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Abstract. We design receding horizon control strategies for stochastic discrete-
time linear systems with additive (possibly) unbounded disturbances, while obey-
ing hard bounds on the control inputs. We pose the problem of selecting an appro-
priate optimal controller on vector spaces of functions and show that the resulting
optimization problem has a tractable convex solution. Under the assumption that
the zero-input and zero-noise system is asymptotically stable, we show that the
variance of the state is bounded when enforcing hard bounds on the control in-
puts, for any receding horizon implementation. Throughout the article we provide
several examples that illustrate how quantities needed in the formulation of the
resulting optimization problems can be calculated off-line, as well as comparative
examples that illustrate the effectiveness of our control strategies.
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§1. Introduction

Receding horizon control is a popular paradigm for designing control policies.
In the context of deterministic systems it has received a considerable amount
of attention over the last two decades, and significant advancements have been
made in terms of its theoretical foundations as well as industrial applications.
The motivation comes primarily from the fact that receding horizon control yields
tractabile control laws for deterministic systems in the presence of constraints, and
has consequently become popular in the industry. The counterpart in the context
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of stochastic systems, however, is a relatively recent development. In this article
we solve the problem of stochastic receding horizon control for linear systems
subject to additive (possibly) unbounded disturbances and hard norm bounds on
the control inputs, over a class of feedback policies. Methods for guaranteeing
hard bounds on the control inputs, within our context, while ensuring tractability
of the underlying optimization problem are, to our knowledge, not available in the
current literature. Preliminary results in this direction were reported in [HCL09].

In the deterministic setting, the receding horizon control scheme is dominated by
worst-case analysis relying on robust control and robust optimization methods, see,
for example, [Ber05, MRRS00, BM99, LHBW07, Mac01, Bla99, FB05, YB09, RH05]
and the references therein. The central idea is to synthesize a controller based
on the bounds of the noise such that a certain target set becomes invariant with
respect to the closed-loop dynamics. However, such an approach tends to yield
rather conservative controllers and large infeasibility regions. Moreover, assigning
an a priori bound to the noise seems to demand considerable insight. A stochastic
model of the noise is a natural alternative approach to this problem: the con-
servativeness of worst-case controllers may be reduced, and one may not need to
impose any a priori bounds on the maximum magnitude of the noise. In [BB07], the
authors reformulate the stochastic programming problem as a deterministic one
with bounded noise and solve a robust optimization problem over a finite horizon,
followed by estimating the performance when the noise is unbounded but takes
high values with low probability (as in the Gaussian case). In [PS09] a slightly dif-
ferent problem is addressed in which the noise enters in a multiplicative manner,
and hard constraints on the states and control inputs are relaxed to constraints
resembling the integrated chance constraints of [Han83] or risk measures in math-
ematical finance. Similar relaxations of hard constraints to soft probabilistic ones
have also appeared in [CKW08] for both multiplicative and additive noise inputs,
as well as in [OJM08] for additive noise inputs. There are also other approaches,
e.g., those employing randomized algorithms as in [BW07, Bat04, MLL05]. Related
lines of research can be found in [vHB03, vHB06] dealing with constrained model
predictive control (MPC) for stochastic systems motivated by industrial applica-
tions, in [RCMA+09, BSW02, SSW06] dealing with stochastic stability, in [SB09b]
dealing with Q-design, in, e.g., [LH07, LHC03] dealing with alternative approaches
to control under actuator constraints and neural-network approximation. The ar-
ticles [ACCL09, CACL09] deal with a formulation that allows probabilistic state
constraints but not hard input constraints, and is hence complementary to the ap-
proach in the present article, and [HCCL10] treats the case of output feedback. .
Finally, note that probabilistic constraints on the controllers naturally raise difficult
questions on what actions to take when such constraints are violated, see [CCCL08]
and [CP09] for partial solutions to these issues.

The main contributions of the article are as follows: We give a tractable, convex,
and globally feasible solution to the finite-horizon stochastic linear quadratic (LQ)
problem for linear systems with possibly unbounded additive noise and hard con-
straints on the elements of the control policy. Within this framework one has two
directions to pursue in terms of controller design, namely, a posteriori bounding the
standard LQG controller, or employing certainty-equivalent receding horizon con-
troller. While the former direction explicitly incorporates some aspects of feedback,
the synthesis of the latter involves control constraints and implicitly incorporates
the notion of feedback. Our choice of feedback policies explores the middle ground
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between these two choices: we explicitly incorporate both the control bounds and
feedback at the design phase. More specifically, we adopt a policy that is affine in
certain bounded functions of the past noise inputs. The optimal control problem
is lifted onto general vector spaces of candidate control functions from which the
controller can be selected algorithmically by solving a convex optimization prob-
lem. Our novel approach does not require artificially relaxing the hard constraints
on the control input to soft probabilistic ones (to ensure large feasible sets), and
still provides a globally feasible solution to the problem. Minimal assumptions
of the noise sequence being i.i.d and having finite second moment are imposed.
The effect of the noise appears in the convex optimization problem as certain fixed
cross-covariance matrices, which may be computed off-line and stored.

Once tractability of the optimization problem is ensured, we employ the result-
ing control policy in a receding horizon scheme. Under our policies the closed-
loop system is in general not necessarily Markovian, and as a result stability of
the closed-loop system is not immediate. In fact, we can no longer appeal directly
to standard Foster-Lyapunov methods. We establish that our receding horizon
control scheme provides stability under the assumption that the zero-input and
zero-noise system is asymptotically stable. We provide examples that demonstrate
the effectiveness of our policies with respect to standard methods such as certainty-
equivalent MPC, standard unconstrained LQG and saturated LQG control. These
examples show that our policies perform no worse than the standard unconstrained
LQG controller in the absence of control constraints, and outperform the certainty-
equivalent MPC as well as the saturated LQG control by a significant margin.

Our mechanism for selection of a policy consists of two steps: The first concerns
the structure of our policies, and is motivated by preceding work in robust opti-
mization and MPC [Löf03, BTGGN04, GKM06]. The second concerns the procedure
for selection of an optimal policy from a general vector space of candidate con-
trol functions, and is inspired by approximate dynamic programming techniques
[BT96, LR06, SS85, dFR03, Pow07]. With respect to the first step, our policies are
more general compared to those in [Löf03, BTGGN04, GKM06]. With respect to
the second, the selection procedure of our policies consists of a one-step tractable
static optimization program.

The rest of this article is organized as follows. In Section 2 we state the main
problem to be solved in the most general form. In Section 3 we provide a tractable
solution to the finite horizon optimization problem on general vector spaces. This
result is specialized to various classes of noise and input constraint sets in Section 4.
Stability of receding horizon implementations of the obtained closed-loop policy is
shown in Section 5, and input-to-state stability properties are discussed in Section
5.2. We provide a host of numerical examples that illustrate the effectiveness of our
approach in Section 6. Finally, we conclude in Section 7 with a discussion on future
research directions.

Notation. Hereafter, N B {1, 2, . . .} is the set of natural numbers, N0 B N ∪ {0},
Z is the set of all the integers, R>0 is the set of nonnegative real numbers, and C
denotes the set of complex numbers. We let 1A(·) denote the indicator function of
a set A, and In×n and 0n×m denote the n-dimensional identity matrix and n × m-
dimensional zeros matrix, respectively. Let ‖·‖denote the standard Euclidean norm,
and ‖·‖p denote the usual `p norms. Also, let Ex0 [·] denote the expected value given
x0, and tr(·) denote the trace of a matrix. If M1 and M2 are two matrices with the
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same number of rows, we employ the standard notation [M1 | M2] for the matrix
obtained by stacking the columns of M1 followed by the columns of M2. For a given
symmetric n-dimensional matrix M with real entries, let {λi(M) | i = 1, . . . ,n} be the
set of eigenvalues of M, and let λmax(M) B maxi λi(M) and λmin(M) B mini λi(M).
Finally, for a random vector X let ΣX denote the matrix E

[
XXT

]
and µX denote the

vector E
[
X
]
.

§2. Problem Statement

Consider the following discrete-time stochastic dynamical system:

(2.1) xt+1 = Āxt + B̄ut + wt, t ∈N0,

where xt ∈ Rn is the state, ut is the control input taking values in some given control
set Ū ⊆ Rm to be defined later, Ā ∈ Rn×n, B̄ ∈ Rn×m, and (wt)t∈N0 is a sequence of
stochastic noise vectors with wt ∈W ⊆ Rn. We assume that the initial condition x0

is given and that, at any time t, xt is observed perfectly. We do not assume that the
components of the noise wt are uncorrelated, nor that they have zero mean; this
effectively means that wt may be of the form F̄w′t + b for some noise w′t ∈ R

p whose
components are uncorrelated or mutually independent, F ∈ Rn×p, and b ∈ Rn.
Without loss of generality we shall stick to the simpler notation of (2.1) throughout
this article. The results readily extend to the general case of wt = F̄w′t + b, as can be
seen in [HCL09].

Generally, a control policyπ is a sequence (π0, π1, π2, . . .) of Borel measurable maps
πt : Rn

× · · · ×Rn︸          ︷︷          ︸
k(t)− times

→ Ū, t ∈N0. Policies of finite length such as (πt, πt+1, . . . , πt+N−1)

will be denoted in the sequel by πt:t+N−1.
Fix an optimization horizon N ∈ N and let us consider the following objective

function at time t given the state xt:

(2.2) Vt B E

[N−1∑
k=0

(
xT

t+kQkxt+k + uT
t+kRkut+k

)
+ xT

t+NQNxt+N

∣∣∣∣∣∣ xt

]
,

where Qt > 0,Rt > 0,QN > 0 are some given symmetric matrices of appropriate
dimension. At each time instant t, we are interested in minimizing (2.2) over the
class of causal state feedback strategies Π defined as:

(2.3)


ut

ut+1
...

ut+N−1

 =


πt(xt)
πt+1(xt, xt+1)
...
πt+N−1(xt, xt+1, · · · , xt+N−1)

 ,
for some measurable functions πt:t+N−1 B {πt, · · · , πt+N−1} ∈ Π, while satisfying
ut ∈ Ū for each t. The receding horizon control procedure for a given control horizon
Nc ∈ {1, . . . ,N} and time t can be described as follows:

(a) measure the state xt;
(b) determine an admissible optimal feedback control policy, say π∗t:t+N−1 ∈ Π,

that minimizes the N-stage cost function (2.2) starting from time t, given the
measured initial condition xt;

(c) apply the first Nc elements π∗t:t+Nc−1 of the policy π∗t:t+N−1;
(d) increase t to t + Nc, and go back to step (a).
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In this context, if Nc = 1 then this is usual MPC, and if Nc = N, then it is usually
known as rolling horizon control.

Since both the system (2.1) and cost (2.2) are time-invariant, it is enough to
consider the problem of minimizing the cost for t = 0. In view of the above we
consider the problem:

(2.4) min
π0:N−1∈Π

{
V0

∣∣∣ dynamics (2.1), and ut ∈ Ū for each t
}
.

If feasible, the problem (2.4) generates an optimal sequence of feedback control
laws π∗ =

{
π∗0, · · · , π

∗

N−1

}
.

The evolution of the system (2.1) over a single optimization horizon N can be
described in a compact form as follows:

(2.5) x = Ax0 + Bu + Dw,

where

x B


x0

x1
...

xN

 , u B


u0

u1
...

uN−1

 , w B


w0

w1
...

wN−1

 , A B


In×n

Ā
...

ĀN

 ,

B B



0n×m · · · · · · 0n×m

B̄
. . .

...

ĀB̄ B̄
. . .

...
...

. . . 0n×m

ĀN−1B̄ · · · ĀB̄ B̄


, D B



0n×n · · · · · · 0n×n

In×n
. . .

...

Ā In×n
. . .

...
...

. . . 0n×n

ĀN−1
· · · Ā In×n


.

Using the compact notation above, the optimization Problem (2.4) can be rewritten
as follows:

(2.6) min
π0:N−1∈Π

{
Ex0

[
xTQx + uTRu

] ∣∣∣ dynamics (2.5),u ∈ U
}
,

where Q = diag{Q0, . . . ,QN}, R = diag{R0, . . . ,RN−1}, andU B Ū × . . . × Ū︸        ︷︷        ︸
N−times

.

§3. Main Result

We require that our controller is selected from a vector space of candidate con-
trollers spanned by a given set of “simple” basis functions. The precise algorithmic
selection procedure is based on the solution to an optimization problem. The basis
functions may represent particular types of control functions that are easy or inex-
pensive to implement, e.g., minimum attention control [Bro97], or may be the only
ones available for a specific application. For instance, piecewise constant policy
elements with finitely many elements in their range may be viewed as controllers
that can provide only finitely many values; this may be viewed as an extended
version of a bang-bang controller, or as a hybrid controller with a finite control
alphabet.

More formally, let H be a nonempty separable vector space of functions with
the control set U as their range, i.e., H is the linear span of measurable functions
eν : W → U, where ν ∈ I - an ordered countable index set (see [Lue69] for more
details). As mentioned above, the elements of H may be linear combinations of
typical “simple” controller functions for t = 0, 1, . . . ,N − 1. We are interested in
policies of the form ut = ηt +

∑t−1
i=0 ψt,i(wi), where ηt is an m-dimensional vector
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and each component of the m-dimensional vector-valued function ψt,i is a member
of H . Although this feedback function is directly from the noise, since the state
is assumed to be perfectly measured, from the system dynamics (2.1) it follows
at once that this controller ut is actually a feedback from all the states x0, . . . , xt.
Indeed, in the spirit of [Löf03, BTGGN04, GKM06, SB09a] we have

u0 = η0,

u1 = η1 + ψ1,0(x1 − Āx0 − B̄η0),

u2 = η2 + ψ2,0(x1 − Āx0 − B̄η0) + ψ2,1

(
x2 − Āx1 − B̄

(
η1 + ψ1,0(x1 − Āx0 − B̄η0)

))
,

...

In other words, by construction, ut is generally a nonlinear feedback controller
depending on the past t states.1 Also by construction, it is causal.

Our general control policy can now be expressed as the vector

(3.1) u = η + ϕ(w) B


η0

η1
...

ηN−1

 +


ϕ0

ϕ1(w0)
...

ϕN−1(w0,w1, . . . ,wN−2)

 ,
where,

• ϕ0 = 0,
• wt for t = 0, . . . ,N − 1 is the t-th random noise vector,
• ηt is an m-dimensional vector for t = 0, . . . ,N − 1,
• ϕt(w0, . . . ,wt−1) =

∑t−1
i=0 ϕt,i(wi) for t = 1, . . . ,N−1 is an m-dimensional vector, and

• each functionϕt,i belongs to the linear span of the basis elements (eν)ν∈I, and thus
has a representation as a linear combinationϕt,i(·) =

∑
ν∈I θ

ν
t,ie

ν(·), t = 1, . . . ,N−1,
i = 0, . . . , t − 1, where θνt,i are matrices of coefficients of appropriate dimension.

Analogous to Fourier coefficients in harmonic analysis, we call the θνt,i the ν-th
Fourier coefficient of the function ϕt,i. Therefore, whenever |I| < ∞ for every
t = 1, . . . ,N − 1, we have the finite representation
(3.2)

ϕt(w0, . . . ,wt−1) =
[
θt,0 θt,1 . . . θt,t−1 000 . . . 000

]
Rm×n|I|(N−1)


e(w0)
e(w1)
...

e(wN−2)


Rn|I|(N−1)×1

,

where θt,i ∈ Rm×n|I|, 000 ∈ Rm×n|I|,

θt,i B
[
θ1

t,i · · · θ
|I|

t,i

]
, θνt,i ∈ R

m×n, and e(wi) B


e1(wi)
...

e|I|(wi)

 , ∀ i = 0, 1, · · · ,N − 2.

1Note that the controller input at time t is non-Markovian as it is a function of the state vectors at
all the previous times and not just on xt−1.
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In this notation the policy (3.1) can be written as

(3.3) u = η + ϕ(w) = η +



000 000 · · · 000
θ1,0 000 · · · 000
θ2,0 θ2,1 · · · 000
...

...
. . .

...
θN−1,0 θN−1,1 · · · θN−1,N−2




e(w0)
e(w1)
...

e(wN−2)

 C η + Θe(w),

where Θ is now the matrix of Fourier coefficients having dimension Nm ×
(
n(N −

1)|I|
)
. This Fourier coefficient matrix Θ and the vector η play the role of the opti-

mization parameters in our search for an optimal policy. Note that e(w) does not
include the noise vector wN−1, and that Θ is strictly lower block triangular to enforce
causality. In what follows, as a matter of notation, by Θt we shall denote the formal
t-th block-row of the matrix Θ in (3.3), i.e., Θt B

[
θt,0 · · · θt,t−1 0 · · · 0

]
,

for t = 0, · · · ,N − 1, with Θ0 being the identically 0 row. We make the following
assumption:

Assumption 3.1. The sequence (wt)t∈N0 of noise vectors is i.i.d with Σ = E
[
wtwT

t

]
.♦

So far we have not stipulated any boundedness properties on the elements of the
vector space H . This means that the control policy elements may be unbounded
maps. First we stipulate the following structure on the control sets:

For a given p ∈ [1,∞], the control input vector ut is bounded in p-norm at each
instant of time t, i.e., for p ∈ [1,∞] let U(p)

max > 0 be given, with

(3.4)

ut ∈ Ūp B
{
ξ ∈ Rm

∣∣∣ ‖ξ‖p 6 U(p)
max

}
∀ t ∈N0, and

Up B Ūp × . . . × Ūp︸           ︷︷           ︸
N−times

.

One could easily include more general constraint sets Up, for instance, to capture
bounds on the rate of change of inputs.

Our basic result is the next Theorem.

Theorem 3.2. Consider the system (2.1). Suppose that Assumption 3.1 holds, H
is finite-dimensional (|I| < ∞), and every component of the basis functions eν is
bounded by E > 0 in absolute value. Then the problem (2.6) under the policy (3.1)
and control sets (3.4) for p ∈ [1,∞] is convex with respect to the decision variables
(η,Θ) defined in (3.3). For p = 1, 2, and∞ it admits convex tractable versions with
tighter domains of (η,Θ), given by

(3.5)

minimize
(η,Θ)

tr
(
ΘT

(
BTQB + R

)
ΘΣe

)
+ 2 tr

(
ΘTBTQDΣ′e

)
+ ηT

(
BTQB + R

)
η

+ 2
(
xT

0 ATQBη + ηTBTQDµw + xT
0 ATQBΘµe

)
+ 2ηT

(
R + BTQB

)
Θµe + c

subject to Θ strictly lower block triangular as in (3.3),
p = 1 :

∥∥∥ηt

∥∥∥
1

+ Et ‖Θt‖1 6 U(1)
max, ∀ t = 0, 1, . . . ,N − 1,

p = ∞ :
∥∥∥ηt

∥∥∥
∞

+ E ‖Θt‖∞ 6 U(∞)
max, , ∀ t = 0, 1, . . . ,N − 1,

p = 2 :
∥∥∥∥[ηt Θt

]∥∥∥∥
2

√
1 + Et 6 U(2)

max, ∀ t = 0, 1, . . . ,N − 1,
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where

Σe B E
[
e(w)e(w)T

]
, Σ′e B E

[
we(w)T

]
,

µw B E[w], µe B E[e(w)], c B xT
0 ATQAx0 + 2xT

0 ATQDµ + tr
(
DTQDΣw

)
.

Proof of Theorem 3.2. It is easy to see that xTQx+uTRu is convex nondecreasing, and
both x and u are affine functions of the design parameters (η,Θ) for any realization
of the noise w. Hence, V0 is convex in (η,Θ) since taking expectations of a convex
function retains convexity [BV04, Section 3.2]. Moreover, the control constraint sets
in (3.4) are convex in (η,Θ). This settles the first claim.

The objective function (2.2) is given by

Ex0

[(
Ax0 + Bu + Dw

)T
Q
(
Ax0 + Bu + Dw

)]
+ Ex0

[
uTRu

]
= Ex0

[(
Ax0 + B(η + Θe(w)) + Dw

)T
Q
(
Ax0 + B(η + Θe(w)) + Dw

)]
+ Ex0

[
(η + Θe(w))TR(η + Θe(w))

]
= xT

0 ATQAx0 + 2xT
0 ATQBη + ηT

(
BTQB + R

)
η

+ 2
(
Ax0 + Bη

)T
Q
(
BΘEx0 [e(w)] + DEx0 [w]

)
+ Ex0

[(
BΘe(w) + Dw

)T
Q
(
BΘe(w) + Dw

)]
+ Ex0

[
(Θe(w))TRΘe(w)

]
= xT

0 ATQAx0 + 2xT
0 ATQBη + ηT

(
BTQB + R

)
η + 2ηTRΘE[e(w)]

+ 2
(
Ax0 + Bη

)T
Q
(
DEx0 [w] + BΘE[e(w)]

)
+ tr

(
DTQDEx0

[
wT

])
+ tr

(
ΘT

(
BTQB + R

)
ΘEx0

[
e(w)e(w)T

])
+ 2 tr

(
ΘTBTQDEx0

[
we(w)T

])
.

Incorporating the definitions Σe, Σ′e, µw, µe, and c, the right-hand side above equals

tr
(
ΘT

(
BTQB + R

)
ΘΣe

)
+ 2 tr

(
ΘTBTQDΣ′e

)
+ ηT

(
BTQB + R

)
η

+ 2
(
xT

0 ATQBη + ηTBTQDµw + xT
0 ATQBΘµe

)
+ 2ηT

(
R + BTQB

)
Θµe

+
(
xT

0 ATQAx0 + 2xT
0 ATQDµw + tr

(
DTQDΣw

))
= tr

(
ΘT

(
BTQB + R

)
ΘΣe

)
+ 2 tr

(
ΘTBTQDΣ′e

)
+ ηT

(
BTQB + R

)
η

+ 2
(
xT

0 ATQBη + ηTBTQDµw + xT
0 ATQBΘµe

)
+ 2ηT

(
R + BTQB

)
Θµe + c.

Since the matrix Σe is positive semidefinite, it can be expressed as a finite nonneg-
ative linear combination of matrices of the type σσT, for vectors σ of appropriate
dimension [BSM03, Theorem 1.10]. Accordingly, if Σe =

∑k
i=1 σiσT

i , then

tr
(
ΘT

(
BTQB + R

)
ΘΣe

)
=

k∑
i=1

tr
(
ΘT

(
BTQB + R

)
Θσiσ

T
i

)
=

k∑
i=1

(
σT

i ΘT
(
BTQB + R

)
Θσi

)
.
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Defining Θ̂i B Θσi and adjoining these equalities to the constraints of the opti-
mization program (3.5), we arrive at the optimization program

(3.6)

minimize
(Θ,Θ̂1,...,Θ̂k)

k∑
i=1

Θ̂T
i

(
BTQB + R

)
Θ̂i + 2 tr

(
ΘTBTQDΣ′e

)
+ ηT

(
BTQB + R

)
η

+ 2
(
xT

0 ATQBη + ηTBTQDµ + xT
0 ATQBΘµe

)
+ 2ηT

(
R + BTQB

)
Θµe + c

subject to Θ strictly lower block triangular as in (3.3),

Θ̂i = Θσi for all i = 1, . . . , k.

We see immediately that (3.6) is a convex program in the parameters η, Θ and Θ̂i,
and is equivalent to the cost in (3.5).

It only remains to consider the last constraint in (3.5). First we consider the cases
of p = 1,∞. Using the notation above, an application of the triangle inequality
immediately shows that the constraints can be written as

(3.7)

p = 1 :
∥∥∥ηt

∥∥∥
1

+ Et ‖Θt‖1 6 U(1)
max, ∀ t = 0, 1, . . . ,N − 1,

p = ∞ :
∥∥∥ηt

∥∥∥
∞

+ E ‖Θt‖∞ 6 U(∞)
max, ∀ t = 0, 1, . . . ,N − 1.

It follows that the objective function in (3.6) is quadratic and the constraints in (3.6)-
(3.7) are affine in the optimization parameters η, Θ, and Θ̂. As such, for p = 1,∞
our problem is a quadratic program.

For the case of p = 2, note that ηt + Θte(w) =
[
ηt Θt

] [ 1
e(w)

]
, and by definition

of E it is clear that

∥∥∥∥∥∥[ηt Θt

] [ 1
e(w)

]∥∥∥∥∥∥
2

6
∥∥∥∥[ηt Θt

]∥∥∥∥
2

√
1 + Et . This immediately

translates to
∥∥∥∥[ηt Θt

]∥∥∥∥
2

√
1 + Et 6 U(2)

max, which is the third constraint in Problem
3.5 and it is a quadratic constraint in the optimization parameters (η,Θ). Therefore,
for p = 2 our problem is a quadratically constrained quadratic program. �

The optimization problem (3.5) simplifies if we assume that µe = E[e(w)] = 0.
Note thatE[e(w)] = 0 if and only ifE

[
eνt,i(wt,i)

]
= 0 for all ν ∈ I. At an intuitive level

this translates to the condition that the functions eνt,i ∈ H should be “centered”
with respect to the random variables wt,i. In particular, this simply means that for
noise distributions that are symmetric about 0, the functions eν should be centered
at 0 and be antisymmetric. For example, if the noise is Gaussian with mean 0 and
diagonal covariance matrix (uncorrelated components), each component of the
functions eν should be an odd function.

The matrices Σe, Σ′e, the vector v, and the number c in Theorem 3.2 are all con-
stants independent of x0, and can be computed off-line. As such, even if closed-form
expressions for the entries of the matrices do not exist, they can be numerically
computed to desired precision. The optimization problem (3.5) is a quadratic pro-
gram [BV04, p. 152] for p = 1,∞, and a quadratically constrained quadratic pro-
gram [BV04, p. 152] for p = 2, in the optimization parameters

{
η,Θ,

{
Θ̂i, i = 1, . . . , k

}}
,

and can be easily coded in standard software packages such as cvx [GB00] or
YALMIP [Löf04]. Note that the optimization problem (3.5) is always feasible (simply
set Θ = 0 and η = 0 to see this). This is not a surprise, since there are no constraints
on the state, and by construction 0 ∈ U. Finally, note that the third constraint in
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Problem (3.5) for various values of p, is a result of robustly satisfying the constraints
posed by the various control sets (3.4) for any realization of the noise w.

In general, the total number of decision variables in the optimization program
(3.5) is mN

(
1 + 1

2 n(N− 1)|I|
)
. The number of decision variables can be substantially

reduced, e.g., by choosing H to be 1-dimensional, or by fixing certain (block)
elements of the Fourier coefficient matrix Θ to 0.

§4. Various Cases of Constrained Controls

We examine in this section several special cases of Theorem 3.2 under various
restrictions on the classes of noise and control inputs.

§4.1. Bounded controls, unbounded noise, and p = ∞. Let the noise take values
inRn. We provide tractable convex programs to design a policy that by construction
respects the control constraint sets (3.4), with p = ∞. Starting from (3.1) let

(4.1) u = η + Θϕ(w),

where

• ϕ(w) B


ϕ0

ϕ1(w0)
...

ϕN−1(w0, . . . ,wN−2)

,
• ϕ0 = 0, ϕt(w0, . . . ,wt−1) =

∑t−1
j=0 θ

j
tϕt, j(w j) for t = 1, . . . ,N − 2, and

• ϕt, j(w j) =
[
ϕ̃(w j,1), . . . , ϕ̃(w j,n)

]T
for some function ϕ̃ such that sup

s∈R
ϕ̃(s) = φmax <

∞, and ϕt, j :W→ U∞.

In other words, we saturate the measurements that we obtain from the noise input
vector before inserting them into our control vector. This way we allow that the
noise distribution is supported over the entire Rn, which is an advantage over
other approaches [BB07, GKM06]. Moreover, the choice of the component satura-
tion function ϕ̃ is left open as long as the noise sequence satisfies Assumption 3.1.
For example, we can accommodate standard saturation, piecewise linear, and sig-
moidal functions to name a few.

Our choice of saturating the measurement from the noise vectors, as we shall
see below, renders the resulting optimization problem tractable as opposed to
calculating the entire control input vector u and then saturating it a posteriori; one
can see that the latter approach tends to lead to an intractable optimization problem.
Note also that the choice of control inputs in (4.1) yields a possibly non-Markovian
feedback.

Corollary 4.1. Consider the system (2.1). Suppose that Assumption 3.1 holds, and
E[e(w)] = 0 with e(w) = ϕ(w), where ϕ is defined in (4.1). Then for p = ∞ the
problem (2.6) under the control policy (4.1) is a convex optimization program with
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respect to the decision variables (η,Θ), given by

(4.2)

minimize
(η,Θ)

tr
(
ΘT

(
R + BTQB

)
ΘΓ1

)
+ 2tr(DQBΘΓ2)

+ ηT
(
R + BTQB

)
η + bTη + c

subject to max
i=1,··· ,m

(
|ηt,i| +

∥∥∥Θt,i

∥∥∥
1
φmax

)
6 U(∞)

max, t = 0, . . . ,N − 1,

and Θ strictly lower block triangular as in (3.3),

where ηt,i and Θt,i are the i-th rows of ηt and Θt, respectively,

c = xT
0 AQAx0 + tr

(
DTQDΣw̄

)
,

b = 2BTQAx0,

Γ1 = diag
{
E
[
ϕ0(w0)ϕ0(w0)T

]
, · · · ,E

[
ϕN−1(wN−1)ϕN−1(wN−1)T

]}
,

Γ2 = diag
{
E
[
ϕ0(w0)wT

0

]
, · · · ,E

[
ϕN−1(wN−1)wT

N−1

]}
.

The resulting policy is guaranteed to satisfy the control constraint set (3.4) for
p = ∞.

A complete proof may be found in [HCL09]; it proceeds along the lines of the
proof of Theorem 3.2. Note that the program (4.2) exactly solves (2.6) under the
policy (4.1) and is neither a restriction nor a relaxation.

Problem (4.2) is a quadratic program in the optimization parameters (η,Θ) (see
the discussion following Theorem 3.2). The matrices Γ1 and Γ2 capture the statistics
of the noise in the presence of the functionsϕ and can be computed numerically off-
line using Monte Carlo techniques [RC04, Section 3.2]. This method will be utilized
in the examples in Section 6. However, in some instances it is actually possible to
compute these matrices in closed form; this is shown in the next three examples.

Example 4.2. Let us consider (2.1) when the noise process (wt)t∈N0 is an i.i.d se-
quence of Gaussian random vectors of mean 0 and covariance Σ and standard
sigmoidal policy functions ϕ̃, i.e., ϕ̃(t) B t/

√

1 + t2 . Assume further that the com-
ponents of wt are mutually independent, which implies that Σ is a diagonal matrix
diag{σ2

1, . . . , σ
2
n}. Then from the identities in Fact 1 in §A.1, we have for i = 1, . . . ,n

and j = 0, . . . ,N − 1,

E
[
ϕ̃(w j,i)2

]
=

1
√

2π σi

∫
∞

−∞

ϕ̃(t)2e
−

t2

2σ2
i dt = 2 ·

1
√

2π σi

∫
∞

0

t2

1 + t2 e
−

t2

2σ2
i

=
√

2π σi − πe
−

1
2σ2

i erfc
( 1
√

2 σi

)
.

This shows that the matrix Γ1 in Corollary 4.1 is diag{Σ′, . . . ,Σ′}, where

Σ′ B diag
{
√

2π σ1 − πe
−

1
2σ2

1 erfc
( 1
√

2 σ1

)
, . . . ,

√

2π σn − πe
−

1
2σ2

n erfc
( 1
√

2 σn

)}
.

Similarly, since

E
[
ϕ̃(w j,i)w j,i

]
=

1
√

2π σi

∫
∞

−∞

tϕ̃(t)e
−

t2

2σ2
i dt = 2 ·

1
√

2π σi

∫
∞

−∞

t2

√

1 + t2
e−

t2
2σi dt

=
σi
√

2
U
(1
2
, 0,

1
2σ2

i

)
,
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where U is the confluent hypergeometric function (defined in the Appendix), the
matrix Γ2 in Corollary 4.1 is diag{Σ′′, . . . ,Σ′′}, where

Σ′′ B diag
 σ1
√

2
U
(1
2
, 0,

1
2σ2

1

)
, . . . ,

σn
√

2
U
(1
2
, 0,

1
2σ2

n

) .
Therefore, given the system (2.1), the control policy (4.6), and the description of
the noise input as above, the matrices Γ1 and Γ2 derived above complete the set of
hypotheses of Corollary 4.1. The problem (2.4) can now be solved as the quadratic
program (4.2). 4

Example 4.3. Consider the setting of Example 4.2 (with ϕ̃ a standard sigmoid) under
the assumption that Σ is a not necessarily diagonal matrix. To wit, the components
of wt may be correlated at each time t ∈N0; however, the random vector sequence
(wt)t∈N0 is assumed to be i.i.d. This is equivalent to the knowledge of the correlations
between the random variables

{
wt,i

∣∣∣i = 1, . . . ,n
}
, which are constant over t. Then

E[ϕ(w̄)ϕ(w̄)T] is a block diagonal matrix. Indeed, we have with Σi, j B

σ2
i ρ2

i, j

ρ2
i, j σ2

j

,
E
[
ϕ̃(wt,i)ϕ̃(wt, j)

]
=

1√
2πdet Σi, j

"
R2

t1t2√
(1 + t2

1)(1 + t2
2)

exp
(
−

1
2

[
t1 t2

]
Σ−1

i, j

[
t1

t2

])
dt1dt2,

and

E
[
ϕ̃(wt,i)wt, j

]
=

1√
2πdet Σi, j

"
R2

t1t2√
1 + t2

1

exp
(
−

1
2

[
t1 t2

]
Σ−1

i, j

[
t1

t2

])
dt1dt2.

Note that the computations of the integrals above can be carried out off-line. We
define the matrices Σt and Σ′t with the (i, j)-th entry of Σt being E

[
ϕ̃(wt,i)ϕ̃(wt, j)

]
and the (i, j)-th entry of Σ′t being E

[
ϕ̃(wt,i)wt, j

]
, and it follows that the matrices

Γ1 = diag
{
Σ0, . . . ,ΣN−2

}
, and Γ2 = diag

{
Σ′0, . . . ,Σ

′

N−2

}
. 4

Example 4.4. Consider the system (2.1) as in Example 4.2, and with ϕ̃ the standard
saturation function defined as ϕ̃(t) = sgn(t) min{|t|, 1}. From Corollary 4.1 we have
for i = 1, . . . ,n and j = 0, . . . ,N − 1, using the identities in Fact 1 in §A.1,

E
[
ϕ̃(w j,i)2

]
=

1
√

2π σi

∫
∞

−∞

ϕ̃(t)2e
−

t2

2σ2
i dt

=
2

√
2π σi

∫ 1

0
t2e
−

t2

2σ2
i dt +

2
√

2π σi

∫
∞

1
e
−

t2

2σ2
i dt

=
√

2π σ3
i erf

( 1
√

2 σi

)
− 2σ2

i e
−

1
2σ2

i + 1 + erf
( 1
√

2 σi

)
C ξ′i (say),

and

E
[
ϕ̃(w j,i)w j,i

]
=

1
√

2π σi

∫
∞

−∞

tϕ̃(t)e
−

t2

2σ2
i dt

=
2

√
2π σi

∫ 1

0
t2e
−

t2

2σ2
i dt +

2
√

2π σi

∫
∞

1
te
−

t2

2σ2
i dt
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=
√

2π σ3
i erf

( 1
√

2 σi

)
− 2σ2

i e
−

1
2σ2

i +

√
2
π
σi Gamma(2σ2

i , 1)

C ξ′′i (say).

Therefore, in this case the matrix Γ1 in Corollary 4.1 is diag{Σ′, . . . ,Σ′} with Σ′ B
diag{ξ′1, . . . , ξ

′
n}, and the matrix Γ2 is diag{Σ′′, . . . ,Σ′′} with Σ′′ B diag{ξ′′1 , . . . , ξ

′′
n }.

These information complete the set of hypotheses of Corollary 4.1, and the prob-
lem (2.4) can now be solved as a quadratic program (4.2). 4

§ 4.2. Bounded controls, bounded noise, and p = 2. In this subsection we spe-
cialize to the case of the noise being drawn from a compact subset of Rn, and the
control inputs setU2. We make the following assumption:

Assumption 4.5. The noise takes values in a compact setW ⊆ Rn. ♦

Under Assumption 4.5 Hilbert space techniques may be effectively employed
in our basic controller synthesis framework of Section 3 in the following way. Let
(H , 〈·, ·〉H ) be a separable Hilbert space of measurable maps e :W→ U2 supported
on the compact setW. The inner product is defined as

〈
ϕ1, ϕ2

〉
H
B

∑n
i=1

〈
ϕ1,i, ϕ2,i

〉
where 〈·, ·〉 is the standard inner product on real-valued functions on W. Fix a
complete orthonormal basis (eν)ν∈I ⊆ H . SinceH is separable, the set I is at most
countable. Just as in (3.1) we let our candidate control policies be of the form

(4.3) u =


η0

η1
...

ηN−1

 +



0 0 · · · 0
θ1,0 0 · · · 0
θ2,0 θ2,1 · · · 0
...

...
. . .

...
θN−1,0 θN−1,1 · · · θN−1,N−2




e(w0)
e(w1)
...

e(wN−2)

 C η + Θe(w),

where the vector e(·) is the formal vector formed by concatenating the (ordered)
basis elements (eν)ν∈I, the various θ-s are formal matrices as in Section 3, and ηt is
an m-dimensional vector for t = 0, . . . ,N − 1. This takes us back to the setting of
Section 3.

The following Corollary illustrates the technique explained above; its proof will
only be sketched—it is similar to the proof of Theorem 3.2. Note that for finite-
dimensional Hilbert spaces, depending on the choice of the orthonormal basis, the
matrix Θ may have complex or real entries.

Corollary 4.6. Consider the system (2.1). Suppose that Assumptions 3.1 and 4.5
hold. Then for p = 2 and corresponding control setU2 problem (2.6) under the pol-
icy (4.3) admits convex tractable reformulation with tighter domains of the decision
variables (η,Θ) defined in (4.3), and is equivalent to the following program:

(4.4)

the minimization problem (3.5)

subject to
∥∥∥ηt

∥∥∥ +
√

N − 1 ‖Θt‖ 6 U(2)
max, for t = 0, . . . ,N − 1,

and Θ strictly lower block triangular as in (3.3).

Moreover, if Ĥ is a finite-dimensional subspace ofH spanned by (eν)ν∈J for some
finite J ⊆ I, then the problem (4.4) admits a reformulation as a quadratically
constrained quadratic program with respect to the new decision variables

(
η, Θ̂

)
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corresponding to Ĥ , given by

(4.5)

the minimization problem (3.5)

subject to
∥∥∥∥[ηt Θ̂t

]∥∥∥∥ 6 U(2)
max/
√

N for t = 0, . . . ,N − 1,

and Θ strictly lower block triangular as in (3.3),

where the vector ê(·) is the vector formed by concatenating the (ordered) basis el-

ements (eν)ν∈J , ê(w) B
[
ê(w0)T, . . . , ê(wN−2)T

]T
, Σ̂e B E

[
ê(w)ê(w)T

]
, Σ̂′e B E

[
wê(w)T

]
.

In both the above cases the resulting policies are guaranteed to satisfy the control
constraint set (3.4) for p = 2.

Proof. (Sketch.) Evaluating the objective function in (2.6) gives the objective func-
tion in (3.5). Recall that Θt is the t-th block row of the formal matrix Θ, and Θt,i is the
ith sub-row of the block row Θt, where t = 0, . . . ,N − 1 and i = 1, . . . ,n. Applying
the triangle inequality for any t = 0, . . . ,N − 1, we get∥∥∥ηt + Θte(w)

∥∥∥ 6 ∥∥∥ηt

∥∥∥ + ‖Θte(w)‖ =
∥∥∥ηt

∥∥∥ +
√
〈Θte(w),Θte(w)〉H

=
∥∥∥ηt

∥∥∥ +

√√
n∑

i=1

〈
Θt,ie(w),Θt,ie(w)

〉
=

∥∥∥ηt

∥∥∥ +

√√
(N − 1)

n∑
i=1

∥∥∥Θt,i

∥∥∥2

=
∥∥∥ηt

∥∥∥ +
√

N − 1 ‖Θt‖

by orthogonality of the basis elements (eν)ν∈I. The right-hand side of the last
equality appears as the constraint in (4.4).

For the finite-dimensional case (4.5), we note that the objective function is iden-
tical to the one in (4.4), and the constraint in (4.5) follows from the fact that∥∥∥ηt + Θ̂tê(w)

∥∥∥ =

∥∥∥∥∥∥[ηt Θ̂t

] [ 1
ê(w)

]∥∥∥∥∥∥, and

∥∥∥∥∥∥
[

1
ê(w)

]∥∥∥∥∥∥ =

√
1 +

∑N−2
i=0 〈ê(wi), ê(wi)〉 =

√
N .

This leads to a quadratically constrained quadratic program in the finite- dimen-
sional decision variables

(
η, Θ̂

)
. �

Let us illustrate the usage of Corollary 4.6 through the following example.

Example 4.7. Consider the system (2.1), and suppose that the n components of the
noise vector wt are independent uniform random variables taking values in [−a, a]
for some a > 1. Therefore, W = [−a, a]n. It is a standard fact in Fourier analysis
that the system

{
e2πiν(t/(2a))

∣∣∣ ν ∈ Z}
is an orthonormal basis for the Hilbert space of

square-integrable functions on [−a, a] equipped with the standard inner product〈
f , g

〉
B 1

2a

∫ a

−a f (t)g(t)dt. We let

Ĥ B span
{[sin(πνt1/a)

√
n

, . . . ,
sin(πνtn/2)
√

n

]T
∣∣∣∣∣∣ ti ∈ [−a, a], i = 1, . . . ,n, ν = 1, . . . ,M

}
.

Let eν(t1, . . . , tn) B
√

2
n

[
sin(πνt1/a), . . . , sin(πνtn/a)

]T
, ti ∈ [−a, a]. It is clear that the

Rn-valued functions
{
eν, ν = 1, . . . ,M

}
form an orthonormal set. Indeed,

〈
eν1 , eν2

〉
Ĥ

=

n∑
i=1

〈
eν1,i, eν2,i

〉
=

2
n

n∑
i=1

1
2a

∫ a

−a
sin(πν1ti/a) sin(πν2ti/a)dti

=
2
n

n∑
i=1

1
4

∫ 1

−1

(
cos((ν1 − ν2)πsi) − cos((ν1 + ν2)πsi)

)
dsi
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=

 1
2n

∑n
i=1 2 = 1 if ν1 = ν2,

0 otherwise.

We define ut B ηt + Θte(w) = ηt +
∑t−1

j=0 θt, je(w j) = ηt +
∑t−1

j=0
∑M
ν=1 θ

ν
t, je

ν(w j) for
appropriate matrices θνt, j. Now finding policies of the form (4.3) that minimize the
objective function in (2.6) becomes straightforward in the setting of Corollary 4.6.
The matrices Σe and Σ′e in Corollary 4.6 are now easy to derive from Euler’s identity
eiθ = cosθ+i sinθ, and the fact that the characteristic function of a uniform random
variable ζ supported on [−a, a] is given by E

[
e2πivζ

]
= 1

2a

∫ a

−a e2πivt dt = sinc(2πva)
for some v ∈ R, where the function sinc is defined as sinc(ξ) B sin(ξ)/ξ if ξ , 0
and 1 otherwise.

An alternative representation of the various matrices may be obtained by looking
at each component of the policy elements separately. In this approach we define

ê(wt,i) B
[
e0(wt,i) e1(wt,i) · · · eM(wt,i)

]T
,

ê(wt) B
[
ê(wt,1)T

· · · ê(wt,n)T
]T
, ê(w) B

[
ê(w0)T

· · · ê(wN−2)T
]T
.

In the above notation ηt,i +
∑t−1

j=0 θ j,iê(w j,i) is of course the i-th entry of the input ut

at time t, where t = 0, . . . ,N − 1 and i = 1, . . . ,n. 4

§ 4.3. Constraints on control energy. Some applications require constraints on
the total control energy expended over a finite horizon. In the framework that
we have established so far, such constraints are easy to incorporate. Indeed, if we
require that uTSu 6 β2 for some preassigned β > 0 and positive definite matrix S,
then in the setting of Theorem 3.2 this can be ensured by adjoining the condition∥∥∥η∥∥∥S + ‖Θ‖S ‖S‖∞ E 6 β to the constraints, where

∥∥∥η∥∥∥M B
√
ηTMη is the standard

weighted 2-norm for a positive definite matrix M.

Comparison with affine policies. As pointed out earlier affine feedback policies
from the noise have been previously treated in [Löf03, BTGGN04, GKM06, GK08],
where the following feedback policy was considered:

(4.6) ut =

t−1∑
i=0

θt,iwi + ηt.

In the deterministic setting it was shown in [GKM06] that there exists a one-to-
one (nonlinear) mapping between control policies in the form (4.6) and the class
of affine state feedback policies. That is, provided one is interested in affine state
feedback policies, the parametrization (4.6) constitutes no loss of generality. In
fact, we shall illustrate in the examples, in the unconstrained inputs case, that the
performance of this strategy with e(wi) in place of wi is almost as good as the
standard LQG controller if not equally good. However, in the constrained inputs
case this choice is suboptimal in the class of measurable control policies, but it
ensures tractability of a large class of optimal control problems. It can be seen that
the solution to the optimization problem (2.4) is tractable with this parametriza-
tion [GKM06]. However, if the elements of the noise vector w are unbounded, the
control input (4.6) does not have an upper bound. For the case of bounded inputs,
the control policy (4.6) under unbounded noise will in general not satisfy the con-
trol constraint sets (3.4). This unboundedness is a potential problem in practical
applications, and has been usually circumvented by assuming that the noise input
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lies within a compact set [BB07, GKM06] and designing a worst-case min-max type
controller under this assumption.

It is important to point out that our result in Section 4.2 differs from that in
[GKM06] in two aspects. First, we are solving the problem on finite-dimensional
Hilbert spaces with general basis functions as opposed to a finite collection of
affine functions in [GKM06]. Second, the feasibility of our problem is maintained
for any bound on the elements ofW, as our constraint in (4.5) could still produce
a feedback gain matrix Θ that has norm substantially different that 0, whereas if
there are elements inW with large enough norm and we take the control input to
be u = η + Θw, the constraints produce always a solution Θ with norm very close
to 0, hence practically only the open-loop term remains in the case of [GKM06].

§5. Stability Analysis

The main result in Theorem 3.2 asserts that the finite horizon optimization
problem (2.6) is convex and tractable using the policy (3.1). To apply this result in a
receding horizon fashion, it is imperative to further study some qualitative stability
properties of the proposed policy. Under this policy the closed-loop system is not
necessarily Markovian, and as such, standard Foster-Lyapunov methods cannot
be directly applied. In what follows, we treat the stability problem for p = ∞ and
Umax B U(∞)

max. However, this is without any loss of generality, for the same results
hold (with minor modifications in the proofs) for p = 1, 2 as well. We impose the
following assumption:

Assumption 5.1. The matrix A in (2.1) is Schur stable, i.e., the absolute value of
the eigenvalues of A are all strictly less than 1. ♦

At a first glance this assumption on A might seem restrictive. Indeed, in the
deterministic setting we know [YSS97] that for discrete-time controlled systems it
is possible to achieve global asymptotic stability with bounded control inputs if
and only if the pair (A,B) is stabilizable with arbitrary controls, and the spectral
radius of A is at most 1. However, the problem of ensuring bounded variance of
linear stochastic systems with bounded control inputs is to our knowledge still
largely open; see, however, the recent manuscript [RCMA+09] for partial results as
well as in [BSW02, SSW06].

§5.1. Mean-square boundedness. We shall show that the variance of the state is
uniformly bounded under receding horizon application of the strategy (3.1), for
any control horizon Nc 6 N. The receding horizon implementation is iterative in
nature: the optimization problem is solved every kNc steps, where k ∈ N0. The
resulting optimal control policy (applied over a horizon Nc) is given by

π∗kNc:(k+1)Nc−1(xkNc ) B


π∗kNc

(xkNc )
π∗kNc+1(xkNc )

...
π∗(k+1)Nc−1(xkNc )

 =


η∗0(xkNc )

η∗1(xkNc ) + Θ∗1(xkNc )e(w)
...

η∗Nc−1(xkNc ) + Θ∗Nc−1(xkNc )e(w)


where the control gains depend explicitly on the initial condition xkNc . For ` =

1, · · · ,Nc, the resulting closed-loop system over horizon Nc is given by:

(5.1) xkNc+` = A`xkNc + B`π∗kNc:kNc+`−1(xkNc ) + D`w̃kNc:kNc+`−1, k ∈N0,
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where B` B
[
Ā`−1B̄ · · · ĀB̄ B̄

]
, D` B

[
Ā`−1

· · · Ā In×n

]
, and w̃kNc:kNc+`−1 B[

wT
kNc

· · · wT
kNc+`−1

]T
.

Suppose that the above Nc-horizon optimal policy is computed as in Corol-
lary 4.1. We define the receding horizon policy corresponding to the consecutive
concatenation of this Nc-horizon optimal policy as

(5.2) π∗ B
(
π∗0:Nc−1(x0), π∗Nc:2Nc−1(xNc ), π

∗

2Nc:3Nc−1(x2Nc ), · · ·
)
.

Proposition 5.2. Consider the system (2.1), and suppose that Assumptions 3.1
and 5.1 hold. For p = ∞ and any control horizon 1 6 Nc 6 N the receding horizon
control policy π∗ renders the closed loop system (5.1) mean-square bounded, i.e.,
supt∈N0

Ex0

[
‖xt‖

2
]
< ∞ for every initial condition x0 ∈ Rn.

The proof of this Proposition is postponed to §A.2 in the Appendix.

§ 5.2. Input-to-state stability. Input-to-state stability (iss) is an interesting and
important qualitative property of input-output behavior of dynamical systems.
In the deterministic discrete-time setting [JW01], iss generalizes the well-known
bounded-input bounded-output (BIBO) property of linear systems [AM06, p. 490]
to the setting of nonlinear systems. iss provides a description of the behavior of a
system subjected to bounded inputs, and as such it may be viewed as an L∞ to
L∞ gain of a given nonlinear system. In this section we are interested in a useful
stochastic variant of input-to-state stability; see e.g., [Bor00, ST03] for other possible
definitions and ideas (primarily in continuous-time).

Definition 5.3. The system (2.1) is input-to-state stable in L1 if there exist functions
β ∈ KL and α, γ1, γ2 ∈ K∞ such that for every initial condition x0 ∈ Rn we have

(5.3) Ex0

[
α(‖xt‖)

]
6 β(‖x0‖ , t) + γ1

(
sup
s∈N0

‖us‖∞

)
+ γ2

(
‖Σ‖′

)
∀ t ∈N0,

where ‖·‖′ is an appropriate matrix norm. ^

One evident difference of iss in L1 with the deterministic definition of iss is the
presence of the function α inside the expectation in (5.3). It turns out that often it
is more natural to arrive at an estimate of Ex0 [α(‖xt‖)] for some α ∈ K∞ than an
estimate of Ex0 [‖xt‖]. Moreover, in case α is convex, Jensen’s inequality [Dud02,
p. 348] implies that such an estimate is stronger than an estimate of Ex0 [‖xt‖].

The property expressed by (5.3) is one possible iss-type property for stochastic
systems. One can come up with alternative stochastic analogs of the iss property,
such as the following: ∀ ε ∈ ]0, 1[ ∃ β ∈ KL and ∃γ1, γ2 ∈ K∞ such that P

(
‖xt‖ 6

β(‖x0‖ , t)+γ(sups∈N0
‖us‖)+γ2(‖Σ‖′) ∀ t ∈N0

)
> 1−ε. Intuitively this means that for

1−ε proportion of the sample paths the deterministic iss property holds uniformly.
However, in an additive i.i.d unbounded noise setting as in (2.1), this property fails
to hold because almost surely the states undergo excursions outside any bounded
set infinitely often; in this case the weaker version: ∀ ε ∈ ]0, 1[ ∃ β ∈ KL and
∃γ1, γ2 ∈ K∞ such that P

(
‖xt‖ 6 β(‖x0‖ , t) + γ(sups∈N0

‖us‖) + γ2(‖Σ‖′)
)
> 1− ε ∀ t ∈

N0 is comparatively better suited. We shall however stick with the iss inL1 property
in this article.

The following Proposition can be established with the aid of Proposition 5.2 for
p = ∞; the proofs for p = 1 and 2 are also similar in spirit.
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Proposition 5.4. Consider the system (2.1), and suppose that Assumptions 3.1 and
5.1 hold. Then the closed-loop system (5.1) is iss in L1 under the policy π∗ in (5.2)
for any 1 6 Nc 6 N.

§6. Numerical Examples

In this section we present several numerical examples to illustrate the theoret-
ical results in the preceding sections. We start in Example 6.1 by comparing the
performance of our policy (3.3) to that of the standard finite horizon LQG con-
troller whenever the control inputs set Ū ≡ Rm, i.e., there are no bounds on the
norm of the inputs. Then we compare the performance of our policy (3.3) against
a saturated LQG controller in Example 6.2. Finally, in Example 6.3 we illustrate
the effectiveness of our policy (3.3) compared to the certainty-equivalent receding
horizon control.

Example 6.1 (Unconstrained Inputs). A natural question that may arise whenever
the control inputs in our setup are not constrained, i.e., Ū ≡ Rm, is the following:
How does the policy (3.3) compare to the globally optimal controller, which in this
case is the standard finite-horizon LQG controller? One would expect our policy
to perform worse on the average since we restrict to a class of feedback policies
that may not contain the globally optimal controller.

We compared our policy against that of the LQG problem in simulation for two
controllable 3-dimensional single-input linear systems. In each case we solved an
unconstrained finite-horizon LQ optimal control problem corresponding to state
and control weights Qt = 3 I3×3 and Rt = 1 for every t. We selected an optimization
horizon N = 50, and simulated the system responses starting from 103 different
initial conditions x0 selected at random uniformly from the cube [−100, 100]3, and
noise sequences wt corresponding to i.i.d Gaussian noise of mean 0 and (randomly
chosen) variance

Σw =


2.830399255 5.491512606 3.612257417
5.491512606 11.554870229 6.896706270
3.612257417 6.896706270 4.625993264

 .
We selected the nonlinear bounded term e(w) in our policy u = η + Θe(w) to be
a vector of scalar sigmoidal functions ϕ(ξ) B 0.2ξ/

√
1 + 0.04ξ2 applied to each

coordinate of the vector w. The covariance matrices Σe and Σe′ that are required
to solve the optimization problem (3.3) were computed empirically via classical
Monte Carlo methods [RC04, Section 3.2] using 106 i.i.d samples.

The first system is described by:

(6.1) xk+1 =


0 1 0
0 0 1

0.4 0.5 −0.25

 xk +


0
0
1

 uk + wk.

The system pair (A,B) is in Brunovsky canonical form, and A has eigenvalues at
0.8642, and −0.5571 ± i0.3905. The test results showed that the mean of the ratio of
the cost corresponding to LQG to the cost corresponding to our policy is 0.99916,
and the standard deviation of this ratio is 0.003619.

The second system is described by:

(6.2) xk+1 =


1 1 0
0 1 1
0 0 1

 xk +


0
0
1

 uk + wk.
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This particular system matrix A is in Jordan canonical form and has three eigen-
values at 1. The test results showed that the mean of the ratio of the cost of LQG
against the cost of our policy is 0.99673 and the corresponding standard deviation
is 0.008045.

Computations for determining our policy in the above two cases were carried
out in the MATLAB-based software package cvx. In the case of the system (6.2)
the solver utilized by cvx reported numerical problems in five different runs, for
which it gave values of the aforementioned ratio below 0.96. Note that we have
not discarded these five cases from the mean and variance figures reported above.

The close-to-optimal performance of our policy is surprising in view of the fact
that the vector-space H is the linear span of one bounded function, and does
not contain the theoretically optimal linear (in the current state) controller. We
conjecture that this is due to injectivity of the mapping e, due to which e(wt) retains
all information generated by wt. Of course, in the absence of control constraints
our solution is much more computationally demanding than the LQG controller,
and would not be used in practice in this case. 4

Example 6.2 (Saturated LQG and Receding Horizon). We compare the performance
of saturated LQG against our policy (3.3) for the system (6.2) in this example. We
fixed the optimization horizon N = 2, the control horizon Nc = 1, and the weight
matrices for the states and the control to be Qt = I3×3 and Rt = 0.01 for all t,
respectively. The control bounds in both cases was [−2, 2], the nonlinear bounded
term e(wt) in our policy u = η + Θe(w) was a vector of scalar standard saturation
functions applied to each coordinate of the vector wt, and the LQG control input
was saturated at ±2. The covariance matrices Σe and Σe′ required to solve the
optimization problem (3.5) were computed empirically via classical Monte Carlo
integration methods [RC04, Section 3.2] using 106 i.i.d samples.

We simulated the system (6.2) starting from the same initial condition x0 =[
0 0 0

]T
for 100 different independent realizations of the noise sequence wt over

a horizon of 200. The behavior of the average (over the 100 realizations) cost
corresponding to the two scenarios is shown in Figure 1. The simulations were
coded in MATLAB and the optimization programs were coded in the software
package cvx. The average total cost incurred at the end of the simulation horizon
when using the saturated LQG scheme above was 1.790 × 1012 units, whereas the
average total cost incurred at the end of the simulation horizon (t = 200) using our
policy (3.3) in a receding horizon fashion was 4.486 × 108 units. 4

Example 6.3 (Constrained Inputs). Consider the 2-dimensional linear stochastic
system:

(6.3) xt+1 =

[
1.23 −0.15
0.25 1

]
xt +

[
0.14
0.12

]
ut + wt,

where (wt)t∈N0 is a sequence of i.i.d Gaussian noise with zero mean and (ran-

domly generated) variance
[
2.722030613 4.975999693
4.975999693 9.102559685

]
. Let the weight matrices

corresponding to the states and control be Qt = I2×2 and Rt = 0.8 for each t. The
covariance matrices Σe and Σe′ that are required to solve the optimization problem
(3.3) were computed empirically via classical Monte Carlo integration methods
[RC04, Section 3.2] using 106 samples.
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Figure 1. Plots of average costs corresponding to saturated LQG
and our receding horizon scheme for Nc = 1 in Example 6.2.

We fixed the optimization horizon N = 7, the nonlinear saturation e(wt) to be
a vector of scalar sigmoidal functions ϕ(ξ) B 0.2ξ/

√
1 + 0.04ξ2 applied to each

coordinate of the vector wt, and compared the certainty-equivalent MPC strategy
(Nc = 1, Θ ≡ 0, wt ≡ 0) against our receding horizon strategy (3.3) with control
horizon Nc = 4. The control constraints in both cases were ut ∈ [−200, 200]. We sim-

ulated the system in both cases starting from the same initial condition x0 =
[
0 0

]T
,

for 60 different realizations of the noise sequence wt; plots of states, average cost,
and standard deviation are shown in Figures 2 and 3. The average cost incurred
when using the certainty-equivalent MPC scheme was 7.893 × 105 units, whereas
the average cost incurred when using our policy (3.3) in a receding horizon fash-
ion was 3.141 × 105 units. Therefore, applying our policy in a receding horizon
fashion one saves 60.2% of the cost corresponding to the certainty-equivalent MPC
controller on the average. This example illustrates that there may be cases where
open-loop certainty-equivalent MPC, in the absence of state-constraints, is outper-
formed by a large margin by a judiciously selected receding-horizon strategy. The
simulations were coded in YALMIP and were solved using SDPT-3; the solver-time
statistics (in sec.) for the certainty-equivalent MPC and receding horizon schemes
were as follows:

certainty-equivalent MPC receding horizon
Mean 32.127 59.615

Standard deviation 4.610 21.675
Maximum 50.590 90.036
Minimum 20.240 20.466



STOCHASTIC RECEDING HORIZON CONTROL WITH BOUNDED CONTROL INPUTS 21

These statistics correspond to the above simulations carried out on an x86 64 octa-
core machine with 24GB RAM, each processor of which was an Intel R© Xeon R© CPU
E5540 2.53GHz with cache size 8192 KB, running GNU/Linux.
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Figure 2. Plots of states corresponding to: certainty-equivalent
MPC with Nc = 1 (left) and our receding horizon control scheme
with Nc = 4 (right) in Example 6.3.
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(b) Plot of standard deviations

Figure 3. Plots of average cost (left) and standard deviations
(right) corresponding to: certainty-equivalent MPC with Nc = 1
and our receding horizon control scheme with Nc = 4 in Example
6.3.

We also applied the first four control values of the certainty-equivalent scheme
and compared it against our receding horizon scheme using policy (3.3), i.e., Nc = 4
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for both controllers. We simulated the system in both cases starting from the same

initial condition x0 =
[
0 0

]T
, for 60 different realizations of the noise sequence wt;

plots of the states, average cost, and standard deviation are shown in Figures 4
and 5. The average cost incurred when using the certainty-equivalent with control
horizon Nc = 4 was 4.211×105 units, whereas the average cost incurred when using
our policy (3.3) in a receding horizon fashion was 3.295 × 105 units. We see that
by applying our policy in a receding horizon fashion one saves 21.7% of the cost
corresponding to the certainty equivalence controller on the average. The simula-
tions were coded in YALMIP and were solved using SDPT-3; the solver-time statistics
(in sec.) for the certainty-equivalent and receding horizon schemes were as follows:

certainty-equivalent receding horizon
Mean 7.537 67.494

Standard deviation 0.812 11.845
Maximum 9.776 85.232
Minimum 6.101 43.601

These statistics correspond to the above simulations carried out on an x86 64 octa-
core machine with 24GB RAM, each processor of which was an Intel R© Xeon R© CPU
E5540 2.53GHz with cache size 8192 KB, running GNU/Linux. 4
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Figure 4. Plots of states corresponding to: certainty-equivalent
with Nc = 4 (left) and our receding horizon control scheme with
Nc = 4 (right) in Example 6.3.

§7. Conclusion and Future Directions

We provided tractable solutions to a variety of finite-horizon stochastic optimal
control problems with quadratic cost, hard control constraints, and unbounded
additive noise. These problems arise as parts of solutions to the stochastic receding
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Figure 5. Plots of average cost (left) and standard deviations
(right) corresponding to: certainty-equivalent with Nc = 4 and
our receding horizon control scheme with Nc = 4 in Example 6.3.

horizon problems (2.4). The control policy obtained as a result of the finite-horizon
optimal control sub-problems may be nonlinear with respect to the previous states,
and the policy elements are chosen from a vector space that is largely up to the
designer. One of the key features of our approach is that the variance-like matrices
employed in the finite-horizon optimal control sub-problems may be computed off-
line, and we illustrated this feature with several examples. We demonstrated that
applying our obtained policies in a receding horizon fashion results in bounded
state variance. Finally, we provided several numerical examples that illustrate
the effectiveness of our method with respect to the commonly used certainty-
equivalent MPC controllers.

The development in this article affords extensions in several directions. One is
the incorporation of state constraints. As discussed in §1, hard state constraints
do not make sense in the stochastic with additive unbounded noise setting unless
one is prepared to artificially relax them once infeasibility is encountered. Proba-
bilistic constraints and integrated chance constraints [Han83] constitute popular
alternative methods to impose constraints on the state that are more probabilistic
in nature. It will be interesting to see how the approach introduced in this arti-
cle reacts to state-constraints. A second direction is to consider specific kinds of
nonlinear models, particularly those which involve multiplicative noise, in our
framework, and a third is to consider different objective functions such as affine
functions given by the `∞ and the `1 norms.
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Appendix

§A.1. Some identities. Recall the following standard special mathematical func-

tions: the standard error function erf(z) B 2
√
π

∫ z

0 e−
t2
2 dt and the complementary error

function [AS64, p. 297] defined by erfc(z) B 1−erf(z) for z ∈ R, the incomplete Gamma
function [AS64, p. 260] defined by Γ(a, z) B

∫
∞

z ta−1e−tdt for z, a > 0, the confluent
hypergeometric function [AS64, p. 505] defined by U(a, b, z) B 1

Γ(a)

∫
∞

0 e−ztta−1(1 +

t)b−a−1dt for a, b, z > 0, and Γ is the standard Gamma function. All of these are
implemented as standard functions in Mathematica. The following facts can be
found in [AS64] and are collected here for completeness.

Facts about Special Functions. For σ2 > 0 we have

•
1
√

2π σ

∫
∞

z
e−

t2

2σ2 dt =
1
2

(
1 + erf

( z
√

2 σ

))
•

1
√

2π σ

∫
∞

0

t2

1 + t2 e−
t2

2σ2 dt =
1
2

(√
2π σ − πe−

1
2σ2 erfc

( 1
√

2 σ

))
•

1
√

2π σ

∫ 1

0
t2e−

t2

2σ2 dt =

√
π
2
σ3 erf

( 1
√

2 σ

)
− σ2e−

1
2σ2 ;

•
1
√

2π σ

∫
∞

1
te−

t2

2σ2 dt =
σ
√

2π
Gamma(2σ2, 1)

•
1
√

2π σ

∫
∞

0

t2

√

1 + t2
e−

t2

2σ2 dt =
σ

2
√

2
U
(1
2
, 0,

1
2σ2

)
.

§A.2. Proof of mean-square boundedness.

Proof of Proposition 5.2. Fix x0 ∈ Rn. For any n × n matrix P = PT > 0, using (5.1)
and the fact that E [e(w)] = 0, we see that for every ` = 1, · · · ,Nc

ExkNc

[
xT

kNc+`
PxkNc+l

]
= xT

kNc
(A`)TPA`xkNc + 2xT

kNc
(A`)TPB`ExkNc

[
π∗kNc:kNc+`−1(xkNc )

]
+ ExkNc

[∥∥∥B`π∗kNc:kNc+`−1(xkNc ) + D`w̃kNc:kNc+`−1

∥∥∥2

P

]
,

where ‖ξ‖P B
√
ξTPξ . Using the fact that

∥∥∥∥π∗kNc:kNc+`−1(xkNc )
∥∥∥∥
∞

6 Umax by construc-
tion, we obtain the following bound:

ExkNc

[
xT

kNc+`
PxkNc+`

]
6 xT

kNc
(A`)TPA`xkNc + 2c1`

∥∥∥xkNc

∥∥∥
∞

+ c2`,(A.1)

where

c1` B m
∥∥∥(A`)TPB`

∥∥∥
∞

Umax,

c2` B m
∥∥∥BT

`PB`
∥∥∥
∞

U2
max + tr

(
DT
`PD`Σw

)
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+ max
‖Υ(xkNc )‖

∞
6Umax/φmax

[
tr
(
Υ(xkNc )

TBT
`PB`Υ(xkNc )Λ1

)
+ 2tr

(
Υ(xkNc )

TBT
`PD`Λ2

) ]
,

and Υ(xkNc ) B


Θ∗1(xkNc )
· · ·

Θ∗Nc−1(xkNc )

 .
Since A is a Schur stable matrix (and hence so is A`) there exists [Ber09, Proposition
11.10.5] a matrix P` = PT

` > 0 with real-valued entries that satisfies (A`)TP`A`
−P` =

−In×n; in particular, we have xT
kNc

(A`)TP`A`xkNc 6 xT
kNc

P`xkNc − xT
kNc

xkNc . Therefore,
with P = P` in (A.1) we arrive at

ExkNc

[
xT

kNc+`
P`xkNc+`

]
6 xT

kNc
P`xkNc −

∥∥∥xkNc

∥∥∥2
+ 2c1`

∥∥∥xkNc

∥∥∥
∞

+ c2`.(A.2)

For ζ` ∈ ] max{0, 1 − λmax(P`)}, 1[ let r` B 1
ζ`

(
c1` +

√
c2

1` + c2`ζ`
)
. Then elementary

properties of the quadratic function g(y) B −ζ`y2 + 2c1`y + c2` show that

−ζ`
∥∥∥xkNc

∥∥∥2

∞
+ 2c1`

∥∥∥xkNc

∥∥∥
∞

+ c2` 6 0 whenever
∥∥∥xkNc

∥∥∥
∞
> r`,

In view of the above fact, simple manipulations in (A.2) lead to

ExkNc

[
xT

kNc+`
P`xkNc+`

]
6 xT

kNc
P`xkNc − (1 − ζ`)

∥∥∥xkNc

∥∥∥2
whenever

∥∥∥xkNc

∥∥∥
∞
> r`,

from which, letting ρ` B
(
1 − 1−ζ`

λmax(P`)

)
, we arrive at

ExkNc

[
xT

kNc+`
P`xkNc+`

]
6 ρ`xT

kNc
P`xkNc whenever

∥∥∥xkNc

∥∥∥
∞
> r`.(A.3)

Let us define

ρ B max
`=1,··· ,Nc

ρ`, r′ B max
`=1,··· ,Nc

r`,

λ B max
`=1,...,Nc

λmax(P`), λ B min
`=1,...,Nc

λmin(P`).

Then we can obtain using (A.3) the conservative bound for every ` = 1, . . . ,Nc:

ExkNc

[
xT

kNc+`
PNc xkNc+`

]
6 ρ′xT

kNc
PNc xkNc whenever

∥∥∥xkNc

∥∥∥
∞
> r′,

where ρ′ B ρλλmax(PNc )
λλmin(PNc ) . It follows immediately that

(A.4) ExkNc

[
xT

kNc+`
PNc xkNc+`

]
6 ρ′xT

kNc
PNc xkNc + b′1K′ (xkNc ),

where K′ B
{
ξ ∈ Rn

∣∣∣ ‖ξ‖∞ 6 r′
}
.

Let us define the function V(ξ) B ξTPNcξ, and fix k ∈ N and ` = 1, . . . ,Nc. Let
KNc B

{
ξ ∈ Rn

∣∣∣ ‖ξ‖∞ 6 rNc

}
, b B sup

x∈K
Ex

[
V(xNc )

]
, and b′ B max
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sup
x∈K′
Ex

[
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]
.

From (A.4) we get

Ex0
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]
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E
[
V(xkNc+`)

∣∣∣ xkNc

]]
6 Ex0
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6 Ex0
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[
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]
+ b′1K′ (xkNc )

]
6 Ex0

[
ρ′ρNc V(x(k−1)Nc ) + b1KNc

(x(k−1)Nc ) + b′1K′ (xkNc )
]

· · ·

6 ρ′ρk
Nc

V(x) +

k−1∑
i=0

bρk−1−i
Nc
Ex0

[
1KNc

(xiNc )
]

+ b′Ex0

[
1K′ (xkNc )
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6 ρ′ρk
Nc

V(x) +
b
(
1 − ρk

Nc

)
1 − ρNc

+ b′.(A.5)

Note that the conditioning in the first few steps of (A.5) is well-defined because
it is performed every Nc steps starting from 0, and the structure of our policy π∗

makes the process (xtNc )t∈N0 Markovian. Therefore, it follows from (A.5) that for all
t B kNc + `,

sup
t∈N0

Ex0

[
‖xt‖

2
]
6

1
λmin(PNc )

sup
t∈N0

Ex0

[
V(xkNc+`)

]
6

1
λmin(PNc )

(
ρ′ρk

Nc
V(x) +

b
1 − ρNc

+ b′
)

< ∞,

where the last step follows from the fact that ρNc < 1. This completes the proof. �
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