized It�%’s
formula is cited as follows (see [18] and [24])

� ������ �� �����

� � �������� ����� �

�

�

�� ���� &� ��&���&

�

�

�

�����&�� &� ��&������� &� ��&���'�&�

�

�

� �

� ���&�� &� ���� � (���&�� )��

� � ���&�� &� ��&�� *��&��)� (7)

for all � 
 �, where function (�
� 
� and martingale measure *�
� 
� are
defined as, e.g., (2.6) and (2.7) in [24] (see also [4] and [2]).

Since � � ��
� ����� ������, we can find an integer  � such that

��� !  �
�&�. For any integer  �  �, define the stopping time

+
 � ����� 
 � � ������ 
  � (8)

where we set ��� � � � as usual. Note that ���� is continuous and
so are ������ and ��������� on � 
 �� . Clearly, +
 � � almost
surely as  � �. Moreover, since �� � � � ��

� ����� ������,
� �������� ����� � ��������� � �� ��. It then follows from (6)

that

� ����
�� �
� ���
��

� � �������� ����� �

�

�

�� ���� &� ��&���& (9)

where �
 � � � +
 . So, letting  ��, by Fubini’s theorem, we have

� ��� � � ��� �

�

�

�� ���� &� ��&���&

� � ��� �

�

�

�� ���� &� ��&���& (10)

for all � 
 �. This implies � ��� is continuous on � 
 �.
Lemma 3.2: For any � 
 �, there is 
� � � such that ���� 	� 



� for all 	 � � whenever � ��� �� 	� 
 
� � �.
Proof: It immediately follows the desired conclusion if we show

there is *� � �� such that

���������� 
 *��
�� (11)

whenever �����
� 
 � ��� �� 	� 
 
� � �.
Fix � for the moment. We define a nondecreasing function , � �� �

�� as

,�-� � ���
��� �� �����

�������

�����
�
� - 
 �� (12)
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By property of function �����, ���� � � when � � �. So, for any
�� � �, we have

������� �

��� �� �� ���

��������

� �����

����� ��� ��

�������� �
�������

�

whenever ������� � � ��	 
	 �� � �� . Inequality (11) holds with
������ � �������
�.

Lemma 3.3: For any 
 � �, there is �� � � such that ���	 
	 �� �
�� � � ��	 
	 �� for all � � � whenever � ��	 
	 �� � �� � �.

Proof: It is noted that ���	 
	 �� � � ��	 
	 �� � ������ for
all 
 � �. According to the property of function ������, the rest of the
proof is similar to that of Lemma 3.2 and hence omitted.

We can now begin to prove Theorem 3.1.
Proof: Denote �� � ����	��� and ��� � �� �����.

Without loss of generality, assume � � ���� ����� �
��	
��
���� �������� � ���. For any 
 � �, by Lemma 3.2,
����
�	 �� � ��� whenever � ��	 
	 �� � ���� ����� for all � � �.

By Lemma 3.3, there is � � � such that ���	 
	 ��� � ��	 
	 �� � �,
� � �, whenever � ��	 
	 �� � ���� �����. Let � be the minimal
nonnegative integer such that �� � ���� �������� � ���. Moreover,
let �� � � ���
�� and 
� � ��� for � � �	 
	 �	 � � � 	 � . We claim that

� ���
�	 
	 ��
�� � ��� 	�� (13)

for all 
 � 
� , where �� � ���� ����� � �� � ��� and
� � �	 
	 �	 � � � 	 � .

First we show that

� ���
�	 
	 ��
�� � ���	 

 � 
�� (14)

Suppose that 
� � ����
 � 
� � � ���
�	 
	 ��
�� � ���� �
. Since
� ���
�	 
	 ��
�� is continuous on 
 � �, there exist a pair of constants



 and 
� such that 
� � 

 � 
� � 
� and

� ���
�	 
	 ��
�� � ���	 
 � 

;
��� � � ���
�	 
	 ��
�� � ��� � �	 

 � 
 � 
�.

(15)

However, by (10) and condition (5), we have

� ���
�	 
	 ��
�� � � ���

�	 

	 ��

��

�

�

�

�� ���	 �	 �������

� ��� � ���
� 

� � ���

for every 
 � �

	 
��, which contradicts (15). So inequality (14) must
be true.

We further show that � ���
�	 
	 ��
�� � �� for all 
 � 
�. Let
�� � ����
 � 
� � � ���
�	 
	 ��
�� � ���. If �� � 
�, then,


� � 
 � 
�, we have

����
�	 
	 ��
��

� � ���
�	 
	 ��
�� � � � �� � � � ���

� � ���
� ��	 
� �	 ��
� ���

� ���
���

� �����	 
� �	 ��	 
� � ���	 ���

This, by condition (5), implies �� ���	 
	 ��
�� � ��� a.e.
on �
�	 
��. Consequently, by (10), we have � ���
��	 
�	 ��
��� �
�������� � �, which contradicts the property of � ���
�	 
	 ��
�� � �
for all 
 � �. So we must have �� � 
�. Let 
�� � ����
 � �� �

� ���
�	 
	 ��
�� � ���. If 
�� � 
, then there are constants 
�

and 
�� such that 
� � 
�
 � 
�� � 
�� and

� ���
�	 
	 ��
�� � ��	 
 � 
�
;
�� � � ���
�	 
	 ��
�� � �� � �	 
�
 � 
 � 
��.

(16)

Similarly, by (10) and (5), we find a contradiction and hence have (13)
for � � 
.

Define �� � ����
 � 
��� � � ���
�	 
	 ��
�� � ���
for � � �	 �	 � � � 	 � . By the same type of reasoning, we have
� ���
�	 
	 ��
�� � �� for all 
 � 
� and � � �	 �	 � � � 	 � . Par-

ticularly, � ���
�	 
	 ��
�� � �� � ���� ����� for all 
 � 
� . By
Jensen’s inequality, we have

���
��� �  ���	���	 

 � 
� (17)

where  ��� � �������� ��������.
Let � � ���

� . Choose �! � �� such that �!� ���	 
� � ���� � �


for all � � 
 � 
� . So we have � ���
�	 
	 ��
�� � �!� ���	 
� for all
� � 
 � 
� , which implies

���
��� � �����!� ���	 
�� � !� ����	 
�	 
� � 
 � 
� (18)

where !��	 �� � �����!�����	 ��� is a �� function. This completes the
proof.

Remark 3.1: Obviously, inequality (3) implies that system (1) with
�	�
� � � is globally "th moment asymptotically stable. Moreover, it
is not difficult to show that if ���
�� � � as 
 � 
, so does ���
���

(see, e.g. [9, Exercise 4.58]). Therefore, by Theorem 3.1, it is easy to
find that the HSDS, considered in [24, Example 2.1] but with mode-
dependent and time-varying delay �� � #��� � ��	 � �, is mean-quare
asymptotically stable while the results in [24] do not work.

Remark 3.2: It is noted that inequality (6) removes the maximum op-
erator on the right-hand side of corresponding conditions in the existing
results (see[15, Theorem 2.1] and [7, Theorem 3.2]), which makes The-
orem 3.1 less conservative but more applicable (see Example 4.1).

IV. APPLICATION AND EXAMPLE

Hybrid stochastic delay systems (HSDSs) described with stochastic
differential delay equations with Markovian switching are an impor-
tant class of HSRSs that are frequently used in engineering. As an il-
lustrative example of applications of our new result, we consider the
following HSDE

���
� � $ ���
�	 ��
� %�
	 ��
���	 
	 ��
�	 �	�
���


�&���
�	 ��
� %�
	 ��
���	 
	 ��
�	 �	�
���'�
� (19)

on 
 � �, where % � #� � � � ��	 � � is Borel measur-
able while $ � #� � #� � #� � � � #� � #� and
& � #� � #� � #� � � � #� � #��� are measurable
functions with $ ��	 �	 
	 �	 �� � � and (��	 �	 
	 �	 �� � �
for all 
 � � and � � �. Actually, this is a special case of
(1) when )��	 
	 �	 �	� � $ �����	 ���%�
	 ���	 
	 �	 �	� and
(��	 
	 �	 �	� � &�����	 ���%�
	 ���	 
	 �	 �	� for ��	 
	 �� �
*����	 ���#�� � #� � � � #� while the operator � defined
in (2) becomes from #� � #� � #� � � to # as

�� ��	 �	 
	 ��

� ����	 
	 �� � ����	 
	 ��$ ��	 �	 
	 �	 �	�

�



�

��+, &� ��	 �	 
	 �	 �	������	 
	 ��&��	 �	 
	 �	 �	�

�

�

���

 ��� ��	 
	 ��� (20)
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Let us use Theorem 3.1 to establish a useful criterion for system (19).
Theorem 4.1: Let � � �, � � � ��, � � ��, � � � and ��� �

��� � �, � � 	. Assume that there exists a function � � 
������ �
�� � 	���� such that inequality (4) holds and, moreover,

�� ��
 �
 �
 �� � ����������� ����
 ��� ���� ��
 �
 ��

���� ��	
�����

� ��
 �� ���
 ��
 �� (21)

for all ��
 �
 �
 �� � �������� �	, where �� 
 ���	 	 � is a
function such that there is �� � � with ����
 �� � ������� for all � � 	
and �������� ��������������� � �. Then system (19) is ��
 moment
ISS.

Proof: For any � � 	, let

���
 �� �
�

� � ���
����
 �� �	�

���
 �
 �� �� ��
 �
 �� � ���
 �� (22)

in inequalities (5) and (6). By inequality (21) and Fatou’s lemma, we
have
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for all � � �, � � 	 and �	 � ��
� ����
 ������ satisfying condi-

tion (6) with function ���
 �
 �� defined in (22), i.e., ��	��
 � ��
 ��
���
 ��
 �� � � ��
 �
 �� � ���
 ��. Moreover, ���
� � ��
� �
���
���� � satisfy the properties required in (5) and (6). By Theorem
3.1, inequality (3) holds for system (19).

To compare with the existing result in [7], let us consider the fol-
lowing example.

Example 4.1: Let ���� be a scalar Brownian motion. Let ���� be
a right-continuous Markovian chain independent of ���� and taking
values in 	 � ��
 �� with generator

� � �������� �
�� �

� ��
�

Consider a scalar uncertain stochastic delay system with Markovian
switching of the form
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on � � �, where � 
 �� � 	 	 ���
 �� is a continuous but non-
differentiable function with respect to � and
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with � � ����, � � ���� ���
 ������ and positive constant �.

It is noted that the existing results [14], [15], [24], [25] can not be
applied to system (23), which has mode-dependent and time-varying
delay ���
 �����. Observe that
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To examine the stability of system (23), we construct a Lyapunov func-
tion candidate � 
 �� 	 	 �� as � ��
 �� �  ��

� with  � � � and
 � � � to be determined. By computation, we have
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According to Theorem 4.2 in [7], inequalities (24) and (25) give
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Inequalities ��� � ��� and ��� � ��� yield  � � � and � � �.
Then, by Theorem 4.2 in [7], system (23) is mean-square asymptoti-
cally stable if � � �. However, for inequalities (24) and (25), we have
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Inequalities ��� � ��� and ��� � ��� imply  � � � and � � �.
By Theorem 4.1, the sufficient condition for mean-square asymptotic
stability of system (23) is � � �. Note that, when � � � � �, Theorem
4.2 in [7] does not work while Theorem 4.1 is still applicable to system
(23). This shows Theorem 4.1 is more applicable.

V. CONCLUSION

This note improves an existing result in [7] and develops a Razu-
mikhin-type theorem on input-to-state stability of HSRSs in ��
 �� �
��moment sense. It is seen that this improved result is less conservative
but more applicable (see Remark 3.1, Remark 3.2 and Example 4.1).
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Signal-to-Noise Ratio Fundamental Limitations in
Continuous-Time Linear Output Feedback Control

Alejandro J. Rojas, Member, IEEE

Abstract—In the present technical note we study the fundamental lim-
itation on stability that arise when an additive coloured Gaussian noise
(ACGN) channel is explicitly considered over either the control or mea-
surement paths of a linear time invariant (LTI) feedback loop. By consid-
ering a linear setting we can naturally express the fundamental limitation
as a lower bound on the channel signal-to-noise ratio (SNR) required for
stabilisability. We start by first obtaining a closed-form expression for the
squared norm of a partial fraction expansion with repeated poles in
the Laplace domain. We then use the squared norm result to obtain the
closed-form expression for the infimal SNR required for stabilisability. The
proposed closed-form includes the case of repeated unstable plant poles and
non minimum phase (NMP) zeros.

Index Terms—Additive coloured Gaussian noise (ACGN), signal-to-noise
ratio (SNR).

I. INTRODUCTION

Fundamental limitations in control design as been an important area
of research with early seminal results such as [1] and [2]. For a linear
time invariant (LTI) plant it is well understood how unstable poles, non
minimum phase (NMP) zeros and time-delay cause unavoidable lim-
itations both in regulation and performance (see for example [3] and
references therein). In recent years, the study of fundamental limita-
tions has been extended to problems of control over communication
networks, [4, Theorem 4.6], [5], attracting a growing interest (see for
example [6] and the recent survey by [7]).

Most results in control over network use information theoretic argu-
ments to obtain necessary and sufficient lower bounds on, for example,
the transmission data rate for noiseless channels [8], [9] or noisy chan-
nels [10]–[13] required for stabilisability. In particular, for linear plant
models, in [12, Proposition III.1], it has been shown that if the unstable
plant is to be stabilised, then the capacity of a noisy channel in the
control loop has to satisfy a lower bound that depends on the unstable
eigenvalues of the plant. A similar result was proved earlier in [8, The-
orem 2.1], for the transmission data rate of a noiseless channel and
further extended to nonlinear plant models in [9, Theorem 1].

Another line of research, that does not center on channel capacity nor
transmission rate, introduces a framework to study stabilisability of a
feedback loop over channels that have a signal to noise ratio (SNR)
constraint [14], [15] (and related work in [16], [17]). A recognisable
characteristic of the proposed SNR approach is that it is a linear formu-
lation allowing the use of all the linear design techniques (such as cheap
control for example). The authors of [14], [18] obtained the expression
for the infimal SNR required to stabilise a finite dimensional unstable
LTI plant over a memoryless additive white Gaussian noise (AWGN)
channel when considering unstable plant poles, NMP zeros and plant
time-delay. In [15] the infimal SNR is computed for the case of additive
coloured Gaussian noise (ACGN) channels with bandwidth limitation,
see Fig. 1. The bandwidth limitation may be imposed for several rea-
sons, for example to avoid interference between different channels in a
communication system or to model communications hardware proper-
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