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Uniting local and global output feedback controllers
Christophe Prieur, and Andrew R. Teel

Abstract—We consider control systems for which we know two
stabilizing output feedback controllers. One is globally asymptot-
ically stabilizing, while the other one is only locally asymptotically
stabilizing. We look for a composite output feedback control
law that is equal to the local feedback on a neighborhood
of the origin and that is globally asymptotically stabilizing.
Since we want some robustness with respect to measurement
noise, actuator errors and external disturbances, we need to
consider hybrid output feedback controllers. Under an input-
output-to-state stability assumption, we exhibit a solution of
this uniting problem by means of a dynamic hybrid output
feedback controller. Then we particularize our study to linear
control systems with saturation at the input for which we know
two stabilizing output feedback controllers. One is a nonlinear
globally asymptotically stabilizing controller, while the other
one is a high-performance linear only locally asymptotically
stabilizing controller. We specify numerically tractable conditions
to solve this uniting problem. Finally we illustrate our main
results by means of numerical examples.

Keywords hybrid systems, global stabilization, local per-
formance, output feedback, robustness

I. I NTRODUCTION

Background

In nonlinear control system theory, we have now numerous
tools to design (globally) asymptotically stabilizing output
feedbacks, see e.g. [1], [4], [20], [24]. However, if such
feedbacks give a satisfactory answer to the global asymptotic
stabilization problem they are not necessarily intended to
address the performance problem. As opposed to this case,
for instance via linearization, one may design output feed-
back controllers addressing satisfactorily both the asymptotic
stabilization and the performance problems but only locally.
A practical example of such a framework is given by [29].
This leads us to the idea of uniting a local (optimal) output
controller with a global (stabilizing) output controller,i.e.
given 1) an output feedback controllerΣ0 able to stabilize
locally while providing better performance and 2) a controller
Σ1 providing global asymptotic stability, we are looking for
a new output feedback providing uniform global asymptotic
stability for the overall system while matching exactly the
local controllerΣ0 when the system state component is in a
neighborhood of the origin.
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When considering only state feedbacks, this problem has
been already studied and solved in [22] (cf. [30]). In that refer-
ence it is proved that, for general control systems, this uniting
problem cannot be solved by considering only continuous
feedbacks (best to our knowledge this problem remains open
when particularizing to some classes of nonlinear systems
such as the one considered in Section IV below). When using
discontinuous feedbacks, we may introduce sensitivity to ar-
bitrary small measurement noise. The design of discontinuous
stabilizing controllers guaranteeing some robustness issue to
measurement noise is possible with sample and hold [6], [26].
An alternative approach is found in the notion of hysteresis
switching, taking advantage of the existence of a region where
both output controllersu0 andu1 are appropriate. This suggests
considering the class of hybrid controllers to solve this uniting
controllers problem as done in [22] in the state feedbacks case
(see also [9]). In [23] it is shown that the class of asymptoti-
cally stable hybrid systems have, under appropriate regularity
properties, a robustness with respect to small measurement
noise, and external disturbances. This result generalizeswhat
has long been appreciated for continuous systems (see [7],
[18]).

Contribution

Our first contributionconcerns nonlinear control systems

ẋ = f (x,u) , y = h(x) (1)

where f : R
n×R

m → R
n is locally Lipschitz with f (0,0) = 0

andh : R
n → R

p is continuously differentiable withh(0) = 0.
We assume that two different continuous dynamic output
feedback stabilizers,u = α0(h(x),ζ0), ζ̇0 = ϕ0(h(x),ζ0) and
u = α1(h(x),ζ1), ζ̇1 = ϕ1(h(x),ζ1) are given. We assume also
that the nonlinear system (1) is input-output-to-state stable
(IOSS) as introduced in [17] (see also [2]). Roughly speaking,
this property allows us to estimate an upper bound on the
magnitude of the state of the system on the basis of past input
and output signals.

For linear systems this property is equivalent with the usual
detectability property (see [17, Prop. 2.6]) that if the output
is held equal to zero, the resulting constrained dynamics have
the origin asymptotically stable. However this latter property is
weaker than the IOSS for general nonlinear systems. Moreover
combining the IOSS with the external stability is equivalent to
the internal stability (this is the equivalence between theIOSS
and the Input-to-Output Stability (IOS) with the Input-to-State
Stability (ISS) property, see [27, Sec. 9]).

In the first theorem of this paper, we prove that there
exists a solution of the uniting problem in terms of a hybrid
output feedback controller, i.e. we state the existence of a
hybrid output feedback controller which is equal to(α0,ϕ0)
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on a neighborhood of the origin and such that the system
in closed loop with the hybrid feedback is globally asymp-
totically stable. The approach described in [22] for the state
feedbacks case can not be applied, since the norm of the state
is known only asymptotically. Moreover the system in closed
loop with the hybrid controller proposed here has the regularity
properties required in [23]. Thus we also get a robustness with
respect to small measurement noise, and external disturbances,
that is, for any such small perturbations, the perturbed system
remains globally asymptotically stable (see Section II below
for a precise statement of this result). The said class of hybrid
controllers has been introduced in [10] and depends only on
the output. It has a dynamic stateζ, continuous dynamics
ζ̇ = v(h(x),ζ), if ζ∈ C , and discrete dynamicsζ+ = w(h(x),ζ),
if ζ ∈D . The system (1) will be in closed loop with the output
of the hybrid controller, i.e.u = u(h(x),ζ) if ζ ∈ C .

Oursecond theoremmakes explicit a hybrid output feedback
controller solving the uniting problem under some more quan-
titative and weaker assumptions. These conditions are written
in terms of local and global IOSS-Lyapunov functions and
local and global norm-observers which exist as soon as the
system (1) is IOSS, as proven in [17] (see also [15]). See
Section III below for more details.

One class of nonlinear systems for which it is crucial
to unite high-performance local controllers with global ones
is the class of linear systems with saturation at the input.
Saturation is one of the most important nonlinearities that
limits control systems performance in many applications. It
is known that the use of linear controllers for systems that
are subject to amplitude limitation in the input may reduce
the performance of the closed-loop system or even lead to
instability (this is usually called the windup phenomena).
Many different approaches exist in the literature for the design
of static and dynamic linear anti-windup compensators (see
e.g. [5], [8], [12], [21]). See also [31] where a nonlinear
scheduling technique is proposed, using a switching among
a family of linear gains. One way to ensure local performance
with global attractivity is to unite a (optimal) linear local
output feedback controller with a globally stabilizing nonlinear
output feedback controller. In the third part of this work (see
Section IV), we address the uniting problem of local linear
stabilizer with global nonlinear stabilizer, i.e. we specify some
numerically tractable conditions to design a hybrid controller
which unites a prescribed global, nonlinear controller with
a predesigned local, linear controller. These conditions are
written in terms of a set of linear matrix inequalities (LMIs),
which can be solved by efficient numerical solvers. Our result
can be seen as an anti-windup result since, from a locally
stabilizing controller, we build a global stabilizer. But our
approach shows also how we can use output measurements
to piece together arbitrary local and global output feedback
controllers.

More preciselyin the third partof this work, we focus on
the following class of control systems

ẋ = Ax+Bsat(u) , y = Cx (2)

wherex ∈ R
n, y ∈ R

p, u ∈ R
m, A, B, andC are matrices of

appropriate dimensions, and “sat” denotes the usual (decen-
tralized and symmetric) saturation map sat :R

m→R
m defined

by, for all u∈ R
m, and for all 1≤ i ≤ m,

sat(u)(i) =





−u(i) if u(i) < −u(i) ,
u(i) if −u(i) ≤ u(i) ≤ u(i) ,
u(i) if u(i) < u(i) .

In the previous,u ∈ R
m is a given vector, with positive

componentsu(i), for i = 1, . . . ,m.
We assume that two different continuous dynamic output

feedback stabilizers are given: a linear oneu = C0ζ0 + D0y,
ζ̇0 = A0ζ0 + B0y, and a nonlinear oneu = α1(Cx,ζ1), ζ̇1 =
ϕ1(Cx,ζ1). We know that the saturation nonlinearity at the
input asks for special care, and the nonlinear system (2) in
closed loop with the linear controlleru = C0ζ0 + D0y, ζ̇0 =
A0ζ0 +B0y may be unstable for some large initial conditions,
even if the linear system

ẋ = Ax+Bu , y = Cx (3)

in closed loop with u = C0ζ0 + D0y, ζ̇0 = A0ζ0 + B0y is
asymptotically stable.

In Section IV below, we make explicit numerical conditions
to design a hybrid output feedback controller solving the unit-
ing problem, i.e. which is equal to the linear local controller
for initial conditions in a neighborhood of the origin, and with
a global basin of attraction. Thus the hybrid controller has
locally the same performance as the linear controller, and is
globally asymptotically stabilizing.

This paper is organized as follows. In Section II, we
make precise the problem under consideration in this paper
and we state the first theorem, namely the existence of a
dynamic hybrid output feedback controller solving the uniting
problem under appropriate hypotheses. In Section III, we make
our assumptions more quantitative in order to explicit our
controller. This is the second theorem of this paper. In Section
IV, we particularize our study to the uniting problem of a local
linear stabilizer and a global nonlinear feedback for a linear
system with saturation at the input. We state some numerically
tractable conditions which imply the quantitative assumptions
of Section III, and thus which allow us to design a hybrid
controller solving the uniting problem. We illustrate thisthird
theorem by some simulations in Section V. Some technical
proofs are contained in the appendix (see Section VI and
Section VII). Section VIII contains some concluding remarks.

II. PROBLEM STATEMENT AND EXISTENCE OF A SOLUTION

OF THE UNITING PROBLEM

In this section, we define precisely the problem under
consideration in this paper and we state the existence of
a solution under appropriate assumptions (see Theorem 2.1
below).

Let us consider two continuous dynamic output feedback
controllers(αq,ϕq), for q∈ {0,1}, whereα0 : R

p×R
l0 →R

m,
ϕ0 : R

p×R
l0 →R

l0, α1 : R
p×R

l1 → R
m, andϕ1 : R

p×R
l1 →

R
l1 are continuous functions vanishing at the origin. Let us

make explicit our assumption.
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Assumption 1: 1. (local dynamic controller)The origin
of R

n×R
l0 is locally asymptotically stable for the system

ẋ = f (x,α0(h(x),ζ0)) ,

ζ̇0 = ϕ0(h(x),ζ0) ;
(4)

2. (global dynamic controller)the origin of R
n ×R

l1 is
globally attractive for the system

ẋ = f (x,α1(h(x),ζ1)) ,

ζ̇1 = ϕ1(h(x),ζ1) ;
(5)

3. (IOSS)the system (1) is input-output-to-state stable.
To be self-contained, let us recall that the system (1) is IOSS

if there exist functionsβ of classK L andγ of classK , such
that, for all1 u : R≥0 → R

m, and for all maximal trajectoriesx
of (1) with u = u(t), we have, for allt ∈ [0, tsup(x)),

|x(t)| ≤ max{β(|x(0)|, t),γ(sups∈[0,t] |y(s)|),γ(sups∈[0,t] |u(s)|)} ,

where we denote the Euclidean norms by|.|, and tsup(x)
denotes the supremum of the domain of a trajectoryx of (1).
This notion is studied in [17]. It is proven in particular that
this implies the existence of a norm-observer (this notion is
used in Section III below). Weaker conditions for the existence
of a norm-observer are given in [15].

In this paper we consider a dynamic hybrid output feed-
back controller(C ,D ,u,v,w) where, for a given integerl ,
C ⊂ R

l andD ⊂ R
l are closed sets, whileu : R

p× C → R
m,

v : R
p×C →R

l andw : R
p×D →R

l are continuous functions.
Let us make explicit our notion of trajectories of (1) in
closed loop with a dynamic hybrid output feedback controller
(C ,D ,u,v,w), and the notion of robust asymptotic stability.
The closed-loop system lies in the class of hybrid systems
as considered in e.g., [3], [19]. Here we consider the notion
of trajectories as studied in [10], [11], [23]. First we recall
that a setS⊂ R≥0 × N is a compact hybrid time domain
if S =

SJ−1
j=0 [[t j ,t j+1], j] for some finite sequence of times

0 = t0 ≤ t1 ≤ t2 ... ≤ tJ. The setS is a hybrid time domain
if for all (T,J) ∈ S, S ∩ [[0,T]×{0,1, ...J}] is a compact
hybrid time domain.

The system (1) in closed loop with the dynamic hybrid
output feedback controller(C ,D ,u,v,w) is defined as the
hybrid system

ẋ = f (x,u(h(x),ζ))

ζ̇ = v(h(x),ζ))

}
if ζ ∈ C ,

x+ = x
ζ+ = w(h(x),ζ)

}
if ζ ∈ D .

(6)

Given(x0,ζ0)∈R
n×(C ∪D ), we say that(x,ζ) is a trajectory

to (6) starting at(x0,ζ0) if (x,ζ) is defined on a hybrid
time domain dom(x,ζ), takes values inRn× (C ∪D ), has an
unbounded time domain and satisfies:
(S1) for all j ∈ N and almost allt such that(t, j) ∈ dom(x,ζ),
we haveζ(t, j) ∈ C and

{
ẋ(t, j) = f (x(t, j),u(h(x(t, j)),ζ(t, j)))
ζ̇(t, j) = v(h(x(t, j)),ζ(t, j))

(7)

1Here and in what follows all controls are assumed to be measurable and
essentially bounded functions.

(S2) for all (t, j) ∈ dom(x,ζ) such that(t, j +1) ∈ dom(x,ζ),
we haveζ(t, j) ∈ D and

{
x(t, j +1) = x(t, j)
ζ(t, j +1) = w(h(x(t, j)),ζ(t, j))

(8)

(S3) (x,ζ)(0,0) = (x0,ζ0).
Note that, in the previous statements (as in [10], [11], [23]),

it is required that the initial conditions and the trajectories take
values inR

n×(C ∪D ). Let us recall that the origin isglobally
asymptotically stablefor the system (6), if

• (local stability) for eachε > 0, there existsδ > 0 such
that for all(x0,ζ0) satisfying|x0|+ |ζ0| ≤ δ and(x0,ζ0)∈
R

n× (C ∪D ), every trajectory of (6) starting at(x0,ζ0)
satisfies|x(t, j)|+ |ζ(t, j)| ≤ ε, for all (t, j) in dom(x,ζ);

• (global convergence) for all(x0,ζ0) ∈ R
n × (C ∪ D ),

every trajectory of (6) starting at(x0,ζ0) satisfies
limt+ j→∞ |x(t, j)|+ |ζ(t, j)| = 0.

Considering system (6) under measurement noise(ex,eζ)
and external disturbances(dx,dζ) leads to the following system

ẋ = f (x,u(h(x+ex),ζ+eζ))+dx

ζ̇ = v(h(x+ex),ζ+eζ))+dζ

}
if ζ+eζ ∈ C ,

x+ = x
ζ+ = w(h(x+ex),ζ+eζ)

}
if ζ+eζ ∈ D .

(9)
Now, let us recall thatadmissible measurement noiseand
admissible external disturbancesare functionse = (ex,eζ)

andd = (dx,dζ) in L ∞
loc(R

n×R
l ×R≥0×N;Rn×R

l ) that are
continuous in(x,ζ) ∈ R

n×R
l for each(t, j) ∈ R≥0×N. We

say that the origin isrobustly globally asymptotically stable
for the system (6), if there exists a positive definite continuous
function ρ : R

n × R
l → R≥0 such that for all admissible

measurement noisee and admissible external disturbancesd
satisfying, for all(x,ζ) ∈ R

n×R
l and for all(t, j) ∈ R≥0×N,

|e(x,ζ,t, j)| ≤ ρ(x,ζ) and |d(x,ζ,t, j)| ≤ ρ(x,ζ), the origin is
globally asymptotically stable for the system (9).

Let us now define ouruniting problem. We look for:

• an integerl ≥ l0, and a dynamic hybrid output feedback
controller (C ,D ,u,v,w) such thatC and D are closed
sets,u, v and w are continuous functions, and such that
the origin of (6) is robustly globally asymptotically stable;

• a matrixM ∈R
l0×l , a continuous positive definite function

ω : R
n×R

l →R≥0 andr > 0 such that for all initial con-
ditions (x0,ζ0) ∈ R

n× (C ∪D ), satisfyingω(x0,ζ0) ≤ r,
the trajectory of (6) starting at(x0,ζ0) has the hybrid time
domain[0,∞)×{0} and (x(t,0),Mζ(t,0)) = (x̄(t), ζ̄0(t))
for some trajectory(x̄, ζ̄0) of (4).

Let us remark that, the possible presence of Zeno solutions
is considered in the framework of hybrid systems and in the
definition of a global asymptotic stable equilibrium.2 However,
combining the local asymptotic stability and the fact that for
small initial conditions the trajectories match those of the local
controller, the firstn+ ℓ0 components of all trajectories of (6)
consist in a trajectory of (4) after a sufficiently large time.

2We recall that a Zeno trajectory is a complete trajectory with a domain
which is bounded in thet-direction.
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In particular it excludes the presence of Zeno trajectories, and
the convergence property may be rewritten as limt→∞ |x(t, j)|+
|ζ(t, j)| = 0. Let us remark also that the interest of the matrix
M lies in the fact that the dynamical state variableζ ∈ R

l is
projected into the spaceRl0 of the state variable of the local
controller.

We are now in position to state our first result.
Theorem 2.1: Under Assumption 1, there exists a dynamic

hybrid output feedback controller(C ,D ,u,v,w) solving the
uniting problem.

Remark 2.2: Some observations are in order.

• To solve the uniting problem of two static controllers,
we cannot restrict our attention to static continuous
controllers (i.e. to continuous functions x7→ u(x)), since
there exists a control system for which it is known that
the uniting problem does not have any solution in this
class of controllers (see [22]).

• Moreover we cannot restrict our attention to staticdis-
continuouscontrollers (i.e. to discontinuous functions
x 7→ u(x)) to solve this uniting problem if we ask for a
robust stabilization. See the example, given in [22], of
an nonlinear control system, that is affine with respect to
the control, for which this uniting problem does not have
any solution in this class of controllers. This motivates the
introduction of the hybrid controllers to solve the uniting
problem.

• The controller considered in Theorem 2.1 is an output
feedback since it depends only on the output y and on
the dynamic continuous stateζ.

This theorem is an existence result. To construct a hybrid
feedback solving the uniting problem, we need to make our
assumptions more ”quantitative”. This is done in the next
section, where we introduce a new set of assumptions which
is valid as soon as Assumption 1 holds. We will then deduce
Theorem 2.1 (see Section VI below).

III. E XPLICIT SOLUTION OF THE UNITING PROBLEM

In this section, we make our condition more quantitative
in order to explicit a solution of our uniting problem for the
nonlinear control system (1). More precisely we assume that:

Assumption 2: There exist two continuous, positive defi-
nite functions V0 : R

n ×R
l0 → R≥0 and V1 : R

n → R≥0, two
functionsβ0, β1 of classK L , two positive semi-definite contin-
uous functionsρ0 : R

p×R
l0 → R≥0 andρ1 : R

m×R
p → R≥0,

and positive valuesε0a < ε0b, ε1a < ε1b, and ε2 such that:

1. (local dynamic controller)the origin of R
n × R

l0 is
asymptotically stable for the system (4) with the basin
of attraction containing{(x,ζ0), V0(x,ζ0) ≤ ε0b};

2. (local norm-observer)by studying the system (4) and the
system

ż0 = −z0 + ρ0(h(x),ζ0) , (10)

for all initial conditions (x0,ζ0
0,z

0
0) in R

n×R
l0 ×R, we

have

V0(x(t),ζ0(t)) ≤ z0(t)+ β0(|x
0|+ |ζ0

0|+ |z0
0|,t) , (11)

for all t ∈ [0,tsup(x,ζ0,z0));

3. (global dynamic controller)for all trajectories of (5), we
havelimsupt→∞ V1(x(t))+ |ζ1(t)| ≤ ε2;

4. (norm-observer forx) for each u: R≥0 → R
m, by study-

ing the system (1) and

ż1 = −z1 + ρ1(u,h(x)) (12)

for all initial conditions (x0,z0
1) in R

n×R, we have

V1(x(t)) ≤ z1(t)+ β1(|x
0|+ |z0

1|,t) , (13)

for all t ∈ [0,tsup(x,z1));
5. (estimation for the local system)for each trajectory of

(4) starting from{(x,ζ0), V1(x)≤ ε1b, ζ0 = 0}, we have
ρ0(h(x(t)),ζ0(t)) < ε0a for all t ≥ 0;

6. (estimation for the global system)for each trajectory of
(5) starting from{(x,ζ1), V1(x) + |ζ1| ≤ ε2}, we have
ρ1(α1(h(x(t)),ζ1(t)),h(x(t))) < ε1a, for all t ≥ 0.

Let us note that, above, the assumption on the global output
feedback relaxes those of Assumption 1 (compare item 3
and item 6 of Assumption 2 with respectively the attractivity
and the stability as considered in item 2 of Assumption 1).
Moreover we note that, in the previous assumption, item 5 is
related to the stability assumption of item 1 by making explicit
an estimation of the values of theρ0-function. Let us recall
that (see [17]), under item 3 of Assumption 1, there exists an
IOSS-Lyapunov function3, i.e. aC∞ function V : R

n → R≥0

such that

• there exist functionsν1, ν2 of class K∞ satisfying
ν1(|x|) ≤V(x) ≤ ν2(|x|), for all x∈ R

n,
• there exist functionsσ1, σ2 of classK satisfying∇V(x) ·

f (x,u) ≤ −V(x) + σ1(|u|) + σ2(|h(x)|), for all (x,u) ∈
R

n×R
m.

It follows that under item 3 of Assumption 1, for alll ∈N, the
functionṼ : R

n×R
l →R≥0 defined byṼ(x,ζ) =V(x)+ 1

2|ζ|
2,

satisfies, for all(x,ζ,u,v) ∈ R
n×R

l ×R
m×R

l ,

∇Ṽ(x,ζ) · ( f (x,u),v)

≤−V(x)+ σ1(|u|)+ σ2(|h(x)|)+ ζv ,

≤−Ṽ(x,ζ)+ σ1(|u|)+ |v|2

2 + σ2(|h(x)|)+ 3|ζ|2
2 .

ThusṼ is an IOSS-Lyapunov function for the system

ẋ = f (x,u) , ζ̇ = v (14)

where the state is(x,ζ), the input is(u,v), and the output is
(h(x),ζ). In other words if (1) is IOSS, then the system (14) is
also IOSS. Given this IOSS-Lyapunov functionṼ, by defining
ρ(u,v,y,ζ) = σ1(|u|)+ |v|2

2 + σ2(|y|)+ 3|ζ|2
2 for all (u,v,y,ζ) ∈

R
m×R

l ×R
p×R

l , the system

ż= −z+ ρ(u,v,h(x),ζ) (15)

3In this paper we consider only exponential decay IOSS-Lyapunov, since
the existence of an IOSS-Lyapunov function implies the existence of an
exponential decay IOSS-Lyapunov function (see [17]). Under an IOSS as-
sumption, the computation of an IOSS Lyapunov may be difficult to do. This
computation is similar to the computation of a decreasing Lyapunov function
from a global asymptotic stability property. IOSS Lyapunovfunctions are
explicitly computed for the examples of Section V below.
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is a norm-observer, i.e. there exists a functionβ of classK L ,
such that for eachu : R≥0 → R

m, and for eachv : R≥0 → R
l

by studying the system (14) and (15) we haveṼ(x(t),ζ(t)) ≤
z(t)+β(|x0|+ |ζ0|+ |z0|, t), for all initial conditions(x0,ζ0,z0)
in R

n×R
l ×R and for all t ∈ [0, tsup(x,ζ,z)).

We are now in position to state the following:
Claim 3.1: Assumption 2 holds if Assumption 1 is satisfied.
Proof of Claim 3.1.Using [17], there exists a positive

definite functionV0 : R
n ×R

l0 → R (resp.V1 : R
n → R≥0),

a function β0 (resp. β1) of class K L , a positive definite
continuous functionρ : R

m × R
l
0 × R

p × R
p → R≥0 (resp.

ρ1 : R
m×R

p→R≥0) such that by studying the system (14) and
(15) (resp. the system (1) and (12)), for eachu : R≥0 → R

m

and for eachv : R≥0 → R
l0, we have (11) (resp. (13)). Let

us introduce a positive semi-definite functionρ0 : R
p×R

l0 →
R≥0 by letting ρ0(y,ζ0) = ρ(α0(y,ζ0),ϕ0(y,ζ0),y,ζ0), for all
(y,ζ0) ∈ R

p×R
l0. We get item 2 and item 4 of Assumption

2.
Let ε0b be a positive real such that{V0(x,ζ0) ≤ ε0b} is

included in the basin of attraction of (4). This gives item 1 of
Assumption 2. Let 0< ε0a < ε0b. By item 1 of Assumption
1, there existsε1b > 0 such that item 5 of Assumption 2 is
satisfied. Let 0< ε1a < ε1b. By item 2 of Assumption 1, there
exists ε2 > 0 such that item 6 of Assumption 2 is satisfied.
Item 3 of Assumption 2 follows from item 2 of Assumption
1. This concludes the proof of Claim 3.1. 2

The second theorem of this paper is the design of a hybrid
controller solving the uniting problem:

Theorem 3.2: Under Assumption 2, there exists a dynamic
hybrid output feedback controller(C ,D ,u,v,w) solving the
uniting problem.

More precisely, letting l= l0 + l1+3, and decomposing all
ζ ∈ R

l as ζ = (ζ0,ζ1,z0,z1,q) where(ζ0,ζ1,z0,z1,q) ∈ R
l0 ×

R
l1×R×R×R, the following dynamic hybrid output feedback

controller

C = C0∪C1 , D = D 0∪D 1

u : R
p× C → R

m

(y,ζ) 7→ αq(y,ζq)
v : R

p× C → R
l

(y,ζ) 7→ ((1−q)ϕ0(y,ζ0),qϕ1(y,ζ1),
(1−q)(−z0+ ρ0(y,ζ0)),
−z1 + ρ1(αq(y,ζq),y),0)

w : R
p×D → R

l

(y,ζ) 7→ (qζ0,(1−q)ζ1,0,z1,1−q)

(16)

where

C0 = {ζ : 0≤ z0 ≤ ε0a, 0≤ z1, ζ1 = 0, q = 0} ,
C1 = {ζ : z0 = 0, ε1a ≤ z1,ζ0 = 0, q = 1} ,
D 0 = {ζ : ζ1 = 0, ε0a ≤ z0, 0≤ z1, q = 0} ,
D 1 = {ζ : ζ0 = 0, z0 = 0, 0≤ z1 ≤ ε1a, q = 1}

solves the uniting problem.
Moreover the matrix M∈ R

l0×l , the continuous positive
definite functionω : R

n×R
l → R≥0, the value r> 0 defining

the uniting problem can be chosen as M= (Il0 0), where Il0
stands for the identity matrix inRl0×l0, ω(x,ζ) = V0(x,ζ0)+
|ζ1|+ |z0| + |z1|+ q, for all (x,ζ) ∈ R

n ×R
l , and a value

0 < r < min(1,ε0a) such that for all(x0,ζ0
0) ∈ R

n×R
l0 satis-

fying V0(x0,ζ0
0) ≤ r, we haveρ0(h(x(t)),ζ0(t)) ≤ ε0a where x

is the trajectory of (4) starting from(x0,ζ0
0).

Let us give the main ideas of the proof of Theorem
3.2. Intuitively, due to the expression ofC , for large initial
conditions, the trajectories of (1) in closed loop with (16)are
trajectories of (5) as long as the state variablez1 of the global
norm-observer does not reach the valueε1a. Due to item 3
and item 6 of Assumption 2, for sufficiently large time, the
state variablez1 becomes smaller thanε1a. Then the trajectory
entersD 1 andC0 successively. It may happen that, as the first
time when we enterC0, we are not in the basin of attraction of
(4). However using item 2, item 4, and item 5 of Assumption
2, we may prove that, for sufficiently large time,V0(x,ζ0) is
smaller thanε0b, and thus we eventually are inC0 and also
in the basin of attraction of the local controller. Due to the
expression ofC0, we keep following the trajectories of (4),
and, with item 1 of Assumption 2, we converge to the origin.
The details of the proof need more attention and are postponed
to the appendix (see Section VI). This result is applied on an
example in Section V-A below.

IV. N UMERICAL COMPUTATION OF A SOLUTION OF THE

UNITING PROBLEM

In this section, we consider the linear control system (2)
with saturation at the input for which we know two stabiliz-
ing output feedback controllers. One is a nonlinear globally
asymptotically stabilizing controller, while the other one is
a linear only locally asymptotically stabilizing controller.
We suggest a numerical algorithm to compute a solution of
the uniting problem. Our approach is constructive since our
conditions are written in terms of LMIs.

Let us consider two continuous dynamic output feedback
controllers for (2). One is assumed to be a linear output
feedback:

ζ̇0 = A0ζ0 +B0y , u = C0ζ0 +D0y , (17)

whereζ0 ∈ R
l0 is the state of the controller, andA0, B0, C0

and D0 are matrices of appropriate dimensions. The second
controller is a nonlinear output feedback controller:

ζ̇1 = ϕ1(Cx,ζ1) , u = α1(Cx,ζ1) , (18)

where ϕ1 : R
p × R

l1 → R
l1, and α1 : R

p × R
l1 → R

m are
continuous functions vanishing at the origin. The system (2) in
closed loop with a dynamic hybrid output feedback controller
(C ,D ,u,v,w) is defined as the hybrid system

ẋ = Ax+Bsat(u(Cx,ζ))

ζ̇ = v(Cx,ζ)

}
if ζ ∈ C ,

x+ = x
ζ+ = w(Cx,ζ)

}
if ζ ∈ D .

(19)

Let us particularize Assumption 1 to the case of the control
system (2) in closed loop with the output feedback laws (17)
and (18):
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Assumption 3: 1. (local linear controller)The origin of
R

n×R
l0 is locally asymptotically stable for the system

ẋ = Ax+Bsat(C0ζ0 +D0y) ,

ζ̇0 = A0ζ0 +B0y ;
(20)

2. (global nonlinear controller)the origin of R
n ×R

l1 is
globally attractive for the system

ẋ = Ax+Bsat(α1(Cx,ζ1)) ,

ζ̇1 = ϕ1(Cx,ζ1) .
(21)

Let us note that the IOSS assumption (as given in item 3 of
Assumption 1) is not explicitly needed since, as remarked in
[17], the detectability of the linear system ˙x= Ax+Bu, y=Cx
(due to item 1 of Assumption 2) implies that the linear system
ẋ = Ax+ Bu, y = Cx is IOSS which in turn implies that the
system (2) is IOSS.

Therefore Assumption 3 implies Assumption 1, and we
deduce from Theorem 2.1 the existence of a solution of our
uniting problem as claimed in the following result.

Corollary 4.1: Under Assumption 3, there exists a dynamic
hybrid output feedback controller(C ,D ,u,v,w) solving the
uniting problem.

This result is an existence result. But we can prove a
stronger result. Indeed under Assumption 3 we may construct
a hybrid controller solving our uniting problem (see Corollary
4.5 below). To do that, we denote the usual matrix norms by
‖ · ‖ (without specifying the dimensions), and byIn, Ip, . . .
the identity matrix inR

n×n, R
p×p, . . . respectively, and by

0 the null matrix of appropriate dimensions. For each matrix
M , the notationM > 0 (resp.M ≥ 0) means that the matrix
M is symmetric positive definite (resp. positive semi-definite).
To numerically compute a solution of our uniting problem,
we need the following assumption which holds whenever
Assumption 3 holds.4

Assumption 4: There exist symmetric positive definite
matrices P∈ R

m×m, P1 ∈ R
n×n, P0 ∈ R

(n+l0)×(n+l0) and
Q0 ∈ R

l0×l0, a symmetric positive semidefinite matrix N∈
R

(m+p+l0)×(m+p+l0), matrices H∈ R
m×(n+l0), L ∈ R

n×p, and
positive valuesε0a < ε0b, ε1a < ε1b, ε2, and ε3 such that:

1. (local linear controller)the origin ofRn×R
l0 is asymp-

totically stable for the system (20) with a basin of attrac-
tion containing the set{(x,ζ0), (x′,ζ′0)P0(x′,ζ′0)′ ≤ ε3},
the value(x′,ζ′0)P0(x′,ζ′0)

′ is non-increasing along the
trajectories of (20) starting in this set, and we have

P1(A+LC)+ (A+LC)′P1 ≤−2P1 ; (22)

2. (global nonlinear controller)by defining V1 : R
n → R≥0

with V1(x) = x′P1x, for all trajectories of (21), we have
limt→∞ V1(x(t))+ |ζ1(t)| ≤ ε2;

3. for each trajectory of (21) starting from{(x,ζ1), V1(x)+
|ζ1| ≤ ε2}, we have
ρ1(α1(Cx(t),ζ1(t)),Cx(t)) < ε1a, for all t ≥ 0, where
ρ1 : R

m × R
p → R≥0 is defined by ρ1(u,y) =

2

[
u
y

]′[
B′P1B 0

⋆ L′P1L

][
u
y

]
, for all (u,y) ∈ R

m×

R
p;

4For any symmetric matrix, we will denote the symmetric termsby ⋆.

4. the inequalities

ε3ε0b ≥ ε1b , (23)[
1

ε0b
P1 0

⋆ 1
ε0b

Q0

]
≥ P0 , (24)

[ ε0b
ε1b

P0 uiH ′
(i)

⋆ 1

]
≥ 0 , i = 1, . . . ,m , (25)

N ≥




2B′P1B 2B′P1BD0

⋆ 2(L′P1L+D′
0B′P1BD0)

⋆ ⋆

2B′P1BC0

D′
0B′P1BC0 +B′

0Q0

2C′
0B′P1BC0 +A′

0Q0 +Q0A0 +Q0


 ,(26)

[
2P P(K−H)
⋆ ε0aε0b

ε1b
P0

]

> diag(Im,C′, Il0)Ndiag(Im,C, Il0) ,(27)

hold, where H(i) denotes the ith row of H and K=
(D0C C0).

Let us denoteA =

[
A 0

B0C A0

]
, and B =

[
B
0

]
. Let

us note that, above, the assumption on the global, nonlinear
output feedback relaxes those of Assumption 3 (compare item
2 and item 3 of Assumption 4 with item 2 of Assumption
3). More precisely, we may prove that Assumption 4 holds
if Assumption 3 is satisfied (see Proposition 4.2 below).
Moreover, the problem of the computation of the variables
considered in Assumption 4 is not convex due to the products
appearing in (26). However, we state below a numerical
algorithm to compute a solution of the uniting problem by
solving LMIs only:

Proposition 4.2: Assumption 4 holds if Assumption 3 is
satisfied. Moreover the data allowing to define the hybrid
controller (16) are computed solving only LMIs as follows:

Algorithm 4.3: (to compute all the variables needed to
define the hybrid controller (16))

1. Compute a symmetric positive definite matrix P1 ∈R
n×n,

and a matrixL ∈ R
n×p solution of P1A+LC+ A′P1 +

C′L ′ < −2P1, and let L= P−1
1 L ;

2. compute a symmetric definite matrix W0 in
R

(n+l0)×(n+l0), a matrix Z ∈ R
m×(n+l0), a diagonal

positive matrix S∈ R
(n+l0)×(n+l0) in R

l0×l0 satisfying
[

W0A
′ +AW0 BS−Z′

⋆ −2S

]
< 0 , (28)

[
W0 W0K′

(i) −Z′
(i)

⋆ u2
(i)

]
≥ 0, i = 1, . . . ,m , (29)

whereA = A +BK, and K(i) (resp. Z(i)) denotes the ith
row of K (resp. Z);

3. let P0 =W−1
0 andε3 = 1, and compute a symmetric pos-

itive matrix R∈ R
l0×l0, and a positive valueε satisfying
[

εP1 0
⋆ R

]
≥ P0 . (30)
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Let 0 < ε0a < ε0b = 1/ε and Q0 = ε0bR;
4. compute a matrix H∈ R

m×(n+l0), and a positive valuêε
satisfying

[
ε̂P0 uiH ′

(i)

⋆ 1

]
≥ 0 , i = 1, . . . ,m ; (31)

5. compute a symmetric positive definite matrix P∈
R

m×m, a symmetric positive semidefinite matrix N∈
R

(m+p+l0)×(m+p+l0) and a positive valuẽε satisfying (26)
and [

2P P(K−H)
⋆ ε̃P0

]

> diag(Im,C′, Il0)Ndiag(Im,C, Il0) . (32)

Let ε1b = min(ε0bε3,
ε0aε0b

ε̃ , ε0b
ε̂ ) and 0 < ε1a < ε1b.

The proof of this result is postponed until Section VII. Note
that in the proof of Proposition 4.2, the basin of attractionof
(20) is estimated. To do that, we used the modified condition
of [8], but other approaches are possible (consider e.g., [13],
[14]).

With Assumption 4 we may design a dynamic hybrid output
feedback controller(C ,D ,u,v,w) solving the uniting problem.
This is our third theorem.

Theorem 4.4: Under Assumption 4, letting l= l0 + l1 +3,
α0(y,ζ0) =C0ζ0+D0y, ϕ0(y,ζ0) = A0ζ0+B0y andρ0(y,ζ0) =
(sat(α0(y,ζ0))

′ − α0(y,ζ0)
′, y′, ζ′0)N(sat(α0(y,ζ0))

′ −
α0(y,ζ0)

′, y′, ζ′0)′, for all (y,ζ0) ∈ R
p × R

l0, the dynamic
hybrid output feedback controller(C ,D ,u,v,w) defined by
(16) solves the uniting problem.

Combining Proposition 4.2 and Theorem 4.4, we readily
deduce:

Corollary 4.5: Under Assumption 3, the dynamic hybrid
output feedback controller (16) solves the uniting problemand
is defined solving only LMIs by following Algorithm 4.3 and by
defining ρ1(u,y) = 2(u′,y′)diag(B′P1B,L′P1L)(u′,y′)′, for all
(u,y) ∈ R

m×R
p and l, α0, ϕ0 and ρ0 as in Theorem 4.4.

This latter result is applied on one example in Section V-B
below. To prove Theorem 4.4 we first state that Assumption
2 holds if Assumption 4 is satisfied. Then we use Theorem
3.2 to prove that the hybrid controller (16) solves the uniting
problem. The complete proof in postponed until the appendix
(see Section VII below).

V. NUMERICAL SIMULATIONS

In this section some numerical simulations are performed
to illustrate the main results of this paper. It is first considered
an example borrowed from the literature and Theorem 3.2 is
applied. Then we apply Corollary 4.5 on an example in Section
V-B. 5

A. An example borrowed from the literature

Let us consider the following SISO system (see [1])

ẋ1 = −x1 +(u−x2)x
2
1, ẋ2 = −x2+x2

1, y = x1 (33)

wherex = (x1,x2) is the plant state,y stands for the output,
and u stands for the input. Let us rewrite this system as (1)

5The simulation codes can be downloaded from
www.gipsa-lab.fr/∼christophe.prieur/Codes/code-uniting.zip.

with obvious definitions off : R
2×R → R

2 andh : R
2 → R.

An observer forx2 is ˙̂x2 = −x̂2 + y2. Moreover, given any
trajectory of (33), we compute, for allt ∈ [0,tsup(x)),

|x1(t)|+ |x2(t)| ≤ |y(t)|+ |x2(t)− x̂2(t)|+ |x̂2(t)|
≤ |y(t)|+ |x2(0)− x̂2(0)|e−t

+sups∈[0,t] |y(s)|
2 + |x̂2(0)|e−t

≤ |x2(0)|e−t +sups∈[0,t] |y(s)|
2

if moreoverx̂2(0) = 0. Thus the system (33) is IOSS.
Now, for the local controller, let us pickα0(y) = 0, for all

y in R. By considering the linearization around the origin, it
can be checked that the origin ofR

2 is locally asymptotically
stable for system (4).

A global dynamic controller is computed in [1]. More
precisely, letα1 : R → R be defined byα1(ζ1) = ζ1 where
ζ1 is a dynamical state with the following dynamics (see [1]):

ζ̇1 = −ζ1 +y2−2y5 . (34)

System (33) in closed loop with this controller is (5) with an
obvious definition ofϕ1 : R×R → R. Therefore Assumption
1 holds and, applying Theorem 2.1, there exists a dynamic
hybrid output feedback controller(C ,D ,u,v,w) solving the
uniting problem.

To compute such a controller, let us consider Assumption 2.
Let V0 : R

2 →R≥0 be the continuous, positive definite function
defined byV0(x1,x2) = 1

2(x2
1 +x2

2). Simple computations give,
for all (x,u) in R

2×R,

∇V0(x) · f (x,u) = −x2
1−x3

1x2−x2
2 +x2x2

1 +ux3
1 ,

≤ −x2
1−

1
2

x2
2 +

3
2

x6
1 +x4

1 +
1
2

u2 , (35)

and thus ∇V0(x) · f (x,α0(h(x))) ≤ −V0(x) + ρ0(y), where
ρ0(y) = 3

2y6 +y4, for all y in R. Therefore by letting, for all
(s,t) in R

2
≥0, β0(s,t) = 3max{s,s2}e−t , item 2 of Assumption

2 holds. To compute an estimation of the basin of attraction of
system (4) we may check, using (35), that, for all(x1,x2) 6= 0
such thatV0(x1,x2) ≤

1
3, it holds ∇V0(x) · f (x,α0(h(x))) < 0.

Therefore by lettingε0b = 1
3, item 1 of Assumption 2 holds.

Pick ε0a = 1
4. From (35), by lettingρ1(u,y) = 1

2u2+y4+ 3
2y6,

we get that (12) is a norm-observer forx, as consider in item
4 of Assumption 2. By lettingV1 =V0 andε1b = 1

6, and using
that all x1 such thatx2

1 ≤ 1
3 satisfies3

2x6
1 + x4

1 ≤ ε0a, we get
that item 5 of Assumption 2 holds. Letε1a = 1

7.
Since the origin ofR3 is globally asymptotically stable for

the system (5), item 6 of Assumption 2 holds for a sufficiently
small positive valueε2. Therefore Assumption 2 is satisfied.

By applying Theorem 3.2, the dynamic hybrid output feed-
back controller (16) solves the uniting problem. To check that
the origin is a global asymptotic stable equilibrium, let us
plot the trajectory of (6) starting fromx0 = (1,−1)′, ζ0

1 = 0,
z0
0 = 0, z0

1 = 0, andq0 = 0. We check on Figure 1 (top) that
the trajectory converges to the origin. The time evolution of
the control values are given in Figure 1 (down). First the local
controller is used up to the time instant 0.12 and then the
global controller. Aftert = 2.3 the local controller is used.
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Fig. 1. Top: time evolution ofx1 (in plain line) and ofx2 (in dashed line)
of the system in closed loop with the hybrid controller. Down: time evolution
of u

B. An academic example

Before introducing the example under consideration in this
section, let us recall that Corollary 4.5 can be seen as an anti-
windup result since, from a locally stabilizing controller, we
build a global stabilizer. Thus it may be important to maximize
the size of the region where the local controller is used. For
this aim, due to the uniting problem, we have to maximize
the valueε0a. To do this, it is possible to consider some
convex optimization problems derived from Algorithm 4.3.
First, at step 2 of Algorithm 4.3, maximizing the estimate of
the basin of attraction of (20) can be accomplished by solving
the following convex optimization problem:

minµ subject to (28), (29) and

[
µIn+l0 In+l0

⋆ W0

]
> 0 .

Also at step 3 of Algorithm 4.3, it is possible to maximize
the valueε0a by solving the convex optimization problem:
minε subject to (30). These optimization objectives have been
considered in the next example.

To illustrate Corollary 4.5, let us consider the two-

dimensional system (2), withA =

[
0 1
0 −0.1

]
, B =

[
0
1

]
,

andC =
[

1 0
]

and sat is the saturation function with level
equal to 10. The equations model a positioning system where
the positionx1 is assumed to be measured, and the force which
is applied on the system may saturate. The speedx2 is subject
to friction.

For the local controller we consider the following linear

controller:

ζ̇0 = A0ζ0 +B0y ,u = C0ζ0 +D0y , (36)

with A0 =

[
−14 0

1 0

]
, B0 =

[
16
0

]
, C0 =

[
7.5 −0.625

]

and D0 = −10. We easily check that the origin is asymp-
totically stable for the system (2) in closed-loop with (36)
linearized around the origin. However the origin of the
nonlinear closed-loop system is not globally asymptotically
stable (consider e.g., the trajectory starting from(x0′,ζ0′

0 ) =
[10, 10, 10, 10] which diverges as the time goes to the
infinity).

For the second controller, consider the following static
position feedback:α1(y) = Ky with K = −0.1. Using the
positive definite functionV : R

2 →R≥0 defined byV(x1,x2) =
1
2x2

2 −
R x1

0 sat(Ks)ds, for all (x1,x2) ∈ R
2, and the Invariance

Principle (see [16]), we may check that the origin of the system
(2) in closed loop withα1 is globally asymptotically stable,
but may induce large intermediate values (consider e.g., the
trajectory starting fromx0′ = [10, 10]).

Therefore Assumption 3 holds (recall that, as remarked
after the statement of this assumption, the IOSS does need
to be explicitely stated). Thus the uniting problem is solved
by applying Corollary 4.5, and the hybrid controller (16) is
computed by following Algorithm 4.3. It gives the following
quantities

P1 =

[
1.9655 −0.7578

⋆ 0.6014

]
, L =

[
−3.0951
−4.7740

]
,

[
ε0a
ε1a

]
=

[
0.5645

1.5033×10−4

]

N =




55.0216 −275.94 206.94 −17.250
⋆ 12069 −8673.7 934.16
⋆ ⋆ 7275.6 −164.14
⋆ ⋆ ⋆ 347.19


 .

In particular, x 7→ x′P1x is an IOSS Lyapunov function for
(2). Consider system (2) in closed loop with the dynamic
hybrid output feedback controller (16). Let us first consider
the following initial condition:x0′ = [0; 0.05; 0; 0], q0 = 1,
z1

0 = 0.05, andz0
0 = 0.05. We note on Figure 2 (down) that

we start using the global controller until the timet = 60. After
this time instant we use the local controller and see that the
trajectory tends to the origin (see Figure 2, top). We see on
Figure 2 (down) that this switch is due to the fact that the
value ofz1 becomes lower thanε1a at the switching time.

Now we consider the initial conditionx0′ = [0, 0.05, 0, 0],
q0 = 0, z1

0 = 0.05, andz0
0 = 0.05. We note on Figure 4 (top)

that the local controller is used until the timet = 0.84, where
z0(0.84) = 0.5668> ε0a. Thus the global controller is used.
We eventually switch to the local controller (after the time
t = 39) (see Figure 3, down) and the trajectory converges to
the origin (see Figure 3, top).

With Corollary 4.5, we also get a robustness with respect
to small measurement noise. To illustrate this on numerical
simulations, let us consider again the initial conditionx0′ =
[0; 0.05; 0; 0], q0 = 0, z1

0 = 0.05, andz0
0 = 0.05, and an

additive small noise in the output. This noise is a uniform
distribution between−0.01 and 0.01. The results are shown
in Figure 5. We note that the switching sequence in not the
same as the unperturbed case (compare Figure 5 (down) with
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Fig. 2. Top: time evolution of(x1,x2) of the system in closed loop with
the hybrid controller. Down: time evolution ofu (in plain line) and ofz1 (in
dashdotted line), the valueε1a is given by the horizontal line.
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Fig. 3. Top: time evolution of(x1,x2) of the system in closed loop with the
hybrid controller. Down: time evolution ofq.
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Fig. 4. Top: time evolution ofu (in plain line) and ofz0 (in dashdotted line),
the valueε0a is given by the horizontal line before the first switching time.
Down: time evolution ofu (in plain line) and ofz1 (in dashdotted line), the
value ε1a is given by the horizontal line.

Figure 3 (down)) but the state is practically stabilized to the
origin (see Figure 5 (top)). Due to the perturbations, even
for large time, we may use the global controller (see Figure
5 (down)). Note finally that we see on Figure 6 (top) that
for all initial conditions (x0,ζ0,z0

0,z
0
1) with Euclidian norm

less that 0.01, only the linear controller (36) is used. This
is an illustration of the second point of the uniting problem
(see before Theorem 2.1). That region is smaller than the
basin of attraction of the linear controller (36). This is due
to the conservatism introduced in Algorithm 4.3 where we
need to nest together different ellipsoidal domains. See as
example, on Figure 6 (down), the projection of both ellipsoids
involved in (30) on the last two coordinates(x3,x4)-plane. For
this numerical example the ellipsoidal domains have slightly
different profiles.

VI. PROOF OFTHEOREM 2.1 AND THEOREM 3.2

Let Assumption 2 hold, and consider the system (1) in
closed loop with the hybrid feedback (16). Define the matrix
M ∈ R

l0×l , the continuous positive definite functionω and the
value r > 0 as introduced in Theorem 3.2.

One important remark for our proof is that, as also noted
in [17], the system (10) is input-to-state stable (ISS) for the
input (h(x),ζ0). Similarly the system (12) is ISS for the input
(u,h(x)).
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Fig. 5. Top: time evolution ofx1 (in plain line) and ofx2 (in dotted line)
of the system in closed loop with the hybrid controller corrupted with noise.
Down: time evolution ofq.

Proof of Theorem 3.2.Let us prove that the origin is globally
asymptotically stable for the system (6). First, let us notethat
the setsCq, D q are closed, the function
(x,ζ) 7→ ( f (x,u(h(x),ζ),v(h(x),ζ)) is continuous onRn× Cq,
and the function(x,ζ) 7→w(h(x),ζ) is continuous onRn×D q.
Moreover, sinceρ0 and ρ1 are positive semi-definite func-
tions, when flowing from the boundary ofC , we enterC .
More precisely, recall that, inC , q̇ = 0, and żq ≥ 0 when
zq = 0, for all q∈ {0,1}, then, for all(y,ζ) ∈ R

p× (∂C \D ),
we have{v(y,ζ)} ∩ TC(ζ) 6= /0, where TC(ζ) stands for the
tangent coneto C at ζ. Also, for all (y,ζ) ∈ R

p × D , we
have w(y,ζ) ∈ C ∪D . Therefore, the viability conditions of
[11, Prop. 2.1] are satisfied and, for all initial conditions
(x0,ζ0) ∈ R

n× (C ∪D ), there exists a maximal trajectory of
(6) starting at(x0,ζ0). Moreover each maximal trajectory to
(6) either has an unbounded hybrid time domain or eventually
leaves any compact subset ofR

n×R
l .

Let us prove the local stability property. Let 0< ε < ε0a. Let
0< δ < min(1,ε0a) be such that, for all(x0,ζ0

0,z
0
0,z

0
1) satisfying

V0(x0,ζ0
0)+ |z0

0|+ |z0
1| ≤ δ, the trajectory of (4), (10) and (12)

with u(t) = α0(h(x(t)),ζ0(t)), starting at(x0,ζ0
0), satisfies, for

all t ≥ 0,

|x(t)|+ |ζ0(t)|+ |z0(t)|+ |z1(t)| ≤ ε . (37)

Suchδ > 0 exists by item 1 of Assumption 2, and since the
systems (10) and (12) (withu = α0(h(x),ζ0)) are ISS.

Now consider a trajectory(x,ζ) of (6) with initial condition
(x0,ζ0) ∈ R

n× (C ∪D ) such thatV0(x0,ζ0
0)+ |z0

0|+ |z0
1|+q0 ≤

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
−0.02

−0.015
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−0.005

0

0.005
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0.015
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−15 −10 −5 0 5 10 15
−30

−20

−10

0

10

20

30

Fig. 6. Top: time evolution ofx1 and x2 for sufficiently small initial
conditions. Down: projection of the ellipsoids involved in(30) on the plane
(x3,x4).

δ. Sinceδ < 1 we haveq0 = 0. It follows from the definition of
D 0, that the initial condition is not inD 0. Thus, by considering
the firstn+ l0 components of the trajectory(x,ζ), we get that
(x,ζ0) is a trajectory of (4) on[0, t̄)×{0} for a positive t̄.
Moreover from (37), all such maximal trajectories(x,ζ) do
not return inD , and their domains is of the form[0,T)×{0}
with T ∈ R>0∪{∞}.

If T < ∞, then(x,ζ) eventually leaves any compact subset
of R

n×R
l . Since the system (12) withu= α0(h(x),ζ0) is ISS,

z1 cannot grow unbounded if the(x,ζ0) is bounded. Moreover
the z0-component is bounded. Therefore(x(.,0),ζ0(.,0)) is a
trajectory of (4) on[0,T) starting from{(x,ζ0) : V0(x,ζ0) ≤
ε0a}, which grows unbounded. This contradicts item 1 of
Assumption 2.

ThereforeT = ∞ and (x(.,0),ζ0(.,0),z0(.,0),z1(.,0)) is a
trajectory of (4), (10) and (12) (withu = α0(h(x),ζ0)) on
[0,∞), and thus we have|x(t)|+ |ζ0(t)|+ |z0(t)|+ |z1(t)| ≤ ε,
for all t ≥ 0. Also for all t ≥ 0, q(t) = 0. This is the local
stability.

Moreover, due to the expression of the setC , and due to
(10), every trajectory of (6) starting at(x0,ζ0)∈R

n×(C ∪D ),
with ω(x0,ζ0) ≤ r, has the hybrid time domain[0,∞)×{0},
(x(t,0),Mζ(t,0)) = (x(t),ζ0(t)) and (x,ζ0) is a trajectory to
(4).

Let us establish global convergence. Let(x0,ζ0) ∈ R
n ×

(C ∪ D ) and (x,ζ) be a maximal trajectory of (6) defined
on dom(x,ζ) and starting at(x0,ζ0). First we prove that the
discrete variable has to take the value 0 for some suitable
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hybrid time:
Claim 6.1: There exists (t, j) ∈ dom(x,ζ), such that

q(t, j) = 0.
Proof of Claim 6.1.Let us prove this claim by contradiction
and assume that

q(t, j) = 1,∀(t, j) ∈ dom(x,ζ) , (38)

then, dom(x,ζ) = [0,T)×{0}, with T ∈R>0∪{∞}. Moreover,
(x(.,0),ζ1(.,0)) is a trajectory of (5). IfT < ∞, then (x,ζ)
eventually leaves any compact subset ofR

n×R
l . Due to the

expression ofC1, we note that theζ0-component and thez0-
component remain equal to 0. Since the system (12) withu =
α1(h(x),ζ1) is ISS, z1 cannot grow unbounded if the(x,ζ1)
is bounded. Therefore(x(.,0),ζ1(.,0)) is a trajectory of (5)
which grows unbounded. This cannot occur due to item 3 of
Assumption 2.

ThereforeT = ∞, and(x(.,0),ζ1(.,0)) is a trajectory of (5)
defined on[0,∞), and according to item 3 of Assumption 2,
there exists̄t > 0, such that we have, for allt ≥ t̄, V1(x(t,0))+
|ζ1(t,0)| < ε2. Moreover, from (12), we compute|z1(t,0)| ≤
|z1(t̄,0)|e−t+t̄ +maxs∈[t̄,t] ρ1(α1(h(x(s,0)),
ζ1(s,0)),h(x(s,0))). Using item 6 of Assumption 2, we get
the existence of̃t ≥ t̄ such thatz1(̃t) < ε1a. This contradicts
(38), and concludes the proof of Claim 6.1. 2

Now, we prove that if the discrete variable is equal to 0 for
all sufficiently large time, then the trajectory converges to the
origin:

Claim 6.2: If there exists a hybrid time(t̄, j̄) ∈ dom(x,ζ),
such that, q(t, j) = 0, for all (t, j) ∈ dom(x,ζ), (t, j) ≥ (t̄, j̄),
then the trajectory is complete and converges to the origin.

Proof of Claim 6.2. First we note that if there is not any
jump after(t̄, j̄), then for all (t, j) ∈ dom(x,ζ), (t, j) ≥ (t̄, j̄),
we havej = j̄, and due to the expression ofw, for all (t, j̄) ∈
dom(x,ζ), t ≥ t̄, we haveζ(t, j) 6∈ D . Moreoverz0(t, j̄) ≤ ε0a

for such(t, j̄) and(x(., j̄),ζ0(., j̄)) is a trajectory of (4) on the
domain{t, (t, j̄) ∈ dom(x,ζ), t ≥ t̄}.

Let us prove that the trajectory is complete. Let us assume
the converse. Then the trajectory grows unbounded. Thez0-
component and theζ1-component are bounded due to the
expression ofC0 and sinceq(t, j̄) = 0, for all (t, j̄)∈ dom(x,ζ),
t ≥ t̄. Since the system (12) withu = α0(h(x),ζ0) is ISS, z1

cannot grow unbounded if the(x,ζ0) is bounded. Therefore
we get a trajectory of (4) which is unbounded. With item 2 of
Assumption 2 this implies that thez0 grows also unbounded,
which is a contradiction with the expression ofC0. This
contradiction implies that the trajectory is complete.

Recall that(x,ζ0,z0)(., j̄) is a maximal trajectory of (4) and
(10) on [t̄,∞). From item 2 of Assumption 2, (11),ε0a < ε0b,
and the fact thatβ0 is a function of classK L , t̄ may be
assumed to be such that, for allt in [t̄,∞), the inequality
V0(x(t, j̄),ζ0(t, j̄)) ≤ ε0b holds. But, according to item 1 of
Assumption 2, this set belongs to the basin of attraction of the
target set. Hence, thex- and ζ0-components of the trajectory
converge to 0. Due to the expression ofC0, theζ1-component
is equal to 0, and since the systems (10) and (12) (with
u = α0(h(x),ζ0)) are ISS, the(z0,z1)-component tends also
to zero. This concludes the proof of Claim 6.2. 2

In the last intermediate result, the discrete variable cannot
switch back and forth betweenq = 0 andq = 1:

Claim 6.3: There does not exist a non decreasing sequence
of hybrid times((tn, jn)n∈N) ∈ dom(x,ζ), such that we have,
for all n ∈ N,

q(t2n, j2n) = 0 , q(t2n+1, j2n+1) = 1 . (39)

Proof of Claim 6.3. First we note that instantaneous Zeno
trajectories6 are impossible due to the expressions ofD 0 and
D 1. Let us prove Claim 6.3 by contradiction and assume
that there exists a non decreasing sequence of hybrid times
((tn, jn)n∈N) ∈ dom(x,z), such that we have (39) for alln∈ N.
Without loss of generality we may assume that we have no
jump between two points of this sequence and thatjn = n.
Due to the expression of the functionw, and the setsC
and D , for all n ∈ N, we have to flow in C0 between
(t2n,2n) and (t2n+1,2n), and we have to flow inC1 between
(t2n+1,2n+1) and(t2n+2,2n+1). Note thatζ(t2n+2,2n+1)∈
D 1 and thusz1(t2n+2,2n+1) ≤ ε1a, for all n∈ N. Therefore,
with item 4 of Assumption 2, there existsN > 0 such that
we haveV1(x(t2N+2,2N + 2)) = V1(x(t2N+2,2N + 1)) ≤ ε1b.
Thus, between(t2N+2,2N+2) and(t2N+3,2N+2), (x,ζ0) is a
trajectory of (4) starting from{(x,ζ0),V1(x) ≤ ε1b,ζ0 = 0}. It
follows from item 5 of Assumption 2, thatρ0(h(x(t2N+3,2N+
2)),ζ0(t2N+3,2N + 2)) < ε0a. Thus with (10),z0(t2N+3,2N +
2) < ε0a. This contradictsζ(t2N+3,2N+2)∈D 0 and concludes
the proof of Claim 6.3. 2

Let us combine the previous claims. First, due to Claim
6.1, there exists(t, j) ∈ dom(x,ζ) such thatq(t, j) = 0, and
there does not exist a hybrid time(t⋆, j⋆) ∈ dom(x,ζ), such
that,q(t, j) = 1, for all (t, j) ∈ dom(x,ζ), (t, j)≥ (t⋆, j⋆). Now
with Claim 6.3, there exists(t̄, j̄) ∈ dom(x,ζ), such that the
assumption of Claim 6.2 holds. Thus the trajectory is complete
and tends to the origin. Therefore the origin is asymptotically
stable for the system (6). 2

All what remains to establish is the robustness issue. It
follows mainly from [23, Theo. 4.3]. To check that point, let
us introduce the closed subsets ofR

n×R
l0 ×R

l1 ×R≥0×R≥0

Cq = {(x,ζ0,ζ1,z0,z1),s.t.(ζ0,ζ1,z0,z1,q) ∈ Cq} ,
Dq = {(x,ζ0,ζ1,z0,z1),s.t.(ζ0,ζ1,z0,z1,q) ∈ D q} .

The hybrid system (6) can be rewritten as(ẋ, ξ̇) =
Fq(x,ξ) if (x,ξ) ∈ Cq, q+ = Gq(x,ξ) if (x,ξ) ∈ Dq with ob-
vious definitions for the functionsFq : Cq → R

n×R
l0 ×R

l1 ×
R≥0×R≥0, andGq : Dq → R

n×R
l0 ×R

l1 ×R≥0×R≥0. The
functions h, α0, α1, Fq, and Gq are continuous on their
domains of definition. Now the family{Cq}q∈{0,1} forms a
covering ofRn×R

l0×R
l1×R≥0×R≥0, and for allq∈ {0,1},

we haveCq∪Dq = R
n×R

l0 ×R
l1 ×R≥0×R≥0. Therefore we

can apply [23, Theo. 4.3], and we have the robustness of the
asymptotic stability as in Theorem 3.2. 2

Proof of Theorem 2.1.The proof of Theorem 2.1 follows
from Claim 3.1 and Theorem 3.2. 2

6We recall that a Zeno trajectory is said to be instantaneous,if the time t
is eventually constant.
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VII. PROOF OFPROPOSITION4.2 AND THEOREM 4.4

Proof of Proposition 4.2. We assume that Assumption 3 is
satisfied. Let us state the items of Assumption 4 successively.

Due to item 1 of Assumption 3, the origin of linear system
(3) is asymptotically stable and thus (see [25, Chap. 7, Theo.
32]), the pair (C,A) is detectable. Therefore there exist a
symmetric positive definite matrixP1 ∈ R

n×n, and a matrix
L ∈ R

n×p such that inequality (22) holds.
Moreover, since the origin of the system (2) is locally

asymptotically stable, there exists a symmetric positive def-
inite matrix P0 and a positive valueε3 such that item 1 of
Assumption 4 holds. We easily see that there exist a symmetric
positive definite matrixQ0 ∈ R

l0×l0 and a sufficiently small
positive valueε0b such that (24) holds. Now observe that
there exist a matrixH ∈ R

m×(n+l0) and a sufficiently small
positive valueε1b such that (23) and (25) hold (the value
of ε1b may be reduced). Moreover, using Schur comple-
ments, we check that there exist a symmetric positive definite
matrix P ∈ R

m×m, a symmetric positive semidefinite matrix
N ∈ R

(m+p+l0)×(m+p+l0), and sufficiently small positive values
ε1a < ε1b such that the conditions (26) and (27) hold. Thus
item 4 of Assumption 4 holds.

By continuity of ρ1 and ρ1(0,0) = 0, and using item 2
of Assumption 3, there existsε2 > 0 such that item 3 of
Assumption 4 holds. Using item 2 of Assumption 3 again,
item 2 of Assumption 4 is satisfied. Therefore we get that
Assumption 4 holds if Assumption 3 is satisfied, as claimed
in Proposition 4.2.

Let us state that following Algorithm 4.3, we compute all
the variables allowing to define the hybrid controller (16).Due
to item 1 of Assumption 3, the pair(C,A) is detectable, and
there exist a symmetric positive definite matrixP1 ∈R

n×n, and
a matrixL ∈ R

n×p such thatP1A+LC+A′P1 +LC′ ≤−2P1.
Therefore, by lettingL = L−1

1 L as done in step 1 of Algorithm
4.3, the inequality (22) follows.

The determination of the exact basin of attraction of (20) is
in general impossible; however, as soon asA+BK is Hurwitz,
there exist many relaxations, and convex problems written in
terms of LMI, to compute a quadratic Lyapunov function for
(20) and a convex approximation of the basin of attraction of
(20) (see e.g., [13], [28]). One possible approach is to use a
modified sector condition as introduced in [8] (see also [14]).
Denotingx = [x′ ζ′0]

′, it is suggested in [8] a convex problem
to compute a quadratic Lyapunov functionx 7→ xP0x for (20):

Proposition 7.1: ([8]) If there exist a symmetric positive
definite matrix W0 in R

(n+l0)×(n+l0), a matrix Z∈ R
m×(n+l0)

and a diagonal positive matrix S∈ R
(n+l0)×(n+l0) such that

[
W0A

′ +AW0 BS−Z′

⋆ −2S

]
< 0,

and
[

W0 W0K′
(i)−Z′

(i)

⋆ u2
(i)

]
≥ 0, i = 1, . . . ,m ,

whereA = A + BK, and K(i) (resp. Z(i)) denotes the ith row
of K (resp. Z), then, denoting P0 = W−1

0 , the ellipsoid{x ∈
R

n+l0, x′P0x≤ 1} is included in the basin of attraction of (20),

and the functionx 7→ x′P0x decreases along the trajectories of
(20), when starting in{x ∈ R

n+l0, x′P0x ≤ 1}.
Letting ε3 = 1 we get thatP0 and ε3 satisfy item 1 of

Assumption 4. Now we compute a symmetric positive matrix
Rand a positive valueε solution of (30). We get that the system
(20) is asymptotically stable in{x, x′diag(P1,Q0)x ≤ ε0b}.

Given 0< ε0a < ε0b, we compute a matrixH ∈ R
m×(n+l0)

and a positive valuêε satisfying (31). Then we compute a
symmetric positive definite matrixP ∈ R

m×m, a symmetric
positive semidefinite matrixN ∈ R

(m+p+l0)×(m+p+l0) and a
positive valuẽε satisfying (26) and (32). Thus the computed
variables are such that we have item 4 of Assumption 4.
Letting 0 < ε1a < ε1b, by item 2 of Assumption 3, there
exists 0< ε2 such that item 2 and item 3 of Assumption
4 hold. Therefore following Algorithm 4.3, we compute all
the variables allowing to define the hybrid controller (16) by
solving only LMIs. This concludes the proof of Proposition
4.2. 2

Proof of Theorem 4.4. Let Assumption 4 hold, and consider
the system (2) in closed loop with the hybrid feedback (16).
Recalling Theorem 3.2, to state Theorem 4.4 it is sufficient to
prove the following:

Claim 7.2: Assumption 2 holds if Assumption 4 is satisfied.
Proof of Claim 7.2.We state the items of Assumption 2

successively. Let us construct an IOSS-Lyapunov function for
(2). With (22) in Assumption 4, and letting̊V1 = ∇V1(x) ·(Ax+
Bu), we compute

V̊1 = 2x′P1(Ax+Bu),

= 2x′P1(A+LC)x+2x′P1Bu−2x′P1Ly,

≤ −2V1(x)+2x′P1Bu−2x′P1Ly,

≤ −2V1(x)+
1
2

V1(x)+2u′B′P1Bu+
1
2

V1(x)

+2y′L′P1Ly,

≤ −V1(x)+2

[
u
y

]′[
B′P1B 0

⋆ L′P1L

][
u
y

]
. (40)

Therefore we get the existence of a functionβ1 of classK L
such that item 4 of Assumption 2 holds. Now, definingV0 :
R

n×R
l0 → R≥0 with V0(x,ζ0) = x′P1x+ ζ′0Q0ζ0, and letting

V̊0 = ∇V0(x,ζ0) · (Ax+ Bsat(C0ζ0 + D0Cx),A0ζ0 + B0Cx), we
compute with (40)

V̊0 ≤ −V1(x)+2

[
sat(C0ζ0 +D0y)

y

]′[
B′P1B 0

⋆ L′P1L

]

×

[
sat(C0ζ0 +D0y)

y

]
+2ζ′0Q0(A0ζ0 +B0y) ,

≤ −V1(x)+2ζ′0Q0(A0ζ0 +B0y)

+4(sat(C0ζ0 +D0y)−C0ζ0−D0y)′B′P1B(C0ζ0 +D0y)

+2

[
sat(C0ζ0 +D0y)−C0ζ0−D0y

y

]′

×

[
B′P1B 0

⋆ L′P1L

][
sat(C0ζ0 +D0y)−C0ζ0−D0y

y

]

+2(C0ζ0 +D0y)′B′P1B(C0ζ0 +D0y) ,
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and thus

V̊0 ≤ −V0(x)+




sat(C0ζ0 +D0y)−C0ζ0−D0y

y
ζ0




′

×N




sat(C0ζ0 +D0y)−C0ζ0−D0y

y
ζ0





whereN satisfies (26). Therefore, by definingρ0 as in The-
orem 4.4, we get the existence of a functionβ0 of class
K L such that we have item 2 of Assumption 2. Item 1 of
Assumption 2 follows from item 1 of Assumption 4, (23) and
(24). The following remark will be useful.

Remark 7.3: One way to have item 5 of Assumption 2 is
to assume the existence of a functionα : R≥0 → R≥0 of class
K∞ such that

1. we have(x′,0)P0(x′,0)′ ≤ α(V1(x)) for all x such that
V1(x) ≤ ε1b;

2. for each trajectory of (20) starting from
{(x,ζ0), (x′,ζ′0)P0(x′,ζ′0)′ ≤ α(ε1b)}, we have
ρ0(Cx(t),ζ0(t)) < ε0a, for all t ≥ 0.

Note that, due to (24), we have(x′,0)P0(x′,0)′ ≤ 1
ε0b

V1(x),
for all x ∈ R

n. Thus, with Remark 7.3, (23) and item 1
of Assumption 4, item 5 of Assumption 2 is satisfied as
soon asρ0(Cx,ζ0) < ε0a, for all (x,ζ0) ∈ R

n×R
l0 such that

(x′,ζ′0)P0(x′,ζ′0)
′ ≤ ε1b

ε0b
. Therefore, to prove that item 5 of

Assumption 2 holds, it is sufficient to state that, for all
x ∈ R

n+l0 \ {0}, such thatx′P0x ≤ ε1b
ε0b

, we have
[

sat(Kx)−Kx
x

]′
Ñ

[
sat(Kx)−Kx

x

]
<

ε0aε0b

ε1b
x′P0x ,

(41)
whereÑ = diag(Ip, C′, Il0)Ndiag(Ip, C, Il0). Let us note that,
applying Schur complements, the condition (25) is equivalent
to x′H ′

(i)uiuiH(i)x ≤ ε0b
ε1b

x′P0x, and, using the fact that the

saturation level is decentralized, for allx ∈ R
n+l0, satisfying

x′P0x ≤ ε1b
ε0b

, we have sat(Hx) = Hx. Now, for each symmetric
positive definite matrixP∈ R

m×m, denotingu = Kx, we get,
for all x ∈ R

n×l0 such thatx′P0x ≤ ε1b
ε0b

,

(u−sat(u))′P(sat(u)−Hx)≥ 0 . (42)

Indeed, consider this inequality for each saturation function
one at a time. Ifu(i) = sat(i)(u(i)) then there is nothing to
check. If u(i) 6= sat(i)(u(i)) then u(i) − sat(u(i)) has the same
sign as sat(u(i))−H(i)x sinceH(i)x = sat(i)(H(i)x) whereH(i)
denotes theith row of H.

From (42), for all x ∈ R
n×l0 such that x′P0x ≤

ε1b
ε0b

, we have (u − sat(u))′P(sat(u) − u + Kx − Hx) ≥

0, i.e.

[
sat(u)−u

x

]′[ 2P P(K −H)
⋆ 0

][
sat(u)−u

x

]
≤ 0.

Thus, using the S procedure, the condition (41) is implied by

Ñ− ε0aε0b
ε1b

diag(0, P0)−

[
2P P(K−H)
⋆ 0

]
< 0. We get that

(27) implies (41), and thus we have item 5 of Assumption 2.
Due to item 2 (resp. item 3) of Assumption 4, we have item

3 (resp. item 6) of Assumption 2. This concludes the proof of
Claim 7.2, and, with Theorem 3.2, the proof of Theorem 4.4.
2

VIII. C ONCLUSION

Given two stabilizing output feedbacks controllers (one
being globally asymptotically stabilizing, the other one be-
ing only locally asymptotically stabilizing) for the nonlinear
control system (1), we designed a hybrid output feedback con-
troller that is equal to the local controller on a neighborhood
of the origin, and that is globally asymptotically stabilizing.
To solve this uniting problem, we assumed that the nonlinear
control system is IOSS.

We have also considered linear systems with saturation at
the input. Given two stabilizing output feedbacks controllers
(one being a linear but only locally asymptotically stabiliz-
ing, the other being nonlinear and globally attractive), we
numerically computed a hybrid output feedback controller
that is equal to the local controller for initial condition in a
neighborhood of the origin, and that is globally asymptotically
stabilizing.

Combining [23, Theorem 4.3] and the regularity of the
data of our hybrid feedback, we achieved the robustness
with respect to (small) measurement noise, actuator errors
and external disturbances. We noted that the uniting problem
may not have a solution in terms of classical (continuous or
discontinuous) controllers as explained in Remark 2.2. The
main results and the robustness were illustrated on simulations.

REFERENCES

[1] V. Andrieu and L. Praly. A unifying point of view on outputfeedback
designs for global asymptotic stabilization.Automatica, 45(8):1789–
1798, 2009.

[2] D. Angeli, E.D. Sontag, and Y. Wang. A characterization of inte-
gral input-to-state stability.IEEE Transactions on Automatic Control,
45(6):1082–1097, 2000.

[3] J.-P. Aubin, J. Lygeros, M. Quincampoix, S. Sastry, and N. Seube.
Impulse differential inclusions: a viability approach to hybrid systems.
IEEE Trans. Automat. Control, 47(1):2–20, 2002.

[4] S. Battilotti. Sufficient conditions for global output regulation of
nonlinear interconnected systems.Automatica, 35(5):829–835, 1999.

[5] Y.-Y. Cao, Z. Lin, and D.G. Ward. An antiwindup approach to enlarging
domain of attraction for linear systems subject to actuatorsaturation.
IEEE Transactions on Automatic Control, 47(1):140–145, 2002.

[6] F.H. Clarke, Y.S. Ledyaev, L. Rifford, and R.J. Stern. Feedback
stabilization and Lyapunov functions.SIAM J. Control Optim., 39(1):25–
48, 2000.

[7] F.H. Clarke, Y.S. Ledyaev, and R.J. Stern. Asymptotic stability and
smooth Lyapunov functions.J. Diff. Eq., 149(1):69–114, 1998.

[8] J.M. Gomes da Silva Jr and S. Tarbouriech. Antiwindup design
with guaranteed regions of stability : an LMI-based approach. IEEE
Transactions on Automatic Control, 50:106–111, 2005.

[9] D.V. Efimov. Uniting global and local controllers under acting distur-
bances.Automatica, 42(3):489–495, 2006.

[10] R. Goebel, J. Hespanha, A.R. Teel, C. Cai, and R. Sanfelice. Hybrid
systems: generalized solutions and robust stability. InIFAC Symp. on
Nonlinear Control Systems (NOLCOS), pages 1–12, Stuttgart, Germany,
2004.

[11] R. Goebel and A.R. Teel. Solutions to hybrid inclusionsvia set and
graphical convergence with stability theory applications. Automatica,
42(4):573–587, 2006.

[12] G. Grimm, J. Hatfield, I. Postlethwaite, A.R. Teel, M.C.Turner, and
L. Zaccarian. Antiwindup for stable linear systems with input saturation:
an LMI-based synthesis.IEEE Transactions on Automatic Control,
48(9):1509–1525, 2003.

[13] T. Hu and Z. Lin. Control systems with actuator saturation: analysis
and design. Birkhauser, Boston, 2001.

[14] T. Hu, A.R. Teel, and L. Zaccarian. Stability and performance for
saturated systems via quadratic and nonquadratic Lyapunovfunctions.
IEEE Transactions on Automatic Control, 51(11):1770–1786, 2006.



14

[15] G. Kaliora, A. Astolfi, and L. Praly. Norm estimators andglobal output
feedback stabilization of nonlinear systems with iss inverse dynamics.
IEEE Transactions on Automatic Control, 51(3):493–498, 2006.

[16] H.K. Khalil. Nonlinear Systems. Prentice-Hall, 3rd edition, 2002.
[17] M. Krichman, E.D. Sontag, and Y. Wang. Input-output-to-state stability.

SIAM J. Control Optim., 39:1874–1928, 2001.
[18] Y.S. Ledyaev and E.D. Sontag. A Lyapunov characterization of robust

stabilization. Nonlinear Analysis, 37:813–840, 1999.
[19] J. Lygeros, K.H. Johansson, S.N. Simić, J. Zhang, and S.S. Sastry.
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Sud, France. From 2002 he is an associate re-
searcher CNRS at the laboratory SATIE, Ecole Nor-
male Supérieure de Cachan, at the LAAS, Toulouse
(2004-2010), and from 2010 at the Gipsa-lab, Greno-
ble, France. His current research interests include
nonlinear control theory, hybrid systems, and control
of nonlinear partial differential equations.

Andrew R. Teel received his A.B. degree in
Engineering Sciences from Dartmouth College in
Hanover, New Hampshire, in 1987, and his M.S.
and Ph.D. degrees in Electrical Engineering from
the University of California, Berkeley, in 1989 and
1992, respectively. After receiving his Ph.D., Dr.
Teel was a postdoctoral fellow at the Ecole des
Mines de Paris in Fontainebleau, France. In 1992
he joined the faculty of the Electrical Engineering
Department at the University of Minnesota where he
was an assistant professor. In 1997, Dr. Teel joined

the faculty of the Electrical and Computer Engineering Department at the
University of California, Santa Barbara, where he is currently a professor.


