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A New Iterative Algorithm to Solve Periodic Riccati
Differential Equations With Sign

Indefinite Quadratic Terms

Yantao Feng, Andras Varga, Brian D. O. Anderson, and
Marco Lovera

Abstract—An iterative algorithm to solve periodic Riccati differential
equations (PRDE) with an indefinite quadratic term is proposed. In our
algorithm, we replace the problem of solving a PRDE with an indefinite
quadratic term by the problem of solving a sequence of PRDEs with a neg-
ative semidefinite quadratic term which can be solved by existing methods.
The global convergence and the local quadratic rate of convergence are
both established. A numerical example is given to illustrate our algorithm.

Index Terms—Periodic Riccati differential equations (PRDE).

I. INTRODUCTION

In periodic�� control [10], in order to obtain a feedback controller,
typically we need to solve one or two PRDEs of the following form
[10], [29]:

�
����� � ��������� � �������� � ���������

� ���� ����������
�
�����������

� ���� (1)

where � � �
�

���, �� � �
�

���, �� � �
�

��� ,
� � �

�
��� are piecewise continuous, locally integrable, � -peri-

odic functions and� � �
�

��� is the bounded symmetric positive
semidefinite � -periodic stabilizing solution we seek. Here � denotes
the set of nonnegative real numbers. Our interest is in providing a new
type of solution algorithm to solve (1), which is built on recent develop-
ments for solving algebraic Riccati equations (AREs) with an indefinite
quadratic term [23].

In [23], the problem of solving an ��-type ARE is replaced by the
problem of solving a sequence of ��-type AREs and each of them
can be solved by some existing algorithms [21]; then the solution of
the original ARE can be approximated by the sum of the solutions of
the ��-type AREs. Since AREs can be regarded as a special class of
PRDEs, we are interested in extending the algorithm in [23] to solve
��-type PRDEs.

A key motivation of this paper comes from an increasing interest in
addressing periodic control problems for linear time-periodic systems
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[26]. Indeed, periodic control design methods have been widely used
in different fields, for example in biology [9], aerospace [5], [25].

In many applications in which periodic models arise (see, e.g., [17]),
the averaging method [20] has been used to deal with time-variability.
In the averaging method, the actual time-periodic dynamic model is
approximated with a time-invariant one by taking time averages over
one period. It can be shown [20] that the averaged model provides an
acceptable approximation of the true periodic system as long as its dy-
namics are much slower than the excitation. Clearly, the advantage of
this method is that the control problem becomes time-invariant; how-
ever the designer is left with the burden of verifying a posteriori that
the designed controller actually stabilizes the original time-varying dy-
namics and achieves a satisfactory performance level, if at all pos-
sible [22].

A typical example to illustrate the advantages of periodic control de-
sign methods is satellite attitude control based on magnetic actuators.
In magnetic satellite attitude regulation, control torques are generated
by exploiting the interaction between a set of electromagnetic coils and
the geomagnetic field of the earth. As the variability of the geomag-
netic field along the orbit is almost periodic, the resulting linearized
models turn out to be time-periodic. Classical methods for the design
of magnetic attitude control laws rely on averaged models [17], [31],
[32], where the use of averaging was specifically developed to deal with
the stabilization problem for the coupled roll/yaw dynamics of a mo-
mentum biased spacecraft using a magnetic torquer aligned with the
pitch axis. In such a situation, viable alternatives are several recently
developed design methods able to handle fully periodic models, with
the significant advantage of guaranteeing closed loop stability a priori.

For LTI systems, to obtain an �� or an �� controller, one needs to
solve AREs for which satisfactory algorithms are available. For linear
continuous time-varying periodic systems, to obtain an �� or an ��
controller, one needs to solve PRDEs, which are significantly more dif-
ficult to solve than AREs. Although algorithms to solve PRDEs do
exist, their state of maturity is not as advanced as those for solving
AREs. The situation is better for periodic discrete-time systems [14],
where several structure-exploiting and structure-preserving methods
exist both for standard and descriptor periodic systems [7], [8], [18],
[19], [27]. For continuous-time periodic systems, the interest to develop
reliable algorithms to solve PRDEs has recently increased. In what fol-
lows,we shortly describe two direct methods, both of which can serve
as core solvers for our new iterative algorithm.

The periodic multiple-shooting method [34] is essentially an
invariant subspace approach which is based on discretization tech-
niques. The continuous-time problem is turned into an equivalent
discrete-time problem for which the above mentioned techniques
for discrete-time systems are employed. To solve the PRDE a linear
Hamiltonian system must be integrated. The importance of using
special (symplectic) integration methods for solving the associated
Hamiltonian system has recently been emphasized in [15]. The main
computational ingredient for solving the discretized problem is the
computation of an ordered periodic real Schur form [8], [18] of a
cyclic product of symplectic matrices expressing the monodromy
matrix associated with the Hamiltonian system. The multiple-shooting
method described in [34] has a fast, structure-exploiting version and
a slower, but structure-preserving version. Although both algorithms
are numerically reliable, a potential problem with these methods is
the lack of control of the achieved accuracy of the computed solution.
A MATLAB implementation of the fast structure-exploiting version is
available in the PERIODIC SYSTEMS Toolbox1 [33] and can be used to
solve both ��-type PRDEs and ��-type PRDEs.

1The toolbox is a proprietary software of DLR. Contact author Dr. Andras
Varga for licensing conditions.

The second method is the semidefinite programming (SDP) method,
which is basically a convex optimization based approach [13] appli-
cable to both ��-type and ��-type PRDEs [15]. The SDP method is
based on a harmonic approximation of the positive definite stabilizing
solution of the PRDE as a weighted sum of trigonometric base func-
tions [12]. By doing this approximation and reformulating the PRDE
as a maximization problem, the problem of solving the PRDE is turned
into a SDP problem with linear matrix inequality (LMI) constraints
[13]. As revealed in a recent study [16], if the SDP method can be used
to solve the PRDE, the computed solution can be usually determined
with high accuracy [30]. One major limitation of the SDP method is the
high storage requirement. A MATLAB implementation of this method is
described in [13].

In this paper we propose a new iterative algorithm to solve��-type
PRDEs, where the original problem is equivalently replaced by the
problem of solving a sequence of ��-type PRDEs. The solution of the
original PRDE can be approximated by the sum of solutions of��-type
PRDEs, which can be obtained by any of the above mentioned methods.
Since each iteration in the proposed algorithm relies on the use of a
solver to solve an ��-type PRDE, it is clear that the main benefit of
using the new method is neither its computational efficiency nor com-
putational storage savings. However, it is realistic to expect that our al-
gorithm has a higher potential than the existing direct methods to deter-
mine limiting accuracy solutions of��-type PRDEs, especially when
ill-conditioning is the limiting factor on the achievable accuracy. This
feature has been already verified in the linear time-invariant case [23].

The paper is organized as follows: Section II gives some definitions
and preliminary results. Section III presents our main results which
underly the proposed algorithm to solve (1). Also, a result stating the
quadratic rate of convergence of our algorithm is presented. Section IV
gives a numerical example which illustrates the quadratic convergence
of the proposed algorithm to the limiting accuracy solution. Section V
establishes our conclusions.

Notation: ��� denotes the set of ��� real matrices; � denotes
the set of nonnegative real numbers; denotes the set of integers with
�� denoting the set of integers greater or equal to � � ; ���� � �

means the matrix ���� is positive semidefinite for all � � �; �����
� ��� � � means the matrix ����� � ��� is positive semidefinite for
all � � �; ����� denotes the derivative of the matrix ����; ������
denotes the Euclidean norm of the matrix ����; ����� denotes the
transpose of the matrix ����; ������ denotes the least upper bound
of a set � of real numbers. Throughout this paper, we define 	��� �	

����
����

� �
����
����
� to simply the expression of (1).

II. DEFINITIONS AND PRELIMINARY RESULTS

Consider the periodic system described by

����� 	�������� 

���
���� ���� 	 �� (2)

���� 	�������� (3)

where � � �, �� � � is the initial state, 
��� � � is the input
value, ���� � � is the state value, and ���� � � is the output value.
���� � ���, 
��� � ���, ���� � ��� are piecewise contin-
uous, locally integrable, � -periodic real matrices.

Definition 1: [1] The system (2) is said to be stabilizable (respec-
tively, detectable) if there exists � -periodic � � � � ��� (re-
spectively, � -periodic � � � � ���) piecewise continuous and
bounded on such that the system ����� 	 ����� � 
������������
(respectively, ����� 	 ������ �������������) is stable.2

2Here and later, we say a linear time-varying system ����� � ��������
is stable if the solution ���� � � � � of the differential equation satisfies that
���� � � � �� � uniformly and asymptotically when �� ��, see [24].
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Definition 2: Let ����� ��� � be the matrix functions ap-
pearing in (1). If there exists a bounded symmetric � -peri-
odic solution ���� to PRDE (1) such that the system ����� �
����� � ����������

����������������
���������� is stable, then

���� is called a stabilizing solution of (1).
Definition 3: Let ����� ��� � be the real matrix functions

appearing in (1). Suppose there exists a bounded symmetric pos-
itive semidefinite � -periodic stabilizing solution ���� to (1).
Let � � � � ���. Let ��� � � � ��� be defined
as ��� ��� � ���� � ����������

�� ��� � ����������
�� ���

for all � � �, and let 	�� � � � ��� be defined as
	�� ��� � ���� � ����������

�� ��� � ����������
����� for

all � � �.
Lemma 4: Let ����� ��� � be the real matrix functions appearing

in (1), and let 	 be the set of smooth mappings from � to ��� and
� , 
 � 	 . Define � � 	 �� 	

� ��� ��� �� ��� � � ������� � ������ ���� � �����������

����������
 (4)

If � ��� � � ���� and 
��� � 
���� for all � � �, then

� �� ��� � 
���� � � �� ���� � �
��� � 
��� ��� ���

� ��� ���
�

���� 
�������
��� (5)

for all � � �, where ��� ��� is defined in Definition 3. Furthermore,
if � ��� � � ���� and 
��� � 
���� for all � � � and they satisfy


 � �
��� � 
��� ��� ��� � ��� ���
�

���� 
�������������

�

���

�� �� ���� �� �
� (6)

then

� �� ��� � 
���� � 
�������������
�

��� �� �

�

 (7)

Proof: The first result can be obtained by direct computations;
the second claim is then trivial.

Lemma 5: [6], [28] Consider the system defined by (2) and (3), and
assume that ����� is stabilizable and ����� is detectable. Then, there
exists a symmetric positive semidefinite � -periodic stabilizing solution

��� satisfying the following PRDE:

� �
��� � �����
��� � 
�������� 
������������
���

����������
 (8)

Furthermore, 
��� is the unique stabilizing solution of (8) (i.e., there
is no other stabilizing solution to (8)).

Proof: See [6].
Lemma 6: [1]–[3], [6], [28] Let �� � be the real matrix functions

appearing in the system defined by (2) and (3), and suppose that the
pair ����� is detectable. Then

(i) the system ����� � �������� is stable if there exists a bounded
symmetric differentiable matrix function � � � � ��� and
positive constants �� and �� such that for all � � � 
 � ��� �

���� � ��� � �, and such that

����� ���������� � �������� � ���������� �� �
� (9)

(ii) there exists a unique positive semidefinite symmetric differen-
tiable solution to (9) if the system ����� � �������� is stable.

Proof: See [2], [3], [28] for (i); see [2], [3] for (ii).
Lemma 7: Suppose there exists a bounded symmetric stabilizing

solution ���� to (1); then ���� is the unique stabilizing solution to (1)

(i.e., there is no other stabilizing solution to (1)) and it is � -periodic.
Furthermore, if ���� � 
 for all � � �, then the system ����� �
������ ����������

���������� is stable.
Proof: See [10].

Lemma 8: Let ����� ��� � be the matrix functions appearing in
(1), � ��� � � ���� � ��� for all � � � and 
��� � 
���� �
��� for all � � � satisfying (6), and a bounded stabilizing ���� �

����� � ��� for all � � � satisfying (1), and let 	�� be the function
defined in Definition 3. Then

i) ���� � �� ��� � 
���� for all � � � if 	�� ��� is stable;
ii) 	������� is stable if ���� � �� ��� � 
���� for all � � �.

Proof: The proof is in parallel with the proof of Lemma 2
in [23].

III. MAIN RESULTS AND ALGORITHM

In this section, we set up the main theorem and give our algorithm.
Theorem 9: Let����� ��� � be the real matrix functions appearing

in (1). Suppose that ����� is detectable and ������ is stabilizable,
and define � � 	 �� 	 as in (4). Suppose there exists a bounded
symmetric positive semidefinite � -periodic stabilizing solution ����
of PRDE (1). Then

(I) two square matrix function sequences 
���� and ����� can be
defined for all � � �� recursively as follows:

����� � 
 �� �
� (10)

����� ����� �����������
�
�����

�����������
�
������� �

� (11)


���� � 
 is the unique � -periodic stabilizing solution of

� �
���� � 
��������� ������
�

����

�
��������������
�

���� � � ������� (12)

and then

������� � ����� � 
���� �� �
� (13)

(II) the two sequences����� and
���� in part (I) have the following
properties:
1) ����� � ����������

������� ������ is stabilizable �� �
��;

2) � ��������� � 
��������������
�
������ � ���� �

�;
3) ���� � ����������

������ � ����������
�������� is

stable �� � ��;
4) ���� � ������� � ����� � 
�� � ���� �

�;
(III) the limit ����� �� ��
��� ����� exists for all � � � with

����� � 
 for all � � �. Furthermore, ����� � ���� is
the unique � -periodic stabilizing solution of PRDE (1), which
is also positive semidefinite.

Proof: We construct the sequence for 
���� and ����� to show
results (I) and (II) together by an inductive argument.

Case � � 
: Since ����� � 
 via (10), (II1) is trivially satisfied by
assumption. Since (12) reduces to

� �
���� � 
�������� ������
����� 
��������������
�

����

���������� (14)

by Lemma 5 there exists a unique � -periodic positive semidefinite and
stabilizing solution 
���� for (14). Since ����� � ����� � 
���� for
all � � � via (13), we have � ������� � 
��������������

��
����
for all � � � by Lemma 4 and (II2) is satisfied. Then by Lemma 5
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����������������
������� is stable, hence (II3) is satisfied on noting

that ����� � � and ����� � ����� for all � � �. (II4) can be shown
by using Lemma 7 and Lemma 8 (see [23] for this argument).

Inductive Step for � � ��: We now consider an arbitrary � � ��,
suppose that (I) and (II) are satisfied for � � � � ��, and show that
(I) and (II) are also satisfied for � � � � �. Since � ��������� �
���������������

������ � � for all � � � by inductive assump-
tion (II2), sufficient conditions for the existence of a unique positive
semidefinite 	 -periodic stabilizing solution ������� to (12) are (use
Lemma 5):

�
�� ����� � ����������
��������� ������ is stabilizable;

���� ������
������� ���� �

����������
�����������������

��������� is detectable.
We will now show the existence of ������� is guaranteed via the fol-
lowing two points:

1) Since result (II4) holds by inductive assumptions, we have���� �
������� for all � � �, and thus ����������������

���������
����������

������ is stable by Lemma 8 Part (ii). Hence ������
����������

��������� ������ is stabilizable and thus condition
�
�� and result (II1) for � � � � � are satisfied;

2) Since ����� � ����������
������ � ����������

��������� is
stable by inductive assumption (II3), condition ���� is also sat-
isfied.

Since conditions �
�� and ���� hold, there exists a unique positive
semidefinite 	 -periodic stabilizing solution ������� for (12) with � �
� � �. Then by using Lemma 4 and Lemma 8, we can prove that
(II2),(II3),(II4) are satisfied for � � ��� (see [23] for this argument).

Inductive Conclusion: (III) Since the sequence ����� is monotone
for all � � � and bounded above by ����, the sequence converges to
a limit ����� (see pp. 33–34 in [4] for the details), and convergence of
the sequence ����� to ����� implies convergence of ����� to 0 since

����� �� 	
�
���

����� � 	
�
���

��������� ������ � �


Then it is clear from (II2),(II3),(II4), ����� � � is a stabilizing so-
lution to � ������� � �. Since ���� � � is a stabilizing solution to
� ������ � � and the stabilizing solution of the PRDE (1) is always
unique (see Lemma 7), it is clear that ����� � ���� for all � � �.

The following corollary gives a condition under which there does
not exist a stabilizing solution ���� � � to � ������ � �.

Corollary 10: Let ����� ������������ ���� be the functions ap-
pearing in (1). Suppose ����������� is detectable and ������ ������ is
stabilizable, and let ������� and � �� ��� be defined as in The-
orem 9. If �� � �� such that ����� �����������

������� ������ is
not stabilizable, then there does not exist a stabilizing solution ���� �
� to � ������ � �.

Proof: Restatement of Theorem 9, implication (II1).
Based on Theorem 9 and Corollary 10 we can give an implementable

algorithm to solve (1):
1) Let ����� � � and � � �.
2) ����� � ���� �����������

�����������������
������.

3) Construct the unique real symmetric 	 -periodic stabilizing solu-
tion ����� � � which satisfies

� ������ � ���������� � �����
������

����������������
������ � � ������� (15)

where � ������� is given in (4), and by Theorem 9 Part II2) we
have � ������� � �������������

�
� �������. Exit if no positive

stabilizing solution exists.
4) Set ������� � ����� � �����.

5) If 
���� ������� � �, where � is a prescribed tolerance, then
set ���� � ������� and exit. Otherwise, increment � by one and
go to step 2.

Remark: The algorithm exits at Step 3 if the pair ����� �
����������

������� ������ at the current iteration is not stabilizable
(see Corollary 10).

The following theorem states the local quadratic rate of convergence
of the proposed algorithm.

Theorem 11: Given the suppositions of Theorem 9, and two real
function sequences �����,����� as defined in Theorem 9 Part (I), then
there exists an � � � such that the rate of convergence of the sequence
����� is quadratic in the region 
���� ������� ����� � �.

Proof: The proof is in parallel with the counterpart in [11], [23],
and it is omitted here.

IV. NUMERICAL EXAMPLE

In this section, we provide a numerical example in satellite attitude
control to verify our algorithm to solve�� PRDEs. The main purpose
of our study is to illustrate the quadratic convergence of our algorithm
and its ability to compute solutions whose accuracy is comparable or
potentially even better than of exiting algorithms [34].

A. The Model

The satellite model of this example is a slight modification of the
model considered in [27].

The linearized state space model of the roll/yaw angular dynamics
of the earth-pointing LEO satellite described in [27] is given by

����� � ������ � ��	���� � ��	���� (16)

where the state vector ���� is formed with the roll and yaw angles and
the corresponding angular rates, 	���� and 	���� are, respectively, the
control and disturbance torques acting on the roll and yaw axes and
�� � ��� and �� � ��� are constant matrices. We assume (see [27]

for details) that the control torques are of the form 	���� � ��������,
where ���� � ��� is a known time-periodic, positive semi-definite
matrix and ���� is the control signal. The external disturbance torques
are of the form 	���� � ��������, where ���� � ��� is a given
periodic matrix, and ���� is the external disturbance signal.

Letting �� and �� be, respectively, the moments of inertia of the roll
and yaw axes, the expressions of the constant matrices of the model
(16) taken from [27] are
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(17)

and the time-varying matrices entering in the definition of torques are
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(18)

where � is the orbit inclination and we adopted the notation
� � ������ 

�����.

The numerical values of parameters according to [27] are: �� �
��
���� �� ��, �� � ��
���� �� ��, �� � ���
����  �
, �� �
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TABLE I
ACCURACY OF SOLUTION AS FUNCTION OF �

���������� �����, � � 	���� � 
�	��� �, � � ����
������ �
������ ���.

B. The �� Control Problem

A full information (also state feedback) periodic �� control
problem can be formulated as follows [10]: for the performance output
defined as �
	� � �����

����
with 
 � ���
����� ���� �� ��, find a

memoryless � -periodic controller of the form �
	� � �
	��
	� such
that the �� norm of the transfer operator ��� from � to � is less than
or equal to a prescribed positive attenuation level �, i.e., �����

�
� �.

To obtain such a controller, one needs to solve

� ��
	� � ����
	� � �
	� ��� 
�


��
	� ���
	� ���
	�
�
�

�

��
���
	� ���
	�

�
�
	�

(19)

for �
	�. And we have �
	� � ��
	�� ����
	�.

C. Solution of ��-Problems

The solution of ��-problems is necessary at each iteration of the
proposed algorithm, including the initialization phase. For the solution
of this problem we used the multiple-shooting algorithm of [34] which
determines the periodic solution �
	� on a grid of � time values 	� �

�� ���, for � � �� � � � � � , where � � ��� . The algorithm of [34]
has been implemented as a MATLAB function prcric, which is now
part of the Periodic Toolbox [33].

We evaluate

��� � ���
���	���	


�
	��� �
	��

�
	��
(20)

where �
	�� is the computed solution with the algorithm of [34], while
�
	�� is the solution obtained by integrating (19) backward in time
from 	 � 	��� to 	 � 	�, with �
	� initialized with �
	����. For
accuracy checks, we use tighter tolerances for the integration of ODEs.

For all numerical integrations of ODEs to solve (19), we employed
the non-stiff solver ode113 available in the standard MATLAB with
a relative tolerance ������ � ���	 and an absolute tolerance
������ � ���
, while for accuracy checks we used a tighter rela-
tive tolerance ������ � �����. In Table I the accuracy of solving
(19) for � � � is presented for different values of � . In Table I
we also present timing measurements on a DELL Precision T5500
desktop with two Intel Xenon X5550 quad-core processors running at
2.66 GHz.

In spite of the very large period, the multiple-shooting approach
produced very accurate results for a large range of numbers of dis-
cretization points. The resulting values in Table I merely indicate
that the accuracy of different solutions computed with a tolerance of
������ � ���	 has actually about 7 exact decimal digits. Larger
values of � involve internally more computations, and thus could
induce more roundoff errors. This could explain some fluctuations in
the accuracy at different values of � .

Fig. 1. History of the convergence criterion ��� �� ������� ����.

D. The Solution of the ��-Problem

The multiple-shooting algorithm of [34] can be equally used to solve
the ��-Riccati (19) directly.

We employed a bisection search based �-iteration starting with the
bounds [1, 10] for �. Finally, we arrived to locate the optimum in the
range ���� � ���������������, where the lower bound is still infea-
sible. Thus, to end the �-iteration we can take ���� � ������, which is
a good approximation of the optimum value. For all values of � above
���� the accuracy of the solution is very good with ��� � ���
.

For � � ������ we employed the proposed iterative algorithm to
compute the almost optimal solution of (19). Since high accuracy is
necessary at all iterations, we used the same mesh with � � ��	
grid points to solve the underlying ��-type Riccati equation at Step
3). The updating of the solution at Step 4) happens only in the grid
points and interpolation is used to obtain values of �

	�, �

	� and
�

	� between grid points.

As convergence criterion we used the condition involving the norms
of correction terms

���
���	���	



��

	���� ��

	���� �  �

where  � � 	�		 	 ����
 is the double precision unit roundoff (ma-
chine precision). With ������ � �����, the algorithm performed 24
iterations until convergence and the iteration history shows that neither
��

	�� nor ��

	�����

	�� have a monotonically decreasing be-
havior. However, the final quadratic convergence towards the limiting
accuracy solution can be easily seen from the plot of the iteration his-
tory of the convergence criterion in Fig. 1.

In Fig. 2 we plotted only the element ���
	� computed using the
linear interpolation and cubic spline interpolation based methods. As
it can be observed, the use of cubic-splines-based interpolation allows
to significantly improve the accuracy of linear interpolation to approxi-
mate higher peak values. In spite of some penalty for speed, the solution
obtained using spline based interpolation has a satisfactory accuracy
with ��� � ���� 	 ����.

The total time to solve the problem using parallelization on 8 local
processors takes 144 seconds when employing linear interpolation
and 227 seconds when employing spline based interpolation to obtain
values of �

	� and �

	� between grid points.

V. CONCLUSION

In this paper, an iterative algorithm to compute the stabilizing solu-
tions of ��-type PRDEs is given. By using the proposed algorithm,
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Fig. 2. Element � ��� computed using linear and spline interpolation.

we can compute the solution of the original ��-type PRDE by using
the solutions of a sequence of ��-type PRDEs. The main appeals of
our iterative algorithm are the simple choice of the initial approxima-
tion, and the local quadratic rate of convergence towards the solution.
The provided simulation results illustrate the potential of the proposed
algorithm to produce limiting accuracy solutions.
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