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Abstract

The n-step delayed sharing information structure is investigated. This information structure
comprises of K controllers that share their information with a delay of n time steps. This
information structure is a link between the classical information structure, where information is
shared perfectly between the controllers, and a non-classical information structure, where there is
no “lateral” sharing of information among the controllers. Structural results for optimal control
strategies for systems with such information structures are presented. A sequential methodology
for finding the optimal strategies is also derived. The solution approach provides an insight for
identifying structural results and sequential decomposition for general decentralized stochastic
control problems.

1. Introduction

1.1. Motivation

One of the difficulties in optimal design of decentralized control systems is handling the increase of
data at the control stations with time. This increase in data means that the domain of control laws
increases with time which, in turn, creates two difficulties. Firstly, the number of control strategies
increases doubly exponentially with time; this makes it harder to search for an optimal strategy.
Secondly, even if an optimal strategy is found, implementing functions with time increasing domain
is difficult.

In centralized stochastic control [1], these difficulties can be circumvented by using the conditional
probability of the state given the data available at the control station as a sufficient statistic
(where the data available to a control station comprises of all observations and control actions
till the current time) . This conditional probability, called information state, takes values in a
time-invariant space. Consequently, we can restrict attention to control laws with time-invariant
domain. Such results, in which data that is increasing with time is “compressed” to a sufficient
statistic taking values in a time-invariant space, are called structural results. While the information
state and structural result for centralized stochastic control problems are well known, no general
methodology to find such information states or structural results exists for decentralized stochastic
control problems.

The structural results in centralized stochastic control are related to the concept of separation.
In centralized stochastic control, the information state, which is conditional probability of the state
given all the available data, does not depend on the control strategy (which is the collection of
control laws used at different time instants). This has been called a one-way separation between
estimation and control. An important consequence of this separation is that for any given choice of
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control laws till time t−1 and a given realization of the system variables till time t, the information
states at future times do not depend on the choice of the control law at time t but only on the
realization of control action at time t. Thus, the future information states are separated from the
choice of the current control law. This fact is crucial for the formulation of the classical dynamic
program where at each step the optimization problem is to find the best control action for a
given realization of the information state. No analogous separation results are known for general
decentralized systems.

In this paper, we find structural results for decentralized control systems with delayed sharing
information structures. In a system with n-step delayed sharing, every control station knows
the n-step prior observations and control actions of all other control stations. This information
structure, proposed by Witsenhausen in [2], is a link between the classical information structures,
where information is shared perfectly among the controllers, and the non-classical information
structures, where there is no “lateral” sharing of information among the controllers. In his seminal
paper [2], Witsenhausen asserted a structural result for this model without any proof. Varaiya and
Walrand [3] proved that Witsenhausen’s assertion was true for n = 1 but false for n > 1. For n > 1,
Kurtaran [4] proposed another structural result. However, Kurtaran proved his result only for the
terminal time step (that is, the last time step in a finite horizon problem); for non-terminal time
steps, he gave an abbreviated argument, which we believe is incomplete. (The details are given in
Section 5 of the paper).

We prove two structural results of the optimal control laws for the delayed sharing information
structure. We compare our results to those conjectured by Witsenhausen and show that our
structural results for n-step delay sharing information structure simplify to that of Witsenhausen
for n = 1; for n > 1, our results are different from the result proposed by Kurtaran.

Our structural results do not have the separated nature of centralized stochastic control: for any
given realization of the system variables till time t, the realization of information states at future
times depend on the choice of the control law at time t. However, our second structural result
shows that this dependence only propagates to the next n − 1 time steps. Thus, the information
states from time t + n − 1 onwards are separated from the choice of control laws before time t;
they only depend on the realization of control actions at time t. We call this a delayed separation
between information states and control laws.

The absence of classical separation rules out the possibility of a classical dynamic program to
find the optimum control laws. However, optimal control laws can still be found in a sequential
manner. Based on the two structural results, we present two sequential methodologies to find
optimal control laws. Unlike classical dynamic programs, each step in our sequential decomposition
involves optimization over a space of functions instead of the space of control actions.

1.2. Notation

Random variables are denoted by upper case letters; their realization by the corresponding lower
case letter. Xa:b is a short hand for the vector (Xa,Xa+1, . . . ,Xb) while Xc:d is a short hand
for the vector (Xc,Xc+1, . . . ,Xd). The combined notation Xc:d

a:b is a short hand for the vector

(Xj
i : i = a, a + 1, . . . , b, j = c, c + 1, . . . , d). P (·) is the probability of an event, E {·} is the

expectation of a random variable. For a collection of functions g, we use P
g (·) and E

g {·} to
denote that the probability measure/expectation depends on the choice of functions in g .1A(·) is
the indicator function of a set A. For singleton sets {a}, we also denote 1{a}(·) by 1a(·). For a finite
set A, P {A} denotes the space of probability mass functions on A. For convenience of exposition,
we will assume all sets have finite cardinality.
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1.3. Model

Consider a system consisting of a plant and K controllers with decentralized information. At time
t, t = 1, . . . , T , the state of the plant Xt takes values in X ; the control action Uk

t at station k,
k = 1, . . . ,K, takes values in Uk. The initial state X0 of the plant is a random variable. With time,
the plant evolves according to

Xt = ft(Xt−1, U
1:K
t , Vt) (1)

where Vt is a random variable taking values in V. {Vt; t = 1, . . . , T} is a sequence of independent
random variables that are also independent of X0.

The system has K observation posts. At time t, t = 1, . . . , T , the observation Y k
t of post k,

k = 1, . . . ,K, takes values in Yk. These observations are generated according to

Y k
t = hkt (Xt−1,W

k
t ) (2)

where W k
t are random variables taking values in Wk. {W k

t ; t = 1, . . . , T ; k = 1, . . . ,K} are inde-
pendent random variables that are also independent of X0 and {Vt; t = 1, . . . , T}.

The system has n-step delayed sharing. This means that at time t, control station k observes
the current observation Y k

t of observation post k, the n steps old observations Y 1:K
t−n of all posts,

and the n steps old actions U1:K
t−n of all stations. Each station has perfect recall; so, it remembers

everything that it has seen and done in the past. Thus, at time t, data available at station k can
be written as (∆t,Λ

k
t ), where

∆t := (Y 1:K
1:t−n, U

1:K
1:t−n)

is the data known to all stations and

Λk
t := (Y k

t−n+1:t, U
k
t−n+1:t−1)

is the additional data known at station k, k = 1, . . . ,K. Let Dt be the space of all possible
realizations of ∆t; and Lk be the space of all possible realizations of Λk

t . Station k chooses action
Uk
t according to a control law gkt , i.e.,

Uk
t = gkt (Λ

k
t ,∆t). (3)

The choice of g = {gkt ; k = 1, . . . ,K; t = 1, . . . , T} is called a design or a control strategy. G
denotes the class of all possible designs. At time t, a cost ct(Xt, U

1
t , . . . , U

K
t ) is incurred. The

performance J (g) of a design is given by the expected total cost under it, i.e.,

J (g) = E
g

{

T
∑

t=1

ct(Xt, U
1:K
t )

}

(4)

where the expectation is with respect to the joint measure on all the system variables induced by
the choice of g. We consider the following problem.

Problem 1 Given the statistics of the primitive random variables X0, {Vt; t = 1, . . . , T}, {W k
t ;

k = 1, . . . ,K; t = 1, . . . , T}, the plant functions {ft; t = 1, . . . , T}, the observation functions {hkt ;
k = 1, . . . ,K; t = 1, . . . , T}, and the cost functions {ct; t = 1, . . . , T} choose a design g∗ from G
that minimizes the expected cost given by (4).
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1.4. The structural results

Witsenhausen [2] asserted the following structural result for Problem 1.

Structural Result (Witsenhausen [2])) In Problem 1, without loss of optimality we can re-
strict attention to control strategies of the form

Uk
t = gkt (Λ

k
t ,P (Xt−n |∆t)). (5)

Witsenhausen’s result claims that all control stations can “compress” the common information
∆t to a sufficient statistic P (Xt−n |∆t). Unlike ∆t, the size of P (Xt−n |∆t) does not increase with
time.

As mentioned earlier, Witsenhausen asserted this result without a proof. Varaiya and Walrand [3]
proved that the above separation result is true for n = 1 but false for n > 1. Kurtaran [4] proposed
an alternate structural result for n > 1.

Structural Result (Kurtaran [4]) In Problem 1, without loss of optimality we can restrict at-
tention to control strategies of the form

Uk
t = gkt

(

Y k
t−n+1:t,P

g1:K
1:t−1

(

Xt−n, U
1:K
t−n+1:t−1

∣

∣∆t

) )

. (6)

Kurtaran used a different labeling of the time indices, so the statement of the result in his paper is
slightly different from what we have stated above. Kurtaran’s result claims that all control stations
can “compress” the common information ∆t to a sufficient statistic P

g1:K1:t−1

(

Xt−n, U
1:K
t−n+1:t−1

∣

∣∆t

)

,
whose size does not increase with time.

Kurtaran proved his result for only the terminal time-step and gave an abbreviated argument
for non-terminal time-steps. We believe that his proof is incomplete for reasons that we will point
out in Section 5. In this paper, we prove two alternative structural results.

First Structural Result (this paper) In Problem 1, without loss of optimality we can restrict
attention to control strategies of the form

Uk
t = gkt

(

Λk
t ,P

g1:K1:t−1

(

Xt−1,Λ
1:K
t

∣

∣∆t

) )

. (7)

This result claims that all control stations can “compress” the common information ∆t to a
sufficient statistic P

g1:K
1:t−1

(

Xt−1,Λ
1:K
t

∣

∣∆t

)

, whose size does not increase with time.

Second Structural Result (this paper) In Problem 1, without loss of optimality we can restrict
attention to control strategies of the form

Uk
t = gkt

(

Λk
t ,P (Xt−n |∆t) , r

1:K
t

)

. (8)

where r1:Kt is a collection of partial functions of the previous n− 1 control laws of each controller,

rkt := {(gkm(·, Y k
m−n+1:t−n, U

k
m−n+1:t−n,∆m), t− n+ 1 ≤ m ≤ t− 1},

for k = 1, 2, . . . ,K. Observe that rkt depends only on the previous n − 1 control laws (gkt−n+1:t−1)
and the realization of ∆t (which consists of Y 1:K

1:t−n, U
1:K
1:t−n). This result claims that the belief

P (Xt−n |∆t) and the realization of the partial functions r1:Kt form a sufficient representation of ∆t

in order to optimally select the control action at time t.
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Our structural results cannot be derived from Kurtaran’s result and vice-versa. At present, we
are not sure of the correctness of Kurtaran’s result. As we mentioned before, we believe that
the proof given by Kurtaran is incomplete. We have not been able to complete Kurtaran’s proof;
neither have we been able to find a counterexample to his result.

Kurtaran’s and our structural results differ from those asserted byWitsenhausen in a fundamental
way. The sufficient statistic (also called information state) P (Xt−n |∆t) of Witsenhausen’s assertion

does not depend on the control strategy. The sufficient statistics P
g1:K
1:t−1

(

Xt−n, U
1:K
t−n+1:t−1

∣

∣∆t

)

of

Kurtaran’s result and P
g1:K
1:t−1

(

Xt−1,Λ
1:K
t

∣

∣∆t

)

of our first result depend on the control laws used
before time t. Thus, for a given realization of the primitive random variables till time t, the
realization of future information states depend on the choice of control laws at time t. On the
other hand, in our second structural result, the belief P (Xt−n |∆t) is indeed independent of the
control strategy, however information about the previous n − 1 control laws is still needed in the
form of the partial functions r1:Kt . Since the partial functions r1:Kt do not depend on control laws
used before time t− n+ 1, we conclude that the information state at time t is separated from the
choice of control laws before time t− n+1. We call this a delayed separation between information
states and control laws.

The rest of this paper is organized as follows. We prove our first structural result in Section 2.
Then, in Section 3 we derive our second structural result. We discuss a special case of delayed
sharing information structures in Section 4. We discuss Kurtaran’s structural result in Section 5
and conclude in Section 6.

2. Proof of the first structural result

In this section, we prove the structural result (7) for optimal strategies of the K control stations.
For the ease of notation, we first prove the result for K = 2, and then show how to extend it for
general K.

2.1. Two Controller system (K = 2)

The proof for K = 2 proceeds as follows:

1. First, we formulate a centralized stochastic control problem from the point of view of a coor-
dinator who observes the shared information ∆t, but does not observe the private information
(Λ1

t ,Λ
2
t ) of the two controllers.

2. Next, we argue that any strategy for the coordinator’s problem can be implemented in the
original problem and vice versa. Hence, the two problems are equivalent.

3. Then, we identify states sufficient for input-output mapping for the coordinator’s problem.

4. Finally, we transform the coordinator’s problem into a MDP (Markov decision process), and
obtain a structural result for the coordinator’s problem. This structural result is also a
structural result for the delayed sharing information strucutres due to the equivalence between
the two problems.

Below, we elaborate on each of these stages.
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Stage 1

We consider the following modified problem. In the model described in Section 1.3, in addition
to the two controllers, a coordinator that knows the common (shared) information ∆t available to
both controllers at time t is present. At time t, the coordinator decides the partial functions

γkt : Lk 7→ Uk

for each controller k, k = 1, 2. The choice of the partial functions at time t is based on the
realization of the common (shared) information and the partial functions selected before time t.
These functions map each controller’s private information Λk

t to its control action Uk
t at time t.

The coordinator then informs all controllers of all the partial functions it selected at time t. Each
controller then uses its assigned partial function to generate a control action as follows.

Uk
t = γkt (Λ

k
t ). (9)

The system dynamics and the cost are same as in the original problem. At next time step, the
coordinator observes the new common observation

Zt+1 := {Y 1
t−n+1, Y

2
t−n+1, U

1
t−n+1, U

2
t−n+1}. (10)

Thus at the next time, the coordinator knows ∆t+1 = Zt+1 ∪ ∆t and its choice of all past par-
tial functions and it selects the next partial functions for each controller. The system proceeds
sequentially in this manner until time horizon T .

In the above formulation, the only decision maker is the coordinator: the individual controllers
simply carry out the necessary evaluations prescribed by (9). At time t, the coordinator knows the
common (shared) information ∆t and all past partial functions γ11:t−1 and γ21:t−1. The coordinator
uses a decision rule ψt to map this information to its decision, that is,

(γ1t , γ
2
t ) = ψt(∆t, γ

1
1:t−1, γ

2
1:t−1), (11)

or equivalently,

γkt = ψk
t (∆t, γ

1
1:t−1, γ

2
1:t−1), k = 1, 2. (12)

The choice of ψ = {ψt; t = 1, . . . , T} is called a coordination strategy. Ψ denotes the class of
all possible coordination strategies. The performance of a coordinating strategy is given by the
expected total cost under that strategy, that is,

Ĵ (ψ) = E
ψ

{

T
∑

t=1

ct(Xt, U
1
t , U

2
t )

}

(13)

where the expectation is with respect to the joint measure on all the system variables induced by
the choice of ψ. The coordinator has to solve the following optimization problem.

Problem 2 (The Coordinator’s Optimization Problem) Given the system model of Prob-
lem 1, choose a coordination strategy ψ∗ from Ψ that minimizes the expected cost given by (13).

Stage 2

We now show that the Problem 2 is equivalent to Problem 1. Specifically, we will show that any
design g for Problem 1 can be implemented by the coordinator in Problem 2 with the same value of
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the problem objective. Conversely, any coordination strategy ψ in Problem 2 can be implemented
in Problem 1 with the same value of the performance objective.

Any design g for Problem 1 can be implemented by the coordinator in Problem 2 as follows. At
time t the coordinator selects partial functions (γ1t , γ

2
t ) using the common (shared) information δt

as follows.
γkt (·) = gkt (·, δt) =: ψ

k
t (δt), k = 1, 2. (14)

Consider Problems 1 and 2. Use design g in Problem 1 and coordination strategy ψ given
by (14) in Problem 2. Fix a specific realization of the initial state X0, the plant disturbance
{Vt; t = 1, . . . , T}, and the observation noise {W 1

t ,W
2
t ; t = 1, . . . , T}. Then, the choice of ψ

according to (14) implies that the realization of the state {Xt; t = 1, . . . , T}, the observations
{Y 1

t , Y
2
t ; t = 1, . . . , T}, and the control actions {U1

t , U
2
t ; t = 1, . . . , T} are identical in Problem 1

and 2. Thus, any design g for Problem 1 can be implemented by the coordinator in Problem 2 by
using a coordination strategy given by (14) and the total expected cost under g in Problem 1 is
same as the total expected cost under the coordination strategy given by (14) in Problem 2.

By a similar argument, any coordination strategy ψ for Problem 2 can be implemented by the
control stations in Problem 1 as follows. At time 1, both stations know δ1; so, all of them can
compute γ11 = ψ1

1(δ1), γ
2
1 = ψ2

1(δ1). Then station k chooses action uk1 = γk1 (λ
k
1). Thus,

gk1 (λ
k
1 , δ1) = ψk

1 (δ1)(λ
k
1), k = 1, 2. (15a)

At time 2, both stations know δ2 and γ11 , γ
2
1 , so both of them can compute γk2 = ψk

2 (δ2, γ
1
1 , γ

2
1),

k = 1, 2. Then station k chooses action uk2 = γk2 (λ
k
2). Thus,

gk2 (λ
k
2 , δ2) = ψk

2 (δ2, γ
1
1 , γ

2
1)(λ

k
2), k = 1, 2. (15b)

Proceeding this way, at time t both stations know δt and γ11:t−1 and γ21:t−1, so both of them can
compute (γ11:t, γ

2
1:t) = ψt(δt, γ

1
1:t−1, γ

2
1:t−1). Then, station k chooses action ukt = γkt (λ

k
t ). Thus,

gkt (λ
k
t , δt) = ψk

t (δt, γ
1
1:t−1, γ

2
1:t−1)(λ

k
t ), k = 1, 2. (15c)

Now consider Problems 2 and 1. Use coordinator strategy ψ in Problem 2 and design g given
by (15) in Problem 1. Fix a specific realization of the initial state X0, the plant disturbance {Vt;
t = 1, . . . , T}, and the observation noise {W 1

t ,W
2
t ; t = 1, . . . , T}. Then, the choice of g according

to (15) implies that the realization of the state {Xt; t = 1, . . . , T}, the observations {Y 1
t , Y

2
t ;

t = 1, . . . , T}, and the control actions {U1
t , U

2
t ; t = 1, . . . , T} are identical in Problem 2 and 1.

Hence, any coordination strategy ψ for Problem 2 can be implemented by the stations in Problem 1
by using a design given by (15) and the total expected cost under ψ in Problem 2 is same as the
total expected cost under the design given by (15) in Problem 1.

Since Problems 1 and 2 are equivalent, we derive structural results for the latter problem. Unlike,
Problem 1, where we have multiple control stations, the coordinator is the only decision maker in
Problem 2.

Stage 3

We now look at Problem 2 as a controlled input-output system from the point of view of the coor-
dinator and identify a state sufficient for input-output mapping. From the coordinator’s viewpoint,
the input at time t has two components: a stochastic input that consists of the plant disturbance Vt
and observation noises W 1

t ,W
2
t ; and a controlled input that consists of the partial functions γ1t , γ

2
t .

7



The output is the observations Zt+1 given by (10). The cost is given by ct(Xt, U
1
t , U

2
t ). We want

to identify a state sufficient for input-output mapping for this system.
A variable is a state sufficient for input output mapping of a control system if it satisfies the

following properties (see [5]).

P1) The next state is a function of the current state and the current inputs.

P2) The current output is function of the current state and the current inputs.

P3) The instantaneous cost is a function of the current state, the current control inputs, and the
next state.

We claim that such a state for Problem 2 is the following.

Definition 1 For each t define
St := (Xt−1,Λ

1
t ,Λ

2
t ) (16)

✷

Next we show that St, t = 1, 2, . . . , T + 1, satisfy properties (P1)–(P3). Specifically, we have the
following.

Proposition 1

1. There exist functions f̂t, t = 2, . . . , T such that

St+1 = f̂t+1(St, Vt,W
1
t+1,W

2
t+1, γ

1
t , γ

2
t ). (17)

2. There exist functions ĥt, t = 2, . . . , T such that

Zt = ĥt(St−1). (18)

3. There exist functions ĉt, t = 1, . . . , T such that

ct(Xt, U
1
t , U

2
t ) = ĉt(St, γ

1
t , γ

2
t , St+1). (19)

✷

Proof Part 1 is an immediate consequence of the definitions of St and Λk
t , the dynamics of the

system given by (1), and the evaluations carried out by the control stations according to (9). Part 2
is an immediate consequence of the definitions of state St, observation Zt, and private information
Λk
t . Part 3 is an immediate consequence of the definition of state and the evaluations carried out

by the control stations according to (9). �

Stage 4

Proposition 1 establishes St as the state sufficient for input-output mapping for the coordinator’s
problem. We now define information states for the coordinator.

Definition 2 (Information States) For a coordination strategy ψ, define information states Πt

as
Πt(st) := P

ψ
(

St = st
∣

∣∆t, γ
1
1:t−1, γ

2
1:t−1

)

. (20)

✷
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As shown in Proposition 1, the state evolution of St depends on the controlled inputs (γ1t , γ
2
t ) and

the random noise (Vt,W
1
t+1,W

2
t+1). This random noise is independent across time. Consequently,

Πt evolves in a controlled Markovian manner as below.

Proposition 2 For t = 1, . . . , T − 1, there exists functions Ft (which do not depend on the coor-
dinator’s strategy) such that

Πt+1 = Ft+1(Πt, γ
1
t , γ

2
t , Zt+1). (21)

✷

Proof See Appendix A. �

At t = 1, since there is no shared information, Π1 is simply the unconditional probability P (S1) =
P
(

X0, Y
1
1 , Y

2
1

)

. Thus, Π1 is fixed a priori from the joint distribution of the primitive random
variables and does not depend on the choice of coordinator’s strategy ψ. Proposition 2 shows
that at t = 2, . . . , T , Πt depends on the strategy ψ only through the choices of γ11:t−1 and γ21:t−1.
Moreover, as shown in Proposition 1, the instantaneous cost at time t can be written in terms of
the current and next states (St, St+1) and the control inputs (γ1t , γ

2
t ). Combining the above two

properties, we get the following:

Proposition 3 The process Πt, t = 1, 2, . . . , T is a controlled Markov chain with γ1t , γ
2
t as the

control actions at time t, i.e.,

P
(

Πt+1

∣

∣∆t,Π1:t, γ
1
1:t, γ

2
1:t

)

= P
(

Πt+1

∣

∣Π1:t, γ
1
1:t, γ

2
1:t

)

= P
(

Πt+1

∣

∣Πt, γ
1
t , γ

2
t

)

. (22)

Furthermore, there exists a deterministic function Ct such that

E
{

ĉt(St, γ
1
t , γ

2
t , St+1)

∣

∣∆t,Π1:t, γ
1
1:t, γ

2
1:t

}

= Ct(Πt, γ
1
1 , γ

2
t ). (23)

✷

Proof See Appendix B. �

The controlled Markov property of the process {Πt, t = 1, . . . , T} immediately gives rise to the
following structural result.

Theorem 1 In Problem 2, without loss of optimality we can restrict attention to coordination
strategies of the form

(γ1t , γ
2
t ) = ψt(Πt), t = 1, . . . , T. (24)

✷

Proof From Proposition 3, we conclude that the optimization problem for the coordinator is to
control the evolution of the controlled Markov process {Πt, t = 1, 2, . . . , T} by selecting the partial
functions {γ1t , γ

2
t , t = 1, 2, . . . , T} in order to minimize

∑T
t=1 E

{

Ct(Πt, γ
1
t , γ

2
t )
}

. This is an instance
of the well-known Markov decision problems where it is known that the optimal strategy is a
function of the current state. Thus, the structural result follows from Markov decision theory [1].�

The above result can also be stated in terms of the original problem.
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Theorem 2 (Structural Result) In Problem 1 with K = 2, without loss of optimality we can
restrict attention to coordination strategies of the form

Uk
t = gkt (Λ

k
t ,Πt), k = 1, 2. (25)

where
Πt = P

(g11:t−1,g
2
1:t−1)

(

Xt−1,Λ
1
t ,Λ

2
t

∣

∣∆t

)

(26)

where Π1 = P
(

X0, Y
1
1 , Y

2
1

)

and for t = 2, . . . , T , Πt is evaluated as follows:

Πt+1 = Ft+1(Πt, g
1
t (·,Πt), g

2
t (·,Πt), Zt+1) (27)

✷

Proof Theorem 1 established the structure of the optimal coordination strategy. As we argued
in Stage 2, this optimal coordination strategy can be implemented in Problem 1 and is optimal for
the objective (4). At t = 1, Π1 = P

(

X0, Y
1
1 , Y

2
1

)

is known to both controllers and they can use the
optimal coordination strategy to select partial functions according to:

(γ11 , γ
2
1) = ψ1(Π1)

Thus,
Uk
1 = γk1 (Λ

k
1) = ψk

1 (Π1)(Λ
k
1) =: g

k
1 (Λ

k
1 ,Π1), k = 1, 2. (28)

At time instant t+1, both controllers know Πt and the common observations Zt+1 = (Y 1
t−n+1, Y

2
t−n+1,

U1
t−n+1, U

2
t−n+1); they use the partial functions (g1t (·,Πt), g

2
t (·,Πt)) in equation (21) to evaluate

Πt+1. The control actions at time t+ 1 are given as:

Uk
t+1 = γkt+1(Λ

k
t+1) = ψt+1(Πt+1)(Λ

k
t+1)

=: gkt+1(Λ
k
t+1,Πt+1), k = 1, 2. (29)

Moreover, using the design g defined according to (29), the coordinator’s information state Πt can
also be written as:

Πt = P
ψ
(

Xt−1,Λ
1
t ,Λ

2
t

∣

∣∆t, γ
1
1:t−1, γ

2
1:t−1

)

= P
g
(

Xt−1,Λ
1
t ,Λ

2
t

∣

∣∆t, g
1:2
1 (·,Π1), . . . , g

1:2
t−1(·,Πt−1)

)

= P
(g1

1:t−1
,g2

1:t−1
)
(

Xt−1,Λ
1
t ,Λ

2
t

∣

∣∆t

)

(30)

where we dropped the partial functions from the conditioning terms in (30) because under the given
control laws (g11:t−1, g

2
1:t−1), the partial functions used from time 1 to t − 1 can be evaluated from

∆t (by using Proposition 2 to evaluate Π1:t−1). �

Theorem 2 establishes the first structural result stated in Section 1.4 for K = 2. In the next
section, we show how to extend the result for general K.

2.2. Extension to General K

Theorem 2 for two controllers (K = 2) can be easily extended to general K by following the same
sequence of arguments as in stages 1 to 4 above. Thus, at time t, the coordinator introduced in
Stage 1 now selects partial functions γkt : Lk 7→ Uk, for k = 1, 2, . . . ,K. The state sufficient for
input output mapping from the coordinator’s perspective is given as St := (Xt−1,Λ

1:K
t ) and the

information state Πt for the coordinator is

Πt(st) := P
ψ
(

St = st
∣

∣∆t, γ
1:K
1:t−1

)

. (31)

Results analogous to Propositions 1–3 can now be used to conclude the structural result of Theo-
rem 2 for general K.
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2.3. Sequential Decomposition

In addition to obtaining the structural result of Theorem 2, the coordinator’s problem also allows
us to write a dynamic program for finding the optimal control strategies as shown below. We first
focus on the two controller case (K = 2) and then extend the result to general K.

Theorem 3 The optimal coordination strategy can be found by the following dynamic program:
For t = 1, . . . , T , define the functions Jt : P {S} 7→ R as follows. For π ∈ P {S} let

JT (π) = inf
γ̃1,γ̃2

E
{

CT (ΠT , γ
1
T , γ

2
T )

∣

∣ΠT = π, γ1T = γ̃1, γ2T = γ̃2
}

. (32)

For t = 1, . . . , T − 1, and π ∈ P {S} let

Jt(π) = inf
γ̃1,γ̃2

E
{

Ct(Πt, γ
1
t , γ

2
t ) + Jt+1(Πt+1)

∣

∣Πt = π, γ1t = γ̃1, γ2t = γ̃2
}

. (33)

The arg inf (γ∗,1t , γ
∗,2
t ) in the RHS of Jt(π) is the optimal action for the coordinator at time t then

Πt = π. Thus,
(γ∗,1t , γ

∗,2
t ) = φ∗t (πt)

The corresponding control strategy for Problem 1, given by (15) is optimal for Problem 1. ✷

Proof As in Theorem 1, we use the fact that the coordinator’s optimization problem can be viewed
as a Markov decision problem with Πt as the state of the Markov process. The dynamic program
follows from standard results in Markov decision theory [1]. The optimality of the corresponding
control strategy for Problem 1 follows from the equivalence between the two problems. �

The dynamic program of Theorem 3 can be extended to general K in a manned similar to
Section 2.2

2.4. Computational Aspects

In the dynamic program for the coordinator in Theorem 3, the value functions at each time are
functions defined on the continuous space P {S}, whereas the minimization at each time step is over
the finite set of functions from the space of realizations of the private information of controllers
(Lk, k = 1, 2) to the space of control actions (Uk, k = 1, 2). While dynamic programs with
continuous state space can be hard to solve, we note that our dynamic program resembles the
dynamic program for partially observable Markov decision problems (POMDP). In particular, just
as in POMDP, the value-function at time T is piecewise linear in ΠT and by standard backward
recursion, it can be shown that value-function at time t is piecewise linear and concave function
of Πt. (See Appendix C). Indeed, the coordinator’s problem can be viewed as a POMDP, with
St as the underlying partially observed state and the belief Πt as the information state of the
POMDP. The characterization of value functions as piecewise linear and concave is utilized to find
computationally efficient algorithms for POMDPs. Such algorithmic solutions to general POMDPs
are well-studied and can be employed here. We refer the reader to [6] and references therein for a
review of algorithms to solve POMDPs.

2.5. One-step Delay

We now focus on the one-step delayed sharing information structure, i.e., when n = 1. For this case,
the structural result (5) asserted by Witsenhausen is correct [3]. At first glance, that structural
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result looks different from our structural result (7) for n = 1. In this section, we show that for
n = 1, these two structural results are equivalent.

As before, we consider the two-controller system (K = 2). When delay n = 1, we have

∆t = (Y 1
1:t−1, Y

2
1:t−1, U

1
1:t−1, U

2
1:t−1),

Λ1
t = (Y 1

t ), Λ2
t = (Y 2

t ),

and

Zt+1 = (Y 1
t , Y

2
t , U

1
t , U

2
t ).

The result of Theorem 2 can now be restated for this case as follows:

Corollary 1 In Problem 1 with K = 2 and n = 1, without loss of optimality we can restrict
attention to control strategies of the form:

Uk
t = gkt (Y

k
t ,Πt), k = 1, 2. (34)

where
Πt := P

(g11:t−1,g
2
1:t−1)

(

Xt−1, Y
1
t , Y

2
t

∣

∣∆t

)

(35)

✷

We can now compare our result for one-step delay with the structural result (5), asserted in [2]
and proved in [3]. For n = 1, this result state that without loss of optimality, we can restrict
attention to control laws of the form:

Uk
t = gkt (Y

k
t ,P (Xt−1 |∆t)), k = 1, 2. (36)

The above structural result can be recovered from (35) by observing that there is a one-to-one
correspondence between Πt and the belief P (Xt−1 |∆t). We first note that

Πt = P
(g1

1:t−1
,g2

1:t−1
)
(

Xt−1, Y
1
t , Y

2
t

∣

∣∆t

)

= P
(

Y 1
t

∣

∣Xt−1

)

· P
(

Y 2
t

∣

∣Xt−1

)

·P(g1
1:t−1

,g2
1:t−1

) (Xt−1 |∆t) (37)

As pointed out in [2, 3] (and proved later in this paper in Proposition 4), the last probability does
not depend on the functions (g11:t−1, g

2
1:t−1). Therefore,

Πt = P
(

Y 1
t

∣

∣Xt−1

)

·P
(

Y 2
t

∣

∣Xt−1

)

·P (Xt−1 |∆t) (38)

Clearly, the belief P (Xt−1 |∆t) is a marginal of Πt and therefore can be evaluated from Πt. More-
over, given the belief P (Xt−1 |∆t), one can evaluate Πt using equation (38). This one-to-one
correspondence between Πt and P (Xt−1 |∆t) means that the structural result proposed in this
paper for n = 1 is effectively equivalent to the one proved in [3].

3. Proof of the second structural result

In this section we prove the second structural result (8). As in Section 2, we prove the result for
K = 2 and then show how to extend it for general K. To prove the result, we reconsider the
coordinator’s problem at Stage 3 of Section 2 and present an alternative characterization for the
coordinator’s optimal strategy in Problem 2. The main idea in this section is to use the dynamics
of the system evolution and the observation equations (equations (1) and (2)) to find an equivalent
representation of the coordinator’s information state. We also contrast this information state with
that proposed by Witsenhausen.
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3.1. Two controller system (K = 2)

Consider the coordinator’s problem with K = 2. Recall that γ1t and γ2t are the coordinator’s actions
at time t. γkt maps the private information of the kth controller (Y k

t−n+1:t, U
k
t−n+1:t−1) to its action

Uk
t . In order to find an alternate characterization of coordinator’s optimal strategy, we need the

following definitions:

Definition 3 For a coordination strategy ψ, and for t = 1, 2, . . . , T we define the following:

1. Θt := P (Xt−n |∆t)

2. For k = 1, 2, define the following partial functions of γkm

rkm,t(·) := γkm(·, Y k
m−n+1:t−n, U

k
m−n+1:t−n), m = t− n+ 1, t− n+ 2, . . . , t− 1 (39)

Since γkm is a function that maps (Y k
m−n+1:m, U

k
m−n+1:m−1) to Uk

m, rkm,t(·) is a function that

maps (Y k
t−n+1:m, U

k
t−n+1:m−1) to Uk

m. We define a collection of these partial functions as
follows:

rkt := (rkm,t,m = t− n+ 1, t− n+ 2, . . . , t− 1) (40)

Note that for n = 1, rkt is empty. ✷

We need the following results to address the coordinator’s problem:

Proposition 4 1. For t = 1, . . . , T − 1, there exists functions Qt, Q
k
t , k = 1, 2, (which do not

depend on the coordinator’s strategy) such that

Θt+1 = Qt(Θt, Zt+1)

rkt+1 = Qk
t (r

k
t , Zt+1, γ

k
t ) (41)

2. The coordinator’s information state Πt is a function of (Θt, r
1
t , r

2
t ). Consequently, for t =

1, . . . , T , there exist functions Ĉt (which do not depend on the coordinator’s strategy) such
that

E
{

ĉt(St, γ
1
t , γ

2
t , St+1)

∣

∣∆t,Π1:t, γ
1
1:t, γ

2
1:t

}

= Ĉt(Θt, r
1
t , r

2
t , γ

1
t , γ

2
t ) (42)

3. The process (Θt, r
1
t , r

2
t ), t = 1, 2, . . . , T is a controlled Markov chain with γ1t , γ

2
t as the control

actions at time t, i.e.,

P
(

Θt+1, r
1
t+1, r

2
t+1

∣

∣∆t,Θ1:t, r
1
1:t, r

2
1:t, γ

1
1:t, γ

2
1:t

)

= P
(

Θt+1, r
1
t+1, r

2
t+1

∣

∣Θ1:t, r
1
1:t, r

2
1:t, γ

1
1:t, γ

2
1:t

)

= P
(

Θt+1, r
1
t+1, r

2
t+1

∣

∣Θt, r
1
t , r

2
t , γ

1
t , γ

2
t

)

. (43)

✷

Proof See Appendix D. �

At t = 1, since there is no sharing of information, Θ1 is simply the unconditioned probability
P (X0). Thus, Θ1 is fixed a priori from the joint distribution of the primitive random variables
and does not depend on the choice of the coordinator’s strategy ψ. Proposition 4 shows that the
update of Θt depends only on Zt+1 and not on the coordinator’s strategy. Consequently, the belief
Θt depends only on the distribution of the primitive random variables and the realizations of Z1:t.
We can now show that the coordinator’s optimization problem can be viewed as an MDP with
(Θt, r

1
t , r

2
t ), t = 1, 2, . . . , T as the underlying Markov process.
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Theorem 4 (Θt, r
1
t , r

2
t ) is an information state for the coordinator. That is, there is an optimal

coordination strategy of the form:

(γ1t , γ
2
t ) = ψt(Θt, r

1
t , r

2
t ), t = 1, . . . , T. (44)

Moreover, this optimal coordination strategy can be found by the following dynamic program:

JT (θ, r̃
1, r̃2) = inf

γ̃1,γ̃2
E

{

ĈT (ΘT , r
1
T , r

2
T , γ

1
T , γ

2
T )

∣

∣

∣
ΘT = θ, r1T = r̃1, r2T = r̃2, γ1T = γ̃1, γ2T = γ̃2

}

. (45)

For t = 1, . . . , T − 1, let

Jt(θ, r̃
1, r̃2) = inf

γ̃1,γ̃2
E

{

Ĉt(Θt, r
1
t , r

2
t , γ

1
1 , γ

2
t ) + Jt+1(Θt+1, r

1
t+1, r

2
t+1)

∣

∣

∣

∣

Θt,= θ,
r1t = r̃1, r2t = r̃2,

γ1t = γ̃1, γ2t = γ̃2

}

.

(46)
where θ ∈ P {X}, and r̃1, r̃2 are realizations of partial functions defined in (39) and (40). The
arg inf (γ∗,1t , γ

∗,2
t ) in the RHS of (46) is the optimal action for the coordinator at time t when

(Θt, r
1
t , r

2
t ) = (θ, r̃1, r̃2). Thus,

(γ∗,1t , γ
∗,2
t ) = ψ∗

t (Θt, r
1
t , r

2
t )

The corresponding control strategy for Problem 1, given by (15) is optimal for Problem 1. ✷

Proof Proposition 4 implies that the coordinator’s optimization problem can be viewed as an
MDP with (Θt, r

1
t , r

2
t ), t = 1, 2, . . . , T as the underlying Markov process and Ĉt(Θt, r

1
t , r

2
t , γ

1
t , γ

2
t )

as the instantaneous cost. The MDP formulation implies the result of the theorem. �

The following result follows from Theorem 4.

Theorem 5 (Second Structural Result) In Problem 1 with K = 2, without loss of optimality
we can restrict attention to coordination strategies of the form

Uk
t = gkt (Λ

k
t ,Θt, r

1
t , r

2
t ), k = 1, 2. (47)

where
Θt = P (Xt−n |∆t) (48)

and
rkt = {(gkm(·, Y k

m−n+1:t−n, U
k
m−n+1:t−n,∆m), t− n+ 1 ≤ m ≤ t− 1} (49)

✷

Proof As in Theorem 2, equations (15) can be used to identify an optimal control strategy for
each controller from the optimal coordination strategy given in Theorem 4. �

Theorem 4 and Theorem 5 can be easily extended for K controllers by identifying (Θt, r
1:K
t ) as

the information state for the coordinator.

3.2. Comparison to Witsenhausen’s Result

We now compare the result of Theorem 4 to Witsenhausen’s conjecture which states that there
exist optimal control strategies of the form:

Uk
t = gkt (Λ

k
t ,P (Xt−n |∆t)). (50)

Recall that Witsenhausen’s conjecture is true for n = 1 but false for n > 1. Therefore, we consider
the cases n = 1 and n > 1 separately:
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Delay n = 1

For a two-controller system with n = 1, we have

∆t = (Y 1
1:t−1, Y

2
1:t−1, U

1
1:t−1, U

2
1:t−1),

Λ1
t = (Y 1

t ), Λ2
t = (Y 2

t ),

and

r1t = ∅, r2t = ∅

Therefore, for n = 1, Theorem 5 implies that there exist optimal control strategies of the form:

Uk
t = gkt (Λ

k
t ,P (Xt−n |∆t)), k = 1, 2. (51)

Equation (51) is the same as equation (50) for n = 1. Thus, for n = 1, the result of Theorem 4
coincides with Witsenhausen’s conjecture which was proved in [3].

Delay n > 1

Witsenhausen’s conjecture implied that the controller k at time t can choose its action based only
on the knowledge of Λk

t and P (Xt−n |∆t), without any dependence on the choice of previous control
laws (g1:21:t−1). In other words, the argument of the control law gkt (that is, the information state
at time t) is separated from g1:21:t−1. However, as Theorem 5 shows, such a separation is not true
because of the presence of the collection of partial functions r1t , r

2
t in the argument of the optimal

control law at time t. These partial functions depend on the choice of previous n− 1 control laws.
Thus, the argument of gkt depends on the choice of g1:2t−n+1:t−1. One may argue that Theorem 5 can
be viewed as a delayed or partial separation since the information state for the control law gkt is
separated from the choice of control laws before time t− n+ 1.

Witsenhausen’s conjecture implied that controllers employ common information only to form a
belief on the state Xt−n; the controllers do not need to use the common information to guess each
other’s behavior from t−n+1 to the current time t. Our result disproves this statement. We show
that in addition to forming the belief on Xt−n, each agent should use the common information to
predict the actions of other agents by means of the partial functions r1t , r

2
t .

4. A Special Case of Delayed Sharing Information Structure

Many decentralized systems consist of coupled subsystems, where each subsystem has a controller
that perfectly observes the state of the subsystem. If all controllers can exchange their observations
and actions with a delay of n steps, then the system is a special case of the n-step delayed sharing
information structure with the following assumptions:

1. Assumption 1: At time t = 1, . . . , T , the state of the system is given as the vector Xt :=
(X1:K

t ), where Xi
t is the state of subsystem i.

2. Assumption 2: The observation equation of the kth controller is given as:

Y k
t = Xk

t (52)

This model is the same as the model considered in [7]. Clearly, the first structural result and the
sequential decomposition of Section 2 apply here as well with the observations Y k

t being replaced
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by Xk
t . Our second structural result simplifies when specialized to this model. Observe that in this

model

∆t = (Y 1:K
1:t−n, U

1:K
1:t−n) = (X1:t−n, U

1:K
1:t−n) (53)

and therefore the belief,

Θt = P (Xt−n |∆t) (54)

is 1 for the true realization of Xt−n and 0 otherwise. The result of Theorem 4 can now be restated
for this case as follows:

Corollary 2 In Problem 1 with assumptions 1 and 2, there is an optimal coordination strategy of
the form:

(γ1t , γ
2
t ) = ψt(Xt−n, r

1
t , r

2
t ), t = 1, . . . , T. (55)

Moreover, this optimal coordination strategy can be found by the following dynamic program:

JT (x, r̃
1, r̃2) = inf

γ̃1,γ̃2
E

{

ĈT (XT−n, r
1
T , r

2
T , γ

1
T , γ

2
T )

∣

∣

∣
XT−n = x, r1T = r̃1, r2T = r̃2, γ1T = γ̃1, γ2T = γ̃2

}

.

(56)
For t = 1, . . . , T − 1, let

Jt(x, r̃
1, r̃2) = inf

γ̃1,γ̃2
E







Ĉt(Xt−n, r
1
t , r

2
t , γ

1
1 , γ

2
t ) + Jt+1(Xt−n+1, r

1
t+1, r

2
t+1)

∣

∣

∣

∣

∣

∣

Xt−n = x,

r1t = r̃1, r2t = r̃2,

γ1t = γ̃1, γ2t = γ̃2







.

(57)

✷

We note that the structural result and the sequential decomposition in the corollary above is
analogous to Theorem 1 of [7].

5. Kurtaran’s Separation Result

In this section, we focus on the structural result proposed by Kurtaran [4]. We restrict to the two
controller system (K = 2) and delay n = 2. For this case, we have

∆t = (Y 1
1:t−2, Y

2
1:t−2, U

1
1:t−2, U

2
1:t−2),

Λ1
t = (Y 1

t , Y
1
t−1, U

1
t−1), Λ2

t = (Y 2
t , Y

2
t−1, U

2
t−1),

and

Zt+1 = (Y 1
t−1, Y

2
t−1, U

1
t−1, U

2
t−1).

Kurtaran’s structural result for this case states that without loss of optimality we can restrict
attention to control strategies of the form:

Uk
t = gkt (Λ

k
t ,Φt), k = 1, 2, (58)

where
Φt := P

g
(

Xt−2, U
1
t−1, U

2
t−1

∣

∣∆t

)

.

Kurtaran [4] proved this result for the terminal time-step T and simply stated that the result for
t = 1, . . . , T −1 can be established by the dynamic programming argument given in [8]. We believe
that this is not the case.
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In the dynamic programming argument in [8], a critical step is the update of the information
state Φt, which is given by [8, Eq (30)]. For the result presented in [4], the corresponding equation
is

Φt+1 = Ft(Φt, Y
1
t−1, Y

2
t−1, U

1
t−1, U

2
t−1). (59)

We believe that such an update equation cannot be established.
To see the difficulty in establishing (59), lets follow an argument similar to the proof of [8, Eq (30)]

given in [8, Appendix B]. For a fixed strategy g, and a realization δt+1 of ∆t+1, the realization ϕt+1

of Φt+1 is given by

ϕt+1 = P
(

xt−1, u
1
t , u

2
t

∣

∣ δt+1

)

= P
(

xt−1, u
1
t , u

2
t

∣

∣ δt, y
1
t−1, y

2
t−1, u

1
t−1, u

2
t−1

)

=
P
(

xt−1, u
1
t , u

2
t , y

1
t−1, y

2
t−1, u

1
t−1, u

2
t−1

∣

∣ δt
)

∑

(x′,a1,a2)∈X×U1×U2

P(Xt−1 = x′, U1
t = a1, U2

t = a2,y1t−1, y
2
t−1, u

1
t−1, u

2
t−1 | δt)

(60)

The numerator can be expressed as:

P
(

xt−1, u
1
t , u

2
t , y

1
t−1, y

2
t−1, u

1
t−1, u

2
t−1

∣

∣ δt
)

=
∑

(xt−2,y
1
t
,y2

t
)∈X×Y1×Y2

Pr(xt−1, u
1
t , u

2
t , y

1
t−1, y

2
t−1, u

1
t−1, u

2
t−1, xt−2, y

1
t , y

2
t |δt)

=
∑

(xt−2,y
1
t
,y2

t
)∈X×Y1×Y2

1g1
t
(δt,u1

t−1
,y1

t−1
,y1

t
)[u

1
t ] · 1g2

t
(δt,u2

t−1
,y2

t−1
,y2

t
)[u

2
t ] ·P

(

y1t
∣

∣ xt−1

)

· P
(

y2t
∣

∣xt−1

)

·P
(

xt−1

∣

∣ xt−2, u
1
t−1, u

2
t−1

)

· 1g1
t−1

(δt−1,u
1
t−2

,y1
t−2

,y1
t−1

)[u
1
t−1] · 1g2

t
(δt−1,u

2
t−2

,y2
t−2

,y2
t−1

)[u
2
t−2]

·P
(

y1t−1

∣

∣xt−2

)

·P
(

y2t−1

∣

∣xt−2

)

·P (xt−2 | δt) (61)

If, in addition to ϕt, y
1
t−1, y

2
t−1, u

1
t−1, and u

2
t−1, each term of (61) depended only on terms that are

being summed over (xt−2, y
1
t , y

2
t ), then (61) would prove (59). However, this is not the case: the

first two terms also depend on δt. Therefore, the above calculation shows that ϕt+1 is a function
of ϕt, Y

1
t−1, Y

2
t−1, U

1
t−1, U

2
t−1 and δt. This dependence on δt is not an artifact of the order in which

we decided to use the chain rule in (61) (we choose the natural sequential order in the system). No
matter how we try to write ϕt+1 in terms of ϕt, there will be a dependence on δt.

The above argument shows that it is not possible to establish (59). Consequently, the dynamic
programming argument presented in [8] breaks down when working with the information state
of [4], and, hence, the proof in [4] is incomplete. So far, we have not been able to correct the proof
or find a counterexample to it.

6. Conclusion

We studied the stochastic control problem with n-step delay sharing information structure and
established two structural results for it. Both the results characterize optimal control laws with
time-invariant domains. Our second result also establishes a partial separation result, that is, it
shows that the information state at time t, is separated from choice of laws before time t− n+ 1.
Both the results agree with Witsenhausen’s conjecture for n = 1. To derive our structural results,
we formulated an alternative problem from the point of a coordinator of the system. We believe
that this idea of formulating an alternative problem from the point of view of a coordinator which
has access to information common to all controllers is also useful for general decentralized control
problems, as is illustrated by [9] and [10].
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A. Proof of Proposition 2

Fix a coordinator strategy ψ. Consider a realization δt+1 of the common information ∆t+1. Let
(γ̃11:t, γ̃

2
1:t) be the corresponding choice of partial functions until time t. Then, the realization πt+1

of Πt+1 is given by
πt+1(st+1) = P

ψ
(

St+1 = st+1

∣

∣ δt+1, γ̃
1
1:t, γ̃

2
1:t

)

. (62)

Using Proposition 1 , this can be written as

∑

st,vt,w
1
t+1

,w2
t+1

1st+1
(f̂t+1(st, vt, w

1
t+1, w

2
t+1, γ̃

1
t , γ̃

2
t )) · P (Vt = vt) · P

(

W 1
t+1 = w1

t+1

)

· P
(

W 2
t+1 = w2

t+1

)

·Pψ
(

St = st
∣

∣ δt+1, γ̃
1
1:t, γ̃

2
1:t

)

. (63)

Since δt+1 = (δt, zt+1), the last term of (63) can be written as

P
ψ
(

St = st
∣

∣ δt, zt+1, γ̃
1
1:t, γ̃

2
1:t

)

=
P
ψ
(

St = st, Zt+1 = zt+1

∣

∣ δt, γ̃
1
1:t, γ̃

2
1:t

)

∑

s′ P
ψ
(

St = s′, Zt+1 = zt+1

∣

∣ δt, γ̃
1
1:t, γ̃

2
1:t

) . (64)

We can use (18) and the sequential order in which the system variables are generated to write

P
ψ
(

St = st, Zt+1 = zt+1

∣

∣ δt, γ̃
1
1:t, γ̃

2
1:t

)

= 1
ĥt(st)

(zt+1) · P
ψ
(

St = st
∣

∣ δt, γ̃
1
1:t−1, γ̃

2
1:t−1

)

= 1
ĥt(st)

(zt+1) · πt(st). (65)

Substituting (65), (64), and (63) into (62), we can write

πt+1(st+1) = Ft+1(πt, γ̃
1
t , γ̃

2
t , zt+1)(st+1)

where Ft+1(·) is given by (62), (63), (64), and (65).

B. Proof of Proposition 3

Fix a coordinator strategy ψ. Consider a realization δt+1 of the common information ∆t+1. Let π1:t
be the corresponding realization of Π1:t and (γ̃11:t, γ̃

2
1:t) the corresponding choice of partial functions

until time t. Then, for any Borel subset A ⊂ P {S}, where P {S} is the space of probability mass
functions over the finite set S (the space of realization of St), we can write using Proposition 2

P
(

Πt+1 ∈ A
∣

∣ δt, π1:t, γ̃
1
1:t, γ̃

2
1:t

)

=
∑

zt+1

1A(Ft+1(πt, γ̃
1
t , γ̃

2
t , zt+1)) · P

(

Zt+1 = zt+1

∣

∣ δt, π1:t, γ̃
1
1:t, γ̃

2
1:t

)

(66)

Now, using (18), we have

P
(

Zt+1 = zt+1

∣

∣ δt, π1:t, γ̃
1
1:t, γ̃

2
1:t

)

=
∑

st

1
ĥt(st)

(zt+1) ·P
(

St = st
∣

∣ δt, π1:t, γ̃
1
1:t, γ̃

2
1:t

)

=
∑

st

1
ĥt(st)

(zt+1) · πt(st) (67)
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Substituting (67) back in (66), we get

P
(

Πt+1 ∈ A
∣

∣ δt, π1:t, γ̃
1
1:t, γ̃

2
1:t

)

=
∑

zt+1

∑

st

1A(Ft+1(πt, γ̃
1
t , γ̃

2
t , zt+1)) · 1ĥt(st)

(zt+1) · πt(st)

= P
(

Πt+1 ∈ A
∣

∣πt, γ̃
1
t , γ̃

2
t

)

, (68)

thereby proving (22).
Now, using Proposition 1 we can write,

E
{

ĉt(St, γ
1
t , γ

2
t , St+1)

∣

∣ δt, π1:t, γ̃
1
1:t, γ̃

2
1:t

}

=
∑

st,vt,w
1
t+1

,w2
t+1

ĉt(st, γ̃
1
t , γ̃

2
t , f̂t+1(st, vt, w

1
t+1, w

2
t+1, γ̃

1
t , γ̃

2
t )) ·P (Vt = vt)

· P
(

W 1
t+1 = w1

t+1

)

·P
(

W 2
t+1 = w2

t+1

)

·P
(

St = st
∣

∣ δt, π1:t, γ̃
1
1:t, γ̃

2
1:t

)

=
∑

st,vt,w
1
t+1

,w2
t+1

ĉt(st, γ̃
1
t , γ̃

2
t , f̂t+1(st, vt, w

1
t+1, w

2
t+1, γ̃

1
t , γ̃

2
t )) ·P (Vt = vt)

· P
(

W 1
t+1 = w1

t+1

)

·P
(

W 2
t+1 = w2

t+1

)

· πt(st)

=: Ct(πt, γ̃
1
t , γ̃

2
t ). (69)

This proves (23).

C. Piecewise linearity and concavity of value function

Since Ct(Πt, γ
1
1 , γ

2
t ) = E

{

ĉt(St, γ
1
t , γ

2
t , St+1)

∣

∣∆t,Π1:t, γ
1
1:t, γ

2
1:t

}

, the value function at time T can
be written as,

JT (π) = inf
γ̃1,γ̃2

E
{

ĉT (ST , γ̃
1, γ̃2, ST+1)

∣

∣ΠT = π, γ1T = γ̃1, γ2T = γ̃2
}

. (70)

For a given choice of γ̃1, γ̃2, the expectation in equation (70) can be written as:

∑

sT ,vT ,w1
T+1

,w2
T+1

ĉT (sT , γ̃
1, γ̃2, f̂T+1(sT , vT , w

1
T+1, w

2
T+1, γ̃

1, γ̃2))

·P
(

VT = vT ,W
1
T+1 = w1

T+1,W
2
T+1 = w2

T+1

)

· π(sT ) (71)

The expression in (71) is linear in π. Therefore, the value function JT (π) is the infimum of finitely
many linear functions of π. Hence, JT (π) is a piecewise-linear (and hence concave) function. We
now proceed inductively.

First assume that Jt+1(π) is a concave function. Then, Jt+1 can be written as infimum of a
family of affine functions.

Jt+1(π) = inf
i

∑

s∈S

ai(s) · π(s) + bi, (72)

where ai(s), s ∈ S and bi are real numbers. The value function at time t is given as:

Jt(π) = inf
γ̃1,γ̃2

[

E
{

ĉt(St, γ̃
1, γ̃2, St+1)

∣

∣Πt = π, γ1t = γ̃1, γ2t = γ̃2
}

+ E
{

Jt+1(Πt+1)
∣

∣Πt = π, γ1t = γ̃1, γ2t = γ̃2
} ]

(73)
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For a given choice of γ̃1, γ̃2, the first expectation in (73) can be written as

∑

st,vt,w
1
t+1

,w2
t+1

ĉt(st, γ̃
1, γ̃2, f̂t+1(st, vt, w

1
t+1, w

2
t+1, γ̃

1, γ̃2))

· P
(

Vt = vt,W
1
t+1 = w1

t+1,W
2
t+1 = w2

t+1

)

· π(st) (74)

Thus, for a given choice of γ̃1, γ̃2, the first expectation in (73) is linear in π. Using Proposition 2,
the second expectation in (73) can be written as:

E
{

Jt+1(Ft+1(Πt, γ̃
1, γ̃2, Zt+1))

∣

∣Πt = π, γ1t = γ̃1, γ2t = γ̃2
}

=
∑

zt+1

Jt+1(Ft+1(π, γ̃
1, γ̃2, zt+1)) ·P

(

Zt+1 = zt+1

∣

∣Πt = π, γ1t = γ̃1, γ2t = γ̃2
)

=
∑

zt+1

[

inf
i

{

∑

s

ai(s) · (Ft+1(π, γ̃
1, γ̃2, zt+1))(s) + bi

}

]

·P
(

Zt+1 = zt+1

∣

∣Πt = π, γ1t = γ̃1, γ2t = γ̃2
)

(75)

We now focus on each term in the outer summation in (75). For each value of zt+1, these terms
can be written as:

inf
i

{

∑

s

ai(s) · (Ft+1(π, γ̃
1, γ̃2, zt+1))(s) ·P

(

Zt+1 = zt+1

∣

∣Πt = π, γ1t = γ̃1, γ2t = γ̃2
)

+ bi ·P
(

Zt+1 = zt+1

∣

∣Πt = π, γ1t = γ̃1, γ2t = γ̃2
)

}

(76)

We first note that the term bi · P
(

Zt+1 = zt+1

∣

∣Πt = π, γ1t = γ̃1, γ2t = γ̃2
)

is affine in π. This is
because:

bi ·P
(

Zt+1 = zt+1

∣

∣Πt = π, γ1t = γ̃1, γ2t = γ̃2
)

= bi ·
∑

s′∈S

1
ĥt(s′)

(zt+1) · π(s
′) (77)

Moreover, using the characterization of Ft+1 from the proof of Proposition 2 (Appendix A), we can
write the term with coefficients ai(s) in (76) as

ai(s) ·

{

∑

st,vt,w
1
t+1

,w2
t+1

1s(f̂t+1(st, vt, w
1
t+1, w

2
t+1, γ̃

1
t , γ̃

2
t ))

· P
(

Vt = vt,W
1
t+1 = w1

t+1,W
2
t+1 = w2

t+1

)

· 1
ĥ(st)

(zt+1)π(st)

}

(78)

which is also affine in π. Using equations (76), (77) and (78) in (75), we conclude that for a given
choice of γ̃1, γ̃2, the second expectation in (73) is concave in π. Thus, the value function Jt(π) is
the minimum of finitely many functions each of which is the sum of an affine and a concave function
of π. This implies that Jt is concave in π. This completes the induction argument.
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D. Proof of Proposition 4

1. Recall that Zt+1 = (Y 1
t−n+1, Y

2
t−n+1, U

1
t−n+1, U

2
t−n+1) and ∆t+1 = ∆t ∪ Zt+1. Fix a coordina-

tion strategy ψ and consider a realization δt+1 of ∆t+1. Then,

θt+1(xt−n+1) := P(Xt−n+1 = xt−n+1|δt+1)

= P(Xt−n+1 = xt−n+1|δt, y
1
t−n+1, y

2
t−n+1, u

1
t−n+1, u

2
t−n+1)

=
∑

x∈X

P(Xt−n+1 = xt−n+1|Xt−n = x, u1t−n+1, u
2
t−n+1) (79)

·P(Xt−n = x|δt, y
1
t−n+1, y

2
t−n+1, u

1
t−n+1, u

2
t−n+1)

=
∑

x∈X

P(Xt−n+1 = xt−n+1|Xt−n = x, u1t−n+1, u
2
t−n+1) (80)

·
P(Xt−n = x, y1t−n+1, y

2
t−n+1, u

1
t−n+1, u

2
t−n+1|δt)

∑

x′ P(Xt−n = x′, y1t−n+1, y
2
t−n+1, u

1
t−n+1, u

2
t−n+1|δt)

(81)

Consider the second term of (81), and note that under any coordination strategy ψ, the
variables u1t−n+1, u

2
t−n+1 are deterministic functions of y1t−n+1, y

2
t−n+1 and δt (which is same

as y1:21:t−n, u
1:2
1:t−n). Therefore, the second term of (81) can be written as

Pψ(u1t−n+1, u
2
t−n+1|y

1
t−n+1, y

2
t−n+1, δt) · P(y

1
t−n+1, y

2
t−n+1|Xt−n = x) · P(Xt−n = x|δt)

∑

x′ P
ψ(u1t−n+1, u

2
t−n+1|y

1
t−n+1, y

2
t−n+1, δt) ·P(y

1
t−n+1, y

2
t−n+1|Xt−n = x′) ·P(Xt−n = x′|δt)

=
P(y1t−n+1|Xt−n = x) · P(y2t−n+1|Xt−n = x) · θt(x)

∑

x′ P(y1t−n+1|Xt−n = x) · P(y2t−n+1|Xt−n = x) · θt(x′)
(82)

Substituting (82) in (81), we conclude that θt+1 is a function of θt and zt+1.

Consider next rkt+1 := (rk
m,(t+1), t−n+2 ≤ m ≤ t). Form = t, we have rk

t,(t+1)
:= γkt (·, Y

k
t−n+1).

Since Y k
t−n+1 is a part of Zt+1, therefore rk

t,(t+1) is a function of γkt and Zt+1. Also, for
m = t− n+ 2, t− n+ 3, . . . , t− 1,

rkm,t+1(·) := γkm(·, Y k
m−n+1:t+1−n, U

k
m−n+1:t+1−n)

= γkm(·, Y k
t−n+1, U

k
t−n+1, Y

k
m−n+1:t−n, U

k
m−n+1:t−n)

= rkm,t(·, Y
k
t−n+1, U

k
t−n+1) (83)

Thus, for m = t− n+ 2, t− n+ 3, . . . , t− 1, rkm,t+1 is a function of rkm,t and Zt+1.

2. We will first show that the coordinator’s belief Πt defined in (20) is a function of (Θt, r
1
t , r

2
t ).

That is, there exist functions Ht, for t = 1, 2, . . . , T , such that

Πt = Ht(Θt, r
1
t , r

2
t ) (84)

Using this fact with using equation (23) from Proposition 3, we can conclude that

E
{

ĉt(St, γ
1
t , γ

2
t , St+1)

∣

∣∆t,Π1:t, γ
1
1:t, γ

2
1:t

}

= Ct(Πt, γ
1
1 , γ

2
t )

= Ĉt(Θt, r
1
t , r

2
t , γ

1
1 , γ

2
t ) (85)

where we use the fact that Πt is a function of (Θt, r
1
t , r

2
t ) in equation (85). In order to

prove (84), we need the following lemma:
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Lemma 1 St := (Xt−1,Λ
1
t ,Λ

2
t ) is a deterministic function of (Xt−n, Vt−n+1:t−1,W

1
t−n+1:t,

W 2
t−n+1:t, r

1
t , r

2
t ). That is, there exists a fixed deterministic function Dt such that

St := (Xt−1,Λ
1
t ,Λ

2
t ) = Dt(Xt−n, Vt−n+1:t−1,W

1
t−n+1:t,W

2
t−n+1:t, r

1
t , r

2
t ) (86)

✷

Proof We can reconstruct (Xt−n+1:t−1,Λ
1
t ,Λ

2
t ) from (Xt−n, Vt−n+1:t−1,W

1
t−n+1:t,

W 2
t−n+1:t, r

1
t , r

2
t ) using the given dynamics of the system (1), the observation equation (2) and

the definition of rkt in a straight forward manner. Firstly note that

(Xt−n+1:t−1,Λ
1
t ,Λ

2
t ) = (Xt−n+1:t−1, Y

1:2
t−n+1:t, U

1:2
t−n+1:t−1) (87)

We first look at the random variables (Xt−n+1, Y
1:2
t−n+1, U

1:2
t−n+1). We have, for k = 1, 2,

Y k
t−n+1 = hkt−n+1(Xt−n,W

k
t−n+1)

Uk
t−n+1 = rkt−n+1,t(Y

k
t−n+1)

(88)

Further, by the system dynamics,

Xt−n+1 = ft(Xt−n, U
1:2
t−n+1, Vt−n+1) (89)

Thus (Xt−n+1, Y
1:2
t−n+1, U

1:2
t−n+1) is a deterministic function of (Xt−n,W

1:2
t−n+1, Vt−n+1, r

1:2
t−n+1,t).

Now assume (Xt−n+1:m, Y
1:2
t−n+1:m, U

1:2
t−n+1:m) is a function of (Xt−n,W

1:2
t−n+1:m, Vt−n+1:m, r

1:2
t−n+1:m,t).

We have shown above that this is true for m = t− n+ 1. Then, for m = t− n+ 1 : t− 2,

Y k
m+1 = hkm+1(Xm,W

k
m+1)

Uk
m+1 = rkm+1,t(Y

k
t−n+1:m+1, U

k
t−n+1:m)

Further, by the system dynamics,

Xm+1 = ft(Xm, U
1:2
m+1, Vm+1) (90)

Thus, (Xm+1, Y
1:2
m+1, U

1:2
m+1) is a deterministic function of

(Xm, Y
1:2
t−n+1:m, U

1:2
t−n+1:m,W

1:2
m+1, Vm+1, r

1:2
m+1,t)

Combining this with our induction hypothesis, we conclude that (Xt−n+1:m+1, Y
1:2
t−n+1:m+1,

U1:2
t−n+1:m+1) is a function of (Xt−n,W

1:2
t−n+1:m+1, Vt−n+1:m+1, r

1:2
t−n+1:m+1,t). Thus, by induc-

tion we have that
(Xt−n+1:t−1, Y

1:2
t−n+1:t−1, U

1:2
t−n+1:t−1)

is a function of
(Xt−n,W

1:2
t−n+1:t−1, Vt−n+1:t−1, r

1:2
t−n+1:t−1,t)

Finally noting that Y k
t = hkt (Xt−1,W

k
t ) and that rkt = rkt−n+1:t−1,t, we can conclude that

there exists a deterministic function D̂t such that

(Xt−n+1:t−1, Y
1:2
t−n+1:t, U

1:2
t−n+1:t−1) = D̂t(Xt−n, Vt−n+1:t−1,W

1
t−n+1:t,W

2
t−n+1:t, r

1
t , r

2
t ) (91)

This implies the existence of functions Dt such that

St := (Xt−1,Λ
1
t ,Λ

2
t ) = Dt(Xt−n, Vt−n+1:t−1,W

1
t−n+1:t,W

2
t−n+1:t, r

1
t , r

2
t ) (92)

�

22



Now consider

Πt(st) := P
ψ
(

St = st
∣

∣∆t, γ
1
1:t−1, γ

2
1:t−1

)

=
∑

xt−n,vt−n+1:t−1,

w1:2
t−n+1:t,

r̃1
t
,r̃2

t

1st{Dt(xt−n, vt−n+1:t−1, w
1:2
t−n+1:t, r̃

1
t , r̃

2
t )}

·P
(

xt−n, vt−n+1:t−1, w
1:2
t−n+1:t, r̃

1
t , r̃

2
t

∣

∣∆t, γ
1
1:t−1, γ

2
1:t−1

)

(93)

Note that r1t , r
2
t are completely determined by ∆t and γ

1:2
1:t−1 and the noise random variables

vt−n+1:t−1, w
1:2
t−n+1:t are independent of the conditioning terms and Xt−n. We can therefore

write (93) as
∑

1st{Dt(xt−n, vt−n+1:t−1, w
1:2
t−n+1:t, r̃

1
t , r̃

2
t )} ·P

(

vt−n+1:t−1, w
1:2
t−n+1:t

)

· 1r̃1
t
,r̃2

t
(r1t , r

2
t ) ·P

(

xt−n

∣

∣∆t, γ
1
1:t−1, γ

2
1:t−1

)

(94)

In the last term of (94), we can drop γ1:21:t−1 from the conditioning terms since they are
functions of ∆t. The last term is therefore same as P (xt−n |∆t) = Θt. Thus, Πt is a function
of Θt and r

1
t , r

2
t .

3. Consider the following probability:

P
(

Θt+1 = θt+1, r
1
t+1 = r̃1t+1, r

2
t+1 = r̃2t+1

∣

∣ δt, θ1:t, γ̃
1:2
1:t , r̃

1
1:t, r̃

2
1:t

)

=
∑

zt+1

1θt+1
(Qt+1(θt, zt+1)) · 1r̃1

t+1
(Q1

t+1(r̃
1
t , γ̃

1
t , zt+1))

· 1r̃2
t+1

(Q2
t+1(r̃

2
t , γ̃

2
t , zt+1)) · P

(

Zt+1 = zt+1

∣

∣ δt, γ̃
1:2
1:t , r̃

1
1:t, r̃

2
1:t

)

(95)

The probability in equation (95) can be written as:

P
(

Zt+1 = zt+1

∣

∣ δt, γ̃
1:2
1:t , r̃

1
1:t, r̃

2
1:t

)

=
∑

st

1
ĥt(st)

(zt+1) ·P
(

St = st
∣

∣ δt, γ̃
1:2
1:t , r̃

1
1:t, r̃

2
1:t

)

=
∑

st

1
ĥt(st)

(zt+1) ·P (St = st | δt)

=
∑

st

1
ĥt(st)

(zt+1) · πt(st)

=
∑

st

1
ĥt(st)

(zt+1) ·Ht(θt, r̃
1
t , r̃

2
t )(st) (96)

Substituting (96) back in (95), we get

P
(

Θt+1 = θt+1, r
1
t+1 = r̃1t+1, r

2
t+1 = r̃2t+1

∣

∣ δt, θ1:t, γ̃
1:2
1:t , r̃

1
1:t, r̃

2
1:t

)

=
∑

zt+1,st

1θt+1
(Qt+1(θt, zt+1)) · 1r̃1

t+1
(Q1

t+1(r̃
1
t , γ̃

1
t , zt+1))

· 1r̃2
t+1

(Q2
t+1(r̃

2
t , γ̃

2
t , zt+1)) · 1ĥt(st)

(zt+1) ·Ht(θt, r̃
1
t , r̃

2
t )(st)

= P
(

Θt+1 = θt+1, r
1
t+1 = r̃1t+1, r

2
t+1 = r̃2t+1

∣

∣ θt, r̃
1
t , r̃

2
t , γ̃

1
t , γ̃

2
t

)

(97)

thereby proving (43).
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