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A Maximum Entropy solution of the

Covariance Extension Problem for Reciprocal

Processes

Francesca Carli, Augusto Ferrante, Michele Pavon, and Giorgio Picci

Abstract

Stationary reciprocal processes defined on a finite interval of the integer line can be seen as a

special class of Markov random fields restricted to one dimension. Non stationary reciprocal processes

have been extensively studied in the past especially by Jamison, Krener, Levy and co-workers. The

specialization of the non-stationary theory to the stationary case, however, does not seem to have been

pursued in sufficient depth in the literature. Stationary reciprocal processes (and reciprocal stochastic

models) are potentially useful for describing signals which naturally live in a finite region of the time

(or space) line. Estimation or identification of these models starting from observed data seems still to be

an open problem which can lead to many interesting applications in signal and image processing. In this

paper, we discuss a class of reciprocal processes which is the acausal analog of auto-regressive (AR)

processes , familiar in control and signal processing. We show that maximum likelihood identification

of these processes leads to a covariance extension problem for block-circulant covariance matrices. This

generalizes the famous covariance band extension problem for stationary processes on the integer line.

As in the usual stationary setting on the integer line, the covariance extension problem turns out to be

a basic conceptual and practical step in solving the identification problem. We show that the maximum

entropy principle leads to a complete solution of the problem.

Work partially supported by the Italian Ministry for Education and Resarch (MIUR) under PRIN grant “Identification and

Adaptive Control of Industrial Systems”.

F. Carli, A. Ferrante and G. Picci are with the Department of Information Engineering (DEI), University

of Padova, via Gradenigo 6/B, 35131 Padova, Italy. carlifra@dei.unipd.it, augusto@dei.unipd.it,

picci@dei.unipd.it

M. Pavon is with the Department of Pure and Applied Mathematics, University of Padova, pavon@math.unipd.it

October 2, 2018 DRAFT

ar
X

iv
:1

10
1.

48
49

v1
  [

m
at

h.
O

C
] 

 2
5 

Ja
n 

20
11



DRAFT 2

I. INTRODUCTION

Reciprocal processes have been introduced at the beginning of the last century [35], [2], [36]

even earlier than the idea of Markov process was formalized by Kolmogorov. The basic defining

property is conditional independence given the values taken by the process at the boundary, which

resembles a widely accepted definition of Markov random fields. When the “time” parameter

is one dimensional, reciprocal processes can in fact be seen as Markov random fields restricted

to one dimension. For this reason, reciprocal processes are actually more general than Markov

processes (a Markov process is reciprocal but not conversely). In fact, these processes naturally

live in a finite region of the time (or space) variable and specification of boundary values at the

extremes of the interval is an essential part of their probabilistic description. In discrete-time

they are naturally defined on a finite interval of the integer l ine. Reciprocal processes have been

extensively studied in the past notably by Jamison, Krener, Levy and co-workers, see [19], [20],

[21], [23], [22], [27], [26], [15]. However the specialization of the non-stationary theory to the

stationary case, except for a few noticeable exceptions, e.g. [19], [33], [34], does not seem to have

been pursued in sufficient depth in the literature. Stationary reciprocal processes (and reciprocal

stochastic models) are potentially useful for describing signals which naturally live in a finite

region of the time or space line. They can be described by constant coefficient models which

are a natural generalization of the Gauss-Markov state space models widely used in engineering

and applied sciences. Estimation and identification of these models starting from observed data

seems to be a completely open problem which can lead to many interesting applications in signal

and image processing.

In this paper, after a general introduction to stationary processes defined on a finite interval

(Section II), we discuss a class of reciprocal processes described by models which are the acausal

analog of auto-regressive (AR) processes, familiar in control and signal processing (Section

III). In section IV we show that maximum likelihood identification of these processes leads

to a covariance extension problem for block-circulant covariance matrices. This generalizes the

famous covariance extension problem for stationary processes on the integer line. As in the usual

stationary setting on the integer line, the covariance extension problem turns out to be a basic

conceptual and practical step in solving the identification problem. The circulant covariance

extension problem looks similar to a classical extension problems for positive block-Toeplitz
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matrices widely studied in the literature, [13], [17], which belongs to the class of band extension

problems for positive matrices. All problems of this kind are solvable by factorization techniques.

However the banded algebra framework on which this literature relies does not apply to circulant

matrices, see [5]. Circulant band extension appears to be a new kind of matrix extension problem.

In the present context, we are seeking a (reciprocal) AR extension. One may speculate that this

extension should possess the analog of the so-called “maximum entropy” property, which holds

for stationary processes on the line. In the literature, this property is usually presented as a final

embellishment of the solution which is obtained by factorization techniques (typically computed

via the Levinson-Whittle algorithm [24], [40]). In our case, where there are no factorization

techniques at hand, we resort to maximum entropy as the main tool at our disposal to attack

the problem. In Sections V and VI we show that the maximum entropy principle indeed leads

to a complete solution of the problem. Finally in Section VII we discuss the relation with the

covariance selection results in Dempster’s paper [11].

Band extension problems for block-circulant matrices of the type discussed in this paper occur

in particular in applications to image modeling and simulation. For reasons of space, we do not

provide details but rather refer the reader to the literature, see e.g. [6], [7] and [32].

II. STATIONARY PROCESSES ON A FINITE INTERVAL

In this paper, we work in the wide-sense setting of second-order, zero-mean random variables.

For the benefit of the reader, we recall here that a second order random vector (or more generally

process) is just an equivalence class consisting of all zero-mean random vectors (or processes),

each defined on some canonical probability space, say the space of their sample values, that

have the same covariance matrix, see e.g. [29, Chap. X ]. Hence, each second order random

vector contains in particular a Gaussian element which may be taken as the representative of the

equivalence class, [12, p. 74]. All statements of this paper do therefore apply to the particular

case of Gaussian distributions. In our setting, however, explicit assumptions of Gaussianness will

not be needed. We also recall that there is a basic correspondence, established by Kolmogorov

in the early 1940’s, between probabilistic concepts depending only on second order m oments

and geometric operations on certain subspaces of the Hilbert space of finite variance random

variables, see e.g. [12, p. 636-637] for historical remarks on this. We assume henceforth that the

reader is familiar with this correspondence.
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Orthogonality of two random vectors will be understood as componentwise uncorrelation, i.e.

x ⊥ y means Ex y> = 0. The symbol Ê [ · | · ] denotes orthogonal projection (conditional

expectation in the Gaussian case) onto the subspace spanned by a family of finite variance

random variables listed in the second argument.

A m-dimensional stochastic process on a finite interval [ 1, N ], is just an ordered collection

of (zero-mean) random m-vectors y := {y(k), k = 1, 2, . . . , N} which will be written as a

column vector with N , m-dimensional components. We say that y is stationary if the covariances

Ey(k)y(j)> depend only on the difference of the arguments, namely

Ey(k)y(j)> = Σk−j , k, j = 1, . . . , N,

in which case the covariance matrix of y has a symmetric block-Toeplitz structure; i.e.1

ΣN := Eyy> =


Σ0 Σ>1 . . . Σ>N−1

Σ1 Σ0 Σ>1 . . .
... . . . . . . . . .

ΣN−1 . . . Σ1 Σ0

 (1)

Processes y which have a positive definite covariance ΣN are called of full rank (or minimal).

In this paper, we shall usually deal with full rank processes.

Definition 2.1: A block-circulant matrix with N blocks, is a finite block-Toeplitz matrix

whose block-columns (or equivalently, block-rows) are shifted cyclically.

It looks like

CN =



C0 CN−1 . . . . . . C1

C1 C0 CN−1 . . . . . .
... . . . ...
... . . . CN−1

CN−1 CN−2 . . . C1 C0


.

where Ck ∈ Rm×m. A block-circulant matrix CN is fully specified by its first block-column (or

row). It will be denoted by

CN = Circ{C0, C1, . . . , CN−1}. (2)

1Boldface capitals, e.g. IN , ΣN , etc. denote block matrices made of N blocks, each of dimension m×m.
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For an introduction to circulant matrices, we refer the reader to the monograph [8]. Block-

circulant matrices of a fixed size form a real vector space which is actually an algebra with

respect to the usual operations of sum and matrix multiplication. The invertible elements of this

algebra form a group.

Consider now a stationary process ỹ on the integer line Z, which is periodic of period T , i.e.

a process satisfying ỹ(k + nT ) := ỹ(k) (almost surely) for all n ∈ Z. We can think of ỹ as

a process indexed on the discrete circle group, ZT ≡ {1, 2, . . . , T} with arithmetics mod T 2.

Clearly, its covariance function Σ̃ must also be periodic of period T , namely, Σ̃k+T = Σ̃k for

all k ∈ Z. Hence, we may also see the covariance sequence as a function on the isomorphic

discrete group Z̃T ≡ { 0, T − 1 } with arithmetics mod T . But more must be true.

Proposition 2.1: A (second order) stochastic process y on [ 1, T ] is the restriction to the

interval [ 1, T ] of a wide-sense stationary periodic process ỹ of period T defined on Z, if and

only if its covariance matrix ΣT is symmetric block-circulant.

Proof: (only if) Let k ∈ [ 1, T ]. By assumption there is an m-dimensional stationary process

ỹ on the integer line Z, which is periodic of period T , satisfying ỹ(k + nT ) := y(k) (almost

surely) for arbitrary n ∈ Z. By wide-sense stationarity, the covariance function of ỹ must depend

only on the difference of the arguments, namely

Σ̃k,j := E ỹ(k)ỹ(j)> = Σ̃k−j , k, j = 1, . . . , T.

Moreover, it is a well-known fact that, for any wide-sense stationary process the following

symmetry relation holds

Σ̃−τ = Σ̃>τ ∀τ ∈ Z , (3)

that is the covariance matrix of ỹ has a symmetric block-Toeplitz structure. Now since ỹ is

periodic of period T , its covariance function must also be periodic of period T ; i.e. Σ̃k+nT = Σ̃k

for arbitrary k, n ∈ Z. Assume, just to fix the ideas, that T is an even number and consider the

midpoint k = T
2

of the interval [1, T ]. The periodicity combined with the symmetry property

(3) yields that

Σ̃T
2

+τ = Σ̃T
2

+τ−T = Σ̃τ−T
2

= Σ̃>T
2
−τ ∀τ ∈ Z (4)

2Whence T + τ = τ so that T plays the role of the zero element.
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and since (4) holds for τ = 0, 1, . . . , T
2
− 1, we can say that the function Σ̃ must be symmetric

with respect to the midpoint τ = T
2

of the interval. Hence, we can conclude that the covariance

matrix of the process ỹ restricted to [ 1, T ]; that is the covariance ΣT of y, is a symmetric

block-circulant matrix, i.e. it must have the following structure

ΣT =



Σ̃0 Σ̃>1 . . . Σ̃>τ . . . Σ̃τ . . . Σ̃1

Σ̃1 Σ̃0 Σ̃>1
. . . Σ̃>τ . . .

. . . ...
... . . . . . . . . . Σ̃τ

Σ̃τ . . . Σ̃1 Σ̃0 Σ̃>1 . . .
. . .

... Σ̃τ . . . Σ̃0 . . . Σ̃>τ

Σ̃>τ
. . . ...

... . . . . . . . . . . . . Σ̃>1

Σ̃>1 . . . Σ̃>τ . . . Σ̃τ Σ̃1 Σ̃0


which we write

ΣT = Circ{Σ̃0, Σ̃>1 , . . . , Σ̃>τ , . . . , Σ̃T
2
, . . . , Σ̃τ , . . . , Σ̃1} . (5)

Similarly, if T is odd, it must hold that Σ̃T+1
2

+τ = Σ̃>T−1
2
−τ , τ = 0, 1, . . . , T−1

2
− 1 and ΣT can

be written as

ΣT = Circ{Σ̃0, Σ̃>1 , . . . , Σ̃>τ , . . . , Σ̃>T−1
2

, Σ̃T−1
2
, . . . , Σ̃τ , . . . , Σ̃1} ,

which proves the first part of the statement.

(if) We want to prove that if y is a process defined on a finite interval [1, T ] with a symmetric

block-circulant covariance matrix ΣT , then it admits a wide-sense stationary periodic extension,

ỹ, defined on Z of period T .

Let ỹ be the process obained by periodically extending the process y to the whole interger

line Z by setting ỹ(k + nT ) := y(k) for arbitrary n ∈ Z and let us denote by Σ̃ its (infinite)

covariance matrix. Since Σ̃ is a covariance matrix, it must be positive semidefinite. What we

need to show is that it is a symmetric block-Toeplitz matrix. By definition, Σ̃ is the covariance

matrix of the infinite column vector formed by stacking ỹ(0), ỹ(1), . . . , ỹ(T ), . . . , ỹ(nT ), . . . in

that order, it is formed by subblocks which replicate ΣT to produce a square matrix of infinite

size. Since ΣT is symmetric block-circulant, then Σ̃ is, in particular, symmetric block-Toeplitz,

which implies that ỹ is stationary. This concludes the proof.
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Remark 2.1: The periodic extension to the whole line Z of deterministic signals originally

given on a finite interval [ 1, T ] is a common device in (deterministic) signal processing. This

simple periodic extension does however not preserve the structure of a stationary random pro-

cess since the covariance of a periodically extended process will not be stationary unless the

covariance function of the original process on [ 1, T ] was center-symmetric to start with. This

counter-intuitive fact has to do with the quadratic dependence of the covariance of the process

on its random variables.

Let for example y be a scalar process on the finite interval [1, 4]; i.e. let T = 4 and m = 1.

Suppose y has covariance matrix ΣT = Toepl {σ0, σ1, σ2, σ3}, the notation Toepl {a} meaning

that ΣT is a symmetric Toeplitz matrix with first column given by the vector a. The upper-left

2T × 2T corner the covariance of the periodic extension of y is

σ0 σ1 σ2 σ3 σ0 σ1 σ2 σ3

σ1 σ0 σ1 σ2 σ1 σ0 σ1 σ2

σ2 σ1 σ0 σ1 σ2 σ1 σ0 σ1

σ3 σ2 σ1 σ0 σ3 σ2 σ1 σ0

σ0 σ1 σ2 σ3 σ0 σ1 σ2 σ3

σ1 σ0 σ1 σ2 σ1 σ0 σ1 σ2

σ2 σ1 σ0 σ1 σ2 σ1 σ0 σ1

σ3 σ2 σ1 σ0 σ3 σ2 σ1 σ0



.

This matrix is clearly not Toeplitz unless σ3 = σ1, in which case ΣT would be symmetric

circulant. Hence the extended process ỹ is in general not stationary.

Remark 2.2: In many applications to signal and image processing, the signals under study

naturally live on a finite interval of the time (or space) variable and modeling them as functions

defined on the whole line appears just as an artifice introduced in order to use the standard

tools of (causal) time-invariant systems and harmonic analysis on the line. It may indeed be

more logical to describe these data as stationary processes y defined on a finite interval [1, T ].

The covariance function, say ΣT , of such a process will be a symmetric positive definite block-

Toeplitz matrix which has in general no block-circulant structure.

It is however always possible to extended the covariance function of y to a larger interval so

as to make it center-symmetric. This can be achieved by simply letting ΣT+τ := Σ>T−1−τ for

τ = 0, 1, . . . , T − 1. In this way ΣT is extended to a symmetric block-circulant matrix Σ̃T
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of dimension (2T − 1) × (2T − 1), but this operation does not necessarily preserve positivity.

Positivity of a symmetric, block-circulant extension, however, can always be guaranteed provided

the extension is done on a suitably large interval. The details on how to construct such an

extension are postponed to Section V, see the proof of Theorem 5.1. The original process y

can then be seen as the restriction to the interval [1, T ] of an extended process, say ỹ, which

lives on an interval [1, N ] of length N ≥ 2T − 1. Since the extended covariance is, in any

case, completely determined by the entries of the original covariance matrix ΣT , any statistical

estimate thereof can be computed from the variables of the original process y in the interval

[1, T ] (or from their sample values). Hence, there is no need to know what the random vectors

{ỹ(k) ; k = T + 1, . . . , N} look like. Indeed, as soon as we are given the covariance of the

process y defined on [ 1, T ], even if we may not ever see (sample values of) the “external”

random vectors {ỹ(k) ; k = T +1, . . . , N}, we would in any case have a completely determined

second-order description (covariance function) of ỹ.

In this sense, one can think of any stationary process y given on a finite interval [1, T ] as

the restriction to [1, T ] of a wide-sense stationary periodic process, ỹ, of period N ≥ 2T − 1,

defined on the whole integer line Z. This process naturally lives on the “discrete circle” ZN .

Hence dealing in our future study with the periodic extension ỹ, instead of the original process

y, will entail no loss of generality. �

III. AR-TYPE RECIPROCAL PROCESSES

In this section, we describe a class of random processes on a finite interval which are a

natural generalization of the reciprocal processes introduced in [27], discussed in [26] and,

for the stationary case, especially in [33], [34], see also [15]. In a sense, they are an acausal

“symmetric” generalization of auto-regressive (AR) processes on the integer line.

Let y be a zero-mean m-dimensional stationary process on [1, N ] and let ΣN denote its

mN × mN covariance matrix. We assume that ΣN is a symmetric block-circulant matrix, so

that y may be seen as a process on the discrete circle ZN . In line with what argued in Remark

2.2, we may, if we wish so, imagine that the matrix ΣN was obtained by extending a positive

block-Toeplitz matrix as (1) to make it symmetric block-circulant. Then [1, N ] will have to be

identified with an enlarged interval on which y is the periodic extension of some underlying

stationary process.

October 2, 2018 DRAFT



DRAFT 9

Let n be a natural number such that N > 2n. This inequality will be assumed to hold throughout.

We introduce the notation y[t−n, t ) for the nm-dimensional random vector obtained by stacking

y(t − n), . . . ,y(t − 1) in that order. Similarly, y(t,t+n ] is the vector obtained by stacking

y(t+ 1), . . . ,y(t+ n) in that order. Likewise, the vector y[t−n, t ] is obtained by appending y(t)

as last block to y[t−n, t ), etc.. The sums t−k and t+k are to be understood modulo N . Consider

a subinterval (t1, t2 ) ⊂ [1, N ] where (t1, t2 ) := {t | t1 < t < t2} and (t1, t2)c denotes the

complementary set in [1, N ].

Let A, B, C be subspaces of zero mean second order random variables in a certain common

ambient Hilbert space. Recall that A and B are said to be conditionally orthogonal, given C if(
a− Ê [ a | C ]

)
⊥
(
b− Ê [ b | C ]

)
, ∀ a ∈ A, ∀b ∈ B . (6)

Conditional orthogonality is the same as conditional uncorrelatedness (and hence conditional

independence) in the Gaussian case. Various equivalent forms of this condition are discussed

in [28]. When A, B, C are generated by finite dimensional random vectors, condition (6) can

equivalently be rewritten in terms of the generating vectors, which we shall normally do in the

following. The following definition does not require stationarity.

Definition 3.1: A reciprocal process of order n on [1, N ] is characterized by the property

that the random variables of the process in the interval (t1, t2 ) are conditionally orthogonal

to the random variables in the exterior, (t1, t2)c, given the 2n boundary values y(t1−n, t1 ] and

y[t2, t2+n ). Equivalently, it must hold that

Ê [ y(t1, t2) | y(s), s ∈ (t1, t2)c ] = Ê [ y(t1, t2) | y(t1−n, t1 ] ∨ y[t2, t2+n ) ] , t1, t2 ∈ [1, N ] . (7)

In particular, we should have

Ê [ y(t) | y(s), s 6= t ] = Ê [ y(t) | y[t−n,t ) ∨ y(t,t+n ]] , t ∈ [1, N ], (8)

where the estimation error

d(t) := y(t)− Ê [ y(t) | y(s), s 6= t ] = y(t)− Ê [ y(t) | y[t−n,t ) ∨ y(t,t+n ]] , t ∈ [1, N ] (9)

must clearly be orthogonal to all random variables {y(s), s 6= t }; i.e.

Ey(t) d(s)> = ∆ δts, t, s ∈ [1, N ] , (10)

where δ is the Kronecker function and ∆ is a square matrix. The actual meaning of ∆ will be

clarified a few lines below. In the spirit of Masani’s definition [31], d is called the (unnormalized)
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conjugate process3 of y. Since d(t+k) is a linear combination of the components of the random

vector y[t+k−n, t+k+n], it follows from (10) that both d(t + k) and d(t − k) are orthogonal to

d(t) as soon as k > n. Hence the process {d(t)} has correlation bandwidth n; i.e.

Ed(t+ k) d(t)> = 0 for n < |k| < N − n, k ∈ [0, N − 1] . (11)

It follows from (9) that a reciprocal process of order n on [1, N ], can always be described by

a linear double-sided recursion of the form
n∑

k=−n

Fk y(t− k) = d(t) , t ∈ [1, N ] (12)

where the Fk’s are m×m matrices, in general dependent on t, with F0 = Im and d a process

of correlation bandwidth n, orthogonal to y in the sense of (10). In fact, it follows from (10)

that Ed(t) d(t)> = ∆ and hence ∆ is the variance matrix of d(t), symmetric and positive

semidefinite.

Equation (12) requires the specification of boundary values, which will be described in Theorem

3.1 below.

Lemma 3.1: If y is stationary, the matrices {Fk} in the representation (12) do not depend

on t. If y is full rank, they are uniquely determined by the covariance lags of the process up to

order 2n.

Proof: The {Fk(t)}’s are determined by the orthogonality condition d(t) ⊥ y[t−n,t )∨y(t,t+n ],

which can be expressed as[
F−n(t) . . . F−1(t) F1(t) . . . Fn(t)

] Σn Qn

Q>n Σn

 =

= −
[
Σ>n . . .Σ>1 Σ1 . . .Σn

]
(13)

where

Σn :=


Σ0 Σ1 . . . Σn−1

Σ>1 Σ0 . . .

. . . . . . . . . Σ1

Σ>n−1 . . . Σ>1 Σ0

 , Qn :=


Σn+1 Σn+2 . . . Σ2n

Σn Σn+1 . . . Σ2n−1

. . . . . .
. . . . . .

Σ2 . . . Σn Σn+1

 . (14)

3Also called double-sided innovation.
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Note that, because of stationarity, none of the covariance matrices depends on t. The determinant

of the large block-matrix in (13) is a principal minor of order 2n of ΣN . If y is full rank, it

must be nonzero and the matrix must be invertible. Therefore the matrices {Fk} do not depend

on t and are uniquely determined.

For stationary reciprocal processes on ZN , the boundary-values to be attached to the linear

model (12) are a straightforward consequence of the fact that y has a stationary periodic extension

to the whole axis Z.

Theorem 3.1: A stationary reciprocal process, y, of order n on ZN satisfies a linear, constant-

coefficients difference equation of the type (12), associated to the 2n cyclic boundary conditions:

y(k) = y(N + k) ; k = −n+ 1, . . . , n . (15)

The model can be rewritten in matrix form as

FN y = d . (16)

where FN is the N -block banded circulant matrix of bandwidth n,

FN := Circ{I, F1, . . . , Fn, 0, . . . 0, F−n, . . . , F−1} . (17)

If the process is full rank this description is unique.

Proof: By definition

Ê [ y(1) | y(s), s 6= 1 ] = Ê [ y(1) | y[1−n, 1 ) ∨ y(1, 1+n ]] ,

which is a linear function of y[1−n, 1 ) ∨ y(1, 1+n ], whereby we can express y(1) as

y(1) = −F̃− y(1, 1+n ] − F̃+ y[1−n, 1 ) + d(1)

for some coefficient matrices F̃−, F̃+. The process y has a periodic extension of period N and

hence the missing initial boundary vector y[−n+1, 1 ) is actually the same as y[N−n+1, N ], so that

y(1) = −F̃− y(1, 1+n ] − F̃+ y[N−n+1, N ] + d(1) .

By stationarity, the various m × m blocks in the matrices F̃ must satisfy the same system

of equations (13) which was derived by imposing the orthogonality condition d(t) ⊥ y[t−n,t ) ∨

October 2, 2018 DRAFT
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y(t,t+n ], for all times t. Since the solution is unique, it must hold that F̃k = Fk , k = ±n, . . . ,±1

where the Fk’s are the same block matrices introduced before for (18). Hence, we have

y(1) = −
−1∑

k=−n

Fk y(1− k)−
n∑
k=1

Fk y(N − k + 1) + d(1)

which is the first (t = 1) block equation in (12) once the first set of boundary conditions in (15)

is used to replace the missing random variables y[1−n, 1 ). Similar expressions can be derived for

y(2), . . . ,y(n) and for y(N − n), . . . ,y(N). From this it readily follows that y satisfies (16)

where FN has the banded circulant structure (17).

Using the notations F− and F+ for
[
F−n . . . F−1

]
and

[
F1 . . . Fn

]
respectively, the error

covariance ∆ = Var {d(t)} can be expressed as

∆ = Σ0 −
[
F− F+

] Σn Qn

Q>n Σn

−1 [
F− F+

]>
. (18)

The following proposition is a simple generalization of analogous statements in [27], [34] for

n = 1.

Proposition 3.1: A stationary reciprocal process y is full rank if and only if the variance

matrix ∆ of the conjugate process is positive definite.

Proof: (if) Suppose ∆ > 0. Multiplying both members of (16) from the right by y> and

taking expectations, in virtue of the orthogonality relation (10), we get

FN ΣN = FN Eyy> = Edy> = diag{∆, . . . ,∆}. (19)

Thus ∆ > 0 implies that the square matrices FN and ΣN are invertible which, combined with

the positive semidefiniteness of ΣN , implies ΣN > 0.

(only if) Suppose now that ∆ is only positive semidefinite. This implies that there exists 0 6=

a ∈ Rm s.t. E a>d(t)d(t)>a = 0, i.e. s.t. a>d(t) = 0 a.s.. This means that the scalar components

of d(t) are linearly dependent, which, by (12), implies that y(t− n), . . . ,y(t), . . . ,y(t+ n) are

linearly dependent. Thus ΣN must be singular, which contradicts the assumption ΣN > 0.

Solving (19) we can express the inverse as

MN := Σ−1
N = diag{∆−1, . . . ,∆−1}FN (20)

so that MN is symmetric block-circulant and positive definite, being the inverse of a matrix with

the same properties. Furthermore, Mk := ∆−1Fk , k = −n, . . . , n and M0 = ∆−1, must form a
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center-symmetric sequence of bandwidth n; i.e.4

M−k = M>
k , k = 1, . . . , n . (21)

If we normalize the conjugate process by setting

e(t) := ∆−1d(t) (22)

so that Var {e(t)} = ∆−1, the model (12) can be rewritten
n∑

k=−n

Mk y(t− k) = e(t) , t ∈ ZN (23)

for which the orthogonality relation (10) is replaced by

Ey e> = IN . (24)

We shall now show that MN is actually the covariance matrix of the normalized conjugate

process e. For, by the normalization (22), our reciprocal process y satisfies the linear equation

MN y = e (25)

which implicitly includes the cyclic boundary conditions (15). Multiplying this from the right

by e> and taking expectations, we get MN E {ye>} = E {ee>} which, in force of (24), yields

Var {e} = MN (26)

as announced. We see that the inverse of the covariance matrix of a full rank stationary reciprocal

process of order n, must be a banded block-circulant matrix of bandwidth n.

This is in fact a fundamental characterization of stationary reciprocal processes of order n. To

prove it, we need to take up the (inverse) question of well-posedness, namely if an autoregressive

model of the form (12) associated to the proper cyclic boundary conditions, determines uniquely

a process y which is stationary and reciprocal of order n.

To this end we may just as well examine the equivalent normalized model (25).

Theorem 3.2: Consider a linear model (25) where MN is a symmetric positive-definite

banded block-circulant matrix of bandwidth n and the process {e(t) ; t ∈ ZN} is a stationary

process on ZN with covariance matrix MN .

4That is to say that model (12) is self-adjoint.
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Then there is a unique full rank stationary reciprocal process y of order n, solution of (25).

This process satisfies the orthogonality condition (24) and e is its normalized conjugate process.

Proof: Pick a finitely correlated process e with covariance matrix MN (we can construct

such a, say Gaussian, process on a suitable probability space) and let y be a solution of the

equation (23) with boundary conditions (15), equivalently a solution of (25). Then, since MN is

invertible, the process y is uniquely defined on the interval [1, N ], i.e. there is a unique random

vector, y, solution of (25). Let ΣN be its covariance matrix. We have, ΣN := E
[
yy>

]
=

E
[
M−1

N ee>M−>
N

]
= M−1

N , so that ΣN is a symmetric positive-definite block-circulant matrix

and the process y is stationary on ZN (Proposition 2.1).

By multiplying (25) by e> and taking expectations, we find MNE {ye>} = MN , so that

E {ye>} = IN , or equivalently E {y(t)e(s)>} = Im δts. Therefore, the orthogonality (24) holds

on ZN .

Next, we need to show that y is reciprocal of order n. To this end we shall generalize an

argument of [34]. Let s < t be two points in [1, N ] , which for the moment we choose such

that t− n > s+ n, which is always possible since by assumption N > 2n. Expanding (23) and
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rearranging terms, we can write

M0 M>
1 . . . M>

n 0 . . . 0 0

M1 M0 M>
1

. . . M>
n 0 0

... . . . . . . ...

Mn . . . M1 M0 M>
1 . . . M>

n 0 0

0 Mn . . . M0 . . .
. . .

... . . .
. . . 0

0 . . . . . . M>
n

...

0
. . . . . . M1 M0 M>

1

0 0 . . . 0 Mn . . . M1 M0





y(t)

y(t+ 1)
...

y(t+ n)
...

y(s− n)
...

y(s− 1)

y(s)



=



e(s)

e(s+ 1)
...

e(s+ n)
...

e(t− n)
...

e(t− 1)

e(t)



−



Mn . . . M1 0 . . . 0

0 Mn . . . M2 0 . . . 0

0
... . . . 0 . . . 0

0
. . . Mn 0 . . . 0

0 . . . 0 . . . 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 . . . 0 . . . 0

0 . . . 0 M>
n 0

0 . . . 0 . . .
... 0

0 . . . 0 M>
2

. . . 0

0 . . . 0 M>
1 . . . M>

n





y(t− n)

y(t− n+ 1)
...

y(t− 1)

y(s+ 1)
...

y(s+ n− 1)

y(s+ n)



(27)

which can be compactly rewritten as

M̃ y[t, s ] = e[t, s ] −


N 0

0 0

0 N>


y[t−n, t)

y( s, s+n]

 (28)

with an obvious meaning of the symbols. Note that M̃ is non-singular, its determinant being a

principal minor of MN , and hence nonzero; while the two random vectors on the right hand

side are uncorrelated since all scalar components of e[t, s ] are orthogonal to the linear subspace

spanned by (the scalar components of) {y(τ) ; τ ∈ [t, s ]c} and hence are in particular orthogonal
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to the boundary condition vectors y( s, s+n], y[t−n, t). Solving (28) we can express y[t, s ] as a sum

of two linear functions of e[t, s ] and of y( s, s+n] ∨ y[t−n, t) so that the orthogonal projection onto

the linear subspace spanned by (the scalar components of) {y(τ) ; τ ∈ [t, s ]c} results in a linear

function of (the scalar components of) y[t−n, t) ∨ y( s, s+n] alone. This proves the conditional

orthogonality of y[t, s ] to the other random variables of the process, given the boundary values

y[t−n, t) , y( s, s+n].

The argument remains valid also when the non overlapping condition t−n > s+n does not hold;

i.e. for an arbitrary interval [t, s ] of the discrete circle ZN . For, when [t− n, t) and ( s, s+ n]

overlap clearly we have [t, s ]c ⊆ [t − n, t) ∪ ( s, s + n] and hence all random variables in the

subspace spanned by {y(τ) ; τ ∈ [t, s ]c} are contained in the subspace spanned by the boundary

conditions, say C := {y(τ) ; τ ∈ [t− n, t) ∪ ( s, s+ n]}. This means that Ê [ y(τ) | C ] = y(τ),

or equivalently that

y(τ)− Ê [ y(τ) | C ] = 0 , τ ∈ [t, s ]c

so that the second member in (6) is zero and hence the orthogonality condition trivially holds.

From this result, we obtain the following fundamental characterization of reciprocal processes

on the discrete group ZN .

Theorem 3.3: A nonsingular mN × mN -dimensional matrix ΣN is the covariance matrix

of a reciprocal process of order n on the discrete group ZN if and only if its inverse is a

positive-definite symmetric block-circulant matrix which is banded of bandwidth n.

Note that the second order statistics of both y and e are encapsulated in the covariance matrix

MN . In other words, the whole auto-regressive model of y is defined in terms of the matrix

MN . Note also that this result makes the stochastic realization problem for reciprocal processes

of order n conceptually trivial. In fact, given the covariance matrix ΣN (the external description

of the process), assuming that it is in fact the covariance matrix of such a process, the model

matrix MN can be computed by simply inverting ΣN . This is the simplest answer one could

hope for. The solution requires however a preliminary criterion to check whether a (full rank)

symmetric block-circulant covariance matrix has a banded inverse. There seems to be no simple

known answer to this question.

Finally, to make contact with the literature, we note that a full rank reciprocal process of order
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n can always be represented as a linear memoryless function of a reciprocal process of order 1.

This reciprocal process, however, need not be of full rank. To see that this is the case, introduce

the vectors

y+
t :=


y(t)

...

y(t+ n− 1)

 , y−t :=


y(t− n+ 1)

...

y(t)

 . (29)

Letting x(t)> :=
[
(y−t )> (y+

t )>
]
, we find the representation

x(t) =

F+ 0

0 0

x(t− 1) +

0 0

0 F−

x(t+ 1) + d̃(t) (30)

y(t) =
[
0 . . . 0 1 1 0 . . . 0

]
x(t) (31)

where F− and F+ are the block-companion matrices

F+ :=


0 I 0 . . . 0

0 0 I . . . 0

. . . I

−Fn . . . −F1

 F− :=


−F−1 . . . −F−n
I 0 . . . 0

0 I 0 . . . 0

. . . I 0


and d̃(t) = 1

2

[
0 . . . 0 d(t)> d(t)> 0 . . . 0

]> has a singular covariance matrix. This model is in

general non-minimal [34].

IV. IDENTIFICATION

Assume that T independent realizations of one period of the process y are available5 and let

us denote the string of sample values by y :=
(
y(1), . . . , y(T )

)
. We want to solve the following

Problem 4.1: Given the observations y of a reciprocal process y of (known) order n, estimate

the parameters {Mk} of the underlying reciprocal model MNy = e .

Note first that if we are given 2n+1 covariance data {Σk ; k = 0, 1, . . . , 2n}, the identification

of an order n reciprocal process can be carried out by a linear algorithm, namely by solving the

Yule-Walker-type system of linear equations (13).

This procedure is however unsatisfactory since, due to the symmetry (21), there are actually

only n+ 1 unknown Mk to be computed. Hence, one would expect only n+ 1 covariance lags

5For example, a “movie” consisting of T successive images of the same texture.
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to be needed, while the system (13) requires solving also for the negative order coefficients.

Moreover, in practice, the Σk’s will have to be estimated from observed data and estimates of

covariances with a large lag k will unavoidably be more uncertain and have a larger variance.

In an attempt to get asymptotically efficient estimates for the Mk’s, we consider maximum

likelihood estimation. To this end, we set up a Gaussian likelihood function (which does not

require to assume that y has a Gaussian distribution, see [18, p. 112]), which uses the density

function

p(M0,...,Mn)(y) =
1√

(2π)mNdet
(
M−1

N

)exp

(
−1

2
y>MNy

)
,

where y ∈ RmN . Taking logarithms and neglecting terms which do not depend on the parameters,

one can rewrite this expression as

log p(M0,...,Mn)(y) =− 1

2
log det

(
M−1

N

)
− 1

2
tr
{
MN yy

>} (32)

Assuming that the T sample measurements are independent, the log-likelihood function, depend-

ing on the n+ 1 matrix parameters {Mk ; k = 0, 1, . . . , n}, can be written

L(M0, . . . ,Mn) = log det (MN)−
n∑
k=0

tr
{
Mk Tk

(
y
)}

(33)

where each matrix-valued statistic Tk(y) has the structure of a sample estimate of the lag k

covariance of the process. For example, T0 and T1 are given by:

T0

(
y
)

=
1

T

T∑
t=1

{
N−1∑
k=0

y(t)(k)
[
y(t)(k)

]>}

T1

(
y
)

=
2

T

T∑
t=1

{
N−1∑
k=1

y(t)(k − 1)
[
y(t)(k)

]>}

+
2

T

T∑
t=1

y(t)(N − 1)
[
y(t)(0)

]>
From exponential class theory [1], we see that the Tk’s are (matrix-valued) sufficient statis-

tics. Indeed, we have the well-known characterization that the (suitably normalized) statistics

T0, T1, . . . , Tn are Maximum Likelihood estimators of their expected values, namely

Σ̂0 :=
1

N
T0 = M.L. Estimator of Ey(k)y(k)>

... (34)

Σ̂n :=
1

N
Tn = M.L. Estimator of Ey(k + n)y(k)> .
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Let us now consider the following matrix completion problem, which, form now on, will be

referred to as the block-circulant band extension problem.

Problem 4.2 (Block-Circulant Band Extension Problem): Given n+ 1 initial data m×m

matrices Σ̂0, . . . , Σ̂n, complete them with a sequence Σn+1,Σn+2, . . . ,ΣN−1, in such a way to

form a positive definite symmetric block-circulant matrix ΣN with a block-circulant banded

inverse of bandwidth n.

Note that the model parameters (M0, M1, . . . ,Mn) are the nonzero blocks of the (banded)

inverse of the covariance matrix ΣN of the process (Theorem 3.3). The invariance principle for

maximum likelihood estimators [42] leads then to the following statement.

Theorem 4.1: The maximum likelihood estimates of (M0, M1, . . . ,Mn) are the nonzero blocks

of the banded inverse of the matrix Σ̂N solving the block-circulant band extension problem with

initial data the n+ 1 covariance estimates (34).

Hence, solving the original identification problem 4.1 has been shown to lead to the solution

of a block-circulant band extension problem. Note, however, that the extension problem 4.2 is

nonlinear and it is hard to see what is going on by elementary means. Below we give a scalar

example.

Example 4.1: Let m = 1, N = 8, n = 2 and assume we are given the covariance estimates

σ̂0, σ̂1, σ̂2, forming a positive definite Toeplitz matrix. The three unknown coefficients in the

reciprocal model (23) of order 2 are scalars, denoted m0, m1, m2. Multiplying (25) from the

right by y>, we get MNΣN = IN , which leads to

m0 m1 m2 0 0 0 m2 m1

m1 m0 m1 m2 0 0 0 m2

m2 m1 m0 m1 m2 0 0 0

0 m2 m1 m0 m1 m2 0 0

0 0 m2 m1 m0 m1 m2 0

0 0 0 m2 m1 m0 m1 m2

m2 0 0 0 m2 m1 m0 m1

m1 m2 0 0 0 m2 m1 m0





σ̂0

σ̂1

σ̂2

x3

x4

x3

σ̂2

σ̂1



=



1

0
...

0

0


,

where x3 := σ3 = σ5 and x4 := σ4 are the unknown extended covariance lags. Rearranging and
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eliminating the last three redundant equations, one obtains

m0σ̂0 + 2m1σ̂1 + 2m2σ̂2 = 1

m0σ̂1 +m1(σ̂0 + σ̂2) +m2(σ̂1 + x3) = 0

m0σ̂2 +m1(σ̂1 + x3) +m2(σ̂0 + x4) = 0

m0x3 +m1(σ̂2 + x4) +m2(σ̂1 + x3) = 0

m0x4 + 2m1x3 + 2m2σ̂2 = 0

which is a system of five quadratic equations in five unknowns whose solution already looks

non-trivial. It may be checked that, under positivity of the matrix Toepl{σ̂0, σ̂1, σ̂2}, it has a

unique positive definite solution (i.e. making MN positive definite).

At first sight the circulant band extension problem of Theorem 4.2 recalls the classical band

extension problems for Toeplitz matrices studied in [13], [17], which is solvable by factorization

techniques. However, the banded algebra framework on which these papers rely does not apply

here. The circulant band extension problem seems to be a new (and harder) extension problem.

General covariance extension problems are discussed in an illuminating paper by A. P. Dempster,

[11]. Notice, however, that Dempster’s procedures, having been conceived to solve a general

covariance extension problem, do not exploit the circulant structure of the present setting and are

computationally very intensive even for small scalar instances. A possible approximate approach

to the circulant band extension problem was proposed in [6]. This approach, based on a result

of B. Levy [25], exploits the fact that for N →∞ the problem becomes one of band extension

for infinite positive definite symmetric block-Toeplitz matrices, for which satisfactory algorithms

exist. For N finite however, this approximation may in some cases turn out to be poor. In the

next section, we propose a new approach to the circulant band extension problem.

V. MAXIMUM ENTROPY ON THE DISCRETE CIRCLE

Dempster’s paper, which deals with general, unstructured covariance matrices, only considers

Gaussian distributions. He solves the following extension problem: Characterize, among all

covariance matrices sharing a given set of entries, the one corresponding to the (zero-mean)

maximum entropy Gaussian distribution. For our purposes, a key observation is Statement (b)

in [11, p. 160]. In our setting, it reads as follows.
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Proposition 5.1: Assume feasibility of the covariance extension problem. Among all covari-

ance extensions of the data Σ̂0 . . . , Σ̂n, there exists a unique such an extension whose inverse’s

entries are zero in all the positions complementary to those where the elements of the covariance

are assigned. This extension corresponds to the Gaussian distribution with maximum entropy.

This principle of entropy maximization will lead us to a new convex optimization procedure for

computing the band extension.

We hasten to remark that in this paper we are not restricting ourselves to the case of Gaussian

distributions. We shall consider ΣN to be the matrix variance of a Gaussian distribution only

for the purpose of interpreting the following optimization problem in the light of Dempster’s

result. The far reaching implications of our maximum entropy principle for general probability

distributions is provided in Theorem 7.2 below.

Notations

Let UN denote the block-circulant “shift” matrix with N ×N blocks,

UN =



0 Im 0 . . . 0

0 0 Im . . . 0
...

... . . . ...

0 0 0 . . . Im

Im 0 0 . . . 0


,

where Im denotes the m × m identity matrix. Clearly, U>NUN = UNU>N = ImN ; i.e. UN is

orthogonal. Note that a matrix C with N×N blocks is block-circulant if and only if it commutes

with UN , namely if and only if it satisfies

U>NCUN = C. (35)

Recall that the differential entropy H(p) of a probability density function p on Rn is defined

by

H(p) = −
∫
Rn

log(p(x))p(x)dx. (36)

In case of a zero-mean Gaussian distribution p with covariance matrix ΣN , we get

H(p) =
1

2
log(det ΣN) +

1

2
n (1 + log(2π)) . (37)
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Let SN denote the vector space of symmetric matrices with N ×N square blocks of dimension

m×m. Let Tn ∈ Sn+1 denote the Toeplitz matrix of boundary data:

Tn =


Σ0 Σ>1 . . . Σ>n

Σ1 . . . . . .

. . . . . . . . .

Σn . . . Σ0

 (38)

and let En denote the N × (n+ 1) block matrix

En =



Im 0 . . . 0

0 Im . . . 0

0 0 . . . . . .

. . . 0 Im

0 0 . . . 0


.

The Maximum Entropy problem on ZN

Consider the following Gaussian maximum entropy problem (MEP) on the discrete circle:

Problem 5.1:

min {−tr log ΣN | ΣN ∈ SN , ΣN > 0} (39)

subject to :

E>n ΣNEn = Tn, (40)

U>NΣNUN = ΣN . (41)

Recalling that tr log ΣN = log det ΣN and (37), we see that the above problem indeed amounts

to finding the maximum entropy Gaussian distribution with a block-circulant covariance, whose

first n + 1 blocks are precisely Σ0, . . . ,Σn. The circulant structure is equivalent to requiring

this distribution to be stationary on the discrete circle ZN . We observe that in this problem we

are minimizing a strictly convex function on the intersection of a convex cone (minus the zero

matrix) with a linear manifold. Hence we are dealing with a convex optimization problem.

Note that we are not imposing that the inverse of the solution ΣN of Problem 5.1 should have a

banded structure. We shall see that, whenever solutions exist, this property will be automatically

guaranteed.
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The first question to be addressed is feasibility of (MEP), namely the existence of a positive

definite, symmetric matrix ΣN satisfying (40)-(41). Obviously, Tn positive definite is a necessary

condition for the existence of such a ΣN . In general it turns out that, under such a necessary

condition, feasibility holds for N large enough. The idea is that for N →∞, Toeplitz matrices

can be approximated arbitrarily well by circulants ([30], [39]) and hence existence of a positive

block-circulant extension can be derived from the existence of positive extensions for Toeplitz

matrices.

Theorem 5.1: Given the sequence Σi ∈ Rm×m, i = 0, 1, . . . , n, such that

Tn = T>n > 0, (42)

there exists N̄ such that for N ≥ N̄ , the matrix Tn can be extended to an N×N block-circulant,

positive-definite symmetric matrix ΣN .

Proof: A fundamental result in stochastic system theory is the so-called maximum entropy

covariance extension. It states that, under condition (42), there exists a rational positive real

function Φ+(z) = Σ0

2
+ C(zI − A)−1B such that

1) A has spectrum strictly inside the unit circle.

2) Σi = CAi−1B, i = 1, 2, . . . , n.

3) The spectrum Φ(z) := Φ+(z) + Φ∗+(z) is coercive, i.e.6

∃ε > 0 such that Φ(ejϑ) > εI, ∀ϑ ∈ [0, 2π). (43)

In fact Φ(z) has no zeros on the unit circle since it can be expressed in the form Φ(z) =

Ln(z−1)−1ΛnLn(z)−> where Ln(z−1) is the n − th Levinson-Whittle matrix polynomial (also

called n− th matrix Szegö polynomial) of the block Toeplitz matrix Tn, and Λn = Λ>n > 0; see

[40], [9] and [41].

Let Σi := CAi−1B, i = n+ 1, n+ 2, . . . , so that Φ+(z) = Σ0

2
+
∑∞

i=1 Σiz
−i, and define

ΣN :=

 Circ
(

Σ0,Σ
>
1 ,Σ

>
2 , . . . ,Σ

>
N−1

2

,ΣN−1
2
,ΣN−1

2
−1, . . .Σ1

)
, N odd

Circ
(

Σ0,Σ
>
1 ,Σ

>
2 , . . . ,Σ

>
N−2

2

,Σ>N
2

+ ΣN
2
,ΣN−2

2
,ΣN−2

2
−1, . . .Σ1

)
, N even

(44)

We need to show that there exists N̄ such that ΣN > 0 for N ≥ N̄ . To this aim, notice that ΣN

is, by definition, block-circulant so that, a similarity transformation induced by a unitary matrix

6 Here, and in the following, j denotes the imaginary unit
√
−1.
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V reduces ΣN to a block-diagonal matrix:

V∗ΣNV = ΨN := diag (Ψ0,Ψ1, . . . ,ΨN−1) ,

where V is the Fourier block-matrix whose k, l-th block is

Vkl = 1/
√
N exp [−j2π(k − 1)(l − 1)/N ] Im

and Ψ` are the coefficients of the finite Fourier transform of the first block row of ΣN :

Ψ` = Σ0 + ejϑ`Σ>1 +
(
ejϑ`
)2

Σ>2 + · · ·+
(
ejϑ`
)N−2

Σ2 +
(
ejϑ`
)N−1

Σ1, (45)

with ϑ` := −2π`/N , see e.g. [38, Sec. 3.4]. Clearly,
(
ejϑ`
)N−i

=
(
ejϑ`
)−i and hence

Ψ` = Φ
(
ejϑ`
)
−
[
δΦN

(
ejϑ`
)

+ δΦ∗N
(
ejϑ`
)]

(46)

where,

δΦN(z) :=
∞∑

i=h+1

Σiz
−i =

∞∑
i=h+1

CAi−1Bz−i = z−hCAh(zI−A)−1B, h :=

 N−1
2
, N odd

N/2, N even

(47)

Since A is a stability matrix, if N , and hence h, is large enough, δΦN

(
ejϑ`
)

+ δΦ∗N
(
ejϑ`
)

is

dominated by εI , i.e. there exists N̄ such that

δΦN

(
ejϑ`
)

+ δΦ∗N
(
ejϑ`
)
< εI, ∀ϑ`, ∀N ≥ N̄ (48)

so that it readily follows from (43) and (46) that if N ≥ N̄ , Ψ` > 0 for all `.

We observe that, given Tn, the triple A,B,C can be explicitly computed so that we can

compute ε and N̄ for which (48) holds. In other words, Theorem 5.1 provides a sufficient

condition that can be practically tested. Similar bounds, but valid only for the scalar case, were

derived in [10].

VI. VARIATIONAL ANALYSIS

We shall introduce a suitable set of “Lagrange multipliers” for our constrained optimization

problem. Consider the linear map A : Sn+1 ×SN → SN defined by

A(Λ,Θ) = EnΛE>n + UNΘU>N −Θ, (Λ,Θ) ∈ Sn+1 ×SN .

and define the set

L+ := {(Λ,Θ) ∈ (Sn+1 ×SN) | (Λ,Θ) ∈ (ker(A))⊥,
(
EnΛE>n + UNΘU>N −Θ

)
> 0}.
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Observe that L+ is an open, convex subset of (ker(A))⊥. For each (Λ,Θ) ∈ L+, we consider

the unconstrained minimization of the Lagrangian function

L(ΣN ,Λ,Θ) := −tr log ΣN + tr
(
Λ
(
E>n ΣNEn −Tn

))
+ tr

(
Θ
(
U>NΣNUN −ΣN

))
= −tr log ΣN + tr

(
EnΛE>n ΣN

)
− tr (ΛTn) + tr

(
UNΘU>NΣN

)
−tr (ΘΣN)

over SN,+ := {ΣN ∈ SN , ΣN > 0}. For δΣN ∈ SN , we get

δL(ΣN ,Λ,Θ; δΣN) = −tr
(
Σ−1
N δΣN

)
+ tr

(
EnΛE>n δΣN

)
+ tr

((
UNΘU>N −Θ

)
δΣN

)
.

We conclude that δL(ΣN ,Λ,Θ; δΣN) = 0, ∀δΣN ∈ SN if and only if

Σ−1
N = EnΛE>n + UNΘU>N −Θ.

Thus, for each fixed pair (Λ,Θ) ∈ L+, the unique Σo
N minimizing the Lagrangian is given by

Σo
N =

(
EnΛE>n + UNΘU>N −Θ

)−1
. (49)

Consider next L(Σo
N ,Λ,Θ). We get

L(Σo
N ,Λ,Θ) = −tr log

((
EnΛE>n + UNΘU>N −Θ

)−1
)

+tr
[(
EnΛE>n + UNΘU>N −Θ

) (
EnΛE>n + UNΘU>N −Θ

)−1
]
− tr(ΛTn) (50)

= tr log
(
EnΛE>n + UNΘU>N −Θ

)
+ trImN − tr (ΛTn) .

This is a strictly concave function on L+ whose maximization is the dual problem of (MEP).

We can equivalently consider the convex problem

min {J(Λ,Θ), (Λ,Θ) ∈ L+} , (51)

where J (henceforth called dual function) is given by

J(Λ,Θ) = tr (ΛTn)− tr log
(
EnΛE>n + UNΘU>N −Θ

)
. (52)
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Existence for the dual problem

The minimization of the strictly convex function J(Λ,Θ) on the convex set L+ is a challenging

problem as L+ is an open and unbounded subset of (ker(A))⊥. Nevertheless, the following

existence result in the Byrnes-Lindquist spirit, [16], [3], [14] can be established.

Theorem 6.1: The function J admits a unique minimum point (Λ̄, Θ̄) in L+.

In order to prove this theorem, we need first to derive a number of auxiliary results. Let CN

denote the vector subspace of block-circulant matrices in SN . We proceed to characterize the

orthogonal complement of CN in SN .

Lemma 6.1: Let M ∈ SN . Then M ∈ (CN)⊥ if and only if it can be expressed as

M = UNNU>N −N (53)

for some N ∈ SN .

Proof: By (35), CN is the kernel of the linear map from SN to SN given by M 7→

U>NMUN −M . Hence, its orthogonal complement is the range of the adjoint map. Since

tr
(
(U>NMUN −M)N

)
= 〈U>NMUN −M,N〉 = 〈M,UNNU>N −N〉,

the conclusion follows.

Next we show that, as expected, feasibility of the primal problem (MEP) implies that the dual

function J is bounded below.

Lemma 6.2: Assume that there exists Σ̄N ∈ SN,+ satisfying (40)-(41). Then, for any pair

(Λ,Θ) ∈ L+, we have

J(Λ,Θ) ≥ mN + tr log Σ̄N . (54)

Proof: By (40), tr(ΛTn) = tr(ΛE>n Σ̄NEn) = tr(EnΛE>n Σ̄N). Using this fact and Lemma

6.1, we can now rewrite the dual function J as follows

J(Λ,Θ) = tr (ΛTn)− tr log
(
EnΛE>n + UNΘU>N −Θ

)
= tr

[(
EnΛE>n + UNΘU>N −Θ

)
Σ̄N

]
− tr log

(
EnΛE>n + UNΘU>N −Θ

)
.

Define M(Λ,Θ) =
(
EnΛE>n + UNΘU>N −Θ

)
which is positive definite for (Λ,Θ) in L+. Then

J(Λ,Θ) = tr
(
M(Λ,Θ)Σ̄N

)
− tr logM(Λ,Θ).
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As a function of M , this is a strictly convex function on SN,+, whose unique minimum occurs

at M = Σ̄
−1
N where the minimum value is tr(ImN) + tr log Σ̄N .

Lemma 6.3: Let (Λk,Θk), n ≥ 1 be a sequence of pairs in L+ such that ‖(Λk,Θk)‖ → ∞.

Then also ‖A (Λk,Θk) ‖ → ∞. It then follows that ‖(Λk,Θk)‖ → ∞ implies that J(Λk,Θk)→

∞.

Proof: Notice that A is a linear operator between finite-dimensional linear spaces. Denote

by σm the smallest singular value of the restriction of A to (kerA)⊥ (the orthogonal complement

of kerA). Clearly, σm > 0, so that, since each element of the sequence (Λk,Θk) is in (kerA)⊥,

‖A (Λk,Θk) ‖ ≥ σm‖(Λk,Θk)‖ → ∞.

Assume now that ‖A (Λk,Θk) ‖ = ‖
(
EnΛkE

>
n + UNΘkU

>
N −Θk

)
‖ → ∞. Since these are

all positive definite matrices and all matrix norms are equivalent, it follows that

tr
(
EnΛE>n + UNΘU>N −Θ

)
→∞.

As a consequence, tr
((
EnΛE>n + UNΘU>N −Θ

)
Σ̄N

)
→∞ and, finally, J(Λk,Θk)→∞ .

We show next that the dual function tends to infinity also when approaching the boundary of

L+, namely

∂L+ := {(Λ,Θ) ∈ (Sn+1 ×SN)|(Λ,Θ) ∈ (ker(A))⊥,
(
EnΛE>n + UNΘU>N −Θ

)
≥ 0,

det
(
EnΛE>n + UNΘU>N −Θ

)
= 0}.

Lemma 6.4: Consider a sequence (Λk,Θk), k ≥ 1 in L+ such that the matrix

limk

(
EnΛkE

>
n + UNΘkU

>
N −Θk

)
is singular. Assume also that the sequence (Λk,Θk) is bounded.

Then, J(Λk,Θk)→∞.

Proof: Simply write

J(Λk,Θk) = − log det
(
EnΛkE

>
n + UNΘkU

>
N −Θk

)
+ tr(ΛkTk).

Since tr(ΛkTk) is bounded, the conclusion follows.

Proof of Theorem 6.1. Observe that the function J is a continuous, bounded below (Lemma

6.2) function that tends to infinity both when ‖(Λ,Θ)‖ tends to infinity (Lemma 6.3) and when

it tends to the boundary ∂L+ with ‖(Λ,Θ)‖ remaining bounded (Lemma 6.4). It follows that J

is inf-compact on L+, namely it has compact sublevel sets. By Weierstrass’ Theorem7, it admits

at least one minimum point. Since J is strictly convex, the minimum point is unique. �

7A continuous function on a compact set always achieves its maximum and minimum on that set.
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VII. RECONCILIATION WITH DEMPSTER’S COVARIANCE SELECTION

Let (Λ̄, Θ̄) be the unique minimum point of J in L+ (Theorem 6.1). Then Σo
N ∈ SN,+ given

by

Σo
N =

(
EnΛ̄E>n + UNΘ̄U>N − Θ̄

)−1
(55)

satisfies (40) and (41). Hence, it is the unique solution of the primal problem (MEP). Since it

satisfies (41), Σo
N is in particular a block-circulant matrix and hence so is

(Σo
N)−1 =

(
EnΛ̄E>n + UNΘ̄U>N − Θ̄

)
.

Let πCN
denote the orthogonal projection onto the linear subspace of symmetric, block-circulant

matrices CN . It follows that, in force of Lemma 6.1,

(Σo
N)−1 = πCN

((Σo
N)−1) = πCN

(
EnΛ̄E>n + UNΘ̄U>N − Θ̄

)
= πCN

(
EnΛ̄E>n

)
. (56)

Theorem 7.1: Let Σo
N be the maximum Gaussian entropy covariance given by (55). Then

(Σo
N)−1 is a symmetric block-circulant matrix which is banded of bandwidth n. Hence the

solution of (MEP) may be viewed as the covariance of a stationary reciprocal process of order

n defined on ZN .

Proof: Let

ΠΛ̄ := πCN

(
EnΛ̄E>n

)
=



Π0 Π>1 Π>2 . . . Π1

Π1 Π0 Π>1 . . . Π2

... . . . . . . . . . ...

Π>2 . . . Π1 Π0 Π>1

Π>1 Π>2 . . . Π1 Π0


be the orthogonal projection of

(
EnΛ̄E>n

)
onto CN . Since ΠΛ̄ is symmetric and block-circulant,

it is characterized by the orthogonality condition

tr
[(
EnΛ̄E>n − ΠΛ̄

)
C
]

= 〈EnΛ̄E>n − ΠΛ̄, C〉 = 0, ∀C ∈ CN . (57)

Next observe that, if we write C = Circ
[
C0, C1, C2, . . . , C

>
2 , C

>
1

]
and

Λ̄ =


Λ̄00 Λ̄01 . . . . . . Λ̄0n

Λ̄>10 Λ̄11 . . . Λ̄1n

. . . . . . . . .

Λ̄>n0 Λ̄>n1 . . . Λ̄nn

 , Λ̄k,j = Λ̄>j,k
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then

tr
[
EnΛ̄E>n C

]
= tr

[
Λ̄E>n CEn

]
= tr

[
(Λ̄00 + Λ̄11 + . . .+ Λ̄nn)C0

+ (Λ̄01 + Λ̄12 + . . .+ Λ̄n−1,n)C1 + . . .+ Λ̄0nCn

+ (Λ̄10 + Λ̄21 + . . . , Λ̄n,n−1)C>1 + . . .+ Λ̄n0C
>
n

]
.

On the other hand, recalling that the product of two block-circulant matrices is block-circulant,

we have that tr [ΠΛ̄C] is simply N times the trace of the first block row of ΠΛ̄ times the first

block column of C. We get

tr [ΠΛ̄C] = N tr
[
Π0C0 + Π>1 C1 + Π>2 C2 + . . .+ Π2C

>
2 + Π1C

>
1

]
.

Hence, the orthogonality condition (57), reads

tr
[(
EnΛ̄E>n − ΠΛ̄

)
C
]

= tr
[(

(Λ̄00 + Λ̄11 + . . .+ Λ̄nn)−NΠ0

)
C0+

+
(
(Λ̄01 + Λ̄12 + . . .+ Λ̄n−1,n)−NΠ>1

)
C1

+
(
(Λ̄10 + Λ̄21 + . . . , Λ̄n,n−1)−NΠ1

)
C>1

+ . . . (Λ̄0n −NΠ>1 )Cn + (Λ̄n0 −NΠ1)C>n )
]

+ NΠ>n+1Cn+1 +NΠn+1C
>
n+1 +NΠ>n+2Cn+2 +NΠn+2C

>
n+2 + . . . = 0.

Since this must hold true forall C ∈ CN , we conclude that

Π0 =
1

N
(Λ̄00 + Λ̄11 + . . .+ Λ̄nn),

Π1 =
1

N
(Λ̄01 + Λ̄12 + . . .+ Λ̄n−1,n)>,

. . .

Πn =
1

N
Λ̄>0n ,

while from the last equation we get Πi = 0, forall i in the interval n + 1 ≤ i ≤ N − n − 1 .

From this it is clear that the inverse of the covariance matrix solving the primal problem (MEP),

namely ΠΛ̄ = (Σo
N)−1 has a circulant block-banded structure of bandwidth n.

Since the beginning of Section V, we have been dealing only with Gaussian distributions in

order to facilitate the comparison with Dempster’s classical results. It is now time to show that

the Gaussian assumption can be dispensed with, and our solution is indeed optimal in the larger

family of (zero-mean) second-order distributions.

October 2, 2018 DRAFT



DRAFT 30

Theorem 7.2: The Gaussian distribution with (zero mean and) covariance Σo
N defined by

(55) maximizes the entropy functional (36) over the set of all (zero mean) probability densities

whose covariance matrix satisfies the boundary conditions (40), (41).

Proof: Let CN(Tn) be the set of (block-circulant) covariance matrices satisfying the bound-

ary conditions (40), (41) and let pΣ be a probability density with zero mean and covariance

Σ. In particular, we shall denote by gΣ the Gaussian density with zero mean and covariance

Σ. Now, by a famous theorem of Shannon [37], the probability distribution having maximum

entropy in the class of all distribution with a fixed mean vector (which we take equal to zero)

and variance matrix Σ, is the Gaussian distribution gΣ. Hence:

max
Σ∈CN (Tn)

{
max
pΣ

[H(pΣ)]

}
= max

Σ∈CN (Tn)
{H(gΣ) }

where the maximum in the right-hand side is attained by gΣo
N

.

The above can be interpreted as a particular covariance selection result in the vein of Demp-

ster’s paper; compare in particular [11, Proposition a]. In fact the results of this section substan-

tiate also the maximum entropy principle of Dempster (Proposition 5.1). It is however important

to note that none of our results follows as a particular case from Dempster’s results, since [11]

deals with a very unstructured setting. In particular our main result (Theorem 7.1) that the

solution, Σo
N , to our primal problem (MEP) has a block-circulant banded inverse, is completely

original. Its proof uses in an essential way the characterization of the MEP solution provided

by our variational analysis and cleverly exploits the block-circulant structure.

Actually, our results, together with Dempster’s, may be used to show that the maximum

entropy distribution, subject only to moment constraints (compatible with the circulant structure)

on a block band and on the corners, is necessarily block-circulant, i.e. the underlying process is

stationary8.

Because of the equivalence of reciprocal AR modeling and the underlying process covariance

having an inverse with a banded structure, explained in Section III, we see that the Maximum

Entropy principle leads in fact to (reciprocal) AR models. This makes contact with the ever-

present problem in control an signal processing of (approximate) AR modeling from finite

covariance data, whose solution dates back to the work of N. Levinson and P. Whittle. That

8An alternative proof of this fact can be constructed based on the invariance properties of the entropy functional and its

strict concavity. This has been recently accomplished (in a more general framework) in [4].
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AR modeling from finite covariance data is actually equivalent to a positive band extension

problems for infinite Toeplitz matrices has been realized and studied in the past decades by

Dym, Gohberg and co-workers, see e.g. [13], [17] as representative references of a very large

literature. We should stress here that band extension problems for infinite Toeplitz matrices are

invariably attacked and solved by factorization techniques, but circulant matrices do not fit in

the “banded algebra” framework used in the literature. Also, one should note that the maximum

entropy property is usually presented in the literature as a final embellishment of a solution

which was already obtained by factorization techniques. Here, for the circulant band extension

problem, factorization techniques do not work and the maximum entropy principle turns out to

be the key to the solution of the problem.

This fact, together with Dempster’s observation [11, Proposition b], may be taken as a proof

(although referred to a very specific case) of a very much quoted general principle that maximum

entropy distributions are distributions achieving maximum simplicity of explanation of the data.

Finally, we anticipate that the results of this section lead to an efficient iterative algorithm for

the explicit solution of the MEP which is guaranteed to converge to a unique minimum. This

solves the variational problem and hence the circulant band extension problem which subsumes

maximum likelihood identification of reciprocal processes. This algorithm, which will not be

described here for reasons of space limitations, compares very favorably with the best techniques

available so far.

VIII. CONCLUSIONS

A new class of stationary reciprocal processes on a finite interval has been introduced which

are the acausal analog of autoregressive (AR) processes on the integer line. Maximum likelihood

identification of these AR-type reciprocal models is discussed. The computation of the estimates

of the matrix parameters of the model turns out to be a particular instance of a Covariance

selection problem of the kind studied by the statistician A.P. Dempster in the early seventies.

In matrix terminology, the covariance selection for stationary reciprocal models is equivalent to

a special matrix band extension problem for block-circulant matrices. We have shown that this

band extension problem can be solved by maximizing an entropy functional.
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