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Abstract

In the formation control problem for autonomous robots a distributed control law steers the robots to

the desired target formation. A local stability result of the target formation can be derived by methods of

linearization and center manifold theory or via a Lyapunov-based approach. It is well known that there

are various other undesired invariant sets of the robots’ closed-loop dynamics. This paper addresses a

global stability analysis by a differential geometric approach considering invariant manifolds and their

local stability properties. The theoretical results are then applied to the well-known example of a cyclic

triangular formation and result in instability of all invariant sets other than the target formation.

I. INTRODUCTION

The formation control of a network of autonomous mobile robots is an interesting instance

of distributed control and motion coordination. In this setup the autonomous robots have to be

stabilized to a formation while each robot has only locally sensed information about the others.

In the formation control problem graph theory plays a natural role, both to define a formation

and to describe the sensor relationships–who can “see” whom. Early work used the graph-

theoretic concept of rigidity to construct undirected graphs [1], [2] suited for formation control.

These concepts have been extended to directed graphs in [3]. An excellent reference reviewing

the application of rigidity theory in formation control is [4]. Recently rigidity was employed as

an analysis tool to show the stability of the desired target formation which is specified as an
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infinitesimally rigid framework [5], [6]. Typically, a potential function approach is used to design

distributed control laws, an approach that originally emerged for undirected graphs [2] but has

recently been extended to directed topologies [5], [6]. In a potential function approach a natural

Lyapunov function candidate is readily available and leads to an exponential stability result with

a guaranteed region of attraction depending on the rigidity of the formation [6]. Local stability of

the target formation can also be shown via methods of linearization and center manifold theory

[5], an approach that is also inherently related to rigidity. Neither of these approaches leads to

global stability results since it is well known that there are various invariant sets of the robots’

dynamics other than the target formation. A global stability analysis considering these sets has

been carried out only for the benchmark example of a triangular formation [7]–[11] yielding

convergence to the target formation from all but initially collinear formations.

In the global stability analysis each of the references [7]–[11] follows a Lyapunov-type

approach specific to the triangular formation which is not extendable to higher order formations.

The present paper provides a tool independent of a Lyapunov function and based on differential

geometry in order to rule out convergence of the robots to undesired equilibrium sets. These

sets are parametrized as submanifolds embedded in the space of inter-agent positions, where the

formation dynamics naturally evolve. A differential geometric stability tool for submanifolds is

derived based on showing that the linearized vector field points away from these manifolds. This

geometric result is based on purely algebraic computations and suffices to show instability of

these submanifolds without guessing a Lyapunov function. In the application of this geometric

method to the benchmark example of the triangular formation (with a cyclic sensor graph) we

can confirm the results of [7]–[11]: initially non-collinear robots will be strictly bounded away

from the set of collinear formations and converge exponentially to the desired target formation.

This paper is organized as follows: Section II recalls the formation control problem for three

robots. In Section III the geometric method is derived and applied to the triangular formation in

Section IV yielding a global stability result. Finally, some conclusions are drawn in Section V.

II. THE FORMATION CONTROL PROBLEM FOR THREE ROBOTS

A. Review of the Setup

For our purposes an autonomous robot is a fully actuated vehicle in the plane that has no

communication devices and is equipped only with an onboard camera. We assume that the robot’s



motion is modelled by the dynamics żi = ui, where zi ∈ R2 is the position of robot i and ui ∈ R2

is the control input. Altogether we consider three such robots and with the concatenated vectors1

z = (z1, z2, z3) and u = (u1, u2, u3) in R6 the overall dynamics are ż = u.

The sensing topology among the robots is specified by the cyclic sensor graph G, a directed

graph with three nodes and three edges with clockwise orientation, as illustrated in Figure 1. The

nodes of G correspond to the robots, and we embed the graph into the plane as the framework

(G, z). An edge k from robot i to robot j corresponds to the link ek = zj − zi ∈ R2 and means

that robot i can sense the relative distance and direction of robot j via its onboard camera.

We use the notation e = (e1, e2, e3) ∈ R6 for the concatenated vector of links, I2 for the 2×2

identity matrix, and 02 for the 2× 2 zero matrix. With the block circulant incidence matrix

Ĥ =


−I2 I2 02

02 −I2 I2

I2 02 −I2


the links are obtained as e = Ĥ z. The links are not independent, but subject to the constraint

e1 + e2 + e3 = 0 , (1)

where 0 ∈ R2 is the vector of zero entries. The constraint (1) corresponds to the cycle (1, 2, 3)

in the graph G and defines a subspace in R6 with normal vectors spanned by the columns of

(I2, I2, I2). We refer to this subspace as the link space and denote it by Im Ĥ (image of Ĥ).

Given the sensor graph G, a triangular formation is specified by a set of distance constraints

dk > 0, k ∈ {1, 2, 3}, such that ‖ek‖ = dk. Of course, the distance constraints have to be

realizable, that is, fulfill the triangle inequalities. The goal in formation control is to find a

distributed control law ui = ui(ei), that is, each control law can be implemented by onboard

1Vectors are written either as n-tuples or column vectors.

z2

z1

z3

e1

e2

e3

G

Fig. 1. Illustration of the framework (G, z) together with the links e



sensing, such that z(t) converges as t→∞ and limt ‖ek(t)‖ = dk for all k. We refer to the set

of all frameworks (G, z) fulfilling the distance constraints as the target formation.

In general, conditions to guarantee cohesion of the target formation and to stabilize the robots

to it require a property called rigidity of the target formation. Rigidity boils down to a rank

condition on the rigidity matrix RG(e) = diag (ei)
T Ĥ: if the rankRG(e) = 3 (it can’t be more)

then the formation (G, e) is said to be infinitesimally rigid. Infinitesimal rigidity is a generic

property that holds in an open and dense set. In the triangular example all but collinear (and

collocated) formations of robots are infinitesimally rigid and the additional necessary property

of constraint consistence [3] is also fulfilled. We do not further dwell on these properties but

refer to [4] reviewing rigidity theory and to [5], [6] relating it to sufficient stability conditions.

Ideally the robots should converge to the target formation from any starting point. It is known

that this goal cannot be achieved for every initial position z(0), for example, the references [5],

[7]–[11] show that three initially collinear robots cannot form a triangle. The objective of the

present article is to provide a tool to find the exact region of attraction for the target formation.

B. A Potential Function Based Control Law

Typically a potential function approach is used to derive a distributed control law to tackle

the formation control problem. For each robot a potential function is constructed that is zero

whenever the robot has the desired distance from its neighbour and is positive when the distance

constraints are violated. For robot i define Wi : R6 → R as Wi(z) = 1
4

(
‖ei‖2 − d2

i

)2
. In order

to minimize its potential, robot i descends the gradient of the potential function, that is, ui =

− [∂/∂ziWi(z)]T . For notational convenience, we introduce the vector ψ = (ψ1, ψ2, ψ3) ∈ R3,

where ψi = ‖ei‖2 − d2
i . The overall closed-loop z-dynamics are then

ż1

ż2

ż3

 =


e1

(
‖e1‖2 − d2

1

)
e2

(
‖e2‖2 − d2

2

)
e3

(
‖e3‖2 − d2

3

)
 =


e1 ψ1

e2 ψ2

e3 ψ3

 , z(0) = z0 ∈ R6 . (2)

Different approaches analyzing the z-dynamics in the state space R6 have been proposed [2],

[5]. The target formation set in R2, i.e., the triangle, is invariant under rigid body motion. When

lifted up to R6, the home of z, this set is non-compact. This complicates an analysis based on

differential geometry, set stability or invariance concepts. In addition, the formation specification



is in the link space. Fortunately, the target formation parametrized in the link space,

Ee = {e ∈ ImĤ : ‖ek‖ = dk, k = {1, 2, 3}} ,

is compact. For these obvious reasons we approach the stability analysis of the target formation

in the link space. The closed-loop link dynamics resulting from the z-dynamics are
ė1

ė2

ė3

 =


ż2 − ż1

ż3 − ż2

ż1 − ż3

 =


e2 ψ2 − e1 ψ1

e3 ψ3 − e2 ψ2

e1 ψ1 − e3 ψ3

 e(0) = e0 = Ĥz0 . (3)

The flow of the link dynamics in the link space Im Ĥ will be denoted by Φ(t, e0).

C. A Preliminary Stability Result of the Target Formation

An intriguing approach to prove stability of Ee is to use the somewhat natural set-Lyapunov

function candidate V : Im Ĥ → R defined as the sum of the potential functions

V (e) =
∑3

i=1

1

4

(
‖ei‖2 − d2

i

)2
=

1

4
ψ(e)Tψ(e) .

The derivative of V (e) along trajectories of the link dynamics can be compactly formulated as

∂V

∂e
ė = −‖e1ψ1 − e2ψ2‖2 − ‖e2ψ2 − e3ψ3‖2 − ‖e3ψ3 − e1ψ1‖2 = −ψT RG(e)RG(e)T ψ , (4)

where RG(e) is the rigidity matrix. With the notation Ω(c) = {e ∈ Im Ĥ : V (e) ≤ c} for a

sublevel set of V (e) the following theorem can easily be derived from (4):

Theorem 2.1: [6, Theorem 5.1] For every initial condition e0 ∈ Im Ĥ the link dynamics (3)

are forward complete and bounded in the compact sublevel set Ω(V (e0)), and their solution

Φ(t, e0) converges to the largest invariant set contained in

We = {e ∈ Ω(V (e0)) : ψT RG(e)RG(e)
T ψ = 0} .

Moreover, given ρ > 0 such that for every e ∈ Ω(ρ) the formation (G, e) is infinitesimally rigid,

for every initial condition e0 ∈ Ω(ρ) the set Ee is exponentially stable.

By Theorem 2.1 the link dynamics converge either to the target formation Ee or the setWe\Ee,
that is, the set of points in We where the matrix RG(e)T has a rank loss, spoken differently the

set of non-rigid (i.e., collinear) formations. Locally the robots converge to the specified triangular

formation with Ω(ρ) as guaranteed region of attraction. Note that Ω(ρ) is not necessarily a small



set since rigidity is a generic property. As a result of the exponential convergence rate, the right-

hand side of the z-dynamics (2) can be upper-bounded by exponentially decreasing signals and

thus the positions also converge. Therefore, locally for every initial condition z0 ∈ Ĥ−1 (Ω(ρ))

the convergence of the robots to the formation is provable in straightforward fashion [6].

Theorem 2.1 has a game-theoretic interpretation and also extends to a wider variety of graphs

including undirected minimally rigid graphs [6]: for these graphs the only possible positive limit

sets are the (locally stable) target formation and non-rigid formations. However, this result is

only local and we are interested in the global behavior of the robots in the link space. Thus

we have to find out the stability properties of the non-rigid sets. Such a global analysis for the

triangular benchmark problem has been undertaken in [7]–[9] and for slightly different graphs in

[10], [11] using problem-specific Lyapunov approaches. The next section provides a geometric

method that allows an alternative approach by analyzing the linearized link dynamics only.

III. A MANIFOLD INSTABILITY THEOREM

The limit set We of the link dynamics can be split into the target formation Ee and the set

We \ Ee of non-rigid limit sets. In order to show that We \ Ee is not a positive limit set, it has

to be shown that the vector field, the right-hand side of the link dynamics (3), is pointing away

from We \ Ee. This section formulates this idea in terms of differential geometry.

A. The Notion of Overflowing Invariance

Consider the dynamical system

ẋ = f(x) , x(0) = x0 ∈ Rn , (5)

where f : Rn → Rn is a twice continuously differentiable vector field generating the flow

Φ(t, x). In what follows, fx(p) will denote the Jacobian of f(x) at x = p. Let M be an m-

dimensional differentiable submanifold M embedded in Rn that is invariant w.r.t. (5), that is,

for every x0 ∈ M, Φ(t, x0) ∈ M for all t ≥ 0. The normal and tangent space at p ∈ M are

denoted as NpM and TpM, and the normal and tangent bundles as NM and TM. Geometrically

speaking the invariance of M with respect to (5) is equivalent to f(p) ∈ TpM for all p ∈M.

The specification of M as an embedded submanifold allows us to identify a normal direction

relative to M. Given an ε > 0, we can always construct a neighbourhood of M consisting of



points p̃ ∈ Rn that are not further than ε away fromM [12, Theorem 6.17]. This can be seen as

an embedding of the normal bundle NM into Rn and we define the tubular ε neighbourhood

Mε := {p̃ ∈ Rn : p̃ = p+ ε̄ np, p ∈M, np ∈ NpM, ‖np‖ = 1, ε̄ ∈ (0, ε)} .

We denote the boundary of the tubular ε neighbourhood Mε by ∂Mε:

∂Mε := {p̃ ∈ Rn : p̃ = p+ εnp, p ∈M, np ∈ NpM, ‖np‖ = 1} .

Let M̄ε :=M∪Mε ∪ ∂Mε be the closure of Mε. Next we define the orientation of the vector

field f on ∂Mε. Consider an ε > 0, a point p ∈ M, and a normal vector np ∈ NpM of unit

length. From this we construct the point p̃ ∈ ∂Mε as p̃ = p + ε np. The inner product of the

vector field f(p̃) and the normal vector np is then

〈f (p̃) , np〉 = 〈f (p+ εnp) , np〉 . (6)

If the inner product (6) is positive, then the vector field and the normal vector point in the same

half space. We then say the vector field f(p̃) is pointing strictly outward at p̃ ∈ ∂Mε. Note that

this property depends on f , ε, p, and np. Consider a set Ω with M∩ Ω 6= ∅. If there exists an

ε > 0, such that for every p ∈M∩ Ω and for every np ∈ NpM with ‖np‖ = 1 the vector field

is pointing strictly outward, then we say Mε is overflowing invariant in Ω.

Remark 3.1: The term overflowing invariance is taken from Fenichel Theory, which treats

the stability properties of differentiable manifolds with boundaries [13]. The invariant manifolds

arising in our problem setup have no boundaries and thus this theory is not directly applicable.

B. A Manifold Instability Result

The definition of overflowing invariance does not provide an easily checkable condition, since

it depends on the, possibly nonlinear, vector field f and the variables ε > 0, p ∈ M, and np ∈
NpM. Note that every embedded submanifold may be parameterized locally by the zero set

of a smooth function [12, Proposition 5.28]. In particular, consider the global case, where a

continuously differentiable function F : Rn → Rn−m defines the zero set M := F−1(0). If

rankFx(p) = n−m for all p ∈ M, then M is an m-dimensional embedded submanifold, F is

said to be its global defining function, and the columns of the Jacobian Fx(p)
T are a basis for

NpM [12, Corollary 5.24, Lemma 5.29]. In this case, the idea to derive a checkable algebraic



condition of overflowing invariance is to contract the tubular ε neighbourhood of M to a thin

layer, in fact, to such a thin layer that the Taylor linearization of the vector field is valid.

Theorem 3.1: Consider the vector field f and an invariant embedded submanifold M :=

F−1(0) with the global defining function F : Rn → Rn−m. Let Ω be a compact set with

compact and non-empty intersection M∩ Ω, and consider for every p ∈M∩ Ω the matrix

Γ(p) = Fx(p)
(
fx(p) + fx(p)

T
)
Fx(p)

T ∈ R(n−m)×(n−m) . (7)

Assume that Γ(p) is positive definite for every p ∈ M∩ Ω. Then there exists ε∗ > 0 such that,

for every ε ∈ (0, ε∗], the tubular ε neighbourhood Mε is overflowing invariant in Ω.

Proof: Let ε > 0 be arbitrary. We look at a point p̃ ∈ ∂Mε. By definition, it has the form

p̃ = p+ εnp for some p ∈M and np ∈ NpM with ‖np‖ = 1. With NpM = ImFx(p)
T , np can

be parametrized as np = Fx(p)
Tc, where c ∈ Rn−m. The inner product of f (p̃) and np is then

〈f (p̃) , np〉 = 〈f (p+ εnp) , np〉 =
〈
f
(
p+ ε Fx(p)

Tc
)
, Fx(p)

Tc
〉
.

The ingredients M, Mε, and f are illustrated in Figure 2 together with a trajectory. We now

expand f
(
p+ ε Fx(p)

Tc
)

in a Taylor series about p ∈M and obtain for the inner product

〈f (p̃) , np〉 = 〈f(p), np〉+ 〈εfx(p)np , np〉+ 〈R3 (p, ε) , np〉 , (8)

where R3 (p, ε) is the Lagrange remainder of the Taylor series expansion and is of second order in

ε [14, Theorem 4.1]. Note that the first term of (8) vanishes because np ∈ NpM and f(p) ∈ TpM
due to invariance of the manifold M. Thus equation (8) simplifies to

〈f (p̃) , np〉 =
ε

2
cTΓ(p)c + 〈R3 (p, ε) , np〉 , (9)

where Γ(p) is defined in (7). By definitionMε is overflowing invariant in Ω if the inner product

(9) is positive for every p ∈M∩Ω. If the symmetric matrix Γ(p) is positive definite, it is clear

p

p̃

np

M

Φ(t, x0)

ε

∂Mε

f(p)

f(p̃)

x0

Fig. 2. Qualitative illustration of M, Mε, f , and a trajectory Φ(t, x0) with x0 ∈Mε.



that we can obtain a positive inner product at every point p ∈M∩Ω by choosing ε sufficiently

small at p. Let ε̃ be such a sufficiently small ε at p ∈M∩ Ω. Then we have

(∀ p ∈M∩ Ω) (∃ ε̃ > 0)
1

2
cTΓ(p)c >

1

ε̃
|〈R3 (p, ε̃) , np〉| .

The right-hand side of the previous equation is upper bounded by the maximum Lagrange

remainder, and by assumption, we have that Γ(p) is positive definite for every p ∈M∩ Ω:

(∀ p ∈M∩ Ω) (∃Γ∗ > 0 , R∗ > 0) Γ(p)− Γ∗ In−m ≥ 0 , ε̃R∗ ≥ 1

ε̃
|〈R3 (p, ε̃) , np〉| . (10)

To overcome the obstacle that both Γ∗ and R∗ are dependent on the point p, we appeal to

compactness. Due to the Heine-Borel Theorem [15, Theorem 3-40] we can cover the compact

setM∩Ω by a finite number k of closed balls Bi, where i ∈ {1, . . . , k}. Since fx(p) and Fx(p)

are continuous, Γ(p) is a continuous function of p. Thus on each of these balls Γ∗ and R∗ attain

their minima and maxima as Γ∗i := minp∈Bi∩M∩Ω Γ∗ and R∗i := maxp∈Bi∩M∩Ω R
∗, where Γ∗i and

R∗i depend on Bi ∩M∩ Ω. We define ε∗i > 0 such that the following inequality holds:

(∀ p ∈ Bi ∩M∩ Ω)
1

2
cTΓ∗i c > ε∗i R

∗
i .

Therefore, we obtain together with (10) that

(∃ ε∗i > 0) (∀ p ∈ Bi ∩M∩ Ω)
1

2
cTΓ(p)c >

1

ε∗i
|〈R3 (p, ε∗i ) , np〉| .

Because the number of balls is finite, we define ε∗ > 0 as ε∗ := mini=1,...,k ε
∗
i and have the result

(∃ ε∗ > 0) (∀ p ∈M∩ Ω)
1

2
cTΓ(p)c >

1

ε∗
|〈R3 (p, ε∗)〉 , np| .

Thus ε∗ provides a uniform bound for which the inner product (9) is positive for every p ∈M∩Ω.

Clearly, the inner product is then also positive for every p ∈M∩Ω if we choose any ε̄ ∈ (0, ε∗].

In other words, for any ε̄ ∈ (0, ε∗], Mε̄ is overflowing invariant in Ω.

Theorem 3.1 provides a checkable condition on the overflowing invariance of M within the

compact set Ω. Under further conditions on Ω, hyperbolic instability ofM∩Ω can be established.

Corollary 3.1: Under the assumptions of Theorem 3.1 and the additional assumption that Ω

is an invariant strict superset of M∩ Ω, for any ε ∈ (0, ε∗] the set Ω \ M̄ε is invariant.

Proof: The set Ω can be partitioned by the non-empty sets M̄ε ∩ Ω and Ω \ M̄ε. Let

us establish a correspondence of overflowing invariance and the flow of the vector field: since

Mε is overflowing invariant in Ω, we have for every x0 ∈ ∂Mε ∩ Ω and for all t > 0 that



Φ(t, x0) 6∈ M̄ε ∩ Ω. Therefore, a trajectory starting off M̄ε ∩ Ω is bounded away from the

partition M̄ε ∩Ω. Invariance of Ω \ M̄ε follows then immediately from the invariance of Ω.

Corollary 3.1 allows a straightforward instability check of the setM∩Ω, simply by analyzing

the linearized vector field in (7). In the case that M is the origin and Ω is some nontrivial

set containing M, equation (7) reduces to the equation obtained by Lyapunov’s first method

when using the identity as the Lyapunov matrix. Note that the results of this section can also

be reversed, leading to asymptotic stability of a manifold [16]. In the following section the

geometric method will be applied to the link dynamics to show instability of the set We \ Ee.

IV. GLOBAL STABILITY ANALYSIS OF THE TARGET FORMATION

A. Equilibria and Invariant Sets of the Link Dynamics

The limit set of the link dynamics We can from (4) be parametrized as We = {e ∈ ImĤ :

e1ψ1 = e2ψ2 = e3ψ3}, which is the set of equilibria of the link dynamics (3). Clearly, We

contains besides the target formation Ee also the set of collinear (non-rigid) equilibria. Let the

set of collinear links be termed the line set Ne. By equation (1) the three links are linearly

dependent, and Ne is naturally parameterized by two links and the planar 90◦ rotation matrix J :

Ne = {e ∈ ImĤ : eT1 J e2 = 0} , where J =

 0 1

−1 0

 .
Note that Ee and Ne are a positive distance apart, which follows directly from Theorem 2.1. It

can easily be checked that Ne is invariant with respect to the link dynamics, which implies that

initially collinear robots remain collinear for all time [7]–[9] and formation control fails.

B. Instability of the Line Set

Our goal is to show that trajectories of the link dynamics are bounded away from the line set

Ne. References [8]–[11] carry out a Lyapunov approach and show that a function related to the

point-to-set distance to the line set Ne is locally increasing (near the collinear equilibria Ne∩We).

Up to a multiplicative constant the chosen Lyapunov functions are equivalent to the oriented area

of the triangle, which is 1/2 eT1 Je2. Obviously, these Lyapunov functions are problem-specific

for the triangular formation and do not extend to other examples. By decomposing Ne into

submanifolds and applying the results of the previous section, an analogous result is provable

by purely algebraic calculations of equation (7) and without guessing a Lyapunov function.



First, we consider a subset of Ne, the set of collocated robots defined by the zero set Xe =

{e ∈ ImĤ : e = 0}. Since Xe is the origin of R6, it is an embedded submanifold of R6 located

in ImĤ . Its normal space NeXe can easily be parametrized as

NeXe = columnspan



−I2 0 I2

I2 −I2 I2

0 I2 I2


 ,

where the first four columns are within the link space and the last two are orthogonal to it. We

now apply Theorem 3.1 to show overflowing invariance of Xe,εX , the tubular εX neighbourhood

of Xe. Together with Corollary 3.1 this guarantees hyperbolic instability of Xe.
Lemma 4.1: Consider e0 ∈ ImĤ such that Xe ∩Ω(V (e0)) 6= ∅. There exists ε∗X > 0 such that

for every εX ∈ (0, ε∗X ] the set Ω(V (e0)) \ X̄e,εX is invariant.

Proof: We calculate the matrix ΓXe from equation (7) for the invariant set Xe. The Jacobian

of the vector field (3) evaluated on Xe is obtained as Ĥ diag(−d2
i I2), and the first four columns

of NeXe provide a basis for the normal space of Xe within the link space. Thus we obtain

ΓXe =

 (2 d2
1 + 4 d2

2) I2 (d2
1 − 3 d2

2 − d2
3) I2

(d2
1 − 3 d2

2 − d2
3) I2 (2 d2

2 + 4 d2
3) I2

 .

A simple argument shows that the principal minors of ΓXe are positive whenever d1, d2, and

d3 satisfy the triangle inequalities. Thus the assumptions of Theorem 3.1 and Corollary 3.1 are

satisfied within the compact and invariant set Ω(V (e0)), and the lemma follows immediately.

In order to continue, consider the smooth function F : R6 → R3,

F (e) =

 eT1 J e2

e1 + e2 + e3

 ,

and note that Ne can be written as the zero set Ne = F−1(0). The Jacobian of F (e) is given by

Fe(e) =

−eT2 J eT1 J 0

I2 I2 I2


and has constant rank three for all e ∈ F−1(0) \ {0} and a rank loss for e = 0. Thus Ne is

not a submanifold. However, if we subtract the set Xe together with the negatively invariant set

Xe,εX ∪ ∂Xe,εX , with εX from Lemma 4.1, then we obtain N ′e := Ne \ X̄e,εX as an embedded

submanifold in R6, which follows directly from the parameterization ofN ′e via F [12, Proposition



5.28]. Note that we have to be cautious in the later application of Theorem 3.1 to N ′e since N ′e
is neither open nor closed in the topology of R6. Note also that N ′e is located in the link space,

it is invariant, due to hyperbolic instability of X̄e,εX , and its normal space is parametrized by

ImFe(e)|N ′
e

and is well defined. Similar to NeXe above, the normal space NeN ′e can be split

into components orthogonal and parallel to (I2, I2, I2), the normal vector of the link space. We

refer to page 140 of the thesis [16] for the easy calculations leading to the parameterization

NeN ′e = columnspan



−J e2 I2

−J e3 I2

−J e1 I2


∣∣∣∣∣∣∣∣∣
N ′
e

 .

The following lemma shows that no trajectory can approach the collinear equilibria via N ′e,εN′ .

Lemma 4.2: Consider e0 ∈ ImĤ such that N ′e ∩We 6= ∅. There exists an ε∗N ′ > 0, such that

for every εN ′ ∈ (0, ε∗N ′ ] the tubular εN ′ neighbourhood N ′e,εN′ is overflowing invariant in We.

Before we continue to the proof of Lemma 4.2, we state the following algebraic relationship:

Lemma 4.3: [8, Lemma 6] For any e ∈ Ne ∩We we have that ψ1 + ψ2 + ψ3 < 0.

Lemma 4.3 can be proved by considering all possible cases of collinear and collocated robots.

With this algebraic relationship we can now move on to the proof of Lemma 4.2.

Proof of Lemma 4.2: First, we verify that N ′e ∩We is closed. From Lemma 4.1 we know

that Xe is hyperbolically unstable and that on Xe,εX ∪∂Xe,εX the vector field is pointing outward

and is thus strictly non-zero. In short, Xe is an isolated subset of the collinear equilibria Ne∩We.

Due to continuity of the vector field, there can be no equilibrium set, such as N ′e∩We, arbitrarily

close to N ′e’s boundary Ne ∩ ∂Xe,εX . This proves that N ′e ∩We is closed. Compactness follows

from the fact that We is compact. The Jacobian of the vector field is given by Ĥ diag(Θi) with

Θi := (ψiI2 + 2eie
T
i )|e∈N ′

e∩We . For notational convenience, the argument e ∈ N ′e ∩We is left out

in the following calculations. A basis for the normal space of N ′e within the link space is given

by the first column of NeN ′e. Following an easy calculation we obtain term from (7) as

ΓN ′
e
(e) = eT2 JΘ1Je2 − eT2 JΘ2Je3 + eT3 JΘ2Je3 − eT3 JΘ3Je1 + eT1 JΘ3Je1 − eT1 JΘ1Je2 .

The expression JΘiJ simplifies further to JΘiJ = −ψiI2 +2Jeie
T
i J . Note that for e ∈ N ′e∩We

the links are collinear and thus we have for any i, j, k ∈ {1, 2, 3} that

eTj J Θi J ek = −ψi eTj ek + 2 eTj J ei e
T
i J ek = −ψi eTj ek .



Therefore, ΓN ′
e
(e) simplifies to

ΓN ′
e
(e) =

(
eT2 ψ1 e1 + eT3 ψ2 e2 + eT1 ψ3 e3

)
−
(
ψ1 ‖e2‖2 + ψ2 ‖e3‖2 + ψ3 ‖e1‖2) . (11)

Now we evaluate this expression on the compact setN ′e∩We. Remember that for any e ∈ N ′e∩We

it holds that e1 ψ1 = e2 ψ2 = e3 ψ3. Consequently, the first term of (11) is zero:

eT2 ψ1 e1 + eT3 ψ2 e2 + eT1 ψ3 e3 = (e1 + e2 + e3)T e1 ψ1 = 0 .

To analyze the second term we consider the cases where two or none of the robots are collocated:

case 1: e ∈ {N ′e ∩We} ∩ {e ∈ ImĤ : ei = 0, ej 6=i 6= 0, i, j ∈ {1, 2, 3}}: Suppose robot 1

and robot 2 are collocated, that is, e1 = 0. It follows that ψ1 = −d2
1 < 0, e2 = −e3 and also

0 = e1 ψ1 = e2 ψ2 = e3 ψ3 = −e2 ψ3 = −e3 ψ2. Thus we obtain from (11) that

ΓN ′
e
(e) = −

(
−d2

1 ‖e2‖2 + eT3 ψ2 e3 + 0
)

= d2
1 ‖e2‖2 > 0 .

The proof for e2 = 0 and e3 = 0 is analogous.

case 2: e ∈ {N ′e ∩We} ∩ {e ∈ ImĤ : ei 6= 0 , i ∈ {1, 2, 3}}: Suppose all three robots are

collinear but none of them are collocated. Then there exists x ∈ R \ {−1, 0} such that e2 = x e1

and e3 = −e1 − e2 = −(1 + x) e1 . It follows then with e1 ψ1 = e2 ψ2 = e3 ψ3 that ψ2 = ψ1/x

and ψ3 = −ψ1/(1 + x), and from Lemma 4.3 we get the condition ψ1λ(x) < 0, where λ(x) :=

1 + 1/x − 1/(1 + x). After some algebraic manipulations we can reformulate (11) in terms of

e1, ψ1, x, and λ(x) as a product of strictly positive terms:

ΓN ′
e
(e) = 2 ‖e1‖2 · (−ψ1 λ

−1(x)) · ((x+ 1/2)2 + 3/4)3/(x2(1 + x)2) > 0 .

In summary, ΓN ′
e
(e) > 0 for any e in the compact set N ′e ∩ We. Equivalently, there exists

ε∗N ′ > 0 such that for every εN ′ ∈ (0, ε∗N ′ ], N ′e,εN′ is overflowing invariant in We.

From Lemma 4.2 we conclude that the vector field (3) is pointing strictly outward on the set

SεN′ :=
{
ẽ ∈ ImĤ : ẽ = e+ εN ′ · ne, e ∈ N ′e ∩We, ne ∈ NeN ′e, ‖ne‖ = 1, εN ′ ∈ (0, ε∗N ′ ]

}
,

that is, the set of non-collinear links which can be reached from the equilibria N ′e∩We by going

ε∗N ′ or less normally to N ′e. After the simple but tedious algebraic calculations in the proofs of

Lemma 4.1 and Lemma 4.2, we are now in a position to state our final result:

Theorem 4.1: Consider e0 ∈ ImĤ such that Ne∩Ω(V (e0)) 6= ∅. There exists an ε∗ > 0, such

that for every ε ∈ (0, ε∗] the set Ω(V (e0)) \ {Ne ∪ S̄ε ∪ X̄e,ε} is invariant.



Proof: Let ε∗ = min{ε∗X , ε∗N ′} and let ε ∈ (0, ε∗] be fixed. By Theorem 2.1, for any initial

condition e0 the corresponding trajectory Φ(t, e0) is bounded in Ω(V (e0)) and will converge to a

limit set inWe = Ee∪{Ne∩We}. Assume that trajectories starting off Ne approach the collinear

equilibria Ne ∩We. These trajectories cannot first converge to Ne \We (in finite time) and then

approach Ne ∩We since then trajectories would intersect the invariant set Ne in non-equilibria.

Furthermore, according to Lemma 4.2, a trajectory starting off Ne∪S̄ε cannot approach N ′e∩We

via a neighbourhood of N ′e because it cannot enter S̄ε. By Lemma 4.1, the set Ω(V (e0)) \ X̄e,ε
is invariant, too. Therefore, a trajectory Φ(t, ξ0) with ξ0 ∈ Ω(V (e0)) \ {Ne ∪ S̄ε ∪ X̄e,ε} cannot

approach {Ne \We}∪{N ′e ∩We}∪Xe = Ne. In particular, Φ(t, ξ0) will be bounded away from

Ne ∪ S̄ε ∪ X̄e,ε. Finally note that ε can be chosen arbitrarily in (0, ε∗].

Theorem 4.1 implies that initially not collinear robots will never be collinear and the corre-

sponding trajectory will be bounded a strictly positive distance away from the collinear equilibria.

By standard arguments [8]–[10], [16], it can now be shown that a trajectory starting off Ne
enters the level set Ω(ρ) from Theorem 2.1 within a finite time. Thus the target formation Ee
is exponentially stable with ImĤ \Ne as exact region of attraction. Spoken differently, initially

not collinear robots converge exponentially to the specified triangular formation.

We conclude by discussing three possible extensions of the presented global stability analysis.

(i) The final result in Theorem 4.1 can also be proved for more general and non-quadaratic

potential functions, such as the potential functions defined in [9] growing infinitely as two robots

approach each other. Invariance of ImĤ \Xe follows by standard Lyapunov arguments, Lemma

4.3 still holds [9, Lemma 5], and thus Lemma 4.2 and Theorem 4.1 can be proven analogously.

(ii) Switching topologies can be considered that are infinitesimally rigid, for example a cyclic

topology with reverse link orientations, an undirected or acyclic topology. For each of these

topologies local stability of Ee is guaranteed by Theorem 2.1 (as shown in [6]) with the exception

of the acyclic topology which has to be analyzed based on its cascade structure [5], [10]. Note

that for each topology the same invariant set Ne arises and the manifold parameterizations are

as before. However, for acyclic and undirected graphs the vector fields (and their Jacobians) are

different and the positive definiteness of (7) has to be verified separately for the two topologies.

(iii) Higher order minimally rigid formations with undirected graphs have as limit sets also

either the target formation Ee or non-rigid formations We \Ee [6], which typically have collinear

links. Therefore, the invariant sets are similar and can be analyzed with the methods presented.



V. CONCLUSION

The present paper considers a global stability analysis of the formation problem for au-

tonomous robots. Based on the notion of overflowing invariance and geometric arguments a

condition is derived in order to show instability of embedded submanifolds. This geometric

method is then successfully applied to the example of a triangular formation with cyclic sensor

graph in order to rule out undesired non-rigid limit sets of the closed-loop dynamics. The result

relies on purely algebraic calculations and not on guessing a problem-specific Lyapunov function.
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