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Abstract

In many applications, nodes in a network desire not only a consensus, but an optimal one. To

date, a family of subgradient algorithms have been proposed to solve this problem under general

convexity assumptions. This paper shows that, for the scalar case and by assuming a bit more,

novel non-gradient-based algorithms with appealing features can be constructed. Specifically,

we develop Pairwise Equalizing (PE) and Pairwise Bisectioning (PB), two gossip algorithms

that solve unconstrained, separable, convex consensus optimization problems over undirected

networks with time-varying topologies, where each local function is strictly convex, continuously

differentiable, and has a minimizer. We show that PE and PB are easy to implement, bypass

limitations of the subgradient algorithms, and produce switched, nonlinear, networked dynami-

cal systems that admit a common Lyapunov function and asymptotically converge. Moreover,

PE generalizes the well-known Pairwise Averaging and Randomized Gossip Algorithm, while

PB relaxes a requirement of PE, allowing nodes to never share their local functions.

1 Introduction

Consider an N -node multi-hop network, where each node i observes a convex function fi, and

all the N nodes wish to determine an optimal consensus x∗, which minimizes the sum of the fi’s:

x∗ ∈ argmin
x

N
∑

i=1

fi(x). (1)
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†P. R. Regier and T. D. Bow were supported by the National Science Foundation Research Experiences for

Undergraduates program under grant EEC-0755011.
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Since each node i knows only its own fi, the nodes cannot individually compute the optimal

consensus x∗ and, thus, must collaborate to do so. This problem of achieving unconstrained,

separable, convex consensus optimization has many applications in multi-agent systems and wired/

wireless/social networks, some examples of which can be found in [1, 2].

The current literature offers a large body of work on distributed consensus (see [3] for a survey),

including a line of research that focuses on solving problem (1) for an optimal consensus x∗ [1,2,4–

17]. This line of work has resulted in a family of discrete-time subgradient algorithms, including the

incremental subgradient algorithms [1,2,4–8,10,15], whereby an estimate of x∗ is passed around the

network, and the non-incremental ones [9,11–14,16,17], whereby each node maintains an estimate

of x∗ and updates it iteratively by exchanging information with neighbors.

Although the aforementioned subgradient algorithms are capable of solving problem (1) under

fairly weak assumptions, they suffer from one or more of the following limitations:

L1. Stepsizes: The algorithms require selection of stepsizes, which may be constant, diminishing,

or dynamic. In general, constant stepsizes ensure only convergence to neighborhoods of x∗,

rather than to x∗ itself. Moreover, they present an inevitable trade-off: larger stepsizes tend to

yield larger convergence neighborhoods, while smaller ones tend to yield slower convergence.

In contrast, diminishing stepsizes typically ensure asymptotic convergence. However, the

convergence may be very slow, since the stepsizes may diminish too quickly. Finally, dynamic

stepsizes allow shaping of the convergence behavior [4, 6]. Unfortunately, their dynamics

depend on global information that is often costly to obtain. Hence, selecting appropriate

stepsizes is not a trivial task, and inappropriate choices can cause poor performance.

L2. Hamiltonian cycle: Many incremental subgradient algorithms [1, 2, 4–7, 10, 15] require the

nodes to construct and maintain a Hamiltonian cycle (i.e., a closed path that visits every

node exactly once) or a pseudo one (i.e., that allows multiple visits), which may be very

difficult to carry out, especially in a decentralized, leaderless fashion.

L3. Multi-hop transmissions: Some incremental subgradient algorithms [4–6] require the node

that has the latest estimate of x∗ to pass it on to a randomly and equiprobably chosen node

in the network. This implies that every node must be aware of all the nodes in the network,

and the algorithms must run alongside a routing protocol that enables such passing, which

may not always be the case. The fact that the chosen node is typically multiple hops away also

implies that these algorithms are communication inefficient, requiring plenty of transmissions

(up to the network diameter) just to complete a single iteration.

L4. Lack of asymptotic convergence: A variety of convergence properties have been established for

the subgradient algorithms in [1,2,4–17], including error bounds, convergence in expectations,

convergence in limit inferiors, convergence rates, etc. In contrast, relatively few asymptotic

convergence results have been reported, except for the subgradient algorithms with diminish-

ing or dynamic stepsizes in [4–6,10,15–17].
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Limitations L1–L4 facing the subgradient algorithms raise the question of whether it is possible

to devise algorithms, which require neither the notion of a stepsize, the construction of a (pseudo-

)Hamiltonian cycle, nor the use of a routing protocol for multi-hop transmissions, and yet guarantee

asymptotic convergence, bypassing L1–L4. In this paper, we show that, for the one-dimensional

case and with a few mild assumptions, such algorithms can be constructed. Specifically, instead

of letting the network be directed, we assume that it is undirected, with possibly a time-varying

topology unknown to any of the nodes. In addition, instead of letting each fi in (1) be convex

but not necessarily differentiable, we assume that it is strictly convex, continuously differentiable,

and has a minimizer. Based on these assumptions, we develop two gossip-style, distributed asyn-

chronous iterative algorithms, referred to as Pairwise Equalizing (PE) and Pairwise Bisectioning

(PB), which not only solve problem (1) and circumvent limitations L1–L4, but also are rather easy to

implement—although computationally they are more demanding than the subgradient algorithms.

As will be shown in the paper, PE and PB exhibit a number of notable features. First, they

produce switched, nonlinear, networked dynamical systems whose state evolves along an invari-

ant manifold whenever nodes gossip with each other. The switched systems are proved, using

Lyapunov stability theory, to be asymptotically convergent, as long as the gossiping pattern is

sufficiently rich. In particular, we show that the first-order convexity condition can be used to

form a common Lyapunov function, as well as to characterize drops in its value after every gossip.

Second, PE and PB do not belong to the family of subgradient algorithms as they utilize funda-

mentally different, non-gradient-based update rules that involve no stepsize. These update rules

are synthesized from two simple ideas—conservation and dissipation—which are somewhat similar

to how Pairwise Averaging [18] was conceived back in the 1980s. Indeed, we show that PE reduces

to Pairwise Averaging [18] and Randomized Gossip Algorithm [19] when problem (1) specializes to

an averaging problem. Finally, PE requires one-time sharing of the fi’s between gossiping nodes,

which may be costly or impermissible in some applications. This requirement is eliminated by PB

at the expense of more communications per iteration.

2 Problem Formulation

Consider a multi-hop network consisting of N ≥ 2 nodes, connected by bidirectional links

in a time-varying topology. The network is modeled as an undirected graph G(k) = (V, E(k)),

where k ∈ N = {0, 1, 2, . . .} denotes time, V = {1, 2, . . . , N} represents the set of N nodes, and

E(k) ⊂ {{i, j} : i, j ∈ V, i 6= j} represents the nonempty set of links at time k. Any two nodes

i, j ∈ V are one-hop neighbors and can communicate at time k ∈ N if and only if {i, j} ∈ E(k).

Suppose, at time k = 0, each node i ∈ V observes a function fi : X → R, which maps a

nonempty open interval X ⊂ R to R, and which satisfies the following assumption:

Assumption 1. For each i ∈ V, the function fi is strictly convex, continuously differentiable, and
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has a minimizer x∗i ∈ X .

Suppose, upon observing the fi’s, all the N nodes wish to solve the following unconstrained,

separable, convex optimization problem:

min
x∈X

F (x), (2)

where the function F : X → R is defined as F (x) =
∑

i∈V fi(x). Clearly, F is strictly convex and

continuously differentiable. To show that F has a unique minimizer in X so that problem (2) is

well-posed, let f ′
i : X → R and F ′ : X → R denote the derivatives of fi and F , respectively, and

consider the following lemma and proposition:

Lemma 1. Let gi : X → R be a strictly increasing and continuous function and zi ∈ X for

i = 1, 2, . . . , n. Then, there exists a unique z ∈ X such that
∑n

i=1 gi(z) =
∑n

i=1 gi(zi). Moreover,

z ∈ [mini∈{1,2,...,n} zi,maxi∈{1,2,...,n} zi].

Proof. Since gi is strictly increasing and continuous ∀i ∈ {1, 2, . . . , n}, so is
∑n

i=1 gi : X → R.

Thus,
∑n

i=1 gi(minj∈{1,2,...,n} zj) ≤
∑n

i=1 gi(zi) ≤
∑n

i=1 gi(maxj∈{1,2,...,n} zj). It follows from the

Intermediate Value Theorem that there exists a unique z ∈ X such that
∑n

i=1 gi(z) =
∑n

i=1 gi(zi),

and that z ∈ [mini∈{1,2,...,n} zi,maxi∈{1,2,...,n} zi].

Proposition 1. With Assumption 1, there exists a unique x∗ ∈ X , which satisfies F ′(x∗) = 0,

minimizes F over X , and solves problem (2), i.e., x∗ = argminx∈X F (x).

Proof. By Assumption 1, for every i ∈ V, f ′
i is strictly increasing and continuous. By Lemma 1,

there exists a unique x∗ ∈ X such that
∑

i∈V f ′
i(x

∗) =
∑

i∈V f ′
i(x

∗
i ). Since F ′ =

∑

i∈V f ′
i and

f ′
i(x

∗
i ) = 0 ∀i ∈ V, F ′(x∗) = 0. Since F is strictly convex, x∗ minimizes F over X , solving (2).

Given the above, the goal is to construct a distributed asynchronous iterative algorithm free of

limitations L1–L4, with which each node can asymptotically determine the unknown optimizer x∗.

3 Pairwise Equalizing

In this section, we develop a gossip algorithm having the aforementioned features.

Suppose, at time k = 0, each node i ∈ V creates a state variable x̂i ∈ X in its local memory,

which represents its estimate of x∗. Also suppose, at each subsequent time k ∈ P = {1, 2, . . .}, an

iteration, called iteration k, takes place. Let x̂i(0) represent the initial value of x̂i, and x̂i(k) its

value upon completing each iteration k ∈ P. With this setup, the goal may be stated as

lim
k→∞

x̂i(k) = x∗, ∀i ∈ V. (3)
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To design an algorithm that guarantees (3), consider a conservation condition

∑

i∈V

f ′
i(x̂i(k)) = 0, ∀k ∈ N, (4)

which says that the x̂i(k)’s evolve in a way that the sum of the derivatives f ′
i ’s, evaluated at the

x̂i(k)’s, is always conserved at zero. Moreover, consider a dissipation condition

lim
k→∞

x̂i(k) = x̃, ∀i ∈ V, for some x̃ ∈ X , (5)

which says that the x̂i(k)’s gradually dissipate their differences and asymptotically achieve some

arbitrary consensus x̃ ∈ X . Note that if (4) is met, then limk→∞

∑

i∈V f ′
i(x̂i(k)) = limk→∞ 0 =

0. If, in addition, (5) is met, then due to the continuity of every f ′
i ,

∑

i∈V limk→∞ f ′
i(x̂i(k)) =

∑

i∈V f ′
i(limk→∞ x̂i(k)) =

∑

i∈V f ′
i(x̃) = F ′(x̃). Because limk→∞ f ′

i(x̂i(k)) exists for every i ∈ V,

limk→∞
∑

i∈V f ′
i(x̂i(k)) =

∑

i∈V limk→∞ f ′
i(x̂i(k)). Combining the above, we obtain F ′(x̃) = 0.

From Proposition 1, we see that the arbitrary consensus x̃ must be the unknown optimizer x∗, i.e.,

x̃ = x∗, so that (3) holds. Therefore, to design an algorithm that ensures (3)—where x∗ explicitly

appears, it suffices to make the algorithm satisfy both the conservation and dissipation conditions

(4) and (5)—where x∗ is implicitly encoded.

To this end, observe that (4) holds if and only if the x̂i(0)’s are such that
∑

i∈V f ′
i(x̂i(0)) = 0,

and the x̂i(k)’s are related to the x̂i(k − 1)’s through

∑

i∈V

f ′
i(x̂i(k)) =

∑

i∈V

f ′
i(x̂i(k − 1)), ∀k ∈ P. (6)

To satisfy
∑

i∈V f ′
i(x̂i(0)) = 0, it suffices that each node i ∈ V computes x∗i on its own and sets

x̂i(0) = x∗i , ∀i ∈ V, (7)

since f ′
i(x

∗
i ) = 0. To satisfy (6), consider a gossip algorithm, whereby at each iteration k ∈ P, a

pair u(k) = {u1(k), u2(k)} ∈ E(k) of one-hop neighbors u1(k) and u2(k) gossip and update their

x̂u1(k)(k) and x̂u2(k)(k), while the rest of the N nodes stay idle, i.e.,

x̂i(k) = x̂i(k − 1), ∀k ∈ P, ∀i ∈ V − u(k). (8)

With (8), equation (6) simplifies to

f ′
u1(k)

(x̂u1(k)(k)) + f ′
u2(k)

(x̂u2(k)(k)) = f ′
u1(k)

(x̂u1(k)(k − 1)) + f ′
u2(k)

(x̂u2(k)(k − 1)), ∀k ∈ P. (9)

Hence, all that is needed for (6) to hold is a gossip between nodes u1(k) and u2(k) to share their

fu1(k), fu2(k), x̂u1(k)(k − 1), and/or x̂u2(k)(k − 1), followed by a joint update of their x̂u1(k)(k) and

x̂u2(k)(k), which ensures (9).

Obviously, (9) alone does not uniquely determine x̂u1(k)(k) and x̂u2(k)(k). This suggests that

the available degree of freedom may be used to account for the dissipation condition (5). Unlike
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the conservation condition (4), however, (5) is about where the x̂i(k)’s should approach as k →∞,

which nodes u1(k) and u2(k) cannot guarantee themselves since they are only responsible for two

of the N x̂i(k)’s. Nevertheless, given that all the N x̂i(k)’s should approach the same limit, nodes

u1(k) and u2(k) can help make this happen by imposing an equalizing condition

x̂u1(k)(k) = x̂u2(k)(k), ∀k ∈ P. (10)

With (10) added, there are now two equations with two variables, providing nodes u1(k) and u2(k)

a chance to uniquely determine x̂u1(k)(k) and x̂u2(k)(k) from (9) and (10).

The following proposition asserts that (9) and (10) always have a unique solution, so that the

evolution of the x̂i(k)’s is well-defined:

Proposition 2. With Assumption 1 and (7)–(10), x̂i(k) ∀k ∈ N ∀i ∈ V are well-defined, i.e.,

unambiguous and in X . Moreover, [min
i∈V

x̂i(k),max
i∈V

x̂i(k)] ⊂ [min
i∈V

x̂i(k − 1),max
i∈V

x̂i(k − 1)] ∀k ∈ P.

Proof. By induction on k ∈ N. By Assumption 1 and (7), x̂i(0) ∀i ∈ V are unambiguous and in X .

Next, let k ∈ P and suppose x̂i(k−1) ∀i ∈ V are unambiguous and in X . We show that so are x̂i(k)

∀i ∈ V. From (8), x̂i(k) ∀i ∈ V − u(k) are unambiguous and in X . To show that so are x̂u1(k)(k)

and x̂u2(k)(k), we show that (9) and (10) have a unique solution (x̂u1(k)(k), x̂u2(k)(k)) ∈ X
2. By

Lemma 1, there is a unique z ∈ X such that

f ′
u1(k)

(z) + f ′
u2(k)

(z) = f ′
u1(k)

(x̂u1(k)(k − 1)) + f ′
u2(k)

(x̂u2(k)(k − 1)), (11)

which satisfies z ∈ [mini∈u(k) x̂i(k − 1),maxi∈u(k) x̂i(k − 1)]. Setting x̂u1(k)(k) = x̂u2(k)(k) = z,

we see that (x̂u1(k)(k), x̂u2(k)(k)) is a solution to (9) and (10), confirming the existence. Now let

(a1, a2) ∈ X
2 and (b1, b2) ∈ X

2 be two solutions of (9) and (10). Then, due to (10), (9), and

Lemma 1, we have a1 = a2 = b1 = b2, confirming the uniqueness. Therefore, x̂i(k) ∀i ∈ V are

well-defined as desired. Finally, the second statement follows from (8) and the fact that x̂u1(k)(k) =

x̂u2(k)(k) ∈ [mini∈u(k) x̂i(k − 1),maxi∈u(k) x̂i(k − 1)] ∀k ∈ P.

Proposition 2 calls for a few remarks. First, the interval [mini∈V x̂i(k),maxi∈V x̂i(k)] can only

shrink or remain unchanged over time k. While this does not guarantee the dissipation condition

(5), it shows that the x̂i(k)’s are “trying” to converge and are, at the very least, bounded even if X

is not. Second, the proofs of Proposition 2 and Lemma 1 suggest a simple, practical procedure for

nodes u1(k) and u2(k) to solve (9) and (10) for (x̂u1(k)(k), x̂u2(k)(k)): apply a numerical root-finding

method, such as the bisection method with initial bracket [mini∈u(k) x̂i(k − 1),maxi∈u(k) x̂i(k − 1)],

to solve (11) for the unique z and then set x̂u1(k)(k) = x̂u2(k)(k) = z. Finally, since (11) always has

a unique solution z, we can eliminate z and write

x̂u1(k)(k) = x̂u2(k)(k) = (f ′
u1(k)

+ f ′
u2(k)

)−1(f ′
u1(k)

(x̂u1(k)(k − 1)) + f ′
u2(k)

(x̂u2(k)(k − 1))), ∀k ∈ P,

(12)
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where (f ′
i + f ′

j)
−1 : (f ′

i + f ′
j)(X ) → X denotes the inverse of the injective function f ′

i + f ′
j with its

codomain restricted to its range.

Expressions (7), (8), and (12) collectively define a gossip-style, distributed asynchronous itera-

tive algorithm that yields a switched, nonlinear, networked dynamical system

x̂i(k) =







(
∑

j∈u(k) f
′
j)

−1(
∑

j∈u(k) f
′
j(x̂j(k − 1))), if i ∈ u(k),

x̂i(k − 1), otherwise,
∀k ∈ P, ∀i ∈ V, (13)

with initial condition (7), and with (u(k))∞k=1 representing the sequence of gossiping nodes that

trigger the switchings. As this algorithm ensures the conservation condition (4), the state trajectory

(x̂1(k), x̂2(k), . . . , x̂N (k)) must remain on an (N−1)-dimensional manifoldM = {(x1, x2, . . . , xN ) ∈

XN :
∑

i∈V f ′
i(xi) = 0} ⊂ XN ⊂ R

N , makingM an invariant set. Given that the algorithm involves

repeated, pairwise equalizing of the x̂i(k)’s, we refer to it as Pairwise Equalizing (PE). PE may be

expressed in a compact algorithmic form as follows:

Algorithm 1 (Pairwise Equalizing).

Initialization:

1. Each node i ∈ V computes x∗i ∈ X , creates a variable x̂i ∈ X , and sets x̂i ← x∗i .

Operation: At each iteration:

2. A node with one or more one-hop neighbors, say, node i, initiates the iteration and selects a

one-hop neighbor, say, node j, to gossip. Nodes i and j select one of two ways to gossip by

labeling themselves as either nodes a and b, or nodes b and a, respectively, where {a, b} =

{i, j}. If node b does not know fa, node a transmits fa to node b. Node a transmits x̂a to

node b. Node b sets x̂b ← (f ′
a + f ′

b)
−1(f ′

a(x̂a) + f ′
b(x̂b)) and transmits x̂b to node a. Node a

sets x̂a ← x̂b. �

Due to space limitations, we omit remarks concerning the execution of Algorithm 1 and refer

the reader to an earlier, conference version of this paper [20].

Notice that PE does not rely on a stepsize parameter to execute, nor does it require the con-

struction of a (pseudo-)Hamiltonian cycle, as well as the concurrent use of a routing protocol for

multi-hop transmissions. Indeed, all it essentially needs is that every node is capable of applying

a root-finding method, maintaining a list of its one-hop neighbors, and remembering the functions

it learns along the way. Therefore, PE overcomes limitations L1–L3, while being rather easy to

implement—although computationally it is more demanding than the subgradient algorithms.

To show that PE asymptotically converges and, thus, circumvents L4, let x∗ = (x∗, x∗, . . . , x∗)

and x(k) = (x̂1(k), x̂2(k), . . . , x̂N (k)). Then, from Propositions 1 and 2, x∗ ∈ XN and x(k) ∈ XN

∀k ∈ N. In addition, due to (13), if x(k) = x∗ for some k ∈ N, then x(ℓ) = x∗ ∀ℓ > k. Hence, x∗ is

an equilibrium point of the system (13). To show that limk→∞ x(k) = x∗, i.e., (3) holds, we seek to

construct a Lyapunov function. To this end, recall that for any strictly convex and differentiable
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function f : X → R, the first-order convexity condition says that

f(y) ≥ f(x) + f ′(x)(y − x), ∀x, y ∈ X , (14)

where the equality holds if and only if x = y. This suggests the following Lyapunov function

candidate V : XN ⊂ R
N → R, which exploits the convexity of the fi’s:

V (x(k)) =
∑

i∈V

fi(x
∗)− fi(x̂i(k))− f ′

i(x̂i(k))(x
∗ − x̂i(k)). (15)

Notice that V in (15) is well-defined. Moreover, due to Assumption 1 and (14), V is continuous

and positive definite with respect to x∗, i.e., V (x(k)) ≥ 0 ∀x(k) ∈ XN , where the equality holds if

and only if x(k) = x∗. Therefore, to prove (3), it suffices to show that

lim
k→∞

V (x(k)) = 0. (16)

The following lemma represents the first step toward establishing (16):

Lemma 2. Consider the use of PE described in Algorithm 1. Suppose Assumption 1 holds. Then,

for any given (u(k))∞k=1, (V (x(k)))∞k=0 is non-increasing and satisfies

V (x(k)) − V (x(k − 1)) = −
∑

i∈u(k)

fi(x̂i(k)) − fi(x̂i(k − 1)) − f ′
i(x̂i(k − 1))(x̂i(k)− x̂i(k − 1)),

∀k ∈ P. (17)

Proof. Let (u(k))∞k=1 be given. Then, from (15) and (13), we have V (x(k)) − V (x(k − 1)) =

−
∑

i∈u(k) fi(x̂i(k)) − fi(x̂i(k − 1)) + f ′
i(x̂i(k))x

∗ − f ′
i(x̂i(k − 1))x∗ − f ′

i(x̂i(k))x̂i(k) + f ′
i(x̂i(k −

1))x̂i(k − 1) ∀k ∈ P. Due to (13), −
∑

i∈u(k) f
′
i(x̂i(k))x

∗ cancels
∑

i∈u(k) f
′
i(x̂i(k − 1))x∗, while

∑

i∈u(k) f
′
i(x̂i(k))x̂i(k) becomes

∑

i∈u(k) f
′
i(x̂i(k − 1))x̂i(k). This proves (17). Note that the right-

hand side of (17) is nonpositive due to (14). Hence, (V (x(k)))∞k=0 is non-increasing.

Lemma 2 has several implications. First, upon completing each iteration k ∈ P by any two nodes

u1(k) and u2(k), the value of V must either decrease or, at worst, stay the same, where the latter

occurs if and only if x̂u1(k)(k−1) = x̂u2(k)(k−1). Second, since (V (x(k)))∞k=0 is non-increasing irre-

spective of (u(k))∞k=1, V in (15) may be regarded as a common Lyapunov function for the nonlinear

switched system (13), which has as many as N(N−1)
2 different dynamics, corresponding to the N(N−1)

2

possible gossiping pairs. Finally, the first-order convexity condition (14) can be used not only to

form the common Lyapunov function V , but also to characterize drops in its value in (17) after every

gossip. This is akin to how quadratic functions may be used to form a common Lyapunov function

V (k) = xT (k)Px(k) for a linear switched system x(k+1) = A(k)x(k), A(k) ∈ {A1, A2, . . . , AM}, as

well as to characterize drops in V (k) via V (k+1)−V (k) = xT (k)(AT
i PAi−P )x(k) = −xT (k)Qix(k).

Indeed, as we will show later, when problem (2) specializes to an averaging problem, where the

nonlinear switched system (13) becomes linear, both V and its drop become quadratic functions.
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As (V (x(k)))∞k=0 is nonnegative and non-increasing, limk→∞ V (x(k)) exists and is nonnegative.

This, however, is insufficient for us to conclude that limk→∞ V (x(k)) = 0, since, for some patho-

logical gossiping patterns, limk→∞ V (x(k)) can be positive (see [20] for examples). Thus, some

restrictions must be imposed on the gossiping pattern, in order to establish (16). To this end, let

E∞ = {{i, j} : u(k) = {i, j} for infinitely many k ∈ P}, so that a link {i, j} is in E∞ if and only if

nodes i and j gossip with each other infinitely often. Then, we may state the following restriction on

the gossiping pattern, which was first adopted in [18] and is not difficult to satisfy in practice [20]:

Assumption 2. The sequence (u(k))∞k=1 is such that the graph (V, E∞) is connected.

The following theorem says that, under Assumption 2 on the gossiping pattern, PE ensures

asymptotic convergence of all the x̂i(k)’s to x∗, circumventing limitation L4:

Theorem 1. Consider the use of PE described in Algorithm 1. Suppose Assumptions 1 and 2 hold.

Then, (16) and (3) hold.

Proof. See Appendix A.1.

Finally, we point out that the above results may be viewed as a natural generalization of some

known results in distributed averaging. Consider a special case where each node i ∈ V observes

not an arbitrary function fi, but a quadratic one of the form fi(x) =
1
2(x− yi)

2 + ci with domain

X = R and parameters yi, ci ∈ R. In this case, finding the unknown optimizer x∗ amounts

to calculating the network-wide average 1
N

∑

i∈V yi of the node “observations” yi’s, so that the

convex optimization problem (2) becomes an averaging problem. In addition, initializing the node

estimates x̂i(0)’s simply means setting them to the yi’s, and equalizing x̂u1(k)(k) and x̂u2(k)(k)

simply means averaging them, so that PE reduces to Pairwise Averaging [18] and Randomized

Gossip Algorithm [19]. Moreover, the invariant manifold M becomes the invariant hyperplane

M = {(x1, x2, . . . , xN ) ∈ R
N :

∑

i∈V xi =
∑

i∈V yi} in distributed averaging. Furthermore, both

the common Lyapunov function V in (15) and its drop in (17) take a quadratic form: V (x(k)) =
1
2(x(k) − x∗)T (x(k) − x∗) and V (x(k)) − V (x(k − 1)) = −1

2x
T (k − 1)Qu(k)x(k − 1) ∀k ∈ P, where

Q{i,j} ∈ R
N×N is a symmetric positive semidefinite matrix whose ii and jj entries are 1

2 , ij and ji

entries are −1
2 , and all other entries are zero. Therefore, the first-order-convexity-condition-based

Lyapunov function (15) generalizes the quadratic Lyapunov function in distributed averaging.

4 Pairwise Bisectioning

Although PE solves problem (2) and bypasses L1–L4, it requires one-time, one-way sharing of

the fi’s between gossiping nodes, which may be costly for certain fi’s, or impermissible for security

and privacy reasons. In this section, we develop another gossip algorithm that eliminates this

requirement at the expense of more real-number transmissions per iteration.
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Note that PE can be traced back to four defining equations (7)–(10), and that its drawback

of having to share the fi’s stems from having to solve (9) and (10). To overcome this drawback,

consider a gossip algorithm satisfying (7)–(9) and a new condition but not (10). Assuming, without

loss of generality, that x̂u1(k)(k − 1) ≤ x̂u2(k)(k − 1) ∀k ∈ P, this new condition can be stated as

x̂u1(k)(k − 1) ≤ x̂u1(k)(k) ≤ x̂u2(k)(k) ≤ x̂u2(k)(k − 1), ∀k ∈ P. (18)

Termed as the approaching condition, (18) says that at each iteration k ∈ P, nodes u1(k) and u2(k)

force x̂u1(k)(k) and x̂u2(k)(k) to approach each other while preserving their order. Observe that the

approaching condition (18) includes the equalizing condition (10) as a special case. Furthermore,

unlike (9) and (10), (9) and (18) do not uniquely determine x̂u1(k)(k) and x̂u2(k)(k). Rather, they

allow x̂u1(k)(k) and x̂u2(k)(k) to increase gradually from x̂u1(k)(k−1) and decrease accordingly from

x̂u2(k)(k − 1), respectively, until the two become equal.

The following lemma characterizes the impact of the non-uniqueness on the value of V :

Lemma 3. Consider (7)–(9) and (18). Suppose Assumption 1 holds. Then, for any given

(u(k))∞k=1, (V (x(k)))∞k=0 is non-increasing. Moreover, for any given k ∈ P and x(k − 1) ∈ XN ,

V (x(k)) strictly increases with x̂u2(k)(k)− x̂u1(k)(k) over [0, x̂u2(k)(k − 1)− x̂u1(k)(k − 1)].

Proof. Let (u(k))∞k=1 be given. Then, from (15), (8), and (9), we have V (x(k)) − V (x(k − 1)) =

−
∑

i∈u(k) fi(x̂i(k))−fi(x̂i(k−1))−f ′
i(x̂i(k−1))(x̂i(k)− x̂i(k−1))+(f ′

i(x̂i(k−1))−f ′
i(x̂i(k)))x̂i(k)

∀k ∈ P. Due to (9) and (18),
∑

i∈u(k)(f
′
i(x̂i(k − 1)) − f ′

i(x̂i(k)))x̂i(k) = (f ′
u1(k)

(x̂u1(k)(k − 1)) −

f ′
u1(k)

(x̂u1(k)(k)))(x̂u1(k)(k)−x̂u2(k)(k)) ≥ 0. This, along with (14), implies V (x(k))−V (x(k−1)) ≤ 0

∀k ∈ P. Now let k ∈ P and x(k − 1) ∈ XN be given. By Lemma 1, there exists a unique xeq ∈ X

such that
∑

i∈u(k) f
′
i(xeq) =

∑

i∈u(k) f
′
i(x̂i(k)). Also, xeq ∈ [x̂u1(k)(k), x̂u2(k)(k)]. Let xeq ∈ X

N be

such that its ith entry is xeq if i ∈ u(k) and x̂i(k − 1) otherwise. Then, it follows from (15), (8),

and (14) that V (x(k))−V (xeq) =
∑

i∈u(k) fi(xeq)− fi(x̂i(k))− f ′
i(x̂i(k))(xeq− x̂i(k)) ≥ 0. Because

fi(y)− fi(x)− f ′
i(x)(y − x) strictly increases with |y − x| for each fixed y ∈ X ∀i ∈ V and because

of (9) and (18), the second claim is true.

Lemma 3 says that the value of V can never increase. In addition, the closer x̂u1(k)(k) and

x̂u2(k)(k) get, the larger the value of V drops, and the drop is maximized when x̂u1(k)(k) and

x̂u2(k)(k) are equalized. These observations suggest that perhaps it is possible to design an algorithm

that only forces x̂u1(k)(k) and x̂u2(k)(k) to approach each other (as opposed to becoming equal) to

the detriment of a smaller drop in the value of V , but at the benefit of not having to share the fi’s.

The following algorithm, referred to as Pairwise Bisectioning (PB), shows that this is indeed the

case and utilizes a bisection step that allows x̂u1(k)(k) and x̂u2(k)(k) to get arbitrarily close:

Algorithm 2 (Pairwise Bisectioning).

Initialization:

1. Each node i ∈ V computes x∗i ∈ X , creates variables x̂i, ai, bi ∈ X , and sets x̂i ← x∗i .
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Operation: At each iteration:

2. A node with one or more one-hop neighbors, say, node i, initiates the iteration and selects a

one-hop neighbor, say, node j, to gossip. Node i transmits x̂i to node j. Node j sets aj ←

min{x̂i, x̂j} and bj ← max{x̂i, x̂j} and transmits x̂j to node i. Node i sets ai ← min{x̂i, x̂j}

and bi ← max{x̂i, x̂j}. Nodes i and j select the number of bisection rounds R ∈ P.

3. Repeat the following R times: Node j transmits f ′
j(

aj+bj
2 )− f ′

j(x̂j) to node i. Node i tests if

f ′
j(

aj+bj
2 )− f ′

j(x̂j) + f ′
i(

ai+bi
2 )− f ′

i(x̂i) ≥ 0. If so, node i sets bi ←
ai+bi

2 and transmits LEFT

to node j, and node j sets bj ←
aj+bj

2 . Otherwise, node i sets ai ←
ai+bi

2 and transmits

RIGHT to node j, and node j sets aj ←
aj+bj

2 . End repeat.

4. Node j transmits f ′
j(cj)− f ′

j(x̂j) to node i, where cj =
{ aj if x̂j ≤ aj

bj if x̂j ≥ bj
. Node i tests if

(

f ′
j(cj)−

f ′
j(x̂j) + f ′

i(ci) − f ′
i(x̂i)

)

(x̂i −
ai+bi

2 ) ≥ 0, where ci =
{

ai if x̂i ≤ ai
bi if x̂i ≥ bi

. If so, node i sets x̂i ←

(f ′
i)

−1(f ′
i(x̂i)− f ′

j(cj)+ f ′
j(x̂j)) and node j sets x̂j ← cj . Otherwise, node i transmits f ′

i(ci)−

f ′
i(x̂i) to node j and sets x̂i ← ci, and node j sets x̂j ← (f ′

j)
−1(f ′

j(x̂j)− f ′
i(ci) + f ′

i(x̂i)). �

Notice that Step 1 of PB is identical to that of PE except that each node i ∈ V creates

two additional variables, ai and bi, which are used in Step 2 to represent the initial bracket

[ai, bi] = [aj , bj ] = [min{x̂i, x̂j},max{x̂i, x̂j}] for bisection purposes. Step 3 describes execution

of the bisection method, where R ∈ P denotes the number of bisection rounds, which may be

different for each iteration (e.g., a large R may be advisable when x̂i and x̂j are very different).

Observe that upon completing Step 3, xeq ∈ [ai, bi] = [aj , bj ] ⊂ [min{x̂i, x̂j},max{x̂i, x̂j}] and

bi− ai = bj − aj =
1
2R
|x̂j − x̂i|, where xeq denotes the equalized value of x̂i and x̂j if PE were used.

Moreover, upon completing Step 4, xeq ∈ [min{x̂i, x̂j},max{x̂i, x̂j}] ⊂ [ai, bi] = [aj , bj ], where x̂i

and x̂j here represent new values. Therefore, upon completing each iteration k ∈ P,

|x̂u1(k)(k)− x̂u2(k)(k)| ≤
1

2R
|x̂u1(k)(k − 1)− x̂u2(k)(k − 1)|, ∀k ∈ P. (19)

Finally, note that unlike PE which requires two real-number transmissions per iteration, PB requires

as many as 3 +R or 4 +R. However, it allows the nodes to never share their fi’s.

The following theorem establishes the asymptotic convergence of PB under Assumption 2:

Theorem 2. Consider the use of PB described in Algorithm 2. Suppose Assumptions 1 and 2 hold.

Then, (16) and (3) hold.

Proof. See Appendix A.2.

As it follows from the above, PB represents an alternative to PE, which is useful when nodes

are either unable, or unwilling, to share their fi’s. Although not pursued here, it is straightforward

to see that PE and PB may be combined, so that equalizing is used when one of the gossiping

nodes can send the other its fi, and approaching is used when none of them can.
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5 Conclusion

In this paper, based on the ideas of conservation and dissipation, we have developed PE and PB,

two non-gradient-based gossip algorithms that enable nodes to cooperatively solve a class of convex

optimization problems over networks. Using Lyapunov stability theory and the convexity structure,

we have shown that PE and PB are asymptotically convergent, provided that the gossiping pattern

is sufficiently rich. We have also discussed several salient features of PE and PB, including their

comparison with the subgradient algorithms and their connection with distributed averaging.

A Appendix

A.1 Proof of Theorem 1

Suppose Assumption 1 holds and let (u(k))∞k=1 satisfying Assumption 2 be given. Consider the

following lemmas:

Lemma 4. Suppose Assumption 1 holds. Then, ∀[a, b] ⊂ X , there exists a continuous and strictly

increasing function γ : [0,∞)→ [0,∞) satisfying γ(0) = 0 and limd→∞ γ(d) =∞, such that ∀η > 0,

∀i ∈ V, ∀(x, y) ∈ [a, b]2, fi(y)− fi(x)− f ′
i(x)(y − x) ≤ η implies |y − x| ≤ γ−1(η).

Proof. Let [a, b] ⊂ X . For each i ∈ V, define gi : [a, b]
2 → R as gi(x, y) = fi(y)−fi(x)−f

′
i(x)(y−x).

Due to Assumption 1 and (14), gi(x, y) ≥ 0 ∀(x, y) ∈ [a, b]2, where the equality holds if and

only if x = y. Moreover, since f ′
i is strictly increasing and gi(x, y) can be written as gi(x, y) =

∫ y

x
(f ′

i(t)− f ′
i(x))dt, gi(x, y) is strictly increasing with |y− x| for each fixed x ∈ [a, b]. Furthermore,

because fi and f ′
i are continuous, gi is continuous. Next, for each d ∈ [0, b−a], let K(d) = {(x, y) ∈

[a, b]2 : |y − x| = d}. Also, for each i ∈ V, define γi : [0, b− a]→ R as γi(d) = min(x,y)∈K(d) gi(x, y).

Due to the compactness of K(d) ∀d ∈ [0, b − a] and the continuity of gi, γi is well-defined and

continuous. In addition, since gi(x, y) = 0 ∀(x, y) ∈ K(0), γi(0) = 0. Now pick any d1 and d2

such that 0 ≤ d1 < d2 ≤ b − a. Let (x2, y2) ∈ K(d2) be such that γi(d2) = gi(x2, y2). If y2 > x2,

then y2 − x2 = d2. In this case, ∃y1 ∈ [x2, y2) such that y1 − x2 = d1. Since gi(x2, y) is strictly

increasing with y for y ≥ x2, we have γi(d1) ≤ gi(x2, y1) < gi(x2, y2) = γi(d2). Similarly, if y2 < x2,

we also have γi(d1) < γi(d2). Hence, γi is strictly increasing. Finally, define γ : [0,∞) → [0,∞)

as γ(d) =
{ mini∈V γi(d) if d ∈ [0, b− a]

mini∈V γi(b−a)+d−(b−a) if d ∈ (b− a,∞)
. Note that γ(0) = 0 since γi(0) = 0 ∀i ∈ V, and

that limd→∞ γ(d) = ∞. Moreover, since γi is continuous and strictly increasing ∀i ∈ V, so is γ

on [0, b − a]. Also, observe that γ is continuous and strictly increasing on [b − a,∞). Thus, γ is

continuous and strictly increasing. Now let η > 0, i ∈ V, and (x, y) ∈ [a, b]2. Suppose gi(x, y) ≤ η.

If η ≤ γ(b−a), then |y−x| ≤ γ−1(η) because γ(|y−x|) ≤ γi(|y−x|) ≤ gi(x, y) ≤ η. If η > γ(b−a),

then |y − x| ≤ b− a < γ−1(η).
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Lemma 5. Suppose Assumption 1 holds. Then, ∀[a, b] ⊂ X , ∃β ∈ (0,∞) such that ∀i ∈ V,

∀(x, y) ∈ [a, b]2, fi(y)− fi(x)− f ′
i(x)(y − x) ≤ β|y − x|.

Proof. Let [a, b] ⊂ X and β = 1 + 2maxj∈V |f
′
j(b)|. Obviously, β > 0, and by Assumption 1,

β < ∞. Let i ∈ V and (x, y) ∈ [a, b]2. Since fi is continuously differentiable, by the Mean Value

Theorem, ∃c between x and y such that fi(y)− fi(x) = f ′
i(c)(y − x). This, along with the triangle

inequality and the fact that f ′
i is strictly increasing, implies that fi(y) − fi(x) − f ′

i(x)(y − x) =

(f ′
i(c)−f

′
i(x))(y−x) ≤ |f

′
i(c)−f

′
i(x)|·|y−x| ≤ (|f ′

i(c)|+|f
′
i(x)|)|y−x| ≤ 2|f ′

i(b)|·|y−x| ≤ β|y−x|.

Let a = mini∈V x̂i(0) and b = maxi∈V x̂i(0). Then, it follows from Proposition 2 that x̂i(k) ∈

[a, b] ⊂ X ∀k ∈ N ∀i ∈ V and from (4) and Lemma 1 that x∗ ∈ [a, b]. By Lemma 4, there

exists a continuous and strictly increasing function γ : [0,∞) → [0,∞) satisfying γ(0) = 0 and

limd→∞ γ(d) = ∞, such that ∀η > 0, ∀i ∈ V, ∀(x, y) ∈ [a, b]2, fi(y) − fi(x) − f ′
i(x)(y − x) ≤ η

implies |y − x| ≤ γ−1(η). Also, by Lemma 5, ∃β ∈ (0,∞) such that ∀i ∈ V, ∀(x, y) ∈ [a, b]2,

fi(y) − fi(x) − f ′
i(x)(y − x) ≤ β|y − x|. From Lemma 2, (V (x(k)))∞k=0 is nonnegative and non-

increasing. Thus, ∃c ≥ 0 such that limk→∞ V (x(k)) = c. To show that c must be zero, assume, to

the contrary, that c > 0. Let ǫ > 0 be given by ǫ = γ( c
4βN2 ). Then, ∃k1 ∈ N such that

c ≤ V (x(k)) < c+ ǫ, ∀k ≥ k1. (20)

Due to (20), V (x(k−1))−V (x(k)) < ǫ ∀k ≥ k1+1. Hence, from (14) and (17), fi(x̂i(k))−fi(x̂i(k−

1))−f ′
i(x̂i(k−1))(x̂i(k)−x̂i(k−1)) < ǫ ∀k ≥ k1+1 ∀i ∈ u(k). As a result, |x̂i(k)−x̂i(k−1)| ≤ γ−1(ǫ)

∀k ≥ k1 + 1 ∀i ∈ u(k). Because of this and (10),

|x̂i(k)− x̂j(k)| ≤ 2γ−1(ǫ), ∀k ≥ k1, ∀i, j ∈ u(k + 1). (21)

Now suppose maxi∈V x̂i(k1)−mini∈V x̂i(k1) > 2(N − 1)γ−1(ǫ). Then, ∃p, q ∈ V such that x̂q(k1)−

x̂p(k1) > 2γ−1(ǫ) and C1 ∪ C2 = V, where C1 = {i ∈ V : x̂i(k1) ≤ x̂p(k1)} and C2 = {i ∈ V : x̂i(k1) ≥

x̂q(k1)}. Next, we show by induction that ∀k ≥ k1, x̂i(k) ≤ x̂p(k1) ∀i ∈ C1 and x̂i(k) ≥ x̂q(k1)

∀i ∈ C2. Clearly, the statement is true for k = k1. For k ≥ k1+1, suppose x̂i(k−1) ≤ x̂p(k1) ∀i ∈ C1

and x̂i(k− 1) ≥ x̂q(k1) ∀i ∈ C2. Then, due to (21), ∀i ∈ C1, ∀j ∈ C2, {i, j} 6= u(k), i.e., u(k) ⊂ C1 or

u(k) ⊂ C2. It follows from (13) and Lemma 1 that x̂i(k) ≤ x̂p(k1) ∀i ∈ C1 and x̂i(k) ≥ x̂q(k1) ∀i ∈ C2,

completing the induction. Due again to (21), we have ∀i ∈ C1, ∀j ∈ C2, {i, j} 6= u(k) ∀k ≥ k1 + 1,

which violates Assumption 2. Consequently, maxi∈V x̂i(k1) −mini∈V x̂i(k1) ≤ 2(N − 1)γ−1(ǫ). It

follows from (4) and Lemma 1 that |x∗− x̂i(k1)| ≤ maxj∈V x̂j(k1)−minj∈V x̂j(k1) ≤ 2(N−1)γ−1(ǫ)

∀i ∈ V. Hence, V (x(k1)) ≤ β
∑

i∈V |x
∗ − x̂i(k1)| ≤ β · N · 2(N − 1)γ−1(ǫ) < c, which contradicts

(20). Therefore, c = 0, i.e., (16) holds, implying that (3) is satisfied.

A.2 Proof of Theorem 2

The proof is similar to that of Theorem 1. Let a, b, γ, and β be as defined in Appendix A.1.

Then, due to (8), (18), (4), and Lemma 1, we have x̂i(k) ∈ [a, b] ∀k ∈ N ∀i ∈ V and x∗ ∈ [a, b]. From
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Lemma 3, limk→∞ V (x(k)) = c for some c ≥ 0. To show that c = 0, assume to the contrary that

c > 0 and let ǫ be as defined in A.1. Then, (20) holds for some k1 ∈ N. It follows from the proof of

Lemma 3 that fi(x̂i(k))−fi(x̂i(k−1))−f ′
i(x̂i(k−1))(x̂i(k)− x̂i(k−1)) ≤ V (x(k−1))−V (x(k)) < ǫ

∀k ≥ k1+1 ∀i ∈ u(k). Thus, |x̂i(k)−x̂i(k−1)| ≤ γ−1(ǫ) ∀k ≥ k1+1 ∀i ∈ u(k). This, along with (19)

and the fact that R ∈ P, implies |x̂i(k)− x̂j(k)| ≤
2γ−1(ǫ)

1− 1

2R

≤ 4γ−1(ǫ) ∀k ≥ k1 ∀i, j ∈ u(k+1). Then,

using the same idea as in A.1, it can be shown that maxi∈V x̂i(k1)−mini∈V x̂i(k1) ≤ 4(N−1)γ−1(ǫ).

This leads to V (x(k1)) < c, which contradicts (20). Therefore, (16) and (3) hold.
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[15] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Incremental stochastic subgradient algorithms for

convex optimization,” SIAM Journal on Optimization, vol. 20, no. 2, pp. 691–717, 2009.

[16] ——, “Asynchronous gossip algorithms for stochastic optimization,” in Proc. IEEE Conference

on Decision and Control, Shanghai, China, 2009, pp. 3581–3586.

[17] ——, “Distributed stochastic subgradient projection algorithms for convex optimization,”

Journal of Optimization Theory and Applications, vol. 147, no. 3, pp. 516–545, 2010.

[18] J. N. Tsitsiklis, “Problems in decentralized decision making and computation,” Ph.D. Thesis,

Massachusetts Institute of Technology, Cambridge, MA, 1984.

[19] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE

Transactions on Information Theory, vol. 52, no. 6, pp. 2508–2530, 2006.

[20] J. Lu, C. Y. Tang, P. R. Regier, and T. D. Bow, “A gossip algorithm for convex consensus

optimization over networks,” in Proc. American Control Conference, Baltimore, MD, 2010,

pp. 301–308.

15


	1 Introduction
	2 Problem Formulation
	3 Pairwise Equalizing
	4 Pairwise Bisectioning
	5 Conclusion
	A Appendix
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2


