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Uniting local and global output feedback controllers

Christophe Prieur, and Andrew R. Teel

Abstract—We consider control systems for which we know two ~ When considering only state feedbacks, this problem has
stabilizing output feedback controllers. One is globally aymptot-  peen already studied and solved in [22] (cf. [30]). In thégre
ically stabilizing, while the other one is only locally asynptotically ence it is proved that, for general control systems, thitingi
stabilizing. We look for a composite output feedback contrb ’ . ' .
law that is equal to the local feedback on a neighborhood problem cannot be solved by Cons_'de”ng only contlnuous
of the origin and that is globally asymptotically stabilizing. feedbacks (best to our knowledge this problem remains open
Since we want some robustness with respect to measurementwhen particularizing to some classes of nonlinear systems
noise, actuator errors and external disturbances, we needot guch as the one considered in Section IV below). When using
consider hybrid output feedback controllers. Under an inpu-  giscontinuous feedbacks, we may introduce sensitivityrio a

output-to-state stability assumption, we exhibit a solutbn of bit I t noi The desi f di "
this uniting problem by means of a dynamic hybrid output Iltrary small measurement noise. fhe design or disconusuo

feedback controller. Then we particularize our study to linear Stabilizing controllers guaranteeing some robustnesseiss
control systems with saturation at the input for which we knov  measurement noise is possible with sample and hold [6], [26]
two stabilizing output feedback controllers. One is a noniear  An alternative approach is found in the notion of hysteresis
globally asymptotically stabilizing controller, while the other switching, taking advantage of the existence of a regionrevhe
one is a high-performance linear only locally asymptoticdly ’ . .

stabilizing controller. We specify numerically tractable conditions both 9UtPUt controllerso andu_l are appropriate. This SHQQeSIS
to solve this uniting problem. Finally we illustrate our main considering the class of hybrid controllers to solve thiiing
results by means of numerical examples. controllers problem as done in [22] in the state feedbacks ca

Keywords hybrid systems, global stabilization, local per-(See also [9]). In [23] it is shown that the class of asymptoti

cally stable hybrid systems have, under appropriate regyula
formance, output feedback, robustness y St y Y . bprop o
properties, a robustness with respect to small measurement

noise, and external disturbances. This result generalvihes
|. INTRODUCTION has long been appreciated for continuous systems (see [7],
[18]).
Background

In nonlinear control system theory, we have now numero@ntribution
tools to design (globally) asymptotically stabilizing put
feedbacks, see e.g. [1], [4], [20], [24]. However, if such
feedbacks give a satisfactory answer to the global asyioptot x=f(x,u) , y=h(x) (1)
stabilization problem they are not necessarily intended to ) ) ) ]
address the performance problem. As opposed to this ca¥Beref 5an x RM— R" is locally Lipschitz with f(0,0) =0
for instance via linearization, one may design output fee@Ndh:R" —RP is continuously differentiable with(0) = 0.
back controllers addressing satisfactorily both the agptigp W€ assume that two different continuous dynamic output
stabilization and the performance problems but only lgycalfé@dback stabilizersy = ao(h(x),%o), o = $o(h(x),{o) and
A practical example of such a framework is given by [291 = %1(N(X),21), L1 = 91(h(x), (1) are given. We assume also
This leads us to the idea of uniting a local (optimal) outpifiat the nonlinear system (1) is input-output-to-statélsta
controller with a global (stabilizing) output controllere. (IOSS) as introduced in [17] (see also [2]). Roughly spegkin
given 1) an output feedback controll&p able to stabilize S Property allows us to estimate an upper bound on the
locally while providing better performance and 2) a coriéwl magnitude of the state of the system on the basis of past input

=, providing global asymptotic stability, we are looking for2nd output signals. _ _ _

a new output feedback providing uniform global asymptotic FOr linéar systems this property is equivalent with the usua

stability for the overall system while matching exactly thgetectability property (see [17, Prop. 2.6]) that if the puit

local controllersy when the system state component is in § held equal to zero, the resulting constrained dynamiue ha

neighborhood of the origin. the origin asymptotically stable. However this latter pedy is

weaker than the 0SS for general nonlinear systems. Moreove
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Our first contributionconcerns nonlinear control systems



on a neighborhood of the origin and such that the systemherex € R", y € RP, ue R™, A, B, andC are matrices of
in closed loop with the hybrid feedback is globally asympappropriate dimensions, and “sat” denotes the usual (decen
totically stable. The approach described in [22] for theestatralized and symmetric) saturation map d&f* — R™ defined
feedbacks case can not be applied, since the norm of the statefor all u € R™, and for all 1<i<m,
is known only asymptotically. Moreover the system in closed
loop with the hybrid controller proposed here has the reiyla
properties required in [23]. Thus we also get a robustnefs wi
respect to small measurement noise, and external distteban
that is, for any such small perturbations, the perturbetesys In the previous,u € R™ is a given vector, with positive
remains globally asymptotically stable (see Section llobel componentsi;, fori=1,...,m.
for a precise statement of this result). The said class ofilyb We assume that two different continuous dynamic output
controllers has been introduced in [10] and depends only feedback stabilizers are given: a linear ame- Co{o + Doy,
the output. It has a dynamic stalg continuous dynamics {o = Aglo + Bgy, and a nonlinear one = a1(Cx, (1), {1 =
{=v(h(x),Q), if { € ¢, and discrete dynami€s" =w(h(x),{), ¢1(Cx,{1). We know that the saturation nonlinearity at the
if €. The system (1) will be in closed loop with the outpuinput asks for special care, and the nonlinear system (2) in
of the hybrid controller, i.eu=u(h(x),{) if (€ c. closed loop with the linear controllar= Cylo+ Doy, (o =
Oursecond theoremakes explicit a hybrid output feedbackAolo + Boy may be unstable for some large initial conditions,
controller solving the uniting problem under some more guaaven if the linear system
titative and weaker assumptions. These conditions aréenrit .
in terms of local and global I0SS-Lyapunov functions and X=AX+Bu,y=Cx ®)
local and global norm-observers which exist as soon as e closed loop withu = CoZo + Doy, Zo = Aolo + By is
system (1) is 10SS, as proven in [17] (see also [15]). Segymptotically stable.
Section 11l below for more details. In Section IV below, we make explicit numerical conditions
to design a hybrid output feedback controller solving thi&-un
, o .ing problem, i.e. which is equal to the linear local con&oll
Ong CI"?ISS of nonlinear systems for Wh'c_h It is crucq[;r initial conditions in a neighborhood of the origin, andttw
to unite high-performance local controllers with globalesn a global basin of attraction. Thus the hybrid controller has

s the .C'a5§ of linear systems \.N'th saturation at th_e InplI'(B‘cally the same performance as the linear controller, and i
Saturation is one of the most important nonlinearities thg}

imi | ¢ : licati obally asymptotically stabilizing.
imits control systems performance in many applications. T ¢ paper is organized as follows. In Section I, we

IS know_n that the use of _Imgar_ cor_1tro||ers_ for systems th?ﬁake precise the problem under consideration in this paper
are subject to amplitude limitation in the input may reducgnd we state the first theorem, namely the existence of a

the performance of the closed-loop system or even lead ot?namic hybrid output feedback controller solving the ungjt

instapility (this is usually called the windup phenomenabroblem under appropriate hypotheses. In Section Ill, wkana
Many different approaches exist in the literature for thsigie

our assumptions more quantitative in order to explicit our

of sta;ic ag d dlyznamzii Iingar anlti-win3dlup %ompensatolr_s (SESntroller. This is the second theorem of this paper. IniBect
eg. | ]’. (8], [ ].’ [ ].)' ee also [ _] where a noniineayy, e particularize our study to the uniting problem of adbc
fi¥ear stabilizer and a global nonlinear feedback for adime

sa(u)g) = § Uiy I —T) <ug <Tg) ,

output feedback controller with aglopally stabilizing tiopar of Section I1l, and thus which allow us to design a hybrid
°“tp!“ feedback controller. In th?.th'rd part of this worle_e{s controller solving the uniting problem. We illustrate thisrd
Section 1V), we address the uniting problem of local linegg oo, by some simulations in Section V. Some technical

stabilizer with global nonlinear stabilizer, i.e. we sggcome proofs are contained in the appendix (see Section VI and

nur_‘nenca“y tractable c_ondmons to desgn a hybrid coIn‘&ro. Section VII). Section VIII contains some concluding remsark
which unites a prescribed global, nonlinear controllerhwit

a predesigned local, linear controller. These conditiores a
written in terms of a set of linear matrix inequalities (LMIs l. PROBLEM STATEMENT AND EXISTENCE OF A SOLUTION
which can be solved by efficient numerical solvers. Our ttesul OF THE UNITING PROBLEM

can be seen as an anti-windup result since, from a locallyln this section, we define precisely the problem under
stabilizing controller, we build a global stabilizer. Butro consideration in this paper and we state the existence of
approach shows also how we can use output measuremengplution under appropriate assumptions (see Theorem 2.1
to piece together arbitrary local and global output feedibabelow).

controllers. Let us consider two continuous dynamic output feedback
More preciselyin the third partof this work, we focus on controllersl(aq,d)ql), forge {0, 1|}, whereag : RP x R0 —>|Rm,
the following class of control systems bo: RP xR0 — RO, a3 : RPx Rt — R™M, and¢y : RP xRt —

R" are continuous functions vanishing at the origin. Let us
x = Ax+Bsatu) , y=Cx (2) make explicit our assumption.



Assumption 1: 1. (local dynamic controllerJhe origin (S2) for all (t, j) € dom(x,{) such that(t,j + 1) € dom(x, (),
of R" x R0 is locally asymptotically stable for the systenwe have{(t, j) € » and

% = f(xao(h(x),%)) , @ { X(t,j+1) = x(t,j) @®
Zo = ¢o(h(x),%) ; {t,j+1) = w(h(x(t,])),L(t.]))
2. (global dynamic controller}he origin of R" x Rt is  (S3)(x,2)(0,0) = (x°,2°).
globally attractive for the system Note that, in the previous statements (as in [10], [11], ]23]
x = f(xau(h(x),2)), it is required that the initial conditions and the traje@srtake
2 = a(h(x).20) ; (5) values inR" x (¢ UD). Let us recall that the origin iglobally

asymptotically stabléor the system (6), if

3. (I0SS)the system (1) is input-output-to-state stable. 04| stapility) for eache > 0, there existsS > 0 such
To be self-contained, let us recall that the system (1) isSSOS that for all (x2, 2°) satisfying|x°| + [2°] < & and(x°,2°) €

if there exist functiong of classx £ andy pf classyc, sgch R x (c UD), every trajectory of (6) starting dt®, (0
that, for_aIIl u:R>o— R™ and for all maximal trajectories satisfges|x(t,)j)| 12t )| <e, for all (t, ) in do{:(‘r(x,Z));
of (1) with u=u(t), we have, for alft & [0, tsup(x)), « (global convergence) for al(x°,Z°) € R" x (¢ U D),
()] < max{B(|x(0)],1), Y(SUR< oy [¥(S)]), V(SURc o [U(S))} ,  every trajectory of (6) starting a(x’,{%) satisfies
|Imt+jH°° |X(t7 J)| + |Z(t7 J)| =0.
Considering system (6) under measurement noesee; )
and external disturbancédy, d;) leads to the following system

where we denote the Euclidean norms bl and tsyp(X)
denotes the supremum of the domain of a trajectoof (1).
This notion is studied in [17]. It is proven in particular tha

this implies the existence of a norm-observer (this not®n i x = f(x,u(h(x+e),{+e))+dy
used in Section Il below). Weaker conditions for the existe = v(h(x+e).0+&))+d } if {+epec,
of a norm-observer are given in [15].
In this paper we consider a dynamic hybrid output feed- xt = x .
back controller(c,,u,v,w) where, for a given integef, 0 = wh(x+80).0+e) } if (+e €D .
c c R ando c R are closed sets, while: RP x ¢ — R™, 9)

V:RPx ¢ —R' andw:RPx» —R' are continuous functions. Now, let us recall thatadmissible measurement noisad
Let us make explicit our notion of trajectories of (1) inadmissible external disturbancesre functionse = (e, €;)
closed loop with a dynamic hybrid output feedback controlleyndd = (dy,dz) in L2, (R" x R' x R>o x N;R" x R') that are
(c,?p,u,v,w), and the notion of robust asymptotic stabilitycontinuous in(x,{) € R"x R! for each(t,j) € R>o x N. We
The closed- -loop system lies in the class of hybrid systerggy that the origin isobustly globally asymptotically stable
as considered in e.g., [3], [19]. Here we consider the notiggr the system (6), if there exists a positive definite camtins
of trajectories as studied in [10], [11], [23]. First we rBcafynction p : R" x R' — R>o such that for all admissible
that a setSC R0 x N is a compact hybrid time domain measurement noise and admissible external disturbanabs
if S= UJ:O[[tjatJJrl] j] for some finite sequence of timessatisfying, for all(x,2) € R" x R' and for all(t, j) € Rso x N,
0=t <t1 <t ... <ty. The setSis ahybrid time domain |g(x, . t,})| < p(x,2) and |d(x,L.t, )| < p(x,Q), the origin is
if for all (T,J)€S SN [[0,T]x{0,1,..3}] is a compact giopally asymptotically stable for the system (9).
hybrid time domain. Let us now define ouuniting problem We look for:

The system (1) in closed loop with the dynamic hybrid |, integer > lo, and a dynamic hybrid output feedback
output feedback controllefc,?,u,v,w) is defined as the controller (C_,@:u,v,w) such thatc and o are closed

hybrid system sets,u, v andw are continuous functions, and such that

x = f(x,u(h(x),Q)) i the origin of (6) is robustly globally asymptotically stabl
¢ = v(h(x),0)) Feec « amatrixM € R'o*! a continuous positive definite function
(6) w:R"xR' — R>¢ andr > 0 such that for all initial con-
xt = x i ditions (x°,2%) € R" x (c UD), satisfyingw(x?,2°) <,
= w(h(x),2) if{eD. the trajectory of (6) starting &x°,¢°) has the hybrid time

domain|0, ) x {0} and (x(t,0),M{(t,0)) = (x(t),lo(t))
for some trajectory(x, o) of (4).

Let us remark that, the possible presence of Zeno solutions
is considered in the framework of hybrid systems and in the
definition of a global asymptotic stable equilibrinHowever,
combining the local asymptotic stability and the fact that f
small initial conditions the trajectories match those & libcal
{ X(t, ) = f(x(t,J),u(h(x(t, j)),C(t,]))) ) controller, the firsin+ ¢o components of all trajectories of (6)

Z(t,]) v(h(x(t,})),C(t,]))) consist in a trajectory of (4) after a sufficiently large time

IHere and in what follows all controls are assumed to be mahuand 2We recall that a Zeno trajectory is a complete trajectoryhveitdomain
essentially bounded functions. which is bounded in thé-direction.

Given(x2,2%) e R"x (c U®D), we say thatx,{) is atrajectory
to (6) starting at(x%,¢% if (x,0) is defined on a hybrid
time domain dortx, (), takes values ifR" x (c UD), has an
unbounded time domain and satisfies:

(S1) for all j € N and almost alt such that(t, j) € dom(x,{),
we have((t, j) € ¢ and



In particular it excludes the presence of Zeno trajectpaes 3. (global dynamic controllerfpr all trajectories of (5), we

the convergence property may be rewritten as lig{x(t, j)| + havelimsup_,, Vi(X(t)) + |21 (t)] < €2;

|C(t, )| = 0. Let us remark also that the interest of the matrix 4. (norm-observer fox) for each u: R>o — R™, by study-
M lies in the fact that the dynamical state variable R' is ing the system (1) and

projected into the spacRo of the state variable of the local _

controller. 21 = =21+ p1(u, h(x)) (12)

We are now in position to state our first result.

: : , for all initial conditions (x°,2) in R" x R, we have
Theorem 2.1: Under Assumption 1, there exists a dynamic

hybrid output feedback controllefc,»,u,v,w) solving the Vi(x(t)) < Zl(t)+[31(|XO|+ |z‘f|,t) , (13)
uniting problem. _
Remark 2.2: Some observations are in order. for all t € [0, tsup(X, 1));

5. (estimation for the local systenfdr each trajectory of
(4) starting from{(x,{o), V1(x) < €1, {o =0}, we have
Po(h(x(t)),lo(t)) < €oa for all t > 0;

(estimation for the global systerfgr each trajectory of

« To solve the uniting problem of two static controllers,
we cannot restrict our attention to static continuous
controllers (i.e. to continuous functions—x u(x)), since

there exists a control system for which it is known that ™ :
the uniting problem does not have any solution in this (5) starting from {(x,01), Va(x) +[Ca| < E2}, we have

class of controllers (see [22]). Pa(ax(h(x(t)), {a(1)), h(X(1))) < €1a, for all t > 0.

. Moreover we cannot restrict our attention to staties- Let us note that, above, the assumption on the global output
continuouscontrollers (i.e. to discontinuous functionsféedback relaxes those of Assumption 1 (compare item 3
X — U(x)) to solve this uniting problem if we ask for aand item 6 of _Assumptloq 2 Wlth_ re_spectlvely the attracyivit
robust stabilization. See the example, given in [22], &nd the stability as con_5|dered in item 2 of Assumption 1)_.
an nonlinear control system, that is affine with respect fyloreover we note that, in the previous assumption, item 5 is
the control, for which this uniting problem does not havéelated to the stability assumption of item 1 by making evipli
any solution in this class of controllers. This motivates th@n estimation of the values of t®-function. Let us recall
introduction of the hybrid controllers to solve the unitinghat (see [17]), under item 3 of Assumption 1, there exists an
problem. IOSS-Lyapunov functioh i.e. aC® functionV : R" — Rxq

« The controller considered in Theorem 2.1 is an outpch that

feedback since it depends only on the output y and one there exist functionsvi, v2 of class %. satisfying
the dynamic continuous stafe v1(|x]) <V (x) <va(|x]), for all xe R",

This theorem is an existence result. To construct a hybride there exist functionsi, o of classx satisfyinglV (x) -
feedback solving the uniting problem, we need to make our f(Xu) < —V(x) + o1(|u]) + o2(|h(x)|), for all (x,u) €
assumptions more "quantitative”. This is done in the next R x RM.
section, where we introduce a new set of assumptions whidthollows that under item 3 of Assumption 1, for 4lE N, the
is valid as soon as Assumption 1 holds. We will then dedudenctionV : R" x R' — R defined by (x,0) =V (x)+ 3(Z|?,
Theorem 2.1 (see Section VI below). satisfies, for all(x,{,u,v) € R" x R' x R™x R,

[1l. EXPLICIT SOLUTION OF THE UNITING PROBLEM OV (%,0) - (f(x,u),v)

In this section, we make our condition more quantitative < =V(x)+o1(Ju]) + o2(]h(X)|) + Qv ,
in order to explicit a solution of our uniting problem for the _ w2 32
nonlinear control system (1). More precisely we assume that < =V(%,0) +o1(|ul) + 5 + o2(|h(X)[) + =5~ .
Assumption 2: There exist two continuous, positive defi- ~ )
nite functions ¥: R" x R0 — R-g and { : R" — R-o, two ThusV is an 10SS-Lyapunov function for the system
functionqu, B1 of classx £, two positive semi-definite contin- %= f(x.u) Z —v (14)
uous functiongp : RP x R'o — R-g andp; : R™ x RP — R,
and positive valuespa < €op, €1a < €1n, and €, such that: where the state i$x,{), the input is(u,v), and the output is
1. (local dynamic controllerthe origin of R" x Rl is (h(X),{). In other words if (1) is IOSS, then the system (14) is
asymptotically stable for the system (4) with the basi®iSo 10SS. Given this I0SS-Lyapunov functignby defining

of attraction containing{(x,2o), Vo(X,Z0) < €op}; p(u,v,y, ) = o1(|u|) + @ +o2(ly]) + 3‘#2‘2 for all (u,v,y,{) €
2. (local norm-observet)y studying the system (4) and th&®™ x R! x RP x R!, the system
system _
20 = 20+ Po(h(X).Zo) - (10) 2=—ztp(uuhx).2) 13)

for all initial conditions ()(O,Zg,zg) in R"x Rlo x R, we 3In this paper we consider only exponential decay 10SS-Lyapusince
have the existence of an 10SS-Lyapunov function implies the terise of an
exponential decay 10SS-Lyapunov function (see [17]). Urale IOSS as-

0 0 sumption, the computation of an IOSS Lyapunov may be diffitudo. This

Vo(X(t),Zo(t)) S Zo(t) + B°(|X | + |ZO| + |28|’t) ’ (11) computation is similar to the computation of a decreasingpunov function

. from a global asymptotic stability property. I0SS Lyapunfanctions are

forallt € [O’tSUP(X’ Co, 20))' explicitly computed for the examples of Section V below.



is a norm-observer, i.e. there exists a functbaf classx £, 0<r < min(1,€0) such that for all(x?,Z3) € R" x Rl satis-
such that for eacli: R>o — R™, and for eachv: R>q — R fying Wb(xX°,Z3) <, we havepo(h(x(t)),Zo(t)) < €0a Where x
by studying the system (14) and (15) we haue(t),Z(t)) < is the trajectory of (4) starting fron(x?, 2§).
2(t) + B(|X°| 4 [2°| + |2, 1), for all initial conditions(x?,Z°, 2) Let us give the main ideas of the proof of Theorem
in R"x R' x R and for allt € [0,tsup(X, ¢, 2)). 3.2. Intuitively, due to the expression @f, for large initial
We are now in position to state the following: conditions, the trajectories of (1) in closed loop with (H&§
Claim 3.1: Assumption 2 holds if Assumption 1 is satisfiedrajectories of (5) as long as the state variahlef the global
Proof of Claim 3.1.Using [17], there exists a positivenorm-observer does not reach the vakyg. Due to item 3
definite functionVp : R" x R'o — R (resp.V; : R" — R>), and item 6 of Assumption 2, for sufficiently large time, the
a function By (resp. B1) of class x £, a positive definite state variable; becomes smaller thag,. Then the trajectory
continuous functionp : R™ x Ry x RP x RP — Rsq (resp. entersp; and Cop successively. It may happen that, as the first
p1:RMx RP — Rxg) such that by studying the system (14) antime when we entero, we are not in the basin of attraction of
(15) (resp. the system (1) and (12)), for eachR>o — R™ (4). However using item 2, item 4, and item 5 of Assumption
and for eachv: R>o — R0, we have (11) (resp. (13)). Let2, we may prove that, for sufficiently large times(x,Zo) is
us introduce a positive semi-definite functipgn: RP x Rlo —  smaller thaneg,, and thus we eventually are inp and also
R0 by letting po(y,{o) = p(ao(Y,0),$o(Y, o), Y, o), for all in the basin of attraction of the local controller. Due to the
(y,20) € RP x Rlo, We get item 2 and item 4 of Assumptionexpression ofco, we keep following the trajectories of (4),
2. and, with item 1 of Assumption 2, we converge to the origin.
Let g be a positive real such thatp(x,o) < €op} is The details of the proof need more attention and are postpone
included in the basin of attraction of (4). This gives itemfl do the appendix (see Section VI). This result is applied on an
Assumption 2. Let 0< gga < €gp. By item 1 of Assumption example in Section V-A below.
1, there existsy, > 0 such that item 5 of Assumption 2 is
satisfied. Let G< €15 < €1p. By item 2 of Assumption 1, there
existse, > 0 such that item 6 of Assumption 2 is satisfied.
Item 3 of Assumption 2 follows from item 2 of Assumption
1. This concludes the proof of Claim 3.1. O In this section, we consider the linear control system (2)
with saturation at the input for which we know two stabiliz-
The second theorem of this paper is the design of a hybfigy output feedback controllers. One is a nonlinear glgball
controller solving the uniting problem: asymptotically stabilizing controller, while the other eotis
Theorem 3.2: Under Assumption 2, there exists a dynamig linear only locally asymptotically stabilizing contrei]
hybrid output feedback controllefc,»,u,v,w) solving the We suggest a numerical algorithm to compute a solution of

IV. NUMERICAL COMPUTATION OF A SOLUTION OF THE
UNITING PROBLEM

uniting problem. the uniting problem. Our approach is constructive since our
More precisely, letting & lo+ 11+ 3, and decomposing all conditions are written in terms of LMIs.
{eR' asl = (Lo,41,20,2,q) where ({o,81,20,21,0) € R x Let us consider two continuous dynamic output feedback
R't xR x R x R, the following dynamic hybrid output feedbaclontrollers for (2). One is assumed to be a linear output
controller feedback:
Tt B Lo = AdZo+Boy . u=Colo+ Dy . (17)
¥0 a?(y, ) wherep € R0 is the state of the controller, an&h, By, Co
vi RPxc — R and Dy are matrices of appropriate dimensions. The second
%0 = (1=a)Po(¥; o), ad1(y,{a), (16)  controller is a nonlinear output feedback controller:
(1—0a)(—20+po(y. o)), _
—z1+p1(0q(¥.a),Y),0) (1= 01(Cx 1) , u=01(Cxa) , (18)
w: RPx» — R
%0 ~ (ao,(1—-)21,0,21,1-0) where ¢1 : RP x R'" — R', and oy : RP x R — R™ are
continuous functions vanishing at the origin. The systejnn(2
where closed loop with a dynamic hybrid output feedback controlle
co = {0:0<z<¢gp 0<27,01=09=0}, (c,?,u,v,w) is defined as the hybrid system
(1 = {0:20=08a<2,{0=049=1}, :
Do = {0:01=0 €a<2,0<2,q=0}, X = AxtBsalu(Cx)) }if lec,
D1 = {{:00=0,2=00<2z <t q=1} ¢ =vCx9 19)
solves the uniting problem. xt = x .
Moreover the matrix Mc R'o*!, the continuous positive Tt = w(CxQ) }'f (e
definite functionw: R" x R! — R, the value r> 0 defining _ _ _
the uniting problem can be chosen as=M(,, 0), where |, Let us particularize Assumption 1 to the case of the control

stands for the identity matrix il®'o<'0, w(x,Z) = Vo(x,Zo) + System (2) in closed loop with the output feedback laws (17)
4] + |20| + |z2| +q, for all (x,2) € R" xR, and a value and (18):



Assumption 3: 1. (local linear controllerYhe origin of 4. the inequalities
R" x Rl js locally asymptotically stable for the system

) €3€0p > E1b (23)
Zz - 2;(;0 issy%ﬁ > (20) ok LY (24)
' * %QO o
2. (global nonlingar controlledhe origin of R" x R'1 is S p, Uini) _
globally attractive for the system 13( 1 >0,i=1....m, (25)
X = Ax+Bsafai(Cx (1)),
AP (21)
G = 01Cxy). 2B'PiB 2B'P1BDy
Let us note that the I0SS assumption (as given in item 3 of N> * 2(L'P1L+ DyB'P1BDy)
Assumption 1) is not explicitly needed since, as remarked in * *
[17], the detectability of the linear systexn="Ax+ Bu, y=Cx ,
. . . . 2B'P1BGy
(due to item 1 of Assumption 2) implies that the linear system D/B'PLBCy + BLQ (26)
. _ _ . . . . . 0 1 0 0 s
X = Ax+ Bu, y =Cx is 10SS which in turn implies that the 2C1B/PLBCo + AQo + Qoo + Qo

system (2) is I0SS.
Therefore Assumption 3 implies Assumption 1, and we 2P P(K—H)
deduce from Theorem 2.1 the existence of a solution of our [ ]

* €0aob Py
uniting problem as claimed in the following result.

€1b

Corollary 4.1: Under Assumption 3, there exists a dynamic > diag(Im,C’, I, )Ndiag(Im,C, li,) ,(27)
hybrid output feedback controllefc,®,u,v,w) solving the
uniting problem. hold, where Ky denotes the ith row of H and kK

This result is an existence result. But we can prove a  (DoC Co).
stronger result. Indeed under Assumption 3 we may construc{ o+ s denoteA — L A 0 and B — L B J Let
= , =10l

a hybrid controller solving our uniting problem (see Ccaiojl BoC Ao

4.5 below). To do that, we denote the usual matrix norms by note that, above, the assumption on the global, nonlinear
||l (without specifying the dimensions), and by, 1p, ... Output feedback relaxes those of Assumption 3 (compare item

the identity matrix inR™", RP*P, ... respectively, and by 2 and item 3 of Assumption 4 with item 2 of Assumption
0 the null matrix of appropriate dimensions. For each matri- More precisely, we may prove that Assumption 4 holds
M, the notationM > O (resp.M > 0) means that the matrix if Assumption 3 is satisfied (see Proposition 4.2 b(_alow).
M is symmetric positive definite (resp. positive semi-dedinit Moreover, the problem of the computation of the variables
To numerically compute a solution of our uniting pr0b|em(,:on5|de_zred in Assumption 4 is not convex due to the prodgcts
we need the following assumption which holds whenevé@pPpearing in (26). However, we state below a numerical
Assumption 3 holdé. algorithm to compute a solution of the uniting problem by
Assumption 4: There exist symmetric positive definité©ving LMIs only: _ _ _ _
matrices Pe R™M P, ¢ R™N Ry e ROMlo)x(0+lo) angd Proposition 4.2: Assumption 4 holds if Assumption 3 is
Qo € Rlo¥lo, a symmetric positive semidefinite matrix &N satisfied. Moreover the data allowing to define the hybrid
R(Mp+o)x(Miptlo) matrices He R™ (o) | ¢ R"*P. and controller (16) are computed solving only LMIs as follows:
positive valuesoa < €op, €1a < €1p, €2, and ez such that: Algorithm 4.3: (to compute all the variables needed to

1. (local linear controllerjhe origin of R" x R is asymp- define the hybnd controlle.r (16).)_ o ]
totically stable for the system (20) with a basin of attrac- 1- Compute a symmetric positive definite matrj /
tion containing the sef(x, o), (X,Z5)Po(X, L) < €3} and a matrixc € R™P solu'gon of RA+ C+ AP+

) 9 ’ ’ = l ;7 o i
the value(x',Z;)Po(X,{5)" is non-increasing along the CL'<—2P, and let L=P, "L;

trajectories of (20) starting in this set, and we have ~ 2- compute a symmetric definite = matrix oWin
R(MHo)x (o) 3 matrix Ze R™ (o) a diagonal

nxn
’

Py(A+LC) + (A+LC)PL < —2Py ; (22) positive matrix S R("10)x(n+lo) jn Rloxlo satisfying

2. (global nonlinear controlledy defining ¥Y: R" — Rxg { Woa'+aWy, BS-Z } <0 (28)
with Vi (x) = X' Pyx, for all trajectories of (21), we have * -2S ’
limi e Vi(X(1)) + |Ca(1)| < €25 Wo WK.. —Z.

3. for each trajectory of (21) starting fromi(x, 1), Va(X) + l N %>2 ® 1 >0,i=1,....m, (29)
|¢1] < &2}, we have ®
P1(a1(Cx(t),la(t)),Cx(t)) < €14, for all t > 0, where wherea = A +BK, and K; (resp. Z) denotes the ith
p1 : R™ x RP — R is defined by pi(uy) = row of K (resp. Z);

> ul'[ BPB 0 u for all (u,y) € R™x 3. leth :ng andez =1, and compute a symmetric pos-
o y *  L'PL ’ ’ itive matrix Re R'o*lo and a positive value satisfying
SRy (30)

4For any symmetric matrix, we will denote the symmetric tefoysx.



Let0 < €pa < €op = 1/€ and Q@ = gpR; with obvious definitions off : R? x R — R? andh: R? — R.
4. compute a matrix H- R™("0) and a positive valué An observer forxy is X, = —% + y2. Moreover, given any

satisfying trajectory of (33), we compute, for dlle [0,tsup(X)),
EPy UH/ . - -
M [ zeicm @D palebe] = I+ bel) R0+ %)
< ly(©)]+ [*x2(0) — %2(0)[e™

5. compute a symmetric positive definite matrix €P +SURc[oy ly(s)|? + |%2(0)|et

R™M a symmetric positive semidefinite matrix N < |X2(0)|eft+SUF£e[o.t] ly(s)|?
R(M+P+o)x(mtptlo) and a positive valué satisfying (26) '
and if moreoverx3(0) = 0. Thus the system (33) is 10SS.
{ 2P P(K—H) ] Now, for the local controller, let us picko(y) = 0, for all
* Py y in R. By considering the linearization around the origin, it
> diag(Im,C', li,)Ndiag(Im,C, Ij,) - (32) can be checked that the origin BF is locally asymptotically
) e stable for system (4).

Let e1p = min(gopes, <5, ) and 0 < €1a < €1p. A global dynamic controller is computed in [1]. More

The proof of this result is postponed until Section VII. Not¢yrecisely, leta; : R — R be defined byo1 (1) = 1 where

that in the prOOf of PrOpOSition 42, the basin of attractidn Zl is a dynamica' state with the fo”owing dynamics (See [1])
(20) is estimated. To do that, we used the modified condition

of [8], but other approaches are possible (consider e.g], [1 Zl =—UL+Y -2 (34)
[14]).

With Assumption 4 we may design a dynamic hybrid outpi@ystem (33) in closed loop with this controller is (5) with an
feedback controllefc, D, u,v,w) solving the uniting problem. obvious definition ofps : R x R — R. Therefore Assumption
This is our third theorem. 1 holds and, applying Theorem 2.1, there exists a dynamic

Theorem 4.4: Under Assumption 4, letting=lo+11+3, hybrid output feedback controllgfc,?,u,v,w) solving the
ao(Y, o) = Colo+ Doy, $o(y; {o) = Aolo+Boy andpo(y, o) = uniting problem.

(satao(y,0))" — do(¥:lo)'s Y, LoN(satao(¥,lo))" =  To compute such a controller, let us consider Assumption 2.
do(¥,o0)', ¥, L)', for all (y,4o) € RP x R, the dynamic | gt\j): R2 — R be the continuous, positive definite function
hybrid output feedback controllefc,»,u,v,w) defined by yefined byWo(X1,X2) = (2 +x3). Simple computations give,

(16) solves the uniting problem. for all (x,u) in R? x R,
Combining Proposition 4.2 and Theorem 4.4, we readily
deduce: _ _ _ Vo(X) - F(x,U) = —x2 =32 — X3+ XXE + U |,
Corollary 4.5: Under Assumption 3, the dynamic hybrid , 1, 354 1,
output feedback controller (16) solves the uniting proberd S X%t §X1+X£11+ Su (35)

is defined solving only LMIs by following Algorithm 4.3 and by
defining p1(u,y) = 2(U,y)diag(B'P1B,L'PiL)(U,y)’, for all and thus OVp(x) - f(x,00(h(X))) < —Vo(X) + po(y), where
(u,y) e R"x RP and |, ag, do andpp as in Theorem 4.4.  po(y) = 3y8 +y*, for all y in R. Therefore by letting, for all
This latter result is applied on one example in Section V-Bs;t) in R2, Bo(s,t) = 3maxs,*}e !, item 2 of Assumption
below. To prove Theorem 4.4 we first state that Assumpticghholds. To compute an estimation of the basin of attractfon o
2 holds if Assumption 4 is satisfied. Then we use Theoresystem (4) we may check, using (35), that, for(all,x;) # 0
3.2 to prove that the hybrid controller (16) solves the mgiti such thatVo(x1,%) < 1, it holds OVp(x) - f(x,a0(h(X))) < O.
problem. The complete proof in postponed until the appendbherefore by lettinggg, = % item 1 of Assumption 2 holds.

(see Section VII below). Pick €0a = 3. From (35), by lettingp1 (u,y) = 1u?+y* + 3y5,
we get that (12) is a norm-observer fgras consider in item
V. NUMERICAL SIMULATIONS 4 of Assumption 2. By lettingys = Vo andey, = %, and using

In this section some numerical simulations are performéhiat all x; such that < £ satisfies3x8 +x¢ < epa, we get
to illustrate the main results of this paper. It is first coiesed that item 5 of Assumption 2 holds. Leis = %
an example borrowed from the literature and Theorem 3.2 isSince the origin ofR? is globally asymptotically stable for
applied. Then we apply Corollary 4.5 on an example in Sectiehe system (5), item 6 of Assumption 2 holds for a sufficiently
V-B. ° small positive value,. Therefore Assumption 2 is satisfied.

A. An example borrowed from the literature By applying Theorem 3.2, the dynamic hybrid output feed-

Let us consider the following SISO system (see [1]) back c_optrgller (16) solves the uniting problem._ Tq chegit th
the origin is a global asymptotic stable equilibrium, let us

X1=—X1+(U—X)E, Xe=-X+X, y=x1i (33) plotthe trajectory of (6) starting from® = (1,—1), =0,

2 =0,2 =0, andg® = 0. We check on Figure 1 (top) that

e trajectory converges to the origin. The time evolutién o

e control values are given in Figure 1 (down). First thealoc
5The  simulation codes can be  downloaded  froncontroller is used up to the time instantl@ and then the

www. gi psa- | ab. fr/ ~chri st ophe. pri eur/ Codes/ code- uni ting. zip. global controller. Aftert = 2.3 the local controller is used.

wherex = (x1,X2) is the plant statey stands for the output,
and u stands for the input. Let us rewrite this system as ({.:5']



controller:

0.8

sl ] 2o = Aolo+Boy ,u=Colo+ Doy , (36)
| with A = _114 8 ,Bo= L106 ,Co=[75 —0625]
________________________ and Dg = —10. We easily check that the origin is asymp-

totically stable for the system (2) in closed-loop with (36)
linearized around the origin. However the origin of the

—02k

s S ] nonlinear closed-loop system is not globally asymptoltjcal

osf [/ ] stable (consider e.g., the trajectory starting frodf{, %) =

_DB,,." ] [10, 10, 10, 10] which diverges as the time goes to the
3 ‘ ‘ ‘ ‘ ‘ ‘ infinity).

L
0 0.5 1 15 2 25 3 35 4

: For the second controller, consider the following static
‘ ‘ ‘ ‘ position feedbackas(y) = Ky with K = —0.1. Using the
positive definite functiolV : R? — R defined by (x,%2) =
32 — [3*sa(Ks)ds for all (x1,x2) € R?, and the Invariance
Principle (see [16]), we may check that the origin of the syst

(2) in closed loop withay is globally asymptotically stable,
but may induce large intermediate values (consider e.g., th
trajectory starting fromx” = [10, 10]).

Therefore Assumption 3 holds (recall that, as remarked
after the statement of this assumption, the 10SS does need
to be explicitely stated). Thus the uniting problem is sdlve
by applying Corollary 4.5, and the hybrid controller (16) is
computed by following Algorithm 4.3. It gives the following

‘ ‘ ‘ ‘ ‘ ‘ ‘ guantities
‘ p _ [ 19655 —07578 ] | _ [ -30951

Fig. 1. Top: time evolution ok; (in plain line) and ofx, (in dashed line) 1= * 0.6014 T | —4.7740 |
of the system in closed loop with the hybrid controller. Dowime evolution
of the sy p y €0a | _ 0.5645 B

_ €1a 1.5033x 10
B. An academic example 550216 —27594 20694 —17.250

. . . . . * 12069 —86737 93416
Before introducing the example under consideration in this  N= % % 72756 _16414

section, let us recall that Corollary 4.5 can be seen as an ant * * * 34719

windup result since, from a locally stabilizing controllere : , : :
build a global stabilizer. Thus it may be important to maxeni In particular, xi— XPix is an 10SS Lyapunov function for
: 2). Consider system (2) in closed loop with the dynamic

thg slze of the region w_h_ere the local controller is usec_i. F Ybrid output feedback controller (16). Let us first conside
this aim, due to the uniting problem, we have to maximiz A tion: X0 i . 0
the valuegga. To do this, it is possible to consider somane following initial condition:x™ = [0; 0.05; 0; g, g = 1,

a ’ 71° = 0.05, andz,° = 0.05. We note on Figure 2 (down) that

convex optimization problems derived from Algorithm 4.3 e start using the global controller until the tire- 60. After

First, at step 2 of Algorithm 4.3, maximizing the estimate ovffl. : .
the basin of attraction of (20) can be accomplished by sglvir% is time instant we use the local controller and see that the
trajectory tends to the origin (see Figure 2, top). We see on

the following convex optimization problem: Figure 2 (down) that this switch is due to the fact that the
. . Moo st value ofz becomes lower tham, at the switching time.
minp subject to (28), (29) anc{ . VVOO } >0. Now we consider the initial conditior” = [0, 0.05, 0, 0],
q° =0, %= 0.05, andz° = 0.05. We note on Figure 4 (top)

Also at step 3 of Algorithm 4.3, it is possible to maximizehat the local controller is used until the tinhe- 0.84, where
the valueepsy by solving the convex optimization problem:z(0.84) = 0.5668> €g5. Thus the global controller is used.
mine subject to (30)These optimization objectives have beeliVe eventually switch to the local controller (after the time
considered in the next example. t = 39) (see Figure 3, down) and the trajectory converges to

To illustrate Corollary 4.5, let us consider the twothe origin (see Figure 3, top).
0 1 } B { 0 ] With Corollary 4.5, we also get a robustness with respect
0 -01) " [ 1] tosmall measurement noise. To illustrate this on numerical
andC=[ 1 0] and sat is the saturation function with levekimulations, let us consider again the initial conditith=
equal to 10. The equations model a positioning system whége 0.05; 0; 4, ¢° = 0, z° = 0.05, andz° = 0.05, and an
the positiorx; is assumed to be measured, and the force whigldditive small noise in the output. This noise is a uniform
is applied on the system may saturate. The speésl subject distribution between-0.01 and 001. The results are shown
to friction. in Figure 5. We note that the switching sequence in not the

For the local controller we consider the following lineasame as the unperturbed case (compare Figure 5 (down) with

dimensional system (2), with = {



Fig. 2.
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Top: time evolution of(x1,xz) of the system in closed loop with

the hybrid controller. Down: time evolution af (in plain line) and ofz (in
dashdotted line), the valug, is given by the horizontal line.

Fig. 3.
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Top: time evolution ofx1,%z) of the system in closed loop with the

hybrid controller. Down: time evolution af.
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Fig. 4. Top: time evolution ot (in plain line) and ofz, (in dashdotted line),
the valuegg, is given by the horizontal line before the first switching ¢éim
Down: time evolution ofu (in plain line) and ofz; (in dashdotted line), the
value €15 is given by the horizontal line.

Figure 3 (down)) but the state is practically stabilizedhe t
origin (see Figure 5 (top)). Due to the perturbations, even
for large time, we may use the global controller (see Figure
5 (down)). Note finally that we see on Figure 6 (top) that
for all initial conditions (x°,2°,23,2) with Euclidian norm
less that @M1, only the linear controller (36) is used. This
is an illustration of the second point of the uniting problem
(see before Theorem 2.1). That region is smaller than the
basin of attraction of the linear controller (36). This isedu
to the conservatism introduced in Algorithm 4.3 where we
need to nest together different ellipsoidal domains. See as
example, on Figure 6 (down), the projection of both ellipsoi
involved in (30) on the last two coordinates, x4)-plane. For
this numerical example the ellipsoidal domains have dljght
different profiles.

VI. PROOF OFTHEOREM 2.1 AND THEOREM 3.2

Let Assumption 2 hold, and consider the system (1) in
closed loop with the hybrid feedback (16). Define the matrix
M e Rlo*! the continuous positive definite functiomand the
valuer > 0 as introduced in Theorem 3.2.

One important remark for our proof is that, as also noted
in [17], the system (10) is input-to-state stable (ISS) foe t
input (h(x), o). Similarly the system (12) is ISS for the input
(u,h(x)).
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Fig. 5. Top: time evolution ok, (in plain line) and ofx, (in dotted line) Fig. 6.  Top: time evolution ofx; and x; for sufficiently small initial
of the system in closed loop with the hybrid controller cptad with noise. conditions. Down: projection of the ellipsoids involved (80) on the plane
Down: time evolution ofg. (X3,%4).

Proof of Theorem 3.2.et us prove that the origin is globally 3- Sinced < 1 we haveg® = 0. It follows from the definition of
asymptotically stable for the system (6). First, let us rtba 20, that the initial condition is not img. Thus, by considering
the setscq, Dq are closed, the function the firstn+1o components of the trajectoix, ), we get that
(x,0) — (f(x,u(h(x),2),v(h(x),2)) is continuous orR" x ¢4, (%.Co) is @ trajectory of (4) on0,t) x {0} for a positivet.
and the functior(x,{) — w(h(x),{) is continuous ofR" x . Moreover from (37), all such maximal trajectori¢s {) do
Moreover, sincepo and p; are positive semi-definite func- NOt return ino, and their domains is of the fori@, T) x {0}
tions, when flowing from the boundary af, we enterc. with T € RooU {eo}.

More precisely, recall that, ic, ¢ =0, andz > 0 when If T <o, then(x,{) eventually leaves any compact subset
7y =0, for all g€ {0,1}, then, for all(y,{) € RPx (3c \ »), of R"xR'. Since the system (12) with= ao(h(x),o) is ISS,
we have {v(y,0)} N Tc(2) # 0, where Tc({) stands for the z cannot grow unbounded if the, {o) is bounded. Moreover
tangent coneto ¢ at Z. Also, for all (y,{) € RP x », we the z-component is bounded. Therefopg.,0),o(.,0)) is a
have w(y,{) € ¢ UD. Therefore, the viability conditions of trajectory of (4) on[0,T) starting from{(x,{o) : Vo(X,%0) <
[11, Prop. 2.1] are satisfied and, for all initial condition€oa}, Which grows unbounded. This contradicts item 1 of
(x0,2% € R" x (c UD), there exists a maximal trajectory ofAssumption 2.

(6) starting at(x2,¢%). Moreover each maximal trajectory to ThereforeT = o and (x(.,0),%o(.,0),2(.,0),21(.,0)) is a
(6) either has an unbounded hybrid time domain or eventuathajectory of (4), (10) and (12) (withu = ap(h(x),lp)) on
leaves any compact subset®f x R'. [0,%), and thus we havex(t)| +|Lo(t)| + |20(t)| + |z2(t)| <,

Let us prove the local stability property. Lek0e < €pa. Let  for all t > 0. Also for allt > 0, q(t) = 0. This is the local
0< &< min(1,£04) be such that, for alix?, 28,2, 2)) satisfying  stability.

Vo(x2,28) + || + || < &, the trajectory of (4), (10) and (12) Moreover, due to the expression of the setand due to
with u(t) = ao(h(x(t)),Zo(t)), starting at(x?,29), satisfies, for (10), every trajectory of (6) starting &°,2°) e R"x (cUD),

all't >0, with w(x°,2% <, has the hybrid time domaif, ) x {0},
X(t,0),M{(t,0)) = (x(t),lo(t)) and (X, is a trajectory to
KO+ R0+ o)+ 2. @) g O MAGO) =, Golt)) andx.Col s & trajectory
Suchd > 0 exists by item 1 of Assumption 2, and since the Let us establish global convergence. Lef, 2% € R" x
systems (10) and (12) (with = ag(h(x), o)) are ISS. (cUo) and (x,{) be a maximal trajectory of (6) defined

Now consider a trajectorfx, ) of (6) with initial condition on don{x,{) and starting a(x°,Z%). First we prove that the
(x0,29) e R"x (c UD) such thatp(xX°,23) + |8 +|Z| +a° < discrete variable has to take the value O for some suitable
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hybrid time: In the last intermediate result, the discrete variable oann
Claim 6.1: There exists (t,j) € dom(x,{), such that switch back and forth between= 0 andqg = 1:

q(t,j)=0. Claim 6.3: There does not exist a non decreasing sequence
Proof of Claim 6.1.Let us prove this claim by contradictionof hybrid times((tn, jn)nen) € dom(x,{), such that we have,
and assume that for all n e N,

q(t7 J) = 1,V(t, J) € don.(X7Z) I (38) Cl(th jZn) - O 9 Q(t2n+la j2n+1) - 1 . (39)

then, donfx,{) =[0,T) x {0}, with T € R.oU{}. Moreover,

Proof of Claim 6.3 First we note that instantaneous Zeno
(x(.,0),¢1(.,0)) is a trajectory of (5). IfT < oo, then (x,{)

v | beeiix B! h trajectorie§ are impossible due to the expressionsmf and
eventually leaves any compact subse®fx R'. Due to the Dj. Let us prove Claim 6.3 by contradiction and assume

expression oy, we note that th.do-component and tha?— that there exists a non decreasing sequence of hybrid times
component remain equal to 0. Since the system (12) with ((tn, jn)nen) € domi(x, 2), such that we have (39) for afle N.

az(h(x),Z1) is 1SS,z cannot grow unbounded if thex.{1)  \ithout loss of generality we may assume that we have no

s l_)ounded. Therefor(ax(.,O),_Zl(.,O)) Is a trajectory 9f (5) jump between two points of this sequence and that n.
which grows unbounded. This cannot occur due to item 3 Bfue to the expression of the functiom, and the setsc

Assumption 2. _ _ and », for all ne N, we have to flow inco between
ThereforeT = oo, and(x(.,0),1(.,0)) is a trajectory of (5) (¢, 2n) and (tzn+1,2n), and we have to flow iy between
defined pn@,m), and according to item 3 oiAssumpnon 2’(t2n+1,2n+1) and (tzns2,2n+ 1). Note thatZ (tzn 2,20+ 1) €
there exists > 0, such that we have, for all> t, V1(x(t,0)) + p1 and thusz (tans 2,20+ 1) < €14, for all n e N. Therefore,
[€1(t,0)] < 2. Moreover, from (12), we computs(t,0)| < \yith jtem 4 of Assumption 2, there existé > O such that
|21(t,0)e" " + maxc iy p1(a1(N(X(5,0)), _ we haveVi(X(tani2,2N 4 2)) = Vi(X(tans2,2N + 1)) < ggp,.
C(s, O)_),h(x(s,O))). Using item 6 of Assumption 2, we getyp ;s betweerftans 2, 2N +2) and (tonsa, 2N +2), (x,0) is a
the existence of >t such thatz (f) < €1a- This contradicts trajectory of (4) starting fror (x, Zo), Vi (X) < €10, {0 = 0}. It
(38), and concludes the proof of Claim 6.1. - follows from item 5 of Assumption 2, that(h(X(tan 3, 2N +
Now, we prove that if the discrete variable is equal to 0 fOZ)),Zo(tzNJrs,ZN +2)) < €a. Thus with (10),2(tonsa, 2N +
aII_ s_ufficiently large time, then the trajectory convergedtte 2) < €0a. This contradictg (tan3, 2N +2) € Do and concludes
ongin: _ S the proof of Claim 6.3. O
Claim 6.2: If there exists a hybrid timét, j) € domx.0), | et us combine the previous claims. First, due to Claim
such that, ¢, j) =0, for all (t,]) € dom(x,0), (t,j) > (i), 6.1, there existt, j) € dom(x,Z) such thatq(t, j) = 0, and
then the trajectory is complete and converges to the originihere does not exist a hybrid time*, j*) € dom(x,2), such
Proof of Claim 6.2 First we note that if there is not anyinay, q(t, j) = 1, for all (t, j) € dom(x,2), (t, j) > (t*, j*). Now
jump after(t, ), then for all(t, j) € dom(x,0), (t,]) > (t.i). with Claim 6.3, there existg, j) € dom(x,), such that the
we havej = j, and due to the expression wf for all (t, ) €  assumption of Claim 6.2 holds. Thus the trajectory is coteple
dom(x,{), t >t, we have((t,]) ¢ D. Moreoverz(t, ) < €a and tends to the origin. Therefore the origin is asymptdica
for such(t, j) and(x(., j),¢o(-, J)) is a trajectory of (4) on the gtaple for the system (6). O
domain{t, (t,]) € dom(x,), t > t}. All what remains to establish is the robustness issue. It

Let us prove that the trajectory is complete. Let us assumgiows mainly from [23, Theo. 4.3]. To check that point, let
the converse. Then the trajectory grows unbounded. Zhe | 5 introduce the closed subsetsRx R0 x Rt x Rs0 X Rog
component and thé&i-component are bounded due to the - -

expression ot and sincey(t, j) =0, for all (t, j) € dom(x, ), ¢ = {(%2,%,2,2),5tQ0,41,20,21,9) € Cq} ,

t > t. Since the system (12) with = ag(h(x),o) is 1SS, z1 Dq = {(%20,8,%,2),5.t(l0,{1,20,21,9) € Dq} -
cannot grow unbounded if thg, {p) is bounded. Therefore

we get a trajectory of (4) which is unbounded. With item 2 ofhe hybrid system (6) can be rewritten a(g(,'z) =
Assumption 2 this implies that th® grows also unbounded,Fq(X,E) if (%) € ¢q q° = Gy(x,&) if (X&) € Dq ith ob-
which is a contradiction with the expression gb. This yjous definitions for the functionBy : €4 — R" x Rlo x R x
contradiction implies that the trajectory is complete. R>0 X R>g, andGq : Dgq — R" x R0 x R'1 x R>g x Rx0. The

Recall that(x, o,20)(, j) is a maximal trajectory of (4) and functions h, oo, o1, Fq, and Gy are continuous on their
(10) on|t,0). From item 2 of Assumption 2, (1130a < €ob, domains of definition. Now the family€q}qe(o1) forms a

and the fact thafo is a function of classx £, t may be covering ofR" x Rlo x R'1 x R~ x R0, and for allq e {0,1},

assumed to be such that, for allin [t,o), the inequality e have¢,UDq=R"x R'o x Rt x R>q x R=0. Therefore we

Vo(X(t, ]),Qo(t,])) < €op holds. But, according to item 1 of can apply [23, Theo. 4.3], and we have the robustness of the

Assumption 2, this set belongs to the basin of attractiomef tasymptotic stability as in Theorem 3.2. O
target set. Hence, the and{o-components of the trajectory  proof of Theorem 2.1The proof of Theorem 2.1 follows
converge to 0. Due to the expressiona@f the {1-component om claim 3.1 and Theorem 3.2. O

is equal to 0, and since the systems (10) and (12) (with

u= O(O(h(x);zo)) are ISS, the(zo,zl)-com_ponent tends also ey recall that a zeno trajectory is said to be instantaneifuke time t
to zero. This concludes the proof of Claim 6.2. O s eventually constant.
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VIl. PROOF OFPROPOSITION4.2 AND THEOREM4.4 and the functiorx — x'Pox decreases along the trajectories of

Proof of Proposition 4.2We assume that Assumption 3 i20), vyhen starting infx € R"*°, x'Pox < 1}. o
satisfied. Let us state the items of Assumption 4 succeysivel L€tting &3 =1 we get thatPy and &3 safisfy item 1 of

Due to item 1 of Assumption 3, the origin of linear systerf*SSUMption 4. Now we compute a symmetric positive maitrix
(3) is asymptotically stable and thus (see [25, Chap. 7, _Thgg)anql a positive \_/aluesolu'uon_ of (30)_. We get that the system
32]), the pair (C,A) is detectable. Therefore there exist 420) is asymptotically stable ifix, x'diag(P1, Qo)X < €ob}-
symmetric positive definite matri®; € R™", and a matrix ~ Given 0< €oa < €p, We compute a matrixi € R™ ("+lo)
L € R™P such that inequality (22) holds. and a positive valu€ satisfying (31). Then we compute a

Moreover, since the origin of the system (2) is locallpymmetric positive definite matri® € R™™, a symmetric
asymptotically stable, there exists a symmetric positieé d Positive semidefinite matriN € R(™!PHo)x(mtp+lo) and a
inite matrix Py and a positive valugs such that item 1 of Positive valuee satisfying (26) and (32). Thus the computed
Assumption 4 holds. We easily see that there exist a symenetfariables are such that we have item 4 of Assumption 4.
positive definite matrixQp € Rlo*lo and a sufficiently small Letting 0 < €1a < €1, by item 2 of Assumption 3, there
positive valuegy, such that (24) holds. Now observe tha€Xists 0< &, such that item 2 and item 3 of Assumption
there exist a matrixdH € R™ (o) and a sufficiently small 4 hold. Therefore following Algorithm 4.3, we compute all
positive valuegy, such that (23) and (25) hold (the valughe variables allowing to define the hybrid controller (1§) b
of €1, may be reduced). Moreover, using Schur complgolving only LMIs. This concludes the proof of Proposition
ments, we check that there exist a symmetric positive definft-2- o
matrix P € R™™M a symmetric positive semidefinite matrix
N € R(M+p+lo)x(Mp+lo)  and sufficiently small positive values Proof of Theorem 4.4_et Assumption 4 hold, and consider

€1a < €1p Such that the conditions (26) and (27) hold. Thute system (2) in closed loop with the hybrid feedback (16).

item 4 of Assumption 4 holds. Recalling Theorem 3.2, to state Theorem 4.4 it is sufficient t
By continuity of p; and p1(0,0) = 0, and using item 2 Prove the following:

of Assumption 3, there exists; > 0 such that item 3 of Claim 7.2: Assumption 2 holds if Assumption 4 is satisfied.

Assumption 4 holds. Using item 2 of Assumption 3 again, Proof of Claim 7.2.We state the items of Assumption 2

item 2 of Assumption 4 is satisfied. Therefore we get thaticcessively. Let us construct an I0SS-Lyapunov function f

Assumption 4 holds if Assumption 3 is satisfied, as claimd@). With (22) in Assumption 4, and letting = OV4(X) - (AX+

in Proposition 4.2. Bu), we compute
Let us state that following Algorithm 4.3, we compute all
the variables allowing to define the hybrid controller (1B)e Vi = 2X P (Ax+ Bu),

to item 1 of Assumption 3, the pa(C,A) is detectable, and — 2XP(A+LC)x+ 2XP1Bu— 2XPyLy,
there exist a symmetric positive definite matifixe R™<", and

a matrix £ € R™P such thatPtA+ £C+ AP+ £C' < —2P;. —2V1(X) + 2XP1Bu— 2XPiLy,
Therefore, by lettind. = LIlL as done in step 1 of Algorithm < —Vi(x) + }Vl(x) + 2uB'PBu+ }Vl(x)
4.3, the inequality (22) follows. 2 2

IN

!/
The determination of the exact basin of attraction of (20) is +2yL'PLy, ,
in general impossible; however, as soorAasBK is Hurwitz, < —V1(X)+2{ u ] [ BPB 0 } [ u ] (40)
there exist many relaxations, and convex problems written i - y *x  L'PL y

terms of LMI, to compute a quadratic Lyapunov function for
(20) and a convex approximation of the basin of attraction of Therefore we get the existence of a functfanof classx 2
(20) (see e.g., [13], [28]). One possible approach is to usesiach that item 4 of Assumption 2 holds. Now, definiig:
modified sector condition as introduced in [8] (see also J14JR" x Rlo — R-g with Vo(x,Zo) = XP1x+ {,Qolo, and letting
Denotingx = [X zg]’, it is suggested in [8] a convex problemVy = OVp(X, o) - (Ax+ Bsa{Colp + DoCX), Aolo + BoCx), we
to compute a quadratic Lyapunov functigm- xPox for (20): compute with (40)

Proposition 7.1: (8]) If there exist a symmetric positive

definite matrix W in R("Ho)x(0tlo) 3 matrix Ze R™ (o)

Vo < —Vl(X)-FZ[ sa(Colo + DoY) H BPB 0 }

and a diagonal positive matrix SR("1o)x("+lo) sych that y *  LU'PL
— sa D
[Vor' e B2 g x| 2GR O) | agin(anto + oy
N _

and < —=Vi(x) + 2¢6Qo(Aolo + Boy)

W WoK!. — 7' +4(satColo + Doy) — Colo — Doy)/BlF/)lB(CoZo + Doy)

[ e ] >0,i=1,....m, 5[ satCoZo+Doy) — Coto— Doy

* s y
where 2 = A+BK, and K;) (resp. Z;) denotes the ith row « [ BPB O ] { satColo + Doy) — Colo — Doy }
of K (resp. Z), then, denotingoP- Wofl, the ellipsoid{x € * L'PL y

R0, x'Pox < 1} is included in the basin of attraction of (20), +2(CoZo + Doy)'B'P1B(Colo + Doy) ,



and thus
. sa(Colo + Doy) — Colo — Doy
Vo < —Vo(X)+ y
o
salColo + Doy) — Colo — Doy
xN y
Co

whereN satisfies (26). Therefore, by definipg as in The-
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VIIl. CONCLUSION

Given two stabilizing output feedbacks controllers (one
being globally asymptotically stabilizing, the other one-b
ing only locally asymptotically stabilizing) for the nongar
control system (1), we designed a hybrid output feedback con
troller that is equal to the local controller on a neighbatio
of the origin, and that is globally asymptotically stakitig.

To solve this uniting problem, we assumed that the nonlinear

orem 4.4, we get the existence of a functifip of class
% £ such that we have item 2 of Assumption 2. Item 1 ofh
Assumption 2 follows from item 1 of Assumption 4, (23) an(%
(24). The following remark will be useful.

Remark 7.3: One way to have item 5 of Assumption 2 ifh
to assume the existence of a functonR>g — R>q of class
K Such that

1. we have(x,0)Py(X,0) < a(Vi(x)) for all x such that

Vi(X) < €
2. for each trajectory of (20) starting from
{(x20), (X,{p)Po(X,Lp) < a(ew)}, we have

Po(Cx(t),Co(t)) < €pa, for all t > 0.
Note that, due to (24), we have,0)Py(X,0)' < ;-Vi(x),

control system is I0SS.

We have also considered linear systems with saturation at
e input. Given two stabilizing output feedbacks conend|
one being a linear but only locally asymptotically stabili
ing, the other being nonlinear and globally attractive), we
numerically computed a hybrid output feedback controller
that is equal to the local controller for initial condition &
neighborhood of the origin, and that is globally asympttic
stabilizing.

Combining [23, Theorem 4.3] and the regularity of the
data of our hybrid feedback, we achieved the robustness
with respect to (small) measurement noise, actuator errors
and external disturbances. We noted that the uniting pnoble
may not have a solution in terms of classical (continuous or

n ' 5
for all x € R". Thus, with Remark 7.3, (23) and item Lyisoniinuous) controllers as explained in Remark 2.2. The
of Assumption 4, item 5 of Assumption 2 is satisfied 8rhain results and the robustness were illustrated on sifookat

soon aspo(Cx,{o) < €oa, for all (x,p) € R" x R'o such that
(X, ¢p)Po(X,p) < %‘b’ Therefore, to prove that item 5 of
Assumption 2 holo?s, it is sufficient to state that, for all
x € R\ {0}, such thai'Pox < £2, we have

{ sa(K>;)—Kx }IN{ sa(K>;)—Kx ]

(1]

€0a€ob
< 2220Pyx |

€1b (2l

(41)
whereN = diag(l,, C/, li,)Ndiag(lp, C, I;5). Let us note that, (3
applying Schur complements, the condition (25) is equiviale
to x/H(’i)UiUiH(i)x < %X/Pox, and, using the fact that the
saturation level is decentralized, for alle R™o, satisfying
X' Pox < %E we have sdtHx) = Hx. Now, for each symmetric [5]
positive definite matrix® € R™™, denotingu = Kx, we get,

for all x € R0 such thatx'Pyx < %E (6]

(u—satu))'P(safu) —Hx) >0 . (42) -

Indeed, consider this inequality for each saturation fiomct
one at a time. Ifu;, = sat;(u;)) then there is nothing to [
check. If ug) # satj)(ug)) thenug —satug)) has the same
sign as sdlj)) —Hi)x sinceH)x = sat;)(H)x) whereH;
denotes théth row of H.

From (42), for all x € R™lo such that x'Pox
%, we have (u — safu))’P(safu) — u + Kx — Hx)

safu)—u |'[ 2P P(K—H) safu) —u
X * 0 { X

El

< [20]
2
[11]

0, i.e. <0.

Thus, using the S procedure, the condition (41) is implied by
_ — 12
N — % diag(0, Po) — Z*P P(KO H) < 0. We get that 12l

(27) implies (41), and thus we have item 5 of Assumption 2.

Due to item 2 (resp. item 3) of Assumption 4, we have iteq3]
3 (resp. item 6) of Assumption 2. This concludes the proof of
Claim 7.2, and, with Theorem 3.2, the proof of Theorem 4.111.4]
O

4] S. Battilotti.
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