
1

Stochastic filtering for diffusion processes with
level crossings

Agostino Capponi, Ibrahim Fatkullin, and Ling Shi

Abstract—We provide a general framework for computing the
state density of a noisy system given the sequence of hitting times
of predefined thresholds. Our method relies on eigenfunction
expansion corresponding to the Fokker-Planck operator of the
diffusion process. For illustration, we present a particular exam-
ple in which the state and the noise are one-dimensional Gaussian
processes and observations are generated when the magnitude of
the observed signal is a multiple of some threshold value. We
present numerical simulations confirming the convergence and
the accuracy of the recovered density estimator. Applications of
the filtering methodology will be illustrated.

Index Terms—Nonlinear Filtering, Fokker-Planck equation,
Diffusion processes

I. INTRODUCTION

Many applications in science and engineering require esti-
mation of the state of a system on the basis of noisy obser-
vations. When both the state and the observation processes
are Gaussian and observations are generated continuously
the optimal filter is the well-known Kalman-Bucy filter [1].
However, in many practical cases the above assumptions fail
and a different approach, e.g., the nonlinear filtering, must be
employed.

The modern theory of nonlinear filtering was developed
between late 1960s and early 1970s in works of Kallianpur
and Striebel [2], [3], Kushner [4], and in the case of diffusion
processes by Zakai [5]. The martingale approach to nonlinear
filtering, based on the innovations process and on the system-
atic use of martingale representation theorems, was developed
by Kailath and Frost in [6].

We consider diffusion processes whose drift and volatility
coefficients are sufficiently smooth functions and the cor-
responding forward Kolmogorov (Fokker-Plank) operator is
uniformly elliptic and has a complete set of eigenfunctions in
appropriate Hilbert spaces. This allows us to use eigenfunction
expansion of the joint state-noise density solving the problem
explicitly. Although in the particular example that we consider
here, the governing equations are linear, the method is equally
applicable to a more general class of time-homogeneous diffu-
sion processes. Note also that since observations are comprised
by the hitting times of some predefined thresholds, the filtering
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problem is nontrivial even when the processes themselves are
Gaussian.

Assume that the observation (measurement) process is rep-
resented as

Yt = X
(1)
t +X

(2)
t , (1)

where X
(1)
t is the actual state of the system and X

(2)
t is

the noise component. Now, suppose that we do not know the
complete sample paths of Yt and only receive signals when Yt
hits thresholds γk, k = 0,±1,±2, . . . (for some fixed γ > 0).
More precisely, once a signal corresponding to some k is
received, the next signal is generated when Yt hits the value of
γ(k± 1). Accordingly, we introduce the overlapping domains

Ωk = {x = (x1, x2) : |x1 + x2 − kγ| < γ}. (2)

The boundary ∂Ωk consists of two parallel lines that belong
to Ωk−1 and Ωk+1, denoted by Γk−1 and Γk+1 respectively,
see Figure 1 for illustration.

Fig. 1. Partition of the plane into domains Ωk given by equation (2). Ω0 is
shaded grey, Ω1 is marked with diagonal strokes.

Filtering Problem: We study the following problem. Suppose
the initial (at t = t0 = 0) probability density of Xt =(
X

(1)
t , X

(2)
t

)
is p0(x) with support in Ω0. Given an increasing

sequence of positive reals (signal times)

0 = t0 < t1 < t2 < · · · (3)

and a sequence of integers (threshold indices)

0 = k0, k1, k2, . . . , such that kj+1 = kj ± 1, (4)

reconstruct the conditional probability density function pt(x),
where the conditioning set is defined as

Ft = {τj = tj , ij = kj for all j such that tj < t}. (5)

Here τj are the hitting times of the boundaries Γij , i.e., ij and
τj are random variables defined recursively as (setting τ0 = 0)

ij =
(
X(1)
τj +X(2)

τj

)
/γ,

τj+1 = inf{s > τj : Xs 6∈ Ωij}. (6)
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To the best of our knowledge this type of filtering problem
has not received sufficient attention in the literature, even
though it occurs naturally in various contexts. For example,
a framework similar to ours has been suggested for structural
credit risk modeling [7], where the state equation models the
dynamics of the asset value of the firm, typically assumed
one-dimensional. However, the authors do not provide analytic
expressions for the density of states. The work which is most
closely related to ours is Cvitanic et al. [8], who develop
a non-linear filtering method to estimate the volatility from
high frequency security prices which are observed discretely,
and possibly at random times. Aihara and Bagchi [9] derive
the exact volatility filter for a discrete version of the Heston
model with the aid of the particle filter algorithm. Most
recently, Ding et al. [10] derive a mathematical model of a
non-uniformly sampled system which allows reconstructing
uniquely the continuous time model from its non-uniformly
sampled discrete-time counterpart. Their sampling scheme
may be used in our context to construct the continuous time
filtering model consistent with the available data or sensor
observations, after which the filtering methodology can be
applied. The problem of estimating the parameters of filtering
models where the output error system has colored measure-
ment noises is considered in [11], where the authors resort to
multi-innovation identification theory to construct a stochastic
gradient algorithm for parameter identification.

General Result: We show the following: suppose that X(1)
t

and X
(2)
t are time-homogeneous diffusion processes whose

joint probability density admits expansion in terms of the
eigenfunctions of the Fokker-Planck operator, L∗. Let tj be the
last hitting time before time t. Then, we provide a recursive
analytical expression for the joint probability density of the
system at time t > tj , given all the information about
collisions up to time t, in terms of the quantities computed
at the previous hitting time tj−1.

The method is specifically designed and efficient for suf-
ficiently large values of the threshold γ, as in this case
the optimal filter density can be efficiently and accurately
reconstructed using a small number of terms.

In the rest of the paper we first derive general formulas for
the filtering framework presented above, and then specialize
our analysis to the case when X

(1)
t is a Wiener process and

X
(2)
t is an Ornstein-Uhlenbeck process.

II. SOLUTION OF THE FILTERING PROBLEM

We provide some background and notation in Section II-A.
We give the main result in Section II-B. We provide a short
discussion of the error analysis in Section II-C. We provide
the steps for the derivation of the filter equations in Section
II-D.

A. Notation and Background

Let Xt be a stochastic process satisfying the stochastic
differential equation

dXt = b(Xt)dt+ σ(Xt)dWt, (7)

where Wt =
(
W

(1)
t ,W

(2)
t , . . . ,W

(m)
t

)
is an m-dimensional

Wiener process. The generator of the Ito diffusion process in
Eq. (7), is denoted by L, and defined by

Lf(x) =

n∑
i=1

bi(x)
∂f(x)

∂xi
+

1

2

n∑
i,j=1

σij(x)
∂2f(x)

∂xi∂xj
. (8)

The adjoint of the generator L, is denoted by L∗, and defined
by

L∗f(x) = −
n∑
i=1

∂[bi(x)f(x)]

∂xi
+

1

2

n∑
i,j=1

∂2[σij(x)f(x)]

∂xi∂xj
(9)

The transition probability density pt,s(x|y) for xt = x given
xs = y, where t > s, satisfies the Fokker-Planck partial
differential equation (with appropriate boundary conditions):

∂

∂t
pt,s(x|y) = L∗pt,s(x|y)

ps,s(x|y) = δ(x− y). (10)

B. Main Result

The joint probability density of the system at time t > tj ,
given all the information about collisions up to time t, may
be reconstructed as

pt(x) =
p̃t(x)∫

Ωkj
p̃t(x)dx

,

p̃t(x) =

∞∑
n=0

eλ
(kj)
n (t−tj)φ(kj)

n (x) p̃(j)
n . (11)

The coefficients p̃(j)
n are computed recursively according to

p̃(j)
n =

∞∑
m=0

eλ
(kj−1)
m (tj−tj−1) T (kj−1,kj)

nm p̃(j−1)
m ,

p̃(0)
n =

∫
Ω0

p0(y)ϕ(0)
n (y) dy. (12)

Here
{
φ

(k)
n

}
, n = 0, 1, . . . are the eigenfunctions (vanishing

on the boundary) of L∗ in domains Ωk; λ(k)
n are the respective

eigenvalues (in decreasing order). The functions
{
ϕ

(k)
n

}
are

such that jointly with
{
φ

(k)
n

}
they form bi-orthogonal sets in

respective domains, i.e.
∫

Ωk
φ

(k)
m (x)ϕ

(k)
n (x) dx = δmn. The

transfer coefficients T (kj−1,kj)
nm may be computed as follows:

T (kj−1,kj)
nm =

∫
Γkj

ϕ(kj)
n (y)Fφ(kj−1)

m (y) · n dy, (13)

where F is the flux operator corresponding to L, i.e., L∗ =
∇·F ; n is the unit vector normal to Γkj outward with respect
to Ωkj−1

.
Notice that for a practical implementation we need to

truncate the infinite series. The computational complexity of
the method is driven by the number of hitting times and the
number of approximating eigenfunctions used. If the number
of hitting times before time t is T , then we need to iterate
the computation of p̃’s via formula (12) T times. Since each
iteration accounts for multiplying the vector p̃(j−1) by the
transfer matrix Tmn, assuming that we use N eigenfunctions in
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each domain, we get O(N2) operations per iteration. Thus the
overall complexity of the filtering methodology is O(TN2).

As already pointed out in the introduction, the method
becomes efficient when the threshold γ is large. This is evident
from the expression of p̃(j)

n in Eq. (12), which shows the
exponentially-faster decay of contributions corresponding to
the smaller eigenvalues. Thus, as larger values of γ result
in larger inter-arrival times between consecutive boundary
hits, fewer eigenfunctions are needed to approximate the
coefficients p̃(j)

n with high degree of accuracy.

C. Error Analysis
For practical purposes, summation in equations (11) and

(12) must be truncated which introduces an approximation
error. For example, provided that the error in coefficients p(j)

n

has l2-norm rj , a rough estimate on the L2-norm of the error
in the approximate probability density, p̂t(x), is given by

‖pt(x)−p̂t(x)‖ ≤ (C0+C1rj+C2r
2
j )e

(λ
(j)
1 −λ

(j)
0 )(t−tj) (14)

where Ci are positive constants which depend on the order
of truncation and specifics of the problem, i.e., domains Ωk
and the generator L. Truncating the sum in equation (12)
introduces similar errors:

rj ≤ (C3 +C4rj−1 +C5r
2
j−1)e(λ

(j−1)
1 −λ(j−1)

0 )(tj−tj−1). (15)

The constants Ci diminish as the order of truncation increases;
the exponential factor depends on the difference between the
first two eigenvalues, since it controls the rate of convergence
to the stationary distribution of the process conditioned on
staying within the domains Ωk.

Derivation of the error estimates (14) and (15) is quite
straightforward, but rather cumbersome; therefore, for the
purposes of this technical note, we only provide the principal
idea behind it. Between the hitting times the process remains
within the respective domains Ωk, thus the (unnormalized)
probability density of the system satisfies the Fokker-Planck
equation (18) with zero boundary conditions. The normalized
probability density function is then exponentially attracted to
the stationary distribution,

φ
(kj)
0 (x) = lim

t→∞
pt(x) = lim

t→∞

p̃t(x)∫
Ωkj

p̃t(y) dy
. (16)

The rate of attraction is exactly the difference between the
first and second eigenvalues of L∗ in Ωkj ; this yields the
exponential factor in equations (14) and (15). After some
technical calculations ensuring control over the growth of the
expansion coefficients of p̃t(x) in terms of the eigenfunctions
φ

(kj)
n (x), using the Gronwall’s inequality, we arrive at formula

(14). Formula (15) may be obtained similarly by estimating the
error in distribution of exit locations πtj (y).

Note also that the eigenfunction expansion method provides
convergence of the density in L2 which does not guarantee
its positivity. However, this is not essential if the probability
density function is employed to compute expected values
of various quantities, e.g., the moments. Moreover, in our
experiments, we found that including a sufficient number of
terms in the approximation achieves positivity whenever t−tj
is not too small.

D. Derivation of the Result

Since time t = tj is the hitting time of the last boundary,
Γkj , by the Markov property we have that for all t > tj ,

pt(x) =

∫
y∈Γkj

p
(kj)
t (x|y)πtj (y) dy, (17)

where πtj (y) is the distribution of exit locations from Ωkj−1

and p
(kj)
t (x|y) is the transition probability density for Xt

given that Xtj = y and Xt ∈ Ωkj for all t > tj .
(Before the first hitting time, i.e., for j = 0, pt(x) =∫
y∈Ω0

p
(0)
t (x|y) p0(y) dy.) The transition density is the nor-

malized solution of the Fokker-Planck equation,

∂t p̃
(kj)
t (x|y) = L∗p̃(kj)

t (x|y), (18)

with the boundary condition p̃(kj)
t (x|y) = 0 for x ∈ ∂Ωkj and

initial data p̃(kj)
tj (x|y) = δ(x−y) (tilde is used to emphasize

that the solution must be normalized to produce the actual
transition probability density). It may be represented using the
standard methods, see e.g., [12], as

p̃
(kj)
t (x|y) =

∞∑
n=0

eλ
(kj)
n (t−tj) φ(kj)

n (x)ϕ(kj)
n (y). (19)

Substituting this expression into equation (17) and introducing

p̃(j)
n =

∫
y∈Γkj

ϕ(kj)
n (y)πtj (y) dy, (20)

we recover the asserted formula (11). Further on, by the same
argument for t ∈ (tj−1, tj), j ≥ 1,

p̃t(x) =

∞∑
n=0

eλ
(kj−1)
n (t−tj−1)φ(kj−1)

n (x) p̃(j−1)
n . (21)

Since the (unnormalized) distribution of exit locations from
Ωkj−1 is given by πtj (y) = F limt↑tj p̃t(y), we obtain

πtj (y) =

∞∑
n=0

eλ
(kj−1)
n (tj−tj−1)Fφ(kj−1)

n (y) · n p̃(j−1)
n . (22)

Using this expression in formula (20), we recover relations
(12) and (13).

III. EXPLICIT EXAMPLE AND NUMERICAL SIMULATIONS

Consider a system described by the following stochastic
differential equations:{

dX
(1)
t =dW

(1)
t (state)

dX
(2)
t =−κX(2)

t dt+ σdW
(2)
t (measurement noise),

(23)

where W
(1)
t and W

(2)
t are independent one-dimensional

Wiener processes, κ > 0, and σ > 0 are parameters. Using
Eq. (8), we obtain that generator of Xt is given by

L = −κx2∂x2 +
1

2

(
∂2
x1x1

+ σ2∂2
x2x2

)
. (24)

The Fokker-Planck operator L∗ is the (formal) adjoint of the
generator L, and can be obtained using Eq. (9) as

L∗ = κ∂x2
x2 +

1

2
(∂2
x1x1

+ σ2∂2
x2x2

). (25)
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Note that since L∗ is translation-invariant with respect to the
x1 variable, the eigenvalue problems in all domains Ωk are
equivalent, and the eigenfunctions may be produced by simple
translation; we therefore use Ω0 for explicit calculations.
The eigenvalues and eigenfunctions of L∗ together with their
orthogonal counterparts, ϕvw(x), and the transfer coefficients
are computed in Appendix A and are given by

λvw ≈ −
π2v2

8γ2
− κw

φvw(x) ≈
√
κπ

4γ
e−κy

2
2 Hw(

√
κy2) sin

πv(x1 + x2 + γ)

2γ

ϕvw(x) ≈ 4

π2ww!
Hw(
√
κy2) sin

πv(x1 + x2 + γ)

2γ

T
(kj−1,kj)

(v,w);(v′,w′) = 0 if v = 2u, or w < w′

T
(kj−1,kj)

(v,w);(v′,w′) ≈ −
(−1)u+v′πv′((kj−1 − kj)σγ

√
κ)w−w

′

4γ2(w − w′)!
if v = 2u+ 1, w ≥ w′,= 1 (26)

Here y2 =
σx1 − x2/σ√

1 + σ2
and the double index notation (v =

1, 2, . . . , w = 0, 1, . . .) is convenient since the eigenfunctions
are computed using the separation of variables. The symbol ≈
reflects the fact that in order to obtain analytical expressions
we used perturbation theory considering σ a small parameter.
In general, this is not necessary and all quantities in (26) may
be precomputed numerically, which is a necessity for more
complicated diffusion processes.

Now we evaluate the accuracy, convergence and efficiency
of our density estimator. As time increases, so does the number
of hitting times. Since at each hitting time tj , when a transition
from the domain Ωtj to the domain Ωtj+1

occurs, the trunca-
tion approximation has to be reapplied, we need to ensure
that the truncation error is under control. We next provide
evidence via simulations that the proposed methodology can
be applied over a large time horizon to approximate the actual
conditional state probability density function with a small
error. The diffusion parameters used in our numerical tests
are κ = 0.5, σ = 0.1, γ = 2.

We first compare the probability density conditional on
the observation process Yt staying within the first domain
Ω0 computed using our methodology with the probability
density estimated from Monte-Carlo runs. The first density is
computed using equations (11) and (12) with eigenfunctions
and eigenvalues given by the analytical expressions in Eq. (26).
We choose the initial condition corresponding to the initial
distribution to be p0(x) = δ(x). This choice is representative
for the purpose of error estimation, since in this particular
case the eigenfunction expansion produces large coefficients
for the higher harmonics and thus the truncation results in
greater errors. The Monte-Carlo density is obtained simulating
the Brownian paths via the forward Euler scheme,

X
(1)
t+∆t = X

(1)
t +

√
∆t Z, (27)

with Z being a standard Gaussian. We simulate the Ornstein-
Uhlenbeck process X(2)

t as [13],

X
(2)
t+∆t = X

(2)
t µ+ σ̃ξ, (28)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 2. Probability density function of the state variable X
(1)
t at t = 0.5

with the initial condition Xt = 0 obtained using 1, 10, and 45 eigenfunctions
(from grey to black lines respectively), and the Monte-Carlo simulation (light
grey line).

where ξ is a standard Gaussian independent of Z and

µ = e−κ∆t, σ̃2 =
σ2

2κ
(1− µ2). (29)

We set the time discretization ∆t = 0.01. The results pre-
sented in Figure 2 show that a number of 10 eigenfunctions
already provide a very accurate approximation of the actual
density, with a perfect match reached when using 45 eigen-
functions, thereby indicating that the approach is accurate and
efficient in a single domain.

We next analyze the number of eigenfunctions needed to
approximate the actual filter density exactly at the hitting
time, and at a time t shortly after the hitting time tj , where
t − tj = 0.1. We set the coefficient p̃(0)

n = 1 if n = 0 and
0 otherwise, which corresponds to hitting the boundary from
the stationary distribution, p∞(x) = φ10(x). The density right
at the hitting time is a singular distribution on the boundary
and thus requires the greatest number of eigenfunctions to be
approximated. We sort the eigenvalues in the decreasing order
and define nk to be the rank of the eigenvalue λk0 in the
sorting. In our particular case, the corresponding eigenfunc-
tions happen to contribute the most into the expansion, so it is
sensible to approximate the true density using all eigenfunction
up to order nk. We have that n1 = 1, n3 = 10, n5 = 45,
n7 = 129, n9 = 279, and n11 = 516. We would like to
remark that among the nk eigenfunctions used, only few of
them contribute noticeably to the reconstruction of our density
estimator (the coefficients of the transfer matrix corresponding
to the other eigenfunctions are either very small or zero),
thus in a practical application of the method most of them
could be removed without altering the quality of the density
reconstruction.

The results in Figure 3 show that even though approxima-
tions converge rather slowly at the hitting time (the positivity
is also an issue due to Gibbs phenomenon when approximating
a singular distribution), even shortly after the hitting time,
the convergence improves dramatically. This is due to the
damping of the higher-order contributions by the exponential
factors eλ

(kj)
n (t−tj) in formula (11). Figure 3 also evidences a

very good match between the Monte-Carlo density computed
shortly after the hitting time, and our eigenfunction expansion
density estimator. The systematic shift on the left of our den-
sity estimator with respect to the Monte-Carlo density is due to
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Fig. 3. The left plot shows the probability density function of the state
variable X

(1)
t computed using nk eigenfunctions, k = {1, 3, 5, 11} (from

light to dark color) at the time when Γ1 is hit. The right plot shows the
probability density function on the state variable computed using the same
eigenfunctions at the time t such that t − t1 = 0.1, with t1 being the time
when Γ1 is hit. In both plots, the dashed line represents the Monte-Carlo
density.

the small σ approximation used to obtain the eigenfunctions.
Clearly, the match is not perfect on the boundary, because the
density becomes singular and cannot be approximated using
an eigenfunction expansion in L2.

We finally demonstrate that the method converges fast to
the actual state filter density over a large time horizon. We
simulate state and noise diffusion paths and record all the
conditioning information to compute the state filter density,
which consists of pairs of the form (index of hit boundary,
hitting time). We pick a realization where the difference
between the final simulation time, t = 40, and the last hitting
time is small, so that the filter density has not yet converged
to the stationary density and the higher order approximations
are needed. The simulated conditioning path is given by

P = {(1, 4.78), (2, 7.43), (1, 14.28), (2, 19.14), (1, 20.93),

(0, 21.9), (−1, 23.46), (0, 26.01), (−1, 28.1),

(−2, 30.82), (−1, 35.93), (−2, 39.79)} (30)

We compute the density at time t = 40 on the path specified
in Eq. (30) using the nk eigenfunction approximation as
above. As the eigenfunction expansion method is guaranteed
to converge in L2, and therefore also our filter methodology
converges in L2, we compute the L2 distance between nk and
nk−2 order approximations of our density estimator. It appears
from the L2 distance plots in the right panel of Fig.4 that the
difference between the n9 and n11 order approximations is
negligible (of the order of 10−4). The grey line in the L2

distance plot fits the L2 distance with an exponential curve
(y = 0.8e−0.6x), thus demonstrating that the convergence is
exponentially fast with respect to v.

-6 -5 -4 -3 -2

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

Fig. 4. The left plot is the state filter density at t = 40 (different shades
correspond to k = 1, 3, 5, 7, from light to dark). The right plot is the L2

distance between nk and nk+2 order approximations of the density, with
k = 1, 5, 7, 9. The smooth curve is an exponential fitting.

Finally notice that even at the order of n11 = 516, the
matrix-vector multiplications needed for iterating our scheme
require roughly 266, 000 operations at each hitting time, which
is computationally fast (moreover, e.g., for our particular
processes, the transfer matrix is sparse and thus only a few
of the first 516 eigenfunctions actually contribute into the
final result). Since all this is independent of the conditioning
information set, then a pre-analysis of the problem can further
reduce the computational burden of the methodology.

IV. CONCLUSION

We presented a general framework to solve a non-linear
filtering problem, where the non-linearity comes from the
conditioning information. The observations are generated at
random times when the measurement process hits pre-specified
thresholds. We illustrated the method on a particular exam-
ple where the state and the noise are modeled by Wiener
and Ornstein-Uhlenbeck processes respectively. Our numerical
simulations demonstrate that reasonable accuracy is achieved
even when only a few eigenfunctions are used for expansion
of the probability density function of the system.

As the threshold γ gets smaller, our framework formally
reproduces the continuous time filters, e.g., [2]: the signals
are generated more often, until, in the limiting case, they are
generated continuously and the conditioning observation set
then consists of the whole process Yt. However, in this case
the practical use of our method is limited, as in order to keep
the approximation errors small it is necessary to account for
a large number of eigenfunctions.
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APPENDIX A
EIGENFUNCTIONS AND EIGENVALUES OF THE

FOKKER-PLANCK OPERATOR

First, let us find all eigenvalues and eigenfunctions (vanish-
ing on the boundary) for the operator

L∗ = L∗1 + L∗2,

L∗1 :=
1

2
∂2
x1x1

+ κ∂x1x1,

L∗2 :=
1

2
∂2
x2x2

(31)

in the domain Ω = R× [0, L]. In order to find the eigenvalues
νn and the eigenfunctions ξn(x1) of L∗1, we observe that the
greatest (smallest by the absolute value) eigenvalue ν0 and the
corresponding eigenfunction ξn(x1) are given by

ν0 = 0, ξ0(x1) =

√
κ

π
e−κx

2
1 , (32)

Notice that the eigenfunction ξ0 is normalized to have total
integral unity. Setting ξn(x1) = ξ0(x1)hn(x1) we obtain
equations for hn(x1):

∂2
x1x1

hn(x1)− 2κx1∂x1
hn(x1) = 2νnhn(x1). (33)

This immediately implies that hn(x1) may be expressed using
Hermite polynomials as

hn(x1) = Hn(
√
κx1), (34)

thus we obtain

νn = −κn,

ξn(x1) =

√
κ

π
e−κx

2
1Hn(

√
κx1), n = 0, 1, 2, . . . (35)

The operator L∗2 has eigenvalues µm = −π2m2/2L2 and
eigenvectors

ψm(x2) =
π

2L
sin

πmx2

L
, m = 1, 2, 3, . . . (36)

Since

L∗[ξn(x1)ψm(x2)] = (L∗1 + L∗2)[ξn(x1)ψm(x2)]

= (νn + µm)ξ(x1)ψm(x2), (37)

L∗ has the following eigenvalues and eigenvectors:
λmn = −π

2m2

2L2
− κn,

φmn(x) =

√
κπ

2L
e−κx

2
1 Hn(

√
κx1) sin

πmx2

L
,

(38)

where m = 1, 2, 3, . . . , n = 0, 1, 2, . . . Finally, the functions
ϕmn(x) such that {φmn(x), ϕmn(x)} form a bi-orthogonal
set are given by

ϕmn =
4

π2nn!
Hn(
√
κx1) sin

πmx2

L
. (39)

For the discussion in Section III, we need to find the eigen-
values and eigenfunctions (with vanishing boundary values) of
the Fokker-Planck operator

L∗ = κ∂x2
x2 +

1

2
(∂2
x1x1

+ σ2∂2
x2x2

) (40)

in the domain Ω = {(x1, x2) : |x1 + x2| < γ}. Introducing

y1 =
x1 + x2√

1 + σ2
, y2 =

σx1 − x2

σ√
1 + σ2

, (41)

we obtain

L∗ =
1

2
[∂2
y1y1 + ∂2

y2y2 ] +

κ

1 + σ2
[∂y2y2 − σ(y1∂y2 + y2∂y1) + σ2∂y2y2],

while the domain transforms into

Ω′ =

{
(y1, y2) : |y1| <

γ√
1 + σ2

}
. (42)

For sufficiently small σ we may use the regular perturbation
theory and results in (38) and (39) reproducing relations (26).
The transfer matrix T (kj−1,kj)

(m,n);(m′,n′) may be computed explicitly
using the approximate eigenfunctions obtained from the small
σ approximation and formula (13).


