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Abstract. We study a class of discrete-time multi-agent systems modelling opinion dynamics with
decaying confidence. We consider a network of agents where each agent has an opinion. At each time
step, the agents exchange their opinion with their neighbors and update it by taking into account
only the opinions that differ from their own less than some confidence bound. This confidence bound
is decaying: an agent gives repetitively confidence only to its neighbors that approach sufficiently fast
its opinion. Essentially, the agents try to reach an agreement with the constraint that it has to be
approached no slower than a prescribed convergence rate. Under that constraint, global consensus
may not be achieved and only local agreements may be reached. The agents reaching a local agreement
form communities inside the network. In this paper, we analyze this opinion dynamics model: we
show that communities correspond to asymptotically connected component of the network and give an
algebraic characterization of communities in terms of eigenvalues of the matrix defining the collective
dynamics. Finally, we apply our opinion dynamics model to address the problem of community
detection in graphs. We propose a new formulation of the community detection problem based on
eigenvalues of normalized Laplacian matrix of graphs and show that this problem can be solved using
our opinion dynamics model. We consider three examples of networks, and compare the communities
we detect with those obtained by existing algorithms based on modularity optimization. We show
that our opinion dynamics model not only provides an appealing approach to community detection
but that it is also effective.

1. Introduction

The analysis of multi-agent systems received an increasing interest in the past decades. In such
systems, a set of agents interact according to simple local rules in order to achieve some global
coordinated behavior. The most widely studied problem is certainly the consensus or agreement
problem where each agent in the network maintains a value and repetitively averages its value with
those of its neighbors, resulting in all the agents in the network reaching asymptotically a common
value. It is to be noted that the graph of interaction describing the network of agents is generally
not fixed and may vary in time. Conditions ensuring consensus have been established by various
authors including [JLM03, BHOT05, Mor05, RB05] (see [OSFM07] for a survey). More recently,
there have been several works providing estimations of the rate of convergence towards the consensus
value [OT09, AB08, ZW09].

In this paper, we adopt a different point of view. We consider a discrete-time multi-agent system
where the agents try to reach an agreement with the constraint that the consensus value must be
approached no slower than a prescribed convergence rate. Under that constraint, global consensus
may not be achieved and the agents may only reach local agreement. We call communities the
subsets of agents reaching a consensus. Our model can be interpreted in terms of opinion dynamics.
Each agent has an opinion. At each time step, the agent receives the opinions of its neighbors and
then updates its opinion by taking a weighted average of its opinion and the opinions of its neighbors
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2 IRINEL-CONSTANTIN MORĂRESCU AND ANTOINE GIRARD

that are within some confidence range of its own. The confidence ranges are getting smaller at each
time step: an agent gives repetitively confidence only to the neighbors that approach sufficiently
fast its own opinion. This can be seen as a model for a negotiation process where an agent expects
that its neighbors move significantly towards its opinion at each negotiation round in order to keep
negotiating. Our model can be seen as an extension of the opinion dynamics with bounded confidence
proposed by Krause in [Kra97] and studied in [HK02, BHT09].

We analyze our opinion dynamics model by first studying the relation between asymptotic agreement
of a subset of agents and the fact that they are asymptotically connected. We show that under
suitable assumptions, these are actually equivalent (i.e. communities correspond to asymptotically
connected component of the network) except for a set of initial opinions of measure 0. We then
give an algebraic characterization of communities in terms of eigenvalues of the matrix defining the
collective dynamics.

Finally, we apply our opinion dynamics model to address the problem of community detection in
graphs. In the usual sense, communities in a graph are groups of vertices such that the concentration
of edges inside communities is high with respect to the concentration of edges between communities.
Given the increasing need of analysis tools for understanding complex networks in social sciences,
biology, engineering or economics, the community detection problem has attracted a lot of attention
in the recent years (see the extensive survey [For10]). The problem of community detection is however
not rigorously defined mathematically. Some formalizations of this problem have been proposed in
terms of optimization of quality functions such as modularity [NG04] or partition stability [LDB09].
We propose a new formulation of this problem based on eigenvalues of normalized Laplacian matrix
of graphs and show that this problem can be solved using our opinion dynamics model. We consider
three examples of networks, and compare the communities that we detect with those obtained by
the modularity optimization algorithms presented in [New06, BGLL08]. We show that our opinion
dynamics model not only provides an appealing approach to community detection but that it is also
effective.

2. Opinion Dynamics with Decaying Confidence

2.1. Model Description. We study a discrete-time multi-agent model. We consider a set of n
agents, V = {1, . . . , n}. A relation E ⊆ V × V models the interactions between the agents. We
assume that the relation is symmetric ((i, j) ∈ E iff (j, i) ∈ E) and anti-reflexive ((i, i) /∈ E). V
is the set of vertices and E is the set of edges of an undirected graph G = (V,E), describing the
network of agents. Each agent i ∈ V has an opinion modelled by a real number xi(t) ∈ R. Initially,
agent i has an opinion xi(0) = x0

i independent from the opinions of the other agents. Then, at every
time step, the agents update their opinion by taking a weighted average of its opinion and opinions
of other agents:

(2.1) xi(t+ 1) =
n∑
j=1

pij(t)xj(t)

with the coefficients pij(t) satisfying

(2.2) ∀i, j ∈ V, (pij(t) 6= 0 ⇐⇒ j ∈ {i} ∪Ni(t))

where Ni(t) denotes the confidence neighborhood of agent i at time t:

(2.3) Ni(t) =
{
j ∈ V | ((i, j) ∈ E) ∧

(
|xi(t)− xj(t)| ≤ Rρt

)}
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with R > 0 and ρ ∈ (0, 1) model parameters.

Remark 1. It is noteworthy that the confidence neighborhoods Ni(t) and the coefficients pij(t) ac-
tually depend also on the opinions x1(t), . . . , xn(t). For the sake of simplicity and in order to reduce
the length of the equations we keep the notations pij(t) and Ni(t) pointing out just the variation in
time of these quantities.

We make the following additional assumptions:

Assumption 1 (Stochasticity). For t ∈ N, the coefficients pij(t) satisfy

(a) pij(t) ∈ [0, 1], for all i, j ∈ V .
(b)

∑n
j=1 pij(t) = 1, for all i ∈ V .

This model can be interpreted in terms of opinion dynamics. At each time step t, agent i ∈ V
receives the opinions of its neighbors in the graph G. If the opinion of i differs from the opinion of
its neighbor j more than a certain threshold Rρt, then i does not give confidence to j and does not
take into account the opinion of j when updating its own opinion. The parameter ρ characterizes the
confidence decay of the agents. Agent i gives repetitively confidence only to neighbors whose opinion
converges sufficiently fast to its own opinion. This model can be interpreted in terms of negotiations
where agent i requires that, at each negotiation round, the opinion of agent j moves significantly
towards its opinion in order to keep negotiating with j.

This model is somehow related to the one discussed in [CS77, CHN86] where agents harden their
position by increasing over time the weight assigned to their own opinion. In our model, the agents
implicitely increase also the weights assigned to their neighbors whose opinion converges sufficiently
fast to their own opinion, by disregarding the opinions of the other agents. As noticed in [CHN86],
hardening the agents positions may hamper the agents to reach an asymptotic consensus. This will
be observed in our model as well. However, the aim in this paper is not to exogenously increase the
self-confidence of the agents, but to meet a prescribed convergence speed towards the final opinion
profile.

Remark 2. We assume in this paper that ρ ∈ (0, 1). However, let us remark that for ρ = 1 (there
is no confidence decay), with a complete graph G (every agent talks with all the other agents), and
with coefficients pij(t) given for all j ∈ {i} ∪Ni(t) by

pij(t) =
1

1 + di(t)
with di(t) =

∑
j∈Ni(t)

1

our model would coincide with Krause model of opinion dynamics with bounded confidence [Kra97,
HK02, BHT09].

Our first result states that the opinion of each agent converges to some limit value:

Proposition 1. Under Assumption 1 (Stochasticity), for all i ∈ V , the sequence (xi(t))t∈N is con-
vergent. We denote x∗i its limit. Furthermore, we have for all t ∈ N,

(2.4) |xi(t)− x∗i | ≤
R

1− ρ
ρt.
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Proof. Let i ∈ V , t ∈ N, we have from (2.1), Assumption 1 and (2.2)

|xi(t+ 1)− xi(t)| =

∣∣∣∣∣∣
 n∑
j=1

pij(t)xj(t)

− xi(t)
∣∣∣∣∣∣

=

∣∣∣∣∣∣
n∑
j=1

pij(t)(xj(t)− xi(t))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j∈Ni(t)

pij(t)(xj(t)− xi(t))

∣∣∣∣∣∣
≤

∑
j∈Ni(t)

pij(t)|xj(t)− xi(t)|

Then, it follows from equation (2.3) that

|xi(t+ 1)− xi(t)| ≤
∑

j∈Ni(t)

pij(t)Rρ
t

Finally, Assumption 1 gives for all t ∈ N

|xi(t+ 1)− xi(t)| ≤ (1− pii(t))Rρt ≤ Rρt.
Let t ∈ N, τ ∈ N, then

|xi(t+ τ)− xi(t)| ≤
τ−1∑
k=0

|xi(t+ k + 1)− xi(t+ k)| ≤
τ−1∑
k=0

Rρt+k

Therefore,

(2.5) |xi(t+ τ)− xi(t)| ≤
R

1− ρ
ρt(1− ρτ ) ≤ R

1− ρ
ρt

which shows, since ρ ∈ (0, 1), that the sequence (xi(t))t∈N is a Cauchy sequence in R. Therefore, it
is convergent. Equation (2.4) is obtained from (2.5) by letting τ go to +∞. �

Remark 3. The convergence of each opinion sequence (xi(t))t∈N could have been proved using a result
from [Lor05], even for ρ = 1, with the additional assumption that the non-zero coefficients pij(t) are
uniformly bounded below by some strictly positive real number. However, the result in [Lor05] does
not provide an estimation of the convergence rate which is essential in our subsequent discussions.

The previous proposition allows us to complete the interpretation of our opinion dynamics model.
The agents try to reach an agreement with the constraint that the consensus value must be ap-
proached no slower than O(ρt). Under that constraint, global agreement may not be attainable and
the agents may only reach local agreements. We refer to the sets of agents that asymptotically agree
as communities.

Definition 1. Let i, j ∈ V , we say that agents i and j asymptotically agree, denoted i ∼∗ j, if and
only if x∗i = x∗j .

It is straightforward to verify that ∼∗ is an equivalence relation over V .

Definition 2. A community C ⊆ V is an element of the quotient set C = V/ ∼∗.
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Let us remark that the community structure is dependent on the initial distribution of opinions. In
the following, we shall provide some insight on the structure of these communities. But first, we
need to introduce some additional notations.

2.2. Notations and Preliminaries. We define the set of interactions at time t, E(t) ⊆ V × V as

E(t) =
{

(i, j) ∈ E| |xi(t)− xj(t)| ≤ Rρt
}
.

Let us remark that (i, j) ∈ E(t) if and only if j ∈ Ni(t). The interaction graph at time t is then
G(t) = (V,E(t)). Let us remark that Remark 1 applies also to E(t) and G(t).

For a set of agents I ⊆ V , the subset of edges of G connecting the agents in I is EI = E ∩ (I × I).
Let E′ ⊆ EI be a symmetric relation over I, then the graph G′ = (I, E′) is called a subgraph of
G. If I = V , then the graph G′ = (V,E′) is called a spanning subgraph of G. The set of spanning
subgraphs of G is denoted S(G). For all t ∈ N, G(t) ∈ S(G). Let us remark that the set S(G) is

finite: it has 2|E|/2 elements (because we only consider symmetric relations) where |E| denotes the
number of elements in E. Given a partition of the agents P = {I1, . . . , Ip}, we define the set of edges
EP =

⋃
I∈P EI and the spanning subgraph of G, GP = (V,EP). Essentially, GP is the spanning

subgraph of G obtained by removing all the edges between agents belonging to different elements of
the partition P. An interesting such graph is the graph of communities GC = (V,EC ) where:

EC = {(i, j) ∈ E| i ∼∗ j} .

Let G′ = (V,E′) ∈ S(G), a path in G′ is a finite sequence of edges (i1, i2), (i2, i3), . . . , (ip, ip+1) such
that (ik, ik+1) ∈ E′ for all k ∈ {1, . . . , p}. Two vertices i, j ∈ V are connected in G′ if there exists a
path in G′ joining i and j (i.e. i1 = i and jp = j). A subset of agents I ⊆ V is a connected component
of G′ if for all i, j ∈ I with i 6= j, i and j are connected in G′ and for all i ∈ I, for all j ∈ V \ I,
i and j are not connected in G′. The set of connected components of G′ is denoted K(G′). Let us
remark that K(G′) is a partition of V .

We define the vectors of opinions x(t) = (x1(t), . . . , xn(t))> and of initial opinions x0 = (x0
1, . . . , x

0
n)>.

The dynamics of the vector of opinions is then given by

x(t+ 1) = P (t)x(t)

where P (t) is the row stochastic matrix with entries pij(t). For a set of agents I ⊆ V , with I =

{v1, . . . , vk}, we define the vector of opinions xI(t) = (xv1(t), . . . , xvk(t))>. Given a n× n matrix A
with entries aij , we define the k × k matrix AI whose entries are the avivj . In particular, PI(t) is
the matrix with entries pvivj (t). Let us remark that PI(t) is generally not row stochastic. However,
if I ⊆ V is a subset of agents such that no agent in I is connected to an agent in V \ I in the graph
G(t), then it is easy to see that

xI(t+ 1) = PI(t)xI(t)

and PI(t) is an aperiodic row stochastic matrix. Moreover, if I is a connected component of G(t)
then PI(t) is irreducible.

The following sections are devoted to the analysis of the community structure of the network of
agents.

3. Asymptotic Connectivity and Agreement

In this section, we explore the relation between communities and asymptotically connected compo-
nents of the network. Let us remark that the set of edges E can be classified into two subsets as
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follows:
Ef = {(i, j) ∈ E| ∃tij ∈ N, ∀s ≥ tij , (i, j) /∈ E(s)}

and
E∞ = {(i, j) ∈ E| ∀t ∈ N, ∃s ≥ t, (i, j) ∈ E(s)} .

Intuitively, an edge (i, j) is in Ef if the agents i and j stop interacting with each other in finite
time. E∞ consists of the interactions between agents that are infinitely recurrent. It is clear that
Ef ∩ E∞ = ∅ and E = Ef ∪ E∞. Also, since E and thus Ef is a finite set, there exists T ∈ N such
that

(3.1) ∀(i, j) ∈ Ef , ∀s ≥ T, (i, j) /∈ E(s).

Let us remark that the sets Ef and E∞ and the natural number T generally depend on the vector
of initial opinions x0. We define the graph G∞ = (V,E∞).

Definition 3. Let i, j ∈ V , we say that agents i and j are asymptotically connected if and only
if i and j are connected in G∞. We say that they are asymptotically disconnected if they are not
asymptotically connected.

3.1. Asymptotic Connectivity Implies Asymptotic Agreement.

Proposition 2. Under Assumption 1 (Stochasticity), if two agents i, j ∈ V are asymptotically
connected then they asymptotically agree.

Proof. Suppose (i, j) ∈ E∞. From the definition of E∞ there exists a strictly increasing sequence
of non-negative integers (τk)k∈N such that for all k ∈ N, (i, j) ∈ E(τk). Then, for all k ∈ N,
|xi(τk)− xj(τk)| ≤ Rρτk . Since ρ ∈ (0, 1) and lim

k→∞
τk = +∞ and one gets lim

k→∞
xi(τk) = lim

k→∞
xj(τk).

On the other hand, the sequences xi(t) and xj(t) are convergent, which ensures that

x∗i = lim
t→∞

xi(t) = lim
k→∞

xi(τk) = lim
k→∞

xj(τk) = lim
t→∞

xj(t) = x∗j

The result in the proposition then follows from the transitivity of equality and the definition of
asymptotic connectivity. �

Remark 4. The notion of asymptotic connectivity has already been considered in several works
(including [JLM03, BHOT05, Mor05]) for proving consensus in multi-agent systems. Actually, the
previous proposition could be proved using Theorem 3 in [Mor05]. However, for the sake of self-
containment, we preferred to provide a simpler proof of the result that uses the specificities of our
model.

3.2. Asymptotic Agreement Implies Asymptotic Connectivity. The converse result of Propo-
sition 2 is much more challenging: it is clear that it cannot hold for all initial conditions. Indeed, if all
the initial opinions x0

i are identical, then it is clear that the agents asymptotically agree even though
some of them may be asymptotically disconnected which would be the case if the graph G is not
connected. Therefore, we shall prove that the converse result holds for almost all initial conditions.
In this paragraph, we will need additional assumptions in order to be able to prove this result. The
first one is the following:

Assumption 2 (Invertibility and graph to matrix mapping). The sequence of matrices P (t) satisfy
the following conditions:

(a) For all t ∈ N, P (t) is invertible.
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(b) For all t ∈ N, t′ ∈ N, if G(t′) = G(t) then P (t′) = P (t).

The first assumption is quite strong and we notice that it is not verified by the original Krause model.
However, it can be enforced, for instance, by choosing pii(t) > 1/2 for all i ∈ V , for all t ∈ N, in
that case P (t) is a strictly diagonally dominant matrix and therefore it is invertible. The second
assumption states that P (t) only depends on the graph G(t), then we shall write P (t) = P (G(t))
where P (G′) is the matrix associated to a graph G′ ∈ S(G). From the first assumption, P (G′) must
be invertible. Then, we can define for all t ∈ N, the following set of matrices:

(3.2) Qt =
{
P (G0)−1P (G1)−1 . . . P (Gt−1)−1| Gk ∈ S(G), 0 ≤ k ≤ t− 1

}
.

Let us remark that since S(G) is finite, the set Qt is finite: it has at most 2t×|E|/2 elements.

We shall now prove the converse result of Proposition 2 in two different cases.

3.2.1. Average preserving dynamics. We first assume that the opinion dynamics preserves the average
of the opinions:

Assumption 3 (Average preserving dynamics). For all t ∈ N, for all j ∈ V ,
∑n

i=1 pij(t) = 1.

This assumption simply means that the matrix P (t) is doubly stochastic. It is therefore average
preserving: the average of x(t) is equal to the average of x(t+ 1). Also, if I ⊆ V is a subset of agents
such that no agent in I is connected to an agent in V \ I in the graph G(t), it is easy to show that
PI(G(t)) is average preserving.

We now state the main result of the section:

Theorem 1. If the matrices P (t) satisfy Assumptions 1 (Stochasticity), 2 (Invertibility and graph
to matrix mapping) and 3 (Average preserving dynamics), for almost all vectors of initial opinions
x0, two agents i, j ∈ V asymptotically agree if and only if they are asymptotically connected.

Proof. The if part of the theorem is a consequence of Proposition 2. To prove the only if part, let us
define the following set

W = {(I, J)| (I ⊆ V ) ∧ (I 6= ∅) ∧ (J ⊆ V ) ∧ (J 6= ∅) ∧ (I ∩ J = ∅)} .
Since V is a finite set, it is clear that W is finite (it has less than 22n elements). For all (I, J) ∈ W,
let |I| and |J | denote the number of elements of I and J respectively. We define the vector of Rn,
cIJ whose coordinates cIJ,k = 1/|I| if k ∈ I, cIJ,k = −1/|J | if k ∈ J , and cIJ,k = 0 otherwise. We
define the (n− 1)-dimensional subspace of Rn:

HIJ =

x ∈ Rn| cIJ · x =
∑
i∈I

xi/|I| −
∑
j∈J

xj/|J | = 0

 .

Finally, let us define the subset of Rn:

X0 =
⋃
t∈N

 ⋃
(I,J)∈W

 ⋃
Q∈Qt

QHIJ


where Qt is the set of matrices defined in (3.2). Since W is a finite set and for all t ∈ N, Qt are finite
sets, X0 is a countable union of (n − 1)-dimensional subspaces of Rn. Therefore X0 has Lebesgue
measure 0.
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Let x0 ∈ Rn be a vector of initial opinions, let us assume that there exist two agents i, j ∈ V that
asymptotically agree but are asymptotically disconnected. Let us show that necessarily, x0 belongs
to the set X0. Let I and J denote the connected components of G∞ containing i and j respectively.
Since i and j are asymptotically disconnected, I ∩ J = ∅, therefore (I, J) ∈ W. Let T be defined
as in equation (3.1) (i.e. E(t) ⊆ E∞, ∀t ≥ T ), since no agent in I is connected to an agent outside
of I in G∞ (and hence in G(t) for t ≥ T ), we have that for all t ≥ T , xI(t + 1) = PI(G(t))xI(t).
Moreover, PI(G(t)) is average preserving. Therefore, for all t ≥ T , the average of xI(t) is the same
as the average of xI(T ). From Proposition 2, all agents in I asymptotically agree, then the limit
value is necessarily the average of xI(T ). Therefore x∗i = (1|I| · xI(T ))/|I| where 1|I| denote the |I|-
dimensional vector with all entries equal to 1. A similar discussion gives that x∗j = (1|J | ·xJ(T ))/|J |.
Since i and j asymptotically agree, we have (1|I| · xI(T ))/|I| = (1|J | · xJ(T ))/|J |. This means that
x(T ) ∈ HIJ and therefore

x0 = P (G(0))−1P (G(1))−1 . . . P (G(T − 1))−1x(T ) ∈
⋃

Q∈QT

QHIJ

which leads to x0 ∈ X0. �

Hence, in the case of average preserving dynamics, asymptotic connectivity is equivalent to asymp-
totic agreement for almost all vectors of initial opinions. We shall now prove a similar result under
different assumptions.

3.2.2. Fast convergence assumption. We now replace the average preserving assumption by another
assumption. From Proposition 1, we know that the opinion of each agent converges to its limit value
no slower than O(ρt). This is an upper bound, numerical experiments show that in practice the
convergence to the limit value is often slightly faster than O(ρt). This observation motivates the
following assumption.

Assumption 4 (Fast convergence). There exists ρ < ρ and M ≥ 0 such that for all i ∈ V , for all
t ∈ N,

|xi(t)− x∗i | ≤Mρt.

Remark 5. The previous assumption always holds unless there exists i ∈ V such that

lim sup
t→+∞

1

t
log(|xi(t)− x∗i |) = log(ρ).

It should be noted that unlike Assumptions 1 (Stochasticity), 2 (Invertibility and graph to matrix
mapping) and 3 (Average preserving dynamics), it is generally not possible to check a priori whether
Assumption 4 holds. However, numerical experiments tend to show that in practice, it does.

The previous assumption allows us to state the following result:

Lemma 1. Under Assumptions 1 (Stochasticity) and 4 (Fast convergence), there exists T ′ ∈ N such
that for all t ≥ T ′, G(t) = G∞. Moreover, G∞ = GC .

Proof. We shall prove the lemma by showing that there exists T ′ ∈ N such that for all t ≥ T ′,
E(t) ⊆ E∞ ⊆ EC ⊆ E(t). Firstly, let T1 ≥ T where T is defined as in equation (3.1), then for all
t ≥ T1, E(t) ⊆ E∞. Secondly, let (i, j) ∈ E∞, then agents i and j are asymptotically connected.
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From Proposition 2, it follows that i and j asymptotically agree. Therefore, (i, j) ∈ EC . Thirdly, let
(i, j) ∈ EC , then x∗i = x∗j and for all t ∈ N

|xi(t)− xj(t)| ≤ |xi(t)− x∗i |+ |x∗i − x∗j |+ |xj(t)− x∗j |
≤ |xi(t)− x∗i |+ |xj(t)− x∗j |

From Assumption 4, we have for all t ∈ N,

|xi(t)− xj(t)| ≤ 2Mρt.

Since ρ < ρ, there exists T2 ∈ N, such that for all t ≥ T2, 2Mρt ≤ Rρt. Then, for all t ≥ T2, (i, j) ∈
E(t). Let T ′ = max(T1, T2), then for all t ≥ T ′, E(t) = E∞ = EC and thus G(t) = G∞ = GC . �

The previous result states that after a finite number of steps, the graph of interactions between
agents remains always the same. Then, we can state a result similar to Theorem 1:

Theorem 2. Under Assumptions 1 (Stochasticity), 2 (Invertibility and graph to matrix mapping)
and 4 (Fast convergence), for almost all vectors of initial opinions x0, two agents i, j ∈ V asymptot-
ically agree if and only if they are asymptotically connected.

Proof. The if part of the theorem is a consequence of Proposition 2. To prove the only if part, let us
define the following set associated to a spanning subgraph G′ ∈ S(G):

W(G′) =
{

(I, J)| (I ⊆ V ) ∧ (J ⊆ V ) ∧ (I 6= J) ∧ (I ∈ K(G′)) ∧ (J ∈ K(G′))
}
.

Since V is a finite set, it is clear that W(G′) is finite (it has less than 22n elements). Let (I, J) ∈
W(G′), I =

{
v1, . . . , v|I|

}
, J =

{
w1, . . . , w|J |

}
. Since I and J are connected components of G′, we

have that PI(G
′) and PJ(G′) are aperiodic irreducible row stochastic matrices. Let eI(G

′) and eJ(G′)
be the left Perron eigenvectors of PI(G

′) and PJ(G′), respectively:

eI(G
′)>PI(G

′) = eI(G
′)> and eI(G

′) · 1|I| = 1

and
eJ(G′)>PJ(G′) = eJ(G′)> and eJ(G′) · 1|J | = 1.

We define the vector of Rn, cIJ whose coordinates are given by cIJ,vk = eI,k if vk ∈ I, cIJ,wk
= −eJ,k

if wk ∈ J and cIJ,k = 0 if k ∈ V \ (I ∪ J). We define the (n− 1)-dimensional subspace of Rn:

HIJ(G′) =
{
x ∈ Rn| cIJ(G′) · x = 0

}
.

Finally, let us define the subset of Rn:

(3.3) X0 =
⋃
t∈N

 ⋃
G′∈S(G)

 ⋃
(I,J)∈W(G′)

 ⋃
Q∈Qt

QHIJ(G′)


where Qt is the set of matrices defined in (3.2). S(G) is a finite set and for all G′ ∈ S(G), W(G′)
is a finite set. Moreover for all t ∈ N, Qt is a finite set. Then, X0 is a countable union of (n − 1)-
dimensional subspaces of Rn. Therefore X0 has Lebesgue measure 0.

Let x0 ∈ Rn be a vector of initial opinions, let us assume that there exist two agents i, j ∈ V that
asymptotically agree but are asymptotically disconnected. Let us show that necessarily, x0 belongs
to the set X0. Let I and J denote the connected components of G∞ containing i and j respectively.
Since i and j are asymptotically disconnected, I 6= J , therefore (I, J) ∈ W(G∞). Since I is a
connected component of G∞, it follows from Lemma 1 that for all t ≥ T ′, xI(t+ 1) = PI(G

∞)xI(t).
Moreover, PI(G

∞) is an aperiodic irreducible row stochastic matrix and from the Perron-Frobenius
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Theorem (see e.g. [Sen81]), it follows that 1 is a simple eigenvalue of PI(G
∞) and all other eigenvalues

of PI(G
∞) have modulus strictly smaller than 1. Therefore,

lim
t→+∞

xI(t) = (eI(G
∞) · xI(T ′))1|I|

and x∗i = eI(G
∞) · xI(T ′). A similar discussion gives that x∗j = eJ(G∞) · xJ(T ′). Since i and j

asymptotically agree, we have eI(G
∞)·xI(T ′) = eJ(G∞)·xJ(T ′). This means that x(T ′) ∈ HI,J(G∞)

and therefore

x0 = P (G(0))−1P (G(1))−1 . . . P (G(T ′ − 1))−1x(T ′) ∈
⋃

Q∈QT ′

QHIJ(G∞)

which leads to x0 ∈ X0. �

In this section, we showed that asymptotic connectivity of agents implies asymptotic agreement and
that under additional reasonable assumptions these are actually equivalent except for a set of vectors
of initial opinions of Lebesgue measure 0. In other words, we can consider almost surely that the
communities of agents correspond to the connected components of the graph G∞. Actually, we are
confident that a similar result holds even without Assumptions 3 or 4. However, in this case, the
set X0 of initial opinions leading to agreement without connectivity is not necessarily a countable
union of (n − 1)-dimensional subspaces, and it can have much more complex geometrical features.
Therefore, we leave the generalization of the results presented in this section as future work.

In the following, under Assumptions 1 (Stochasticity), 2 (Invertibility and graph to matrix mapping)
and 4 (Fast convergence), we show that an algebraic characterization of communities can be given
in terms of eigenvalues of the matrix associated to the graph of communities P (GC ).

4. Algebraic Characterization of Communities

Let G′ ∈ S(G), let I ⊆ V be a subset of agents such that no agent in I is connected to an agent
in V \ I in the graph G′, then PI(G

′) is a row stochastic matrix. Let λ1(PI(G
′)), . . . , λ|I|(PI(G

′))
denote the eigenvalues of PI(G

′) with λ1(PI(G
′)) = 1 and

|λ1(PI(G
′))| ≥ |λ2(PI(G

′))| ≥ · · · ≥ |λ|C|(PI(G′))|.

Let C ∈ C , then no agent in C is connected to an agent in V \ C in the graph GC . The following
theorem gives a characterization of the communities in terms of the eigenvalues λ2(PC(GC )) for
C ∈ C .

Theorem 3. Under Assumptions 1 (Stochasticity), 2 (Invertibility and graph to matrix mapping)
and 4 (Fast convergence), for almost all vectors of initial opinions x0, for all communities C ∈ C ,
such that |C| ≥ 2,

|λ2(PC(GC ))| < ρ.

Proof. Let us consider a spanning subgraph G′ ∈ S(G), let I =
{
v1, . . . , v|I|

}
, with |I| ≥ 2, be a

connected component of G′ then PI(G
′) is an aperiodic irreducible row stochastic matrix. Then,

from the Perron-Frobenius Theorem, it follows that 1 is a simple eigenvalue of PI(G
′). Therefore,

λ2(PI(G
′)) 6= 1. Let fI(G

′) be a left eigenvector of PI(G
′) associated to eigenvalue λ2(PI(G

′)). Let
us define the vector of Rn, cI(G

′) whose coordinates are given by cI,vk(G′) = fI,k(G
′) if vk ∈ I and

cI,k(G
′) = 0 if k ∈ V \ I. We define the (n− 1)-dimensional subspace of Rn:

HI(G
′) =

{
x ∈ Rn| cI(G′) · x = 0

}
.
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Finally, let us define the subset of Rn:

Y 0 =
⋃
t∈N

 ⋃
G′∈S(G)

 ⋃
I∈K(G′), |I|≥2

 ⋃
Q∈Qt

QHI(G
′)


where Qt is the set of matrices defined in (3.2). S(G) is a finite set and for all G′ ∈ S(G), K(G′)
is a finite set. Moreover, for all t ∈ N, Qt is a finite set. Then, Y 0 is a countable union of (n − 1)-
dimensional subspaces of Rn. Therefore Y 0 has Lebesgue measure 0.

Let X0 be given as in equation (3.3), let x0 ∈ Rn \X0 be a vector of initial opinions. Let us assume
there is a community C ∈ C with |C| ≥ 2, such that |λ2(PC(GC ))| ≥ ρ. Let us show that necessarily,
x0 belongs to the set Y 0. First, since x0 /∈ X0, we have from the proof of Theorem 2 that C is
a connected component of G∞ = GC . Therefore, from Lemma 1, there exists T ′ ∈ N, such that
for all t ≥ T ′, xC(t + 1) = PC(GC )xC(t) and PC(GC ) is an aperiodic irreducible row stochastic
matrix. From the Perron-Frobenius Theorem, it follows that 1 is a simple eigenvalue of PC(GC ) and
all other eigenvalues of PC(GC ) have modulus strictly smaller than 1. Let eC(GC ) be the left Perron
eigenvector of PC(GC ):

eC(GC )>PC(GC ) = eC(GC )> and eC(GC ) · 1|C| = 1

Then

lim
t→+∞

xC(t) = x∗C where x∗C = (eC(GC ) · xC(T ′))1|C|.

Let us remark that for all t ≥ T ′,

(4.1) xC(t+ 1)− x∗C = PC(GC )(xC(t)− x∗C).

Let fC(GC ) be a left eigenvector of PC(GC ) associated to eigenvalue λ2(PC(GC )):

fC(GC )>PC(GC ) = λ2(PC(GC ))fC(GC )>.

Then, it follows from equation (4.1) that for all t ≥ T ′,

fC(GC ) · (xC(t)− x∗C) = fC(GC ) · (xC(T ′)− x∗C)λ2(PC(GC ))(t−T ′).

Therefore, by the Cauchy-Schwarz inequality, we have for all t ≥ T ′

‖xC(t)− x∗C‖ ≥
|fC(GC ) · (xC(t)− x∗C)|

‖fC(GC )‖

≥
|fC(GC ) · (xC(T ′)− x∗C)|

‖fC(GC )‖
|λ2(PC(GC ))|(t−T ′).

Since we assumed |λ2(PC(GC ))| ≥ ρ, we have for all t ≥ T ′

(4.2) ‖xC(t)− x∗C‖ ≥
|fC(GC ) · (xC(T ′)− x∗C)|

‖fC(GC )‖ρT ′ ρt.

Now, let us remark that it follows from Assumption 4 that for all t ∈ N

(4.3) ‖xC(t)− x∗C‖ ≤
√
|C|Mρt.

Inequalities (4.2) and (4.3) give for all t ≥ T ′

|fC(GC ) · (xC(T ′)− x∗C)|
‖fC(GC )‖ρT ′ ρt ≤

√
|C|Mρt.
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Since ρ < ρ, the previous inequality holds for all t ≥ T ′ if and only if |fC(GC ) · (xC(T ′)− x∗C)| = 0.

Therefore, fC(GC ) · xC(T ′) = fC(GC ) · (xC(T ′) − x∗C) = 0 which means that x(T ′) ∈ HC(GC ).
Therefore,

x0 = P (G(0))−1P (G(1))−1 . . . P (G(T ′ − 1))−1x(T ′) ∈
⋃

Q∈QT ′

QHC(GC )

which leads to x0 ∈ Y 0. Therefore, we have proved that for all vectors of initial opinions x0 ∈
Rn \ (X0 ∪ Y 0), for all communities C ∈ C such that |C| ≥ 2, |λ2(PC(GC ))| < ρ. We conclude by
remarking that X0 ∪ Y 0 is a set of Lebesgue measure 0. �

In this section, we showed that the community structure C satisfies some properties related to the
eigenvalues of the matrix PC(GC ), for C ∈ C . In the following, we use this result to address the
problem of community detection in graphs.

5. Application: Community Detection in Graphs

In this section, we propose to use a model of opinion dynamics with decaying confidence to address
the problem of community detection in graphs.

5.1. The Community Detection Problem. In the usual sense, communities in a graph are groups
of vertices such that the concentration of edges inside one community is high and the concentration of
edges between communities is comparatively low. Because of the increasing need of analysis tools for
understanding complex networks in social sciences, biology, engineering or economics, the community
detection problem has attracted a lot of attention in the recent years. The problem of community
detection is however not rigorously defined mathematically. One reason is that community structures
may appear at different scales in the graph: there can be communities inside communities. Another
reason is that communities are not necessarily disjoint and can overlap. We refer the reader to
the excellent survey [For10] and the references therein for more details. Some formalizations of the
community detection problem have been proposed in terms of optimization of quality functions such
as modularity [NG04] or partition stability [LDB09].

5.1.1. Quality functions. Modularity has been introduced in [NG04], the modularity of a partition
measures how well the partition reflects the community structure of a graph. More precisely, let
G = (V,E) be an undirected graph with E symmetric and anti-reflexive. For a vertex i ∈ V the
degree di of i is the number of neighbors of i in G. Let P be a partition of V . Essentially, the
modularity Q(P) of the partition P is the proportion of edges within the classes of the partition
minus the expected proportion of such edges, where the expected number of edges between vertex i
and j is assumed to be didj/|E|:

Q(P) =
1

|E|
∑
I∈P

∑
i,j∈I

(
aij −

didj
|E|

)
where aij are the coefficients of the adjacency matrix of G (aij = 1 if (i, j) ∈ E, aij = 0 otherwise).
The higher the modularity, the better the partition reflects the community structure of the graph.
Thus, it is reasonable to formulate the community detection problem as modularity maximization.
However, it has been shown that this optimization problem is NP-complete [BDG+08]. Therefore,
approaches for community detection rely mostly on heuristic methods. In [New06], a modularity
optimization algorithm is proposed based on spectral relaxations. Using the eigenvectors of the
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modularity matrix, it is possible to determine a good initial guess of the community structure of the
graph. Then, the obtained partition is refined using local combinatorial optimization. In [BGLL08], a
hierarchical combinatorial approach for modularity optimization is presented. This algorithm which
can be used for very large networks, is currently the one that obtains the partitions with highest
modularity.

However, modularity has the drawback that it fails to capture communities at different scales. The
notion of partition stability [LDB09] makes it possible to overcome this limitation. Let us consider
a continuous-time process associated with a random walk over the graph G where transitions are
triggered by a homogeneous Poisson process. Assume that the initial distribution is the stationary
distribution. Then, the stability at time t ∈ R+ of the partition P is defined as

R(P, t) =
∑
I∈P

p(I, t)− p(I,∞)

where p(I, t) is the probability for a walker to be in the class I initially and at time t. Stability
measures the quality of a partition by giving a positive contribution to communities from which a
random walker is unlikely to escape within the given time scale t. For small values of t, this gives
more weights to small communities whereas for larger values of t, larger communities are favored.
Thus, by searching the partitions maximizing the stability for several values of t, one can detect
communities at several scales.

5.1.2. Eigenvalues of the normalized Laplacian matrix. We give an alternative formulation of the
community detection problem using a measure of connectivity of graphs given by the eigenvalues of
their normalized Laplacian matrix. Let G = (V,E) be an undirected graph with V = {1, . . . , n},
with n ≥ 2. For a vertex i ∈ V , the degree di(G) of i is the number of neighbors of i in G. The
normalized Laplacian of the graph G is the matrix L(G) given by

Lij(G) =


1 if i = j and di(G) 6= 0,

−1√
di(G)dj(G)

if (i, j) ∈ E,
0 otherwise.

Let us review some of the properties of the normalized Laplacian matrix (see e.g. [Chu97]). µ1(L(G)) =
0 is always an eigenvalue of L(G), it is simple if and only if G is connected. All other eigenvalues
are real and belong to the interval [0, 2]. The second smallest eigenvalue of the normalized Laplacian
matrix is denoted µ2(L(G)). It can serve as an algebraic measure of the connectivity: µ2(L(G)) = 0
if the graph G has two distinct connected components, µ2(L(G)) = n/(n − 1) if the graph is the
complete graph (for all i, j ∈ V , i 6= j, (i, j) ∈ E), in the other cases µ2(L(G)) ∈ (0, 1].

Remark 6. The second smallest eigenvalue of the (non-normalized) Laplacian matrix is called al-
gebraic connectivity of a graph. In this paper, we prefer to use the eigenvalues of the normalized
Laplacian matrix because it is less sensitive to the size of the graph. For instance, if G is the com-
plete graph then µ2(L(G)) = n/(n− 1) whereas its algebraic connectivity is n.

Let P be a partition of the set of vertices V . For all I ∈ P, with |I| ≥ 2, L(GI) denotes the
normalized Laplacian matrix of the graph GI = (I, EI) consisting of the set of vertices I and of
the set of edges of G between elements of I. Let us define the following measure associated to the
partition P

µ2(P) = min
I∈P,|I|≥2

µ2(L(GI)).

Essentially, µ2(P) measures the connectivity of the less connected component of GP .
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We now propose a new formulation of the community detection problem:

Problem 1. Given a graph G = (V,E) and a real number δ ∈ (0, 1], find a partition P of V such
that for all I ∈ P, such that |I| ≥ 2, µ2(L(GI)) > δ (i.e. µ2(P) > δ).

If µ2(L(G)) > δ, it is sufficient to choose the trivial partition P = {V }. If δ ≥ µ2(L(G)), then
we want to find groups of vertices that are more densely connected than the global graph. This
coincides with the notion of community. The larger δ the more densely connected the communities.
This makes it possible to search for communities at different scales of the graph. Let us remark
that Problem 1 generally has several solutions. Actually, the trivial partition P = {{1}, . . . , {n}}
is always a solution. In the following, we show how non-trivial solutions to Problem 1 can be
obtained using a model of opinion dynamics with decaying confidence. We evaluate the modularity
of the partitions we obtain and compare our results to those obtained using modularity optimization
algorithms presented in [New06, BGLL08].

5.2. Opinion Dynamics for Community Detection. Let α ∈ (0, 1/2), we consider the opinion
dynamics with decaying confidence model given by:

(5.1) xi(t+ 1) =

 xi(t) +
α

|Ni(t)|
∑

j∈Ni(t)

(xj(t)− xi(t)) if Ni(t) 6= ∅

xi(t) if Ni(t) = ∅

where Ni(t) is given by equation (2.3). It is straightforward to check that this model is a particular
case of the model given by equations (2.1) and (2.2) and that Assumption 1 (Stochasticity) holds.
Moreover, since α ∈ (0, 1/2) it follows that for all i ∈ V , t ∈ N, pii(t) > 1/2. Therefore the matrix
P (t) is strictly diagonally dominant and hence it is invertible. Also, P (t) = P (G(t)), where for a
subgraph G′, P (G′) = Id− αQ(G′) where Id is the identity matrix and

(5.2) Qij(G
′) =


1 if i = j and di(G

′) 6= 0,
−1

di(G′) if (i, j) ∈ E′,
0 otherwise.

where di(G
′) denotes the degree of i in the graph G′. Therefore, Assumption 2 (Invertibility and

graph to matrix mapping) holds as well. Let us remark that the matrix P (t) is generally not average
preserving and therefore Assumption 3 does not hold.

Before stating the main result of this section, we need to prove the following lemma :

Lemma 2. Let P be a partition of V , I ∈ P such that |I| ≥ 2. Then, λ is an eigenvalue of PI(GP)
if and only if µ = (1− λ)/α is an eigenvalue of L(GI).

Proof. First, let us remark that PI(GP) = Id−αQ(GI) where Q(GI) is defined as in equation (5.2).
Then, let us introduce the matrices R(GI) and D(GI) defined by

Rij(GI) =


1√

di(GI)
if i = j and di(GI) 6= 0,

−1

di(GI)
√
dj(GI)

if (i, j) ∈ EI ,
0 otherwise.

and

Dij(GI) =

{ √
di(GI) if i = j,

0 otherwise.



OPINION DYNAMICS WITH DECAYING CONFIDENCE 15

Let us remark that L(GI) = D(GI)R(GI) and Q(GI) = R(GI)D(GI). It follows that L(GI) and
Q(GI) have the same eigenvalues. The stated result is then obtained from the fact that the matrix
Q(GI) = (Id− PI(GP))/α. �

We now state the main result of the section which is a direct consequence of Theorem 3 and Lemma 2:

Corollary 1. Let ρ = 1 − αδ, under Assumption 4 (Fast convergence), for almost all vectors of
initial opinions x0, the set of communities C obtained by the opinion dynamics model (5.1) is a
solution to Problem 1.

5.3. Examples. In this section, we propose to evaluate experimentally the validity of our approach
on three benchmarks taken from [New06].

5.3.1. Zachary karate club. We propose to evaluate our approach on a standard benchmark for
community detection: the karate club network initially studied by Zachary in [Zac73]. This is a
social network with 34 agents shown on the top left part of Figure 1. The original study shows the
existence of two communities represented on the figure by squares and triangles.

We propose to use our opinion dynamics model (5.1) to uncover the community structure of this
network. We chose 4 different values for δ and 2 different values for parameters R and α. The
parameter ρ was chosen according to Corollary 1: ρ = 1 − αδ. For each combination of parameter
value, the model was simulated for 1000 different vectors of initial opinions chosen randomly in
[0, 1]34. Simulations were performed as long as enabled by floating point arithmetics.

The experimental results are reported in Table 1. For each combination of parameter value, we
indicate the partitions in communities that are the most frequently obtained after running the opinion
dynamics model. For each partition C , we give the number of communities in the partition, the
measure µ2(C ), this value being greater than δ indicates that Problem 1 has been solved. We
computed the modularity Q(C ) in order to evaluate the quality of the obtained partition. We also
indicate the number of times that each partition occurred over the 1000 simulations of the opinion
dynamics model.

We can check in Table 1 that all the partitions are solutions of Problem 1. Let us remark that in
general the computed partition depends on the initial vector of opinions, this is the case for δ = 0.3
and δ = 0.4. Also, changing the parameters R and α seems to have some effect on the probability of
obtaining a given partition. For instance, for δ = 0.3, the probabilities of obtaining one partition are
significantly different for R = 1 and R = 10. Also, for δ = 0.4, the probabilities are slightly different
for α = 0.1 and α = 0.2.

However, it is interesting to note that the partitions that are obtained for the same value of parameter
δ have modularities of the same order of magnitude which seems to show that these are of compa-
rable quality. The partition with maximal modularity is obtained for δ = 0.4, it is a partition in 4
communities with modularity 0.417. As a comparison, algorithms [New06, BGLL08] obtain a parti-
tion in 4 communities with modularity 0.419. This shows that our approach not only allows to solve
Problem 1 but also furnishes partitions with a good modularity which might seem surprising given
the fact that our approach, contrarily to [New06, BGLL08] does not try to maximize modularity.

In Figure 1, we represented the graphs of communities GC that are the most frequently obtained for
R = 1, α = 0.1 and the different values of δ. It is interesting to remark that for δ = 0.2 we almost
obtained the communities that were reported in the original study [Zac73]. Only one agent has been
classified differently. One may argue that this agent has originally 4 neighbors in each community
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δ |C | µ2(C ) Q(C ) Occurences
R = 1, α = 0.1

Occurences
R = 10, α = 0.1

Occurences
R = 1, α = 0.2

Occurences
R = 10, α = 0.2

0.1 1 0.132 0 1000 1000 1000 1000
0.2 2 0.250 0.360 1000 999 1000 999
0.3 3 0.334 0.399 691 105 679 63
0.3 3 0.363 0.374 283 891 298 937
0.4 4 0.566 0.417 924 994 884 897
0.4 5 0.566 0.402 15 6 54 98

Table 1. Properties of the partitions of the karate club network obtained by the
opinion dynamics model (1000 different vectors of initial opinions for each combination
of parameter values).

Figure 1. Graphs GC for the most frequently obtained partition of the karate club
network for R = 1, α = 0.1 and δ = 0.1 (top left), δ = 0.2 (top right), δ = 0.3 (bottom
left), δ = 0.4 (bottom right).

so it could be classified in one or the other. It is also interesting to see that our approach allows
us to search for communities at different scales of the graph. When δ increases, the communities
become smaller but more densely connected. This is corroborated by computing the stability of these
partitions (see Figure 2). We can see that the partition with maximal stability changes according to
time-scale t: for small values of t the partition in 4 communities is better, for intermediate values
of t the partition in 3 communities has the largest stability, for large values of t the partition in 2
communities maximizes the stability.
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Figure 2. Stability of the partitions presented in Figure 1.

5.3.2. Books on American Politics. We propose to use our approach on an example consisting
of a network of 105 books on politics [New06], initially compiled by V. Krebs (unpublished, see
www.orgnet.com). In this network, each vertex represents a book on American politics bought from
Amazon.com. An edge between two vertices means that these books are frequently purchased by
the same buyer. The network is presented on the top left part of Figure 3 where the shape of the
vertices represent the political alignement of the book (liberal, conservative, centrist).

We used our opinion dynamics model (5.1) to uncover the community structure of this network. We
chose 3 different values for δ and 2 different values for parameters R and α. The parameter ρ was
chosen according to Corollary 1: ρ = 1−αδ. For each combination of parameter value, the model was
simulated for 1000 different vectors of initial opinions chosen randomly in [0, 1]105. Simulations were
performed as long as enabled by floating point arithmetics. The experimental results are reported
in Table 2.

δ |C | µ2(C ) Q(C ) Occurences

R = 1, α = 0.1

Occurences

R = 10, α = 0.1

Occurences

R = 1, α = 0.2

Occurences

R = 10, α = 0.2

0.1 2 0.134 0.457 980 1000 640 581
0.1 2 0.129 0.457 20 0 360 419
0.15 3 0.182 0.499 898 1000 905 1000
0.15 3 0.187 0.494 102 0 95 0
0.2 4 0.269 0.523 678 1000 673 1000
0.2 4 0.266 0.512 218 0 207 0
0.2 4 0.269 0.520 49 0 72 0

Table 2. Properties of the partitions of the books network obtained by the opinion
dynamics model (1000 different vectors of initial opinions for each combination of
parameter values).
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Figure 3. Graphs GC for the most frequently obtained partition of the books net-
work for R = 1, α = 0.1: initial graph (top left), δ = 0.1 (top right), δ = 0.15
(bottom left), δ = 0.2 (bottom right). Shapes represent political alignment of the
books: circles are liberal, squares are conservative, triangles are centrist.

Let us remark that the computed partitions are solutions to the Problem 1. Also, for the same
value of parameter δ, the modularity is very similar for all partitions. Actually, all the partitions
obtained for the same value of δ are almost the same. As in the previous example, we can see that
the choice of parameters R and α affects the probability of obtaining a given partition. The partition
with maximal modularity is obtained for δ = 0.2, it is a partition in 4 communities with modularity
0.523. As a comparison, algorithms [New06] and [BGLL08] obtain partitions in 4 communities with
modularity 0.526 and 0.527, respectively. As we can see, our partition has a modularity that is quite
close from those obtained by these algorithms.

In Figure 3, we represented the graphs of communities GC that are the most frequently obtained for
the different values of δ. Let us remark that even though the information on the political alignment
of the books is not used by the algorithm, our approach allows to uncover this information. Indeed,
for δ = 0.1, we obtain 2 communities that are essentially liberal and conservative. For δ = 0.2, we
then obtain 4 communities: liberal, conservative, centrist-liberal, centrist-conservative.

In Figure 4, we represented the stability of the partitions shown in Figure 3. As in the previous
example, we can see that the partition with maximal stability changes according to time-scale t
which shows that our approach makes it possible to detect community at several scales using different
values of parameter δ.
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Figure 4. Stability of the partitions presented in Figure 3.

5.3.3. Political blogs. The last example we consider consists of a significantly larger network of 1222
political blogs [AG05]. In this network, an edge between two vertices means that one of the corre-
sponding blogs contained a hyperlink to the other on its front page. We also have the information
about the political alignment of each blog based on content: 636 are conservative, 586 are liberal.

The two previous examples show that the modularity of the obtained partitions does not depend
much on the parameters R and α or on the vector of initial opinions. For this reason, we decided
to apply our opinion dynamics model with parameters R = 1 and α = 0.1. We used 17 values of
δ between 0.05 and 0.75. The parameter ρ was chosen according to Corollary 1: ρ = 1 − αδ. For
each value of δ, the model was simulated only once for a vector of initial opinion chosen randomly
in [0, 1]1222. Simulations were performed as long as enabled by floating point arithmetics.

The partition with maximal modularity was obtained for δ = 0.4. It is a partition in 12 communities
with modularity 0.426. There are 2 main communities: one with 653 blogs, from which 94% are con-
servative, and one with 541 blogs, from which 98% are liberal. The 28 remaining blogs are distributed
in 10 tiny communities. When we progressively increase δ, we can see that the size of the two large
communities reduces moderately but progressively until δ = 0.65 where the conservative community
splits into several smaller communities, the largest one containing 40 blogs. The liberal community
remains until δ = 0.725 where it splits into smaller communities, the largest one containing 54 blogs.

As a comparison, algorithm [New06] obtains a partition in 2 communities with modularity 0.426
whereas algorithm [BGLL08] obtains a partition in 9 communities with modularity 0.427. As we can
see, the partition we obtain is very acceptable in terms of modularity.

In Table 3, we give a comparative summary of the modularity of the partition obtained for the three
examples by our approach and by the algorithms presented in [New06, BGLL08]. Though slightly
smaller, the modularity of the partition we obtain is comparable to that of other partitions which
is actually surprising since our approach, contrarily to [New06, BGLL08] does not try to maximize
modularity.
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Network Karate Books Blogs
Number of nodes 34 105 1222

This article 0.417 0.523 0.426
[New06] 0.419 0.526 0.426

[BGLL08] 0.419 0.527 0.427

Table 3. Modularity of the partitions obtained by the approach presented in this
paper and by the algorithms presented in [New06, BGLL08] for the three examples
considered in this paper.

6. Conclusion and Future Work

In this paper, we introduced and analyzed a model of opinion dynamics with decaying confidence
where agents may only reach local agreements organizing themselves in communities. Under suit-
able assumptions, we have shown that these communities correspond to asymptotically connected
components of the network. We have also provided an algebraic characterization of communities in
terms of eigenvalues of the matrix defining the collective dynamics. To complete the analysis of our
model, future work should focus on relaxing Assumption 4 by studying the model behavior when
there is an agent i ∈ V that approaches its limit value at a rate exactly ρ:

lim sup
t→+∞

1

t
log(|xi(t)− x∗i |) = log(ρ).

In the last part of the paper, we have applied our opinion dynamics model to address the problem of
community detection in graphs. We believe that this new approach offers an appealing interpretation
of community detection: communities are sets of agents that succeed to reach an agreement under
some convergence rate constraint. We have shown on three examples that this approach is not only
appealing but is also effective. In the future, we shall work on a distributed implementation of
our approach. Let us remark that this should be feasible since our approach is by nature based
on distributed computations. Then, we shall use our approach to analyze a number of networks
including large scale networks.
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