
ar
X

iv
:1

00
5.

20
12

v3
  [

m
at

h.
O

C
] 

 1
0 

A
pr

 2
01

1

Dual Averaging for Distributed Optimization:
Convergence Analysis and Network Scaling

John C. Duchi1 Alekh Agarwal1 Martin J. Wainwright1,2

jduchi@cs.berkeley.edu alekh@cs.berkeley.edu wainwrig@eecs.berkeley.edu

Department of Electrical Engineering and Computer Sciences1 Department of Statistics2

UC Berkeley, Berkeley, CA 94720 UC Berkeley, Berkeley, CA 94720

April 12, 2011

Abstract

The goal of decentralized optimization over a network is to optimize a global objective
formed by a sum of local (possibly nonsmooth) convex functions using only local computation
and communication. It arises in various application domains, including distributed tracking
and localization, multi-agent co-ordination, estimation in sensor networks, and large-scale op-
timization in machine learning. We develop and analyze distributed algorithms based on dual
averaging of subgradients, and we provide sharp bounds on their convergence rates as a function
of the network size and topology. Our method of analysis allows for a clear separation between
the convergence of the optimization algorithm itself and the effects of communication constraints
arising from the network structure. In particular, we show that the number of iterations re-
quired by our algorithm scales inversely in the spectral gap of the network. The sharpness of this
prediction is confirmed both by theoretical lower bounds and simulations for various networks.
Our approach includes both the cases of deterministic optimization and communication, as well
as problems with stochastic optimization and/or communication.

1 Introduction

The focus of this paper is the development and analysis of distributed algorithms for solving con-
vex optimization problems that are defined over networks. Such network-structured optimization
problems arise in a variety of application domains within the information sciences and engineer-
ing. For instance, problems such as multi-agent coordination, distributed tracking and localization,
estimation problems in sensor networks and packet routing are all naturally cast as distributed
convex minimization [BT89, LWHS02, LOT03, RN04, XBK07]. Common to these problems is the
necessity for completely decentralized computation that is locally light—so as to avoid overbur-
dening small sensors or flooding busy networks—and robust to periodic link or node failures. As a
second example, data sets that are too large to be processed quickly by any single processor present
related challenges. A canonical example that arises in statistical machine learning is the problem
of minimizing a loss function averaged over a large dataset (e.g., optimization in support vector
machines [CV95]). With terabytes of data, it is desirable to assign smaller subsets of the data to
different processors, and the processors must communicate to find parameters that minimize the
loss over the entire dataset. However, the communication should be efficient enough that network
latencies do not offset computational gains.

Distributed computation has a long history in optimization. Primal and dual decomposition
methods that lend themselves naturally to a distributed paradigm have been known for at least
fifty years, and their behavior is well understood (e.g., [DW60, Ber99]). The 1980s saw signifi-
cant interest in distributed detection, consensus, and minimization. The seminal work of Tsitsiklis
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and colleagues [Tsi84, TBA86, BT89] analyzed algorithms for minimization of a smooth function
f known to several agents while distributing processing of components of the parameter vector
x ∈ R

n. An important special case of network optimization—with much faster convergence rates
than those known for general distributed optimization—is consensus averaging, where each pro-
cessor in the network must agree on a single (vector-valued) variable. This is recovered from our
objective (1) by setting fi(x) = ‖x − θi‖22. A number of researchers have obtained sharp conver-
gence results for distributed consensus algorithms by studying network topology and using spectral
properties of random walks or path averaging arguments on the underlying graph structure (e.g.,
see [BGPS06, BDTV10, DSW08] and references therein). Allowing stochastic gradients also lets us
tackle distributed averaging with noise [XBK07]. Mosk-Aoyama et al. [MARS10] consider a prob-
lem related to our setup, minimizing

∑n
i=1 fi(xi) for xi ∈ R subject to linear equality constraints,

and they obtain rates of convergence dependent on network-conductance using an algorithm sim-
ilar to dual decomposition. More recently, a few researchers have shifted focus to problems in
which each processor locally has its own convex (potentially non-differentiable) objective func-
tion [NO09, LO09]. Whereas these initial papers treated the case of unconstrained optimization,
more recent work by Ram et al. [RNV10] analyzes a projected subgradient algorithm for distributed
minimization of non-smooth functions with constraints.

Our paper makes two main contributions. The first contribution is to provide a new simple
subgradient algorithm for distributed constrained optimization of a convex function; we refer to it as
a dual averaging subgradient method, since it is based on maintaining and forming weighted averages
of subgradients throughout the network. This approach is essentially different from previously
developed methods [NO09, LO09, RNV10], and these differences facilitate our analysis of network
scaling issues, meaning how convergence rates depend on network size and topology. Indeed, the
second main contribution of this paper is a careful analysis that demonstrates a close link between
convergence of the algorithm and the underlying spectral properties of the network. Our analysis
splits the convergence rate of the algorithm into two terms: an optimization term and a network
deviation term. We obtain the optimization penalty using techniques based on the optimization
literature, specifically building on results due to Nesterov [Nes09]. This splitting approach can also
be adapted to naturally handle issues such as constrained optimization, stochastic communication,
and stochastic optimization due to elegant properties of the dual averaging algorithm. On the
other hand, the network scaling terms are obtained using techniques from analysis of Markov
chains coupled with the distributed communication protocol. We show that the network deviation
terms we derive are sharp for our algorithm; in the special case of the consensus problem, these
terms are known to be near-optimal [BGPS06].

By comparison to previous work, our convergence results and proofs are different, and our
characterization of the network scaling terms are often much stronger. In particular, the conver-
gence rates given by the papers [NO09, LO09] grow exponentially in the number of nodes n in
the network. Nedić et al. [NOOT09] and Ram et al. [RNV10] provide a much tighter analysis
that yields convergence rates that scale polynomially in the network size, but are independent
of the network topology (apart from requiring strong connectedness and degree independent of
n). Specifically, Corollary 5.5 in the paper [RNV10] guarantees that their projected subgradient
algorithm—under the assumptions that the number of time steps is known a priori and the stepsize
is chosen optimally—obtains an ǫ-optimal solution to the optimization problem in O(n3/ǫ2) time.
Since this bound is essentially independent of network topology, it does not capture the intuition
that distributed algorithms should converge much faster on “well-connected” networks—expander
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graphs being a prime example—than on poorly connected networks (e.g., chains, trees or single
cycles). Johansson et al. [JRJ09] analyze a low communication peer-to-peer protocol that attains
rates dependent on network structure. However, in their algorithm only one node has a current
parameter value, while all nodes in our algorithm maintain good estimates of the optimum at all
time. This is important in online, streaming, and control problems where nodes are expected to
act or answer queries in real time. In additional comparison to previous work, our analysis gives
network scaling terms that are often substantially sharper. Our development yields an algorithm
with convergence rate that scales inversely in the spectral gap of the network. By exploiting known
results on spectral gaps for graphs with n nodes, we show that (disregarding logarithmic factors) our
algorithm obtains an ǫ-optimal solution in O(n2/ǫ2) iterations for a single cycle or path, O(n/ǫ2)
iterations for a two-dimensional grid, and O(1/ǫ2) iterations for a bounded degree expander graph.
Moreover, simulation results show an excellent agreement with these theoretical predictions.

Our analysis covers several settings for distributed minimization. We begin by studying fixed
communication protocols, which are of interest in a variety of areas such as cluster computing or
sensor networks with a fixed hardware-dependent protocol. We also investigate randomized com-
munication protocols as well as randomized network failures, which are often essential to handle
gracefully in wireless sensor networks and large clusters with potential node failures. Randomized
communication also provides an interesting tradeoff between communication savings and conver-
gence rates. In this setting, we obtain much sharper results than previous work by studying the
spectral properties of the expected transition matrix of a random walk on the underlying graph. We
also present an analysis of our algorithm with stochastic gradient information, which is not difficult
when combined with our initial theorems. We describe an extension for (structured) regularized
objectives that often arise in machine learning problems in Appendix D.

The remainder of this paper is organized as follows. Section 2 is devoted to a formal statement
of the problem and description of the dual averaging algorithm, whereas Section 3 states the main
results and consequences of our paper. Having stated our main results, in Section 4 we give a more
in-depth comparison of our work with other recent work. In Section 5, we state and prove basic
convergence results on the dual averaging algorithm, which we then exploit in Section 6 to derive
concrete results that depend on the spectral gap of the network. Sections 7 and 8 treat extensions
with noise, in particular algorithms with noisy communication and stochastic gradient methods
respectively. In Section 9, we present the results of simulations that confirm the sharpness of our
analysis.

Notation: We collect some notation used throughout the paper. We use 11 to denote the all-
ones vector. We also use standard asymptotic notation for sequences. If an and bn are positive
sequences, then an = O(bn) means that lim supn an/bn < ∞, whereas an = Ω(bn) means that
lim infn an/bn > 0. On the other hand, an = o(bn) means that limn an/bn = 0 and an = ω(bn)
means that limn an/bn = ∞. Finally, we write an = Θ(bn) if an = O(bn) and an = Ω(bn).

2 Problem set-up and algorithm

In this section, we provide a formal statement of the distributed minimization problem, and a
description of the distributed dual averaging algorithm.
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2.1 Distributed minimization

We consider an optimization problem based on functions that are distributed over a network. More
specifically, let G = (V,E) be an undirected graph over the vertex set V = {1, 2, . . . , n} with edge
set E ⊂ V × V . Associated with each i ∈ V is convex function fi : R

d → R, and our overarching
goal is to minimize the sum

f(x) =
1

n

n∑

i=1

fi(x),

subject to the constraint that x ∈ R
d belongs to some closed convex set X—that is, solve the

problem

min
x

1

n

n∑

i=1

fi(x) subject to x ∈ X . (1)

Each function fi is convex and hence sub-differentiable, but need not be smooth. We assume
without loss of generality that 0 ∈ X , since we can simply translate X . Each node i ∈ V is
associated with a separate agent, and each agent i maintains its own parameter vector xi ∈ R

d.
The graph G imposes communication constraints on the agents: in particular, agent i has local
access to only the objective function fi and can communicate directly only with its immediate
neighbors j ∈ N(i) := {j ∈ V | (i, j) ∈ E}.

Problems of this nature arise in a variety of application domains, and as motivation for the
analysis to follow, let us consider a few here. A first example is a sensor network, in which each
agent represents a sensor mote, equipped with a radio transmitter for communication, some basic
sensing devices, and some local memory and computational power. In environmental applications
of sensor networks, each mote i might take a measurement yi of the temperature, and the global
objective could be to compute the median of the measurements {y1, y2, . . . , yn}. This median
computation problem can be formulated as minimizing the scalar objective function 1

n

∑n
i=1 fi(x),

where fi(x) = |x − yi|. Similar formulations apply to the problem of computing other statistics
such as means, variances, quantiles and other M -estimators.

A second motivating example is the machine learning problem first described in Section 1.
In this case, the set X is the parameter space of the statistician or learner. Each function fi is
the empirical loss over the subset of data assigned to the ith processor, and assuming that each
subset is of equal size (or that the fi are normalized suitably), the average f is the empirical loss
over the entire dataset. Here we use cluster computing as our computational model, where each
processor is a node in the cluster, and the graph G contains edges between those processors that
are directly connected with small network latencies. A special case of our optimization problem
within this computational model is the distributed perceptron, recently considered by McDonald
et al. [MHM10].

2.2 Standard dual averaging

Our algorithm is based on a projected dual averaging algorithm [Nes09], designed for minimization
of a (potentially nonsmooth) convex function f subject to the constraint x ∈ X . We begin by
describing the standard version of this algorithm, and then discuss the extensions for the distributed
setting of interest in this paper.
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The dual averaging scheme is based on a proximal function ψ : Rd → R that is assumed to be
1-strongly convex with respect to some norm ‖·‖—more precisely, the proximal function satisfies

ψ(y) ≥ ψ(x) + 〈∇ψ(x), y − x〉+ 1

2
‖x− y‖2 for all x, y ∈ X .

In addition, we assume that ψ(x) ≥ 0 for all x ∈ X and that ψ(0) = 0; these are standard
assumptions that can be made without loss of generality. Examples of such proximal function and
norm pairs include:

• the quadratic ψ(x) = 1
2

∥∥x
∥∥2
2
, which is the canonical proximal function. Clearly 1

2

∥∥0
∥∥2
2
= 0,

and 1
2

∥∥x
∥∥2
2
is strongly convex with respect to the ℓ2-norm for x ∈ R

d.

• the entropic function ψ(x) =
∑d

i=1 xi log xi − xi, which is strongly convex with respect to the
ℓ1-norm for x in the probability simplex, {x | x � 0, 〈x, 11〉 = 1}.

We assume that each function fi is L-Lipschitz with respect to the same norm ‖·‖—that is,

|fi(x)− fi(y)| ≤ L ‖x− y‖ for x, y ∈ X . (2)

There are many cost functions fi that satisfy this type of Lipschitz condition. For instance, it holds
for any convex function on a compact domain X , or for any polyhedral function on an arbitrary
domain [HUL96a]. Note that the Lipschitz condition (2) implies that for any x ∈ X and any
subgradient gi ∈ ∂fi(x), we have

‖gi‖∗ ≤ L,

where ‖·‖∗ denotes the dual norm to ‖·‖, defined by ‖v‖∗ : = sup‖u‖=1 〈v, u〉.
The dual averaging algorithm generates a sequence of iterates {x(t), z(t)}∞t=0 contained within

X ×R
d according to the following steps. At time step t of the algorithm, it receives a subgradient

g(t) ∈ ∂f(x(t)), and then performs the updates

z(t+ 1) = z(t) + g(t) and x(t+ 1) = ΠψX (z(t+ 1), α(t)), (3)

where {α(t)}∞t=0 is a non-increasing sequence of positive stepsizes and

ΠψX (z, α) := argmin
x∈X

{
〈z, x〉 + 1

α
ψ(x)

}
(4)

is a type of projection. The intuition underlying this algorithm is as follows: given the current iterate
(x(t), z(t)), the next iterate x(t+ 1) to chosen to minimize an averaged first-order approximation
to the function f , while the proximal function ψ and stepsize α(t) > 0 enforce that the iterates
{x(t)}∞t=0 do not oscillate wildly. The algorithm is similar to the follow the perturbed leader and
lazy projection algorithms developed in the context of online optimization [KV05], though in this
form the algorithm seems to be originally due to Nesterov [Nes09]. In Section 5, we show that a
simple analysis of the convergence of the above procedure allows us to relate it to the distributed
algorithm we describe.
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2.3 Distributed dual averaging

We now consider an appropriate and novel extension of dual averaging to the distributed setting.
At each iteration t = 1, 2, 3, . . ., the algorithm maintains n pairs of vectors (xi(t), zi(t)) ∈ X × R

d,
with the ith pair associated with node i ∈ V . At iteration t, each node i ∈ V computes an element
gi(t) ∈ ∂fi(xi(t)) in the subdifferential of the local function fi and receives information about the
parameters {zj(t), j ∈ N(i)} associated with nodes j in its neighborhood N(i). Its update of
the current estimated solution xi(t) is based on a convex combination of these parameters. To
model this weighting process, let P ∈ Rn×n be a matrix of non-negative weights that respects the
structure of the graph G, meaning that for i 6= j, Pij > 0 only if (i, j) ∈ E. We assume that P is a
doubly stochastic matrix, so that

n∑

j=1

Pij =
∑

j∈N(i)

Pij = 1 for all i ∈ V,
n∑

i=1

Pij =
∑

i∈N(j)

Pij = 1 for all j ∈ V.

Using this notation, given the non-increasing sequence {α(t)}∞t=0 of positive stepsizes, each node
i ∈ V = {1, 2, . . . , n} performs the updates

zi(t+ 1) =
∑

j∈N(i)

pijzj(t) + gi(t), and (5a)

xi(t+ 1) = ΠψX (zi(t+ 1), α(t)), (5b)

where the projection ΠψX was defined previously (4). In words, node i computes the new dual
parameter zi(t + 1) from a weighted average of its own subgradient gi(t) and the parameters
{zj(t), j ∈ N(i)} in its own neighborhood N(i), and then computes the next local iterate xi(t+ 1)
by a projection defined by the proximal function ψ and stepsize α(t) > 0.

In the sequel, we show convergence of the local sequence {xi(t)}∞t=1 to the optimum of (1) via
the running local average

x̂i(T ) =
1

T

T∑

t=1

xi(t). (6)

Note that this quantity is locally defined at node i and so can be computed in a distributed manner.
From the definition of updates, it is clear that each element of the sequence {zi(t)}∞t=0 is essentially
a weighted average of the gradients seen so far, which is a natural extension of dual averaging. At
the same time, as we shall see, the averaging of the dual parameters in the sequence {zi(t)}∞t=0

allows us to neatly sidestep the complexity arising from non-linearity of projections. We will thus
be able to generalize the algorithm from equations (5a) and (5b) to the case where P is random
and varies with time as well as when the vectors gi(t) are noisy versions of subgradients, satisfying
only E[gi(t)] ∈ ∂fi(xi(t)).

3 Main results and consequences

We will now state the main results of this paper and illustrate some of their consequences. We give
the proofs and a deeper investigation of related corollaries at length in the sections that follow.
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3.1 Convergence of distributed dual averaging

We start with a result on the convergence of the distributed dual averaging algorithm that provides a
decomposition of the error into an optimization term and the cost associated with network commu-
nication. In order to state this theorem, we define the averaged dual variable z̄(t) := 1

n

∑n
i=1 zi(t),

and we recall the definition (6) of the local average x̂i(T ).

Theorem 1 (Basic convergence result). Let the sequences {xi(t)}∞t=0 and {zi(t)}∞t=0 be generated
by the updates (5a) and (5b) with step size sequence {α(t)}∞t=0. Then for any x∗ ∈ X and for each
node i ∈ V , we have

f(x̂i(T ))− f(x∗) ≤ 1

Tα(T )
ψ(x∗) +

L2

2T

T∑

t=1

α(t− 1)

+
2L

nT

T∑

t=1

n∑

j=1

α(t) ‖z̄(t)− zj(t)‖∗ +
L

T

T∑

t=1

α(t) ‖z̄(t)− zi(t)‖∗ . (7)

Theorem 1 guarantees that after T steps of the algorithm, every node i ∈ V has access to a
locally defined quantity x̂i(T ) such that the difference f(x̂i(T )) − f(x∗) is upper bounded by a
sum of four terms. The first two terms in the upper bound (7) are optimization error terms that
are common to subgradient algorithms. The third and fourth terms are penalties incurred due to
having different estimates at different nodes in the network, and they measure the deviation of each
node’s estimate of the average gradient from the true average gradient.1 Thus, roughly, Theorem 1
ensures that as long the bound on the deviation ‖z̄(t)− zi(t)‖∗ is tight enough, for appropriately
chosen α(t) (say α(t) ≈ 1/

√
t), the error of x̂i(T ) is small uniformly across all nodes i ∈ V , and

asymptotically approaches 0. See Theorem 2 in the next section for a precise statement of rates.
It is worthwhile comparing the optimization error term from the bound (7) to known results.

Subgradient descent on the average function f = 1
n

∑n
i=1 fi has identical convergence rate, as does

the randomized version of incremental subgradient descent [NB01]. However, the distributed na-
ture of the algorithm gives a computational advantage over full gradient descent—the gradient
computation requires O(1) computation per computer rather than O(n) on a single computer. To
highlight the benefits compared to incremental subgradient descent, consider the common problem
in machine learning and statistics of minimizing a loss on a large dataset. A randomized incre-
mental gradient descent method must access random subsets of data at every iteration, leading to
randomized disk seeks with high latency, which the distributed algorithm avoids. In addition, we
expect (and empirically see that this is indeed the case) our method to produce more stable iterates,
as we observe the gradients of all n functions at every round, albeit with a network communication
lag.

3.2 Convergence rates and network topology

We now turn to investigation of the effects of network topology on convergence rates. In this section,
we assume that the network topology is static and that communication occurs via a fixed doubly
stochastic weight matrix P at every round.2 Since P is doubly stochastic, it has largest singular

1The fact that the term ‖z̄(t)− zi(t)‖
∗
appears an extra time is no significant difficulty, as we will bound the

difference z̄(t)− zi(t) uniformly for all i when giving concrete convergence results.
2In later sections, we weaken these conditions.

7



value σ1(P ) = 1. As summarized in the following result, the convergence rate of the distributed
projection algorithm is controlled by the spectral gap γ(P ) := 1− σ2(P ) of the matrix P .

Theorem 2 (Rates based on spectral gap). Under the conditions and notation of Theorem 1,

suppose moreover that ψ(x∗) ≤ R2. With step size choice α(t) =
R
√

1−σ2(P )

4L
√
t

, we have

f(x̂i(T ))− f(x∗) ≤ 8
RL√
T

log(T
√
n)√

1− σ2(P )
for all i ∈ V .

To the best of our knowledge, this theorem is the first to establish a tight connection between
the convergence rate of distributed subgradient methods to the spectral properties of the underlying
network. In particular, the inverse dependence on the spectral gap 1−σ2(P ) is quite natural, since
it is well-known to determine the rates of mixing in random walks on graphs [LPW08], and the
propagation of information in our algorithm is integrally tied to the random walk on the underlying
graph with transition probabilities specified by P .

Using Theorem 2, one can derive explicit convergence rates for several classes of interesting
networks, and Figure 1 illustrates four different graph topologies that are of interest. As a first
example, the k-connected cycle in panel (a) is formed by placing n nodes on a circle and connecting
each node to its k neighbors on the right and left. For small k, the cycle graph is rather poorly
connected, and our analysis will show that this leads to slower convergence rates than other graphs
with better connectivity. The grid graph in two dimensions is obtained by connecting nodes to
their k nearest neighbors in axis-aligned directions. For instance, panel (b) shows an example of a
degree 4 grid graph in two-dimensions. Both the cycle and grid topologies are possible models for
clustered computing as well as sensor networks.

In panel (c), we show a random geometric graph, constructed by placing nodes uniformly at
random in [0, 1]2 and connecting any two nodes separated by a distance less than some radius r > 0.
These graphs are used to model the connectivity patterns of devices, such as wireless sensor motes,
that can communicate with all nodes in some fixed radius ball, and have been studied extensively
(e.g., [GK00, Pen03]). There are natural generalizations to dimensions d > 2 as well as to cases in
which the spatial positions are drawn from a non-uniform distribution.

Finally, panel (d) shows an instance of a bounded degree expander, which belongs to a special
class of sparse graphs that have very good mixing properties [Chu98]. Expanders are an attrac-
tive option for the network topology in distributed computation since they are known to have
large spectral gaps. For many random graph models, a typical sample is an expander with high
probability; for instance, a randomly chosen bipartite graph satisfies this property [Alo86], as do
random degree regular graphs [FKS89]. In addition, there are several deterministic constructions
of expanders that are degree regular (see Section 6.3 of Chung [Chu98] for further details). The
deterministic constructions are of interest because they can be used to design a network, while the
random constructions are of interest since they are often much simpler.

In order to state explicit convergence rates, we need to specify a particular choice of the matrix
P that respects the graph structure. Although many such choices are possible, here we focus on
the graph Laplacian [Chu98]. First, we let A ∈ R

n×n be the symmetric adjacency matrix of the
undirected graph G, satisfying Aij = 1 when (i, j) ∈ E and Aij = 0 otherwise. For each node
i ∈ V , we let δi = |N(i)| = ∑n

j=1Aij denote the degree of node i, and we define the diagonal

8



(a) (b) (c) (d)

Figure 1. Illustration of some graph classes of interest in distributed protocols. (a) A 3-connected
cycle. (b) Two-dimensional grid with 4-connectivity, and non-toroidal boundary conditions. (c) A
random geometric graph. (d) A random 3-regular expander graph.

matrix D = diag{δ1, . . . , δn}. We assume that the graph is connected, so that δi ≥ 1 for all i, and
hence D is invertible. With this notation, the (normalized) graph Laplacian is given by

L(G) = I −D−1/2AD−1/2.

Note that the graph Laplacian L = L(G) is always symmetric, positive semidefinite, and satisfies
LD1/211 = 0. Therefore, when the graph is degree-regular (δi = δ for all i ∈ V ), the standard
random walk with self loops on G given by the matrix P : = I − δ

δ+1L is doubly stochastic and is
valid for our theory. For non-degree regular graphs, we need to make a minor modification in order
to obtain a doubly stochastic matrix.

Letting δmax = maxi∈V δi denote the maximum degree, we define the modified matrix

Pn(G) := I − 1

δmax + 1

(
D −A

)
= I − 1

δmax + 1
D1/2LD1/2. (8)

This matrix is symmetric by construction, and moreover,
∑n

j=1(Dij − Aij) = Dii −
∑n

j=1Aij = 0
for all i ∈ V , so it is also doubly stochastic. Note that if the graph is δ-regular, then Pn(G)
is the standard choice above. Modulo a small technical detail about the ratios of δmax to δi
and the eigenvalue order of P (see Sec. 6.2), plugging Pn(G) from (8) above into Theorem 2
immediately relates the convergence of distributed dual averaging to the spectral properties of the
graph Laplacian, in particular, we have:

f(x̂i(T ))− f(x∗) = O
(
RL√
T

log(Tn)√
λn−1(L(G))

)
. (9)

The following result summarizes our conclusions for the choice of stochastic matrix in (8) via (9)
in application to different network topologies.

Corollary 1. Under the conditions of Theorem 2, we have the following convergence rates:

(a) For k-connected paths and cycles,

f(x̂i(T ))− f(x∗) = O
(
RL√
T

n log(Tn)

k

)
.
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(b) For k-connected
√
n×√

n grids,

f(x̂i(T ))− f(x∗) = O
(
RL√
T

√
n log(Tn)

k

)
.

(c) For random geometric graphs with connectivity radius r = Ω(
√

log1+ǫ n/n) for any ǫ > 0,

f(x̂i(T ))− f(x∗) = O
(
RL√
T

√
n

log n
log(Tn)

)

with high-probability.

(d) For expanders with bounded ratio of minimum to maximum node degree,

f(x̂i(T ))− f(x∗) = O
(
RL√
T

log(Tn)

)
.

Note that up to logarithmic factors, the optimization term in the convergence rate is always of
the order RL/

√
T , while the remaining terms vary depending on the network topology. Instead of

stating convergence rates, in order to understand scaling issues as a function of network size and
topology, it can be useful to re-state these results in terms of the number of iterations TG(ǫ;n)
required to achieve error ǫ for network type G with n nodes. As some special cases, Corollary 1
implies the following scalings:

• for the 1-connected single cycle graph, we have Tcycle(ǫ;n) = O(n2/ǫ2).

• for the two-dimensional grid, we have Tgrid(ǫ;n) = O(n/ǫ2), and

• for a bounded degree expander, we have Texp(ǫ;n) = O(1/ǫ2).

In general, Theorem 2 implies that at most

TG(ǫ;n) = O
( 1

ǫ2
· 1

1− σ2(Pn(G))

)
(10)

iterations are required to achieve an ǫ-accurate solution when using the matrix Pn(G) previously
defined in (8).

It is interesting to ask whether the upper bound (10) from our analysis is actually a sharp
result, meaning that it cannot be improved (up to constant factors). On one hand, it is known that
(even for centralized optimization algorithms), any subgradient method requires at least Ω

(
1
ǫ2

)

iterations to achieve ǫ-accuracy [NY83], so that the 1/ǫ2 term is unavoidable. The next proposition
addresses the complementary issue, namely whether the inverse spectral gap term is unavoidable
for the dual averaging algorithm. For the quadratic proximal function ψ(x) = 1

2 ‖x‖
2
2, the following

result establishes a lower bound on the number of iterations in terms of graph topology and network
structure:

Proposition 1. Consider the dual averaging algorithm (5a) and (5b) with quadratic proximal
function and communication matrix Pn(G). For any graph G with n nodes, the number of iterations
TG(c;n) required to achieve a fixed accuracy c > 0 is lower bounded as

TG(c;n) = Ω

(
1

1− σ2(Pn(G))

)
.

10



The proof of this result, given in Section 6.3, involves constructing a “hard” optimization problem
and lower bounding the number of iterations required for our algorithm to solve it. In conjunction
with Corollary 1, Proposition 1 implies that our predicted network scaling is sharp. Indeed, in
Section 9, we show that the theoretical scalings from Corollary 1—namely, quadratic, linear, and
constant in network size n—are well-matched in simulations of our algorithm.

3.3 Extensions to stochastic communication links

Our results also extend to the case when the communication matrix P is time-varying and random—
that is, the matrix P (t) is potentially different for each t and randomly chosen (but it P (t) still
obeys the constraints imposed by G). Such stochastic communication is of interest for a variety of
reasons. If there is an underlying dense network topology, we might want to avoid communicating
along every edge at each round to decrease communication and network congestion. For instance,
the use of a gossip protocol [BGPS06], in which one edge in the network is randomly chosen to
communicate at each iteration, allows for a more refined trade-off between communication cost
and number of iterations. Communication in real networks also incurs errors due to congestion or
hardware failures, and we can model such errors by a stochastic process.

The following theorem provides a convergence result for the case of time-varying random com-
munication matrices. In particular, it applies to sequences {xi(t)}∞t=0 and {zi(t)}∞t=0 generated by
the dual averaging algorithm with updates (5a) and (5b) with step size sequence {α(t)}∞t=0, but in
which pij is replaced with pij(t).

Theorem 3 (Stochastic communication). Let {P (t)}∞t=0 be an i.i.d. sequence of doubly stochastic
matrices, and define λ2(G) := λ2(E[P (t)

⊤P (t)]). For any x∗ ∈ X and i ∈ V , with probability at
least 1− 1/T , we have

f(x̂i(T ))− f(x∗) ≤ 1

Tα(T )
ψ(x∗) +

L2

2T

T∑

t=1

α(t− 1) +
3L2

T

(
6 log(T 2n)

1− λ2(G)
+

1

T
√
n
+ 2

) T∑

t=1

α(t).

We provide a proof of the theorem in Section 7. Note that the upper bound from the theorem
is valid for any sequence of non-increasing positive stepsizes {α(t)}∞t=0. The bound consists of three
terms, with the first growing and the last two shrinking as the stepsize choice is reduced. If we
assume that ψ(x∗) ≤ R2, then we can optimize the tradeoff between these competing terms, and

we find that the stepsize sequence α(t) ∝ R
√
1−λ2
L
√
t

approximately minimizes the bound bound in

the theorem. This yields the scaling

f(x̂i(T ))− f(x∗) ≤ c
RL√
T

· log(Tn)√
1− λ2(E[P (t)⊤P (t)])

, (11)

for a universal constant c. We can also boost the probability with which this result holds to 1−1/T k

for any k > 1—without modifying the algorithm—at the cost of incurring a slightly higher constant
penalty in the error bound.

The setting of stochastic communication for distributed optimization was previously considered
by Lobel and Ozdaglar [LO09]. They established convergence by assuming lower bounds on the
entries of P whenever two nodes communicated. As a consequence, their bounds grew exponentially

11



in the number of nodes n in the network.3 In contrast, the rates given here for stochastic communi-
cation are directly comparable to the convergence rates in the previous section for fixed transition
matrices. More specifically, we have inverse dependence on the spectral gap of the expected net-
work, and consequently polynomial scaling for any network, as well as faster rates dependent on
network structure.

3.4 Results for stochastic gradient algorithms

Finally, none of our convergence results rely on the gradients being correct. Specifically, we
can straightforwardly extend our results to the case of noisy gradients corrupted with zero-mean
bounded-variance noise. This setting is especially relevant in situations such as distributed learn-
ing or wireless sensor networks, when data observed is noisy. Let Ft be the σ-field containing all
information up to time t, that is, gi(1), . . . , gi(t) ∈ Ft and xi(1), . . . , xi(t + 1) ∈ Ft for all i. We
define a stochastic oracle that provides gradient estimates satisfying

E [ĝi(t) | Ft−1] ∈ ∂fi(xi(t)) and E

[
‖ĝi(t)‖2∗ | Ft−1

]
≤ L2. (12)

As a special case, this model includes an additive noise oracle that takes an element of the subgra-
dient ∂fi(xi(t)) and adds to it bounded variance zero-mean noise. Theorem 4 gives our result in
the case of stochastic gradients. We give the proof and further discussion in Section 8, noting that
because we adapt the dual averaging algorithm, the analysis follows quite cleanly from the earlier
analysis for the previous three theorems.

Theorem 4 (Stochastic gradient updates). Let the sequence {xi(t)}∞t=1 be as in Theorem 1, ex-
cept that at each round of the algorithm agent i receives a vector ĝi(t) from an oracle satisfying
condition (12). For each i ∈ V , we have

E

[
f(x̂i(T ))

]
− f(x∗) ≤ 1

Tα(T )
ψ(x∗) +

8L2

T

T∑

t=1

α(t− 1) +
3L2

T

log(T
√
n)

1− σ2(P )

T∑

t=1

α(t).

If we assume in addition that X has finite radius R : = supx∈X ‖x− x∗‖ and that ‖ĝi(t)‖∗ ≤ L,
then with probability at least 1− δ,

f(x̂i(T ))− f(x∗) ≤ 1

Tα(T )
ψ(x∗) +

8L2

T

T∑

t=1

α(t− 1) +
3L2

T

log(T
√
n)

1− σ2(P )

T∑

t=1

α(t) + 8LR

√
log 1

δ

T
.

If we further assume that the gradient estimates ĝi(t) are uncorrelated given Ft−1, then with prob-
ability at least 1− δ,

f(x̂i(T ))−f(x∗) ≤
1

Tα(T )
ψ(x∗)+

8L2

T

T∑

t=1

α(t−1)+
3L2

T

log(T
√
n)

1− σ2(P )

T∑

t=1

α(t)+
3LR log 1

δ

T
+4LR

√
log 1

δ

nT
.

As with the case of stochastic communication covered by Theorem 3, it should be clear that by

choosing the stepsize α(t) ∝ R
√

1−σ2(P )

L
√
t

, we have essentially the same optimization error guarantee

as the bound (11), but with λ2(E[P (t)
⊤P (t)]) replaced by σ2(P ).

3More precisely, inspection of the constant C in equation (37) of their paper shows that it is of order γ−2(n−1),
where γ is the lower bound on non-zero entries of P , so it is at least 4n−1.
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4 Related Work

Having stated and discussed our main results in the previous section, we can now more explicitly
compare the results in this paper to those in previous work. Our aim here is to give a clear
understanding of how our algorithm and results relate to and, in many cases, improve upon prior
results. Specifically, with the results of Theorem 2 and Corollary 1 in hand, we can more directly
compare our results to other work.

As discussed in the introduction, other researchers have designed algorithms for solving the
problem (1). Most previous work [LO09, NO09, NOOT09, RNV10] studies convergence of a (pro-
jected) gradient method in which each node i in the network maintains xi(t) ∈ X , and at time t
performs the update

xi(t+ 1) = argmin
x∈X

{1
2

∥∥ ∑

j∈N(i)

Pjixj(t)− αgi(t)
∥∥2
2

}
(13)

for gi(t) ∈ ∂fi(xi(t)). With the update (13), Corollary 5.5 in the paper [RNV10] shows that

f(x̂i(T ))− f(x∗) = O
(
αn3R2

T
+ αL2

)

(we use our notation and assumptions from Theorem 2). The above bound is minimized by setting
the stepsize α ∝ L

n3/2R
√
T
, giving convergence rate O(n3/2RL/

√
T ). It is clear that this convergence

rate is substantially slower than all the rates in Corollary 1.
The distributed dual averaging algorithm (5a)–(5b) is quite different from the update (13).

The use of the proximal function ψ allows us to address problems with non-Euclidean geometry,
which is useful, for example, for very high-dimensional problems or where the domain X is the
simplex (e.g. [NY83, Chapter 3]). The differences between the algorithms become more pronounced
in the analysis. Since we use dual averaging, we can avoid some technical difficulties introduced by
the projection step in the update (13). Precisely because of this technical issue, earlier works [NO09,
LO09] studied unconstrained optimization, and the averaging in zi(t) seems essential to the faster
rates our approach achieves as well as the ease with which we can extend our results to stochastic
settings.

In other related work, Johansson et al. [JRJ09] establish network-dependent rates for Markov
incremental gradient descent (MIGD), which maintains a single vector x(t) at all times. A token
i(t) determines an active node at time t, and at time step t + 1 the token moves to one of its
neighbors j ∈ N(i(t)), each with probability Pji(t). Letting gi(t)(t) ∈ ∂fi(t)(x(t)), the update is

x(t+ 1) = argmin
x∈X

{1
2

∥∥x(t)− αgi(t)(t)
∥∥2
2

}
. (14)

Johansson et al. show that with optimal setting of α and symmetric transition matrix P , MIGD has

convergence rate O(RLmaxi

√
nΓii
T ), where Γ is the return time matrix Γ = (I − P + 1111⊤/n)−1.

In this case, let λi(P ) ∈ [−1, 1] denote the ith eigenvalue of P . The eigenvalues of Γ are thus 1 and
1/(1 − λi(P )) for i > 1, and so we have

n max
i=1,...,n

Γii ≥ tr(Γ) = 1 +

n∑

i=2

1

1− λi(P )
> max

{
1

1− λ2(P )
,

1

1− λn(P )

}
=

1

1− σ2(P )
.
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Consequently, the bound in Theorem 2 is never weaker, and for certain graphs, our results are
substantially tighter, as shown in Corollary 1. For d-dimensional grids (where d ≥ 2) we have
T (ǫ;n) = O(n2/d/ǫ2), whereas MIGD scales as T (ǫ;n) = O(n/ǫ2). For well-connected graphs, such
as expanders and the complete graph, the MIGD algorithm scales as T (ǫ;n) = O(n/ǫ2), essentially
a factor of n worse than our results.

5 Basic convergence analysis for distributed dual averaging

In this section, we prove convergence of the distributed algorithm based on the updates (5a)
and (5b). We begin in Section 5.1 by defining some auxiliary quantities and establishing lem-
mas useful in the proof, and we prove Theorem 1 in Section 5.2.

5.1 Setting up the analysis

Using techniques related to those used in past work [NO09], we establish convergence via two
auxiliary sequences, given by

z̄(t) :=
1

n

n∑

i=1

zi(t) and y(t) := ΠψX (−z̄(t), α). (15)

We begin by showing that the average sum of gradients z̄(t) evolves in a very simple way. In
particular, we have

z̄(t+ 1) =
1

n

n∑

i=1

n∑

j=1

(
pijzj(t) + gi(t)

)

Consider the right-hand side above, let Z(t) = [z1(t) · · · zn(t)] be the matrix of vectors zi, and
denote P = [p1 · · · pn]. Since the matrix P is doubly stochastic, we have

1

n

n∑

i=1

n∑

j=1

pijzj(t) =
1

n
Z(t)P11 =

1

n
Z(t)11 = z̄(t),

which yields the evolution

z̄(t+ 1) = z̄(t) +
1

n

n∑

j=1

gj(t). (16)

Consequently, the (negative of the) averaged dual sequence {z̄(t)}∞t=0 evolves almost like standard
subgradient descent on the function f(x) =

∑n
i=1 fi(x)/n, the only difference being gi(t) is a

subgradient at xi(t) (which need not be the same as the subgradient gj(t) at xj(t)). The simple
evolution (16) of the averaged dual sequence allows us to avoid difficulties with the non-linearity
of projection that have been challenging in earlier work.

Before proceeding with the proof of Theorem 1, we state two useful results regarding the con-
vergence of the standard dual averaging algorithm, though we defer their proofs to Appendix A.
We begin by giving a convergence guarantee for the single-objective form of the dual averaging
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algorithm. Let {g(t)}∞t=1 ⊂ R
d be an arbitrary sequence of vectors, and consider the sequence

{x(t)}∞t=1 defined by

x(t+ 1) := argmin
x∈X

{ t∑

s=1

〈g(s), x〉+ 1

α(t)
ψ(x)

}
= ΠψX

( t∑

s=1

g(s), α(t)

)
. (17)

Lemma 2. For any non-increasing sequence {α(t)}∞t=0 of positive stepsizes, and for any x∗ ∈ X ,
we have

T∑

t=1

〈g(t), x(t) − x∗〉 ≤ 1

2

T∑

t=1

α(t− 1) ‖g(t)‖2∗ +
1

α(T )
ψ(x∗).

Next we state a lemma that allows us to restrict our analysis to the easier to analyze centralized
sequence {y(t)}∞t=0 from (15):

Lemma 3. Consider the sequences {xi(t)}∞t=1, {zi(t)}∞t=0, and {y(t)}∞t=0 defined according to equa-
tions (5a), (5b), and (15). Recall that each fi is L-Lipschitz. For each i ∈ V , we have

T∑

t=1

f(xi(t)) − f(x∗) ≤
T∑

t=1

f(y(t))− f(x∗) + L
T∑

t=1

α(t) ‖z̄(t)− zi(t)‖∗ .

Similarly, with the definitions ŷ(T ) := 1
T

∑T
t=1 y(t) and x̂i(T ) := 1

T

∑T
t=1 xi(t), we have

f(x̂i(T ))− f(x∗) ≤ f(ŷ(T ))− f(x∗) +
L

T

T∑

t=1

α(t) ‖z̄(t)− zi(t)‖∗ .

Equipped with these tools, we now turn the proof of Theorem 1.

5.2 Proof of Theorem 1

Our proof is based on analyzing the sequence {y(t)}∞t=0. Given an arbitrary x∗ ∈ X , we have

T∑

t=1

f(y(t))− f(x∗) =
T∑

t=1

1

n

n∑

i=1

fi(xi(t))− f(x∗) +
T∑

t=1

1

n

n∑

i=1

[fi(y(t)) − fi(xi(t))]

≤ 1

n

T∑

t=1

n∑

i=1

fi(xi(t))− f(x∗) +
T∑

t=1

n∑

i=1

L

n
‖y(t)− xi(t)‖ , (18)

where the inequality follows by the L-Lipschitz condition on fi.
Let gi(t) ∈ ∂fi(xi(t)) be a subgradient of fi at xi(t). Using convexity, we have the bound

1

n

T∑

t=1

n∑

i=1

fi(xi(t))− fi(x
∗) ≤ 1

n

T∑

t=1

n∑

i=1

〈gi(t), xi(t)− x∗〉 . (19)

Breaking up the right hand side of (19) into two pieces, we obtain

n∑

i=1

〈gi(t), xi(t)− x∗〉 =
n∑

i=1

〈gi(t), y(t)− x∗〉+
n∑

i=1

〈gi(t), xi(t)− y(t)〉 . (20)
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By definition of the updates for z̄(t) and y(t), we have

y(t) = argmin
x∈X

{
1

n

t−1∑

s=1

n∑

i=1

〈gi(s), x〉 +
1

α(t)
ψ(x)

}
.

Thus, we see that the first term in the decomposition (20) can be written in the same way as the
bound in Lemma 2, and as a consequence, we have the bound

1

n

T∑

t=1

〈
n∑

i=1

gi(t), y(t)− x∗
〉

≤ 1

2

T∑

t=1

α(t− 1)

∥∥∥∥
1

n

n∑

i=1

gi(t)

∥∥∥∥
2

∗
+

1

α(T )
ψ(x∗)

≤ L2

2

T∑

t=1

α(t− 1) +
1

α(T )
ψ(x∗). (21)

It remains to control the final two terms in the bounds (18) and (20). Since ‖gi(t)‖∗ ≤ L by
assumption, we have

T∑

t=1

n∑

i=1

L

n
‖y(t)− xi(t)‖ +

1

n

T∑

t=1

n∑

i=1

〈gi(t), xi(t)− y(t)〉

≤ 2L

n

T∑

t=1

n∑

i=1

‖y(t)− xi(t)‖

=
2L

n

T∑

t=1

n∑

i=1

∥∥∥ΠψX (−z̄(t), α(t)) −ΠψX (−zi(t), α(t))
∥∥∥ .

By the α-Lipschitz continuity of the projection operator ΠψX (·, α) (see Appendix A.3), we have

2L

n

T∑

t=1

n∑

i=1

∥∥∥ΠψX (z̄(t), α(t)) −ΠψX (zi(t), α)
∥∥∥ ≤ 2L

n

T∑

t=1

n∑

i=1

α(t) ‖z̄(t)− zi(t)‖∗ .

Combining this bound with (18) and (21) yields the running sum bound

T∑

t=1

[
f(y(t))− f(x∗)

]
≤ 1

α(T )
ψ(x∗) +

L2

2

T∑

t=1

α(t− 1) +
2L

n

T∑

t=1

n∑

j=1

α(t) ‖z̄(t)− zj(t)‖∗ . (22)

Applying Lemma 3 to (22) gives that
∑T

t=1[f(xi(t))− f(x∗)] is upper bounded by

1

α(T )
ψ(x∗) +

L2

2

T∑

t=1

α(t− 1) +
2L

n

T∑

t=1

n∑

j=1

α(t) ‖z̄(t)− zj(t)‖∗ + L

T∑

t=1

α(t) ‖z̄(t)− zi(t)‖∗ .

Dividing both sides by T and using convexity of f yields the bound (7).
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6 Convergence rates, spectral gap, and network topology

In this section, we will give concrete convergence rates for the distributed dual averaging algorithm
based on the mixing time of a random walk according to the doubly stochastic matrix P . The
understanding of the dependence of our convergence rates in terms of the underlying network
topology is crucial, because it can provide important cues to the system administrator in a clustered
computing environment or for the locations and connectivities of sensors in a sensor network. We
begin in Section 6.1 with the proof of Theorem 2. In Section 6.2, we prove the graph-specific
convergence rates stated in Corollary 1, whereas Section 6.3 contains a proof of the lower bound
stated in Proposition 1.

Throughout this section, we adopt the following notational conventions. For an n × n matrix
B, we call its singular values σ1(B) ≥ σ2(B) ≥ · · · ≥ σn(B) ≥ 0. For a real symmetric B, we use
λ1(B) ≥ λ2(B) ≥ . . . ≥ λn(B) to denote the n real eigenvalues of B. We let ∆n = {x ∈ R

n |
x � 0,

∑n
i=1 xi = 1} denote the n-dimensional probability simplex. We make frequent use of the

following standard inequality: for any positive integer t = 1, 2, . . . and any x ∈ ∆n,

∥∥P tx− 11/n
∥∥
TV

=
1

2

∥∥P tx− 11/n
∥∥
1
≤ 1

2

√
n
∥∥P tx− 11/n

∥∥
2
≤ 1

2
σ2(P )

t√n. (23)

For a brief review of the relevant standard Perron-Frobenius and matrix theory, we refer the reader
to Appendix B.

6.1 Proof of Theorem 2

We focus on controlling the network error term in the bound (7), namely the quantity

L

n

T∑

t=1

n∑

i=1

α(t) ‖z̄(t)− zi(t)‖∗ .

Define the matrix Φ(t, s) = P t−s+1 (in the sequel we allow the stochastic matrix P to change as
a function of time). Let [Φ(t, s)]ji be the jth entry of the ith column of Φ(t, s). Then via a bit of
algebra, we can write

zi(t+ 1) =

n∑

j=1

[Φ(t, s)]jizj(s) +

t∑

r=s+1

( n∑

j=1

[Φ(t, r)]jigj(r − 1)

)
+ gi(t). (24)

Clearly the above reduces to the standard update (5a) when s = t. Since z̄(t) evolves simply
as in (16), we assume that zi(0) = z̄(0) to avoid notational clutter—we can simply start with
zi(0) = 0—and use (24) to see

z̄(t)− zi(t) =

t−1∑

s=1

n∑

j=1

(1/n − [Φ(t− 1, s)]ji)gj(s − 1) +

(
1

n

n∑

j=1

(gj(t− 1)− gi(t− 1))

)
. (25)
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We use the fact that ‖gi(t)‖∗ ≤ L for all i and t and (25) to see that

‖z̄(t)− zi(t)‖∗ =
∥∥∥∥
t−1∑

s=1

n∑

j=1

(1/n − [Φ(t− 1, s)]ji)gj(s − 1) +

(
1

n

n∑

j=1

gj(t− 1)− gi(t− 1)

)∥∥∥∥
∗

≤
t−1∑

s=1

n∑

j=1

‖gj(s − 1)‖∗ |(1/n) − [Φ(t− 1, s)]ji|+
1

n

n∑

i=1

‖gj(t− 1)− gi(t− 1)‖∗

≤
t−1∑

s=1

L ‖[Φ(t− 1, s)]i − 11/n‖1 + 2L. (26)

Now we break the sum in (26) into two terms separated by a cutoff point t̂. The first term
consists of “throwaway” terms, that is, timesteps s for which the Markov chain with transition
matrix P has not mixed, while the second consists of steps s for which ‖[Φ(t− 1, s)]i − 11/n‖1 is
small. Note that the indexing on Φ(t− 1, s) = P t−s+1 implies that for small s, Φ(t− 1, s) is close
to uniform. From (23), ‖[Φ(t, s)]j − 11/n‖1 ≤

√
nσ2(P )

t−s+1. Hence, if

t− s ≥ log ǫ−1

log σ2(P )−1
− 1 we immediately have ‖[Φ(t, s)]j − 11/n‖1 ≤

√
nǫ

Thus, by setting ǫ−1 = T
√
n, for t− s+ 1 ≥ log(T

√
n)

log σ2(P )−1 , we have

‖[Φ(t, s)]j − 11/n‖1 ≤
1

T
. (27)

For larger s, we simply have ‖[Φ(t, s)]j − 11/n‖1 ≤ 2. The above suggests that we split the sum at

t̂ = log T
√
n

log σ2(P )−1 . We break apart the sum in (26) and use (27) to see that since t − 1 − (t − t̂) = t̂

and there are at most T steps in the summation,

‖z̄(t)− zi(t)‖∗ ≤ L

t−1∑

s=t−t̂

‖Φ(t− 1, s)ei − 11/n‖1 + L

t−1−t̂∑

s=1

‖Φ(t− 1, s)ei − 11/n‖1 + 2L

≤ 2L
log(T

√
n)

log σ2(P )−1
+ 3L ≤ 2L

log(T
√
n)

1− σ2(P )
+ 3L. (28)

The last inequality follows from the concavity of log(·), since log σ2(P )
−1 ≥ 1− σ2(P ).

Combining (28) with the running sum bound in (22) of the proof of the basic theorem, Theo-
rem 1, we immediately see that for x∗ ∈ X ,

T∑

t=1

f(y(t))− f(x∗) ≤ 1

α(T )
ψ(x∗) +

L2

2

T∑

t=1

α(t− 1) + 6L2
T∑

t=1

α(t) + 4L2 log(T
√
n)

1− σ2(P )

T∑

t=1

α(t). (29)

Appealing to Lemma 3 allows us to obtain the same result on the sequence xi(t) with slightly worse
constants. Note that

∑T
t=1 t

−1/2 ≤ 2
√
T − 1. Thus, using the assumption that ψ(x∗) ≤ R2, using

convexity to bound f(ŷ(T )) ≤ 1
T

∑T
t=1 f(y(t)) (and similarly for x̂i(T )), and setting α(t) as in the

statement of the theorem completes the proof.
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6.2 Proof of Corollary 1

The corollary is based on bounding the spectral gap of the matrix Pn(G) from equation (8).

Lemma 4. The matrix Pn(G) satisfies the bound

σ2(Pn(G)) ≤ max
{
1− mini δi

δmax + 1
λn−1(L),

δmax

δmax + 1
λ1(L)− 1

}
.

Proof By a theorem of Ostrowski on congruent matrices (cf. Theorem 4.5.9, [HJ85]), we have

λk(D
1/2LD1/2) ∈

[
min
i
δiλk(L),max

i
δiλk(L)

]
. (30)

Since LD1/211 = 0, we have λn(L) = 0, and so it suffices to focus on λ1(D
1/2LD1/2) and λn−1(D

1/2LD1/2).
From the definition (8), the eigenvalues of P are of the form 1 − (δmax + 1)−1λk(D

1/2LD1/2).
The bound (30) coupled with the fact that all the eigenvalues of L are non-negative implies that
σ2(P ) = maxk<n

{∣∣1− (δmax + 1)−1λk(D
1/2LD1/2)

∣∣} is upper bounded by the larger of

1− δmin

δmax + 1
λn−1(L) and

δmax

δmax + 1
λ1(L)− 1.

Much of spectral graph theory is devoted to bounding λn−1(L) sufficiently far away from zero, and
Lemma 4 allows us to conveniently leverage such results for bounding the convergence rate of our
algorithm.

Note that computing the upper bound in Lemma 4 requires controlling both λn−1(L) and
λ1(L). In order to circumvent this complication, we use the well-known idea of a “lazy” random
walk [Chu98, LPW08], in which we replace P by 1

2(I + P ). The resulting symmetric matrix has
the same eigenstructure as P , and moreover, we have

σ2

(1
2
(I+P )

)
= λ2

(1
2
(I+P )

)
= λ2

(
I− 1

2(δmax + 1)
D1/2LD1/2

)
≤ 1− δmin

2(δmax + 1)
λn−1(L). (31)

Consequently, it is sufficient to bound only λn−1(L), which is more convenient from a technical
standpoint. The convergence rate implied by the lazy random walk through Theorem 2 is no worse
than twice that of the original walk, which is insignificant for the analysis in this paper.

We are now equipped to address each of the graph classes covered by Corollary 1.

Cycles and paths: Recall the regular k-connected cycle from Figure 1(a), constructed by placing
the n nodes on a circle and connecting every node to k neighbors on the right and left. For this
graph, the Laplacian L is a circulant matrix with diagonal entries 1 and off-diagonal non-zero
entries −1/2k. Known results on circulant matrices (see Chapter 3 of Gray [Gra06]) imply that it
has mth eigenvalue

λm(L) = 1− 1

2k

k∑

j=1

exp (−2πijm/n) − 1

2k

k∑

j=1

exp (−2πi(n− j)m/n) = 1− 1

k

k∑

j=1

cos

(
2πjm

n

)
.
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For m = n− 1 and k = o(n), the last equation can be massaged into [BGPS06, Section VI.A]

λn−1(L) = 1− cos

(
2πk

n

)
+Θ

(
k4

n4

)
.

By performing a Taylor expansion of cos(·), we see that λn−1(L) = Θ
(
k2

n2

)
for k = o(n).

Now consider the regular k-connected path, a path in which each node is connected to the k
neighbors on its right and left. By computing Cheeger constants (see Lemma 6 in Appendix C), we
see that if k ≤ √

n, then λn−1(L) = Θ(k2/n2). Note also that for the k-connected path on n nodes,
mini δi = k and δmax = 2k. Thus, we can combine the previous two paragraphs with Lemma 4 to
see that for regular k-connected paths or cycles with k ≤ √

n,

σ2(P ) = 1−Θ

(
k2

n2

)
. (32)

Substituting the bound (32) into Theorem 2 yields the claim of Corollary 1(a).

Regular grids: Now consider the case of a
√
n-by-

√
n grid, focusing specifically on regular k-

connected grids, in which any node is joined to every node that is fewer than k horizontal or
vertical edges away in an axis-aligned direction. In this case, we use results on Cartesian products
of graphs [Chu98, Section 2.6] to analyze the eigen-structure of the Laplacian. In particular, the
toroidal

√
n-by-

√
n k-connected grid is simply the Cartesian product of two regular k-connected

cycles of
√
n nodes. The second smallest eigenvalue of a Cartesian product of graphs is half the

minimum of second-smallest eigenvalues of the original graphs [Chu98, Theorem 2.13]. Thus, based
on the preceding discussion of k-connected cycles, we conclude that if k = o(

√
n), then we have

λn−1(L) = Θ(k2/n). For a non-toroidal
√
n-by-

√
n grid (in which the network is not “wrapped”

on its boundaries, as in Figure 1(b)), we use the previous discussion of regular k-connected paths,
since the grid is the Cartesian product of two k-connected paths of

√
n nodes. We immediately see

that λn−1(L) = Θ(k2/n). In both cases, for
√
n-by-

√
n k-connected grids, we use Lemma 4 and

(31) to see that for k ≤ n1/4,

σ2(P ) = 1−Θ

(
k2

n

)
. (33)

The result in Corollary 1(b) immediately follows.

Random geometric graphs: Using the proof of Lemma 10 from Boyd et al. [BGPS06], we see

that for any ǫ > 0, if r =
√

log1+ǫ n/(nπ), then with probability at least 1− 2/nc−1,

min
i
δi ≥ log1+ǫ n−

√
2c log n and max

i
δi ≤ log1+ǫ n+

√
2c log n. (34)

Thus, letting L be the graph Laplacian of a random geometric graph, if we can bound λn−1(L),
(34) coupled with Lemma 4 will control the convergence rate of our algorithm.

Recent work of von Luxburg et al. [vLRH10] gives concentration results on the second-smallest
eigenvalue of a geometric graph. In particular, their Theorem 3 says that there are universal
constants c1, . . . , c5 > 0 such that with probability at least 1−c1n exp(−c2nr2)−c3 exp(−c4nr2)/r2,
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λn−1(L) ≥ c5r
2. Parsing this a bit, we see that if r = ω(

√
log n/n), then with exceedingly high

probability, λn−1(L) = Ω(r) = ω(log n/n). Using (34), we see that for r = (log1+ǫ n/n)1/2,

mini δi
maxi δi

= Θ(1) and λn−1(L) = Ω

(
log1+ǫ n

n

)

with high probability. Combining the above equation with Lemma 4 and (31), we have

σ2(P ) = 1− Ω

(
log1+ǫ n

n

)
. (35)

Thus we have obtained the result of Corollary 1(c). Our bounds show that a grid and a random
geometric graph exhibit the same convergence rate up to logarithmic factors.

Expanders: The constant spectral gap in expanders [Chu98, Chapter 6] removes any penalty
due to network communication (up to logarithmic factors), and hence yields Corollary 1(d).

6.3 Proof of Proposition 1

We now give a proof of Proposition 1, which shows that the dependence of our convergence rates
on the spectral gap is tight. The proof is based on construction of a set of objective functions fi
that force convergence to be slow by using the second eigenvector of the communication matrix P .

Recall that 11 ∈ R
n is the eigenvector of P corresponding to its largest eigenvalue (equal to

1). Let v ∈ R
n be the eigenvector of P corresponding to its second singular value, σ2(P ). By

using the lazy random walk defined in Section 6.2, we may assume without loss of generality that
λ2(P ) = σ2(P ). Let w = v

‖v‖
∞

be a normalized version of the second eigenvector of P , and note

that
∑n

i=1wi = 0. Without loss of generality, we assume that there is an index i for which wi = −1
(otherwise we can flip signs in what follows); moreover, by re-indexing as needed, we may assume
that w1 = −1. We set X = [−1, 1] ⊂ R, and define the univariate functions fi(x) := (c+wi)x, so
that the global problem is to minimize

1

n

n∑

i=1

fi(x) =
1

n

n∑

i=1

(c+ wi)x = cx

for some constant c > 0 to be chosen. Note that each fi is c+1-Lipschitz. By construction, we see
immediately that x∗ = −1 is optimal for the global problem.

Now consider the evolution of the {z(t)}∞t=0 ⊂ R
n, as generated by the update (5a). By con-

struction, we have gi(t) = c + wi for all t = 1, 2, . . .. Defining the vector g = (c11 + w) ∈ R
n, we

have the evolution

z(t+ 1) = Pz(t) + g = P 2z(t− 1) + Pg + g = · · · =
t∑

τ=0

P τg

=
t−1∑

τ=0

P τ (w + c11) =
t−1∑

τ=0

P τw + ct11 =
t−1∑

τ=0

σ2(P )
τw + ct11 (36)

since P11 = 11.
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In order to establish a lower bound, it suffices to show that at least one node is far from the
optimum after t steps, and we focus on node 1. Since w1 = −1, the evolution (36) guarantees that

z1(t+ 1) = −
t−1∑

τ=0

σ2(P )
τ + ct = ct− 1− σ2(P )

t−1

1− σ2(P )
. (37)

Recalling that ψ(x) = 1
2x

2 for this scalar setting, we have

xi(t+ 1) = argmin
x∈X

{
zi(t+ 1)x+

1

2α(t)
x2
}
= argmin

x∈X

{(
x+ α(t)zi(t+ 1)

)2}

Hence x1(t) is the projection of −α(t)z1(t+ 1) onto [−1, 1], and unless z1(t) > 0 we have

f(x1(t))− f(−1) ≥ c > 0.

If t is overly small, the relation (37) will guarantee that z1(t) ≤ 0, so that x1(t) is far from the
optimum. If we choose c ≤ 1/3, then a little calculation shows that we require t = Ω((1−σ2(P ))−1)
in order to drive z1(t) below zero.

7 Convergence rates for stochastic communication

In this section, we develop theory appropriate for stochastic and time-varying communication,
which we model by a sequence {P (t)}∞t=0 of random matrices. We begin in Section 7.1 with basic
convergence results in this setting, and then prove Theorem 3. Section 7.2 contains a more detailed
treatment of the case of gossip algorithms, and Section 7.3 contains the setting of edge failures.

7.1 Basic convergence analysis

Recall that Theorem 1 involves the sum 2L
n

∑T
t=1

∑n
i=1 α(t) ‖z̄(t)− zi(t)‖∗. In Section 6, we showed

how to control this sum when communication between agents occurs on a static underlying network
structure via a doubly-stochastic matrix P . We now relax the assumption that P is fixed and instead
let P (t) vary over time.

7.1.1 Markov chain mixing for stochastic communication

We use P (t) = [p1(t) · · · pn(t)] to denote the doubly stochastic symmetric matrix at iteration t.
The update employed by the algorithm, modulo changes in P , is given by the usual updates (5a)
and (5b)—namely,

zi(t+ 1) =
n∑

j=1

pij(t)zj(t) + gi(t), xi(t+ 1) = ΠψX (zi(t+ 1), α).

In this case, our analysis makes use of the modified definition Φ(t, s) = P (s)P (s + 1) · · ·P (t).
However, we still have the evolution of z̄(t + 1) = z̄(t) − 1

n

∑n
i=1 gi(t) from equation (16), and

moreover, (25) holds essentially unchanged:

z̄(t)− zi(t) =

t−1∑

s=1

n∑

j=1

(1/n − [Φ(t− 1, s)]ji)gj(s− 1) +
1

n

n∑

j=1

(gj(t− 1)− gi(t− 1)) . (38)
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To show convergence for the random communication model, we must control the convergence of
Φ(t, s) to the uniform distribution. We first claim that

P
[∥∥Φ(t, s)ei − 11/n

∥∥
2
≥ ǫ
]
≤ ǫ−2λ2

(
E[P (t)2]

)t−s+1
, (39)

which we establish by recalling and modifying a few known results [BGPS06].

Let ∆n denote the n-dimensional probability simplex and the vector u(0) ∈ ∆n be arbitrary.
Consider the random sequence {u(t)}∞t=0 generated by the recursion u(t + 1) = P (t)u(t). Let
v(t) := u(t) − 11/n correspond to the portion of u(t) orthogonal to the all 1s vector. Calculating
the second moment of v(t+ 1), we have

E
[
〈v(t+ 1), v(t + 1)〉 | v(t)

]
= E

[
v(t)TP (t)TP (t)v(t) | v(t)

]
= v(t)TE[P (t)TP (t)]v(t)

≤
∥∥v(t)

∥∥2
2
λ2
(
EP (t)TP (t)

)
=
∥∥v(t)

∥∥2
2
λ2(EP (t)

2)

since 〈v(t), 11〉 = 0, v(t) is orthogonal to the first eigenvector of P (t), and P (t) is symmetric.
Applying Chebyshev’s inequality yields

P

[
‖u(t)− 11/n‖2

‖u(0)‖2
≥ ǫ

]
≤ E‖v(t)‖2

‖u(0)‖22 ǫ2

≤ ǫ−2

∥∥v(0)
∥∥2
2
λ2
(
EP (t)2

)t
∥∥u(0)

∥∥2
2

.

Replacing u(0) with ei and noting that ‖ei − 11/n‖2 ≤ 1 yields the claim (39).

7.1.2 Proof of Theorem 3

Using the claim (39), we now prove the main theorem of this section, following an argument similar
to the proof of Theorem 2. We begin by choosing a (non-random) time index t̂ such that for
t − s ≥ t̂, with exceedingly high probability, Φ(t, s) is close to the uniform matrix 1111T /n. We
then break the summation from 1 to T into two separate terms, separated by the cut-off point t̂.
Throughout this derivation, we let λ2 = λ2(E[P (t)

2]), where we have suppressed the dependence of
λ2 on graph structure G to ease notation.

Using the probabilistic bound (39), note that

t− s ≥ 3 log ǫ−1

log λ−1
2

− 1 implies P
[∥∥Φ(t, s)ei − 11/n

∥∥
2
≥ ǫ
]
≤ ǫ.

Consequently, if we make the choice

t̂ : =
3 log(T 2n)

log λ−1
2

=
6 log T + 3 log n

log λ−1
2

≤ 6 log T + 3 log n

1− λ2
,

then we are guaranteed that if t− s ≥ t̂− 1, then

P
[∥∥Φ(t, s)ei − 11/n

∥∥
2
≥ 1/(T 2n)

]
≤ (T 2n)2λ

3 log(T2n)
− log λ2

2 = (T 2n)2
(
elog λ2

) log(T6n3)
− log λ2 =

1

T 2n
. (40)
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Recalling the bound (26), we have

‖z̄(t)− zi(t)‖∗ ≤ L

t−1∑

s=1

‖Φ(t− 1, s)ei − 11/n‖1 + 2L

= L

t−1∑

s=t−t̂

‖Φ(t− 1, s)ei − 11/n‖1 + L

t−1−t̂∑

s=1

‖Φ(t− 1, s)ei − 11/n‖1 + 2L

≤ 2L
3 log(T 2n)

1− λ2
+ L

√
n

t−1−t̂∑

s=1

∥∥Φ(t− 1, s)ei − 11/n
∥∥
2

︸ ︷︷ ︸
S

+2L. (41)

It remains to bound the sum S. For any fixed pair s′ < s, since the matrices P (t) are doubly
stochastic, we have

∥∥Φ(t− 1, s′)ei − 11/n
∥∥
2
=
∥∥Φ(s− 1, s′)Φ(t− 1, s)ei − 11/n

∥∥
2

≤
∣∣∣∣∣∣Φ(s− 1, s′)

∣∣∣∣∣∣
2

∥∥Φ(t− 1, s)ei − 11/n
∥∥
2

≤
∥∥Φ(t− 1, s)ei − 11/n

∥∥
2
,

where the final inequality uses the bound |||Φ(s− 1, s′)|||2 ≤ 1. From the bound (40), we have the
bound

∥∥Φ(t− 1, t− t̂− 1)ei − 11/n
∥∥
2
≤ 1

T 2n
with probability at least 1 − 1/(T 2n). Since s ranges

between 1 and t− t̂ in the summation S, we conclude that

S ≤ L
√
nT

1

T 2n
=
L
√
n

T 2n
,

and hence assuming that n ≥ 3,

‖z̄(t)− zi(t)‖∗ ≤ L
6 log(T 2n)

1− λ2
+ L

√
n

1

Tn
+ 2L

with probability at least 1 − 1/(T 2n). Applying the union bound over all iterations t = 1, . . . , T
and nodes i = 1, . . . , n, we obtain

P

[
max
t≤T

max
i≤n

‖z̄(t)− zi(t)‖∗ >
6L log(T 2n)

1− λ2
+

L

T
√
n
+ 2L

]
≤ 1

T
.

Recalling the master bound from Theorem 1 completes the proof.

In the remainder of this section, we give some applications of the stochastic framework outlined
above, showing a few sampling schemes and giving bounds on their convergence rates.

7.2 Gossip-like protocols

Gossip algorithms are procedures for achieving consensus in a network robustly and quickly by
randomly selecting one edge (i, j) in the network for communication at each iteration [BGPS06].
Once nodes i and j are selected, their values are averaged. Gossip algorithms drastically reduce
communication in the network, yet they still enjoy fast convergence and are robust to changes in
topology.
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7.2.1 Partially asynchronous gossip protocols

In a partially asynchronous iterative method, agents synchronize their iterations [BT89]. This
is the model of standard gossip protocols, where computation proceeds in rounds, and in each
round communication occurs on one random edge. In our framework, this corresponds to using the
random transition matrix P (t) = I − 1

2(ei − ej)(ei − ej)
T . It is clear that P (t)TP (t) = P (t), since

P (t) is a projection matrix.

Let A be the adjacency matrix of the graph G and D be the diagonal matrix of its degrees as
in Section 6.2. At round t, edge (i, j) (with Aij = 1) is chosen with probability 1/ 〈11, A11〉. Thus,

EP (t) =
1

〈11, A11〉
∑

(i,j):Aij=1

I − 1

2
(ei − ej)(ei − ej)

T = I − 1

〈11, A11〉 (D −A)

= I − 1

〈11, A11〉D
1/2(I −D−1/2AD−1/2)D1/2 = I − 1

〈11, A11〉D
1/2LD1/2 (42)

since
∑

(i,j):Aij=1(ei− ej)(ei− ej)
T = 2(D−A). Using an identical argument as that for Lemma 4,

we see that (42) implies that

λ2(EP (t)) ≤ 1− mini δi
〈11, A11〉λn−1(L).

Note that 〈11, A11〉 = 〈11,D11〉, so that for approximately regular graphs, 〈11, A11〉 ≈ nδmax, and
mini δi/ 〈11, A11〉 ≈ 1/n. Thus, at the expense of a factor of roughly 1/n in convergence rate, we can
reduce the number of messages sent per round from the number of edges in the graph, Θ(nδmax),
to one. In a clustered computing environment with some centralized control, it is possible to select
more than one edge per round so long as no two edges share vertices (for example, by selecting a
random maximal matching) and still have P (t)TP (t) = P (t). For a δ-regular graph, choosing a
random maximal matching achieves a spectral gap within constant factors of the spectral gap of
the underlying graph but uses only Θ(1/δ) as much communication.

7.2.2 Totally asynchronous gossip protocol

Now we relax the assumption that agents have synchronized clocks, so the iterations of the algorithm
are no longer synchronized. Suppose that each agent has a random clock ticking at real-valued
times, and at each clock tick, the agent randomly chooses one of its neighbors to communicate with.
Further assume that each agent computes an iterative approximation to gi ∈ ∂fi(xi(t)), and that
the approximation is always unbiased (an example of this is when fi is the sum of several functions,
and agent i simply computes the subgradient of each function sequentially). We assume that no
two agents have clocks tick at the same time. This communication corresponds to a gossip protocol
with stochastic subgradients, and its convergence can be described simply by combining (42) with
Theorem 4. This type of algorithm is well-suited to completely decentralized environments, such
as sensor networks.

7.3 Random edge inclusion and failure

The two communication “protocols” we analyze now make selection of each edge at each iteration of
the algorithm independent. We begin with random edge inclusions and follow by giving convergence
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guarantees for random edge failures. For both protocols, since computation of EP (t)2 is in general
non-trivial, we work with the model of lazy random walks described in Section 6.2. In the lazy
random walk model, the communication matrix at each round is 1

2I +
1
2P (t), which is symmetric

PSD since σ1(P (t)) ≤ 1. Further, for any symmetric PSD stochastic matrix P , P 2 � P . With
that in mind, we see that E(12I +

1
2P (t))

2 � 1
2I +

1
2EP (t), and applying Weyl’s Theorem for the

eigenvalues of a Hermitian matrix [HJ85, Theorem 4.3.1],

λ2

(
E

(1
2
I +

1

2
P (t)

)2)
≤ λ2

(
1

2
I +

1

2
EP (t)

)
=

1

2
+

1

2
λ2(EP (t)). (43)

Thus any bound on λ2(EP (t)) provides an upper bound on the convergence rate of the distributed
dual averaging algorithm with random communication, as in Theorem 3.

Consider the communication protocol in which with probability 1−δi/(δmax+1), node i does not
communicate, and otherwise the node picks a random neighbor. If a node i picks a neighbor j, then
j also communicates back with i to ensure double stochasticity of the transition matrix. We let A(t)
be the random adjacency matrix at time t. When there is an edge (i, j) in the underlying graph, the
probability that node i picks edge (i, j) is 1/(δmax +1), and thus EA(t)ij =

2δmax+1
(δmax+1)2

. The random

communication matrix is P (t) = I − (δmax + 1)−1(D(t) − A(t)). Let A and D be the adjacency
matrix and degree matrix of the underlying (non-stochastic) graph and P be communication matrix
defined in (8). With these definitions, EA(t) = 2δmax+1

(δmax+1)2
A, ED(t) = 2δmax+1

(δmax+1)2
D, and A − D =

(P − I)(δmax + 1). We have

EP (t) = I − (δmax + 1)−1(ED(t)− EA(t)) =

(
δmax

δmax + 1

)2

I +
2δmax + 1

(δmax + 1)2
P,

and hence

1− λ2(EP (t)) =
2δmax + 1

(δmax + 1)2
(1− λ2(P )).

Using (43), we see that the spectral gap decreases (and hence convergence rate may slow) by a
factor proportional to the maximum degree in the graph. This is not surprising, since the amount
of communication performed decreases by the same factor.

A related model we can analyze is that of a network in which at every time step of the algorithm,
an edge fails with probability ρ independently of the other edges. We assume we are using the model
of communication in the prequel, so P (t) = I − (δmax + 1)−1D(t) + (δmax + 1)−1A(t). Let A, D,
and P be as before and L be the Laplacian of the underlying graph; we easily have

EP (t) = I − 1− ρ

δmax + 1
D − 1− ρ

δmax + 1
A = I − 1− ρ

δmax + 1
D1/2LD1/2 = ρI + (1− ρ)P

and λ2(EP (t)) = ρ+ (1 − ρ)λ2(P ). Applying (11), we see that we lose at most a factor of
√
1− ρ

in the convergence rate.

8 Stochastic Gradient Optimization

In this section, we show that the algorithm we have presented naturally generalizes to the case
in which the agents do not receive true subgradient information but only an unbiased estimate
of a subgradient of fi. That is, during round t agent i receives a vector ĝi(t) with Eĝi(t) =
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gi(t) ∈ ∂fi(xi(t)). The proof is made significantly easier by the dual averaging algorithm, which by
virtue of the simplicity of its dual update smooths the propagation of errors from noisy estimates
of individual subgradients throughout the network. This was a difficulty in prior work, where
significant care was needed in the analysis to address passing noisy gradients through nonlinear
projections [RNV10].

8.1 Proof of Theorem 4

We begin by using convexity and the Lipschitz continuity of the fi (see equations (18) and (19)),
thereby obtaining that the running sum S(T ) =

∑T
t=1 f(y(t))− f(x∗) is upper bounded as

S(T ) ≤
T∑

t=1

1

n

n∑

i=1

〈gi(t), xi(t)− x∗〉+
T∑

t=1

n∑

i=1

L ‖y(t)− xi(t)‖

=
T∑

t=1

1

n

n∑

i=1

〈ĝi(t), xi(t)− x∗〉+
T∑

t=1

1

n

n∑

i=1

L ‖y(t)− xi(t)‖ +
T∑

t=1

1

n

n∑

i=1

〈gi(t)− ĝi(t), xi(t)− x∗〉 .

(44)

We bound the first two terms of (44) using the same derivation as that for Theorem 1. In par-
ticular,

∑n
i=1 〈ĝi(t), xi(t)− x∗〉 =∑n

i=1 〈ĝi(t), y(t)− x∗〉+∑n
i=1 〈ĝi(t), xi(t)− y(t)〉, and nothing in

Lemma 2 assumes that ĝi(t) is related to fi(xi(t)). So we upper bound the first term in (44) with

1

α(T )
ψ(x∗) +

1

2

T∑

t=1

α(t− 1)

∥∥∥∥
1

n

n∑

i=1

ĝi(t)

∥∥∥∥
2

∗
+

T∑

t=1

1

n

n∑

i=1

〈ĝi(t), xi(t)− y(t)〉 . (45)

Hölder’s inequality implies that E[‖ĝi(t)‖∗ ‖ĝj(s)‖∗] ≤ L2 and E ‖ĝi(t)‖∗ ≤ L for any i, j, s, t. We
use the two inequalities to bound (45). We have

E

∥∥∥∥
1

n

n∑

i=1

ĝi(t)

∥∥∥∥
2

∗
≤ 1

n2

n∑

i,j=1

E
[
‖ĝi(t)‖∗ ‖ĝj(t)‖∗

]
≤ L2.

Further, xi(t) ∈ Ft−1 and y(t) ∈ Ft−1 by assumption for j ∈ [n] and s ≤ t− 1, so

E 〈ĝi(t), xi(t)− y(t)〉 ≤ E ‖ĝi(t)‖∗ ‖xi(t)− y(t)‖ = E (E[‖ĝi(t)‖∗ | Ft−1] ‖xi(t)− y(t)‖) ≤ LE ‖xi(t)− y(t)‖ .

Recalling that ‖xi(t)− y(t)‖ ≤ α(t) ‖z̄(t)− zi(t)‖∗, we proceed by putting expectations around the
norm terms in (26) and (28) to see that

1

α(t)
E ‖y(t)− xi(t)‖ ≤ E ‖z̄(t)− zi(t)‖∗ ≤

t−1∑

s=1

L ‖[Φ(t− 1, s)]i − 11/n‖1 + 2L ≤ L
log(T

√
n)

1− σ2(P )
+ 3L.

Coupled with the above arguments, we can bound the expectation of (44) by

E

[
T∑

t=1

f(y(t))− f(x∗)

]
≤ 1

α(T )
ψ(x∗) +

L2

2

T∑

t=1

α(t− 1) +

(
2L2 log(T

√
n)

1− σ2(P )
+ 6L2

) T∑

t=1

α(t)

+
1

n

T∑

t=1

n∑

i=1

E [〈gi(t)− ĝi(t), xi(t)− x∗〉] . (46)
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Taking the expectation for the final term in the bound (46), we recall that xi(t) ∈ Ft−1, so

E [〈gi(t)− ĝi(t), xi(t)− x∗〉] = E [E [〈gi(t)− ĝi(t), xi(t)− x∗〉 | Ft−1]]

= E [〈E(gi(t)− ĝi(t) | Ft−1), xi(t)− x∗〉] = 0, (47)

which completes the proof of the first statement of the theorem.

To show that the statement holds with high-probability when X is compact and ‖ĝi(t)‖∗ ≤ L,
it is sufficient to establish that the sequence 〈gi(t)− ĝi(t), xi(t)− x∗〉 is a bounded martingale, and
then apply Azuma’s inequality [Azu67]. (Here we are exploiting the fact that under compactness
and bounded norm conditions, our previous bounds on terms in the decomposition (45) now hold
for the analogous terms in the decomposition (46) without taking expectations.)

By assumption on the compactness of X and the Lipschitz assumptions on fi, we have

〈gi(t)− ĝi(t), xi(t)− x∗〉 ≤ ‖gi(t)− ĝi(t)‖∗ ‖xi(t)− x∗‖ ≤ 2LR.

Recalling (47), we conclude that the last sum in the decomposition (46) is a bounded difference
martingale, and Azuma’s inequality implies that

P

[ T∑

t=1

n∑

i=1

〈gi(t)− ĝi(t), xi(t)− x∗〉 ≥ ǫ

]
≤ exp

(
− ǫ2

16Tn2L2R2

)
.

Dividing by T and setting the probability above equal to δ, we obtain that with probability at least
1− δ,

1

nT

T∑

t=1

n∑

i=1

〈gi(t)− ĝi(t), xi(t)− x∗〉 ≤ 4LR

√
log 1

δ

T
.

The second statement of the theorem is now obtained by appealing to Lemma 3. By convexity, we
have f(x̂i(T )) ≤ 1

T

∑T
t=1 f(xi(t)), thereby completing the proof.

Proving the last statement of the theorem—the concentration result with uncorrelated noise
at each node—requires a martingale extension of Bernstein’s inequality [Fre75]. Indeed, one form
of Freedman’s inequality states that if X1, . . . ,XT is a martingale difference sequence, |Xi| ≤ B
uniformly, and V ≥∑T

t=1 Var(Xt | Ft−1), then for any v, ǫ > 0,

P

(
T∑

t=1

Xt ≥ ǫ and V ≤ v

)
≤ exp

(
− ǫ2

2v + 2Bǫ/3

)
.

To extend the above bound to our setting, we recall that 1
n

∑n
i=1 〈gi(t)− ĝi(t), xi(t)− x∗〉 is Mar-

tingale difference sequence uniformly bounded by 2LR. Further, since the expectation is zero, we
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have

Var

(
1

n

n∑

i=1

〈gi(t)− ĝi(t), xi(t)− x∗〉 | Ft−1

)

= E

[
1

n2

n∑

i,j

〈gi(t)− ĝi(t), xi(t)− x∗〉 〈gj(t)− ĝj(t), xj(t)− x∗〉 | Ft−1

]

=
1

n2
E

[ n∑

i=1

〈gi(t)− ĝi(t), xi(t)− x∗〉2 | Ft−1

]
(48)

≤ 1

n2

n∑

i=1

4L2R2 =
4L2R2

n
.

The decorrelation equality in (48) follows by our assumption that ĝi(t) and ĝj(t) are uncorrelated
given Ft−1, and that xi(t), gi(t), and x

∗ ∈ Ft−1. Substituting 4TL2R2/n as an upper bound for
the variance in Freedman’s inequality, we have

P

(
1

n

T∑

t=1

n∑

i=1

〈gi(t)− ĝi(t), xi(t)− x∗〉 ≥ ǫ

)
≤ exp

(
− ǫ2

8TL2R2/n+ 8LRǫ/3

)
.

To find a δ so that exp(·) term is less than or equal to δ, we solve

δ ≥ exp

(
− ǫ2

8L2R2/n+ 8LRǫ/3

)
or ǫ2 − ǫ

8LR log 1
δ

3
− 8TL2R2 log 1

δ

n
≥ 0. (49)

Solving the above quadratic in ǫ, we have equality with zero for

ǫ =
(8/3)LR log 1

δ ±
√

(8/3)2L2R2 log2 1
δ + (32/n)TL2R2 log 1

δ

2

In particular, noting that
√
a+ b ≤ √

a+
√
b, it is sufficient that

ǫ ≥ 4

3
LR log

1

δ
+

√
6

3
LR log

1

δ
+ 2

√
2LR

√
T

n
log

1

δ

for the inequality in (49) to be satisfied. Thus with probability at least 1− δ,

1

n

T∑

t=1

n∑

i=1

〈gi(t)− ĝi(t), xi(t)− x∗〉 < 3LR log
1

δ
+ 4LR

√
T

n
log

1

δ
.

Dividing by T completes the proof of the last statement of Theorem 4.

9 Simulations

In this section, we report experimental results on the network scaling behavior of the distributed
dual averaging algorithm as a function of the graph structure and number of processors n. These
results illustrate the excellent agreement of the empirical behavior with our theoretical predictions.
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Figure 2. Plot of the function error versus the number of iterations for a grid graph. Each curve
corresponds to a grid with a different number of nodes (n ∈ {225, 400, 600}. As expected, larger
graphs require more iterations to reach a pre-specified tolerance ǫ > 0, as defined by the iteration
number T (ǫ;n). The network scaling problem is to determine how T (ǫ;n) scales as a function of n.

For all experiments reported here, we consider distributed minimization of a sum of hinge loss
functions; it is this optimization problem that underlies the widely-used support vector machine
method for classification [CV95]. In a classification problem, we are given n pairs of the form
(bi, yi) ∈ R

d × {−1,+1}, where bi ∈ R
d corresponds to a feature vector and yi ∈ {−1,+1} is the

associated label. The goal is to use these samples to estimate a linear classifier, meaning a function
of the form b 7→ sign 〈b, x〉 based on some weight vector x ∈ R

d. In methods based on support
vector machines, the weight vector is chosen by minimizing a sum of hinge loss functions associated
with each pair (bi, yi). In particular, given the shorthand notation [c]+ : = max{0, c}, the hinge
loss associated with a linear classifier based on x is given by fi(x) = [1− yi 〈bi, x〉]+. The global
objective is a sum of n such terms, namely

f(x) :=
1

n

n∑

i=1

[1− yi 〈bi, x〉]+ . (50)

Setting L = maxi ‖bi‖2, we note that f is L-Lipschitz and non-smooth at any point with 〈bi, x〉 = yi.
It is common to impose some type of quadratic constraint on the minimization problem (50), and
for the simulations considered here, we set X = {x ∈ R

d |
∥∥x
∥∥
2
≤ 5}. For a given graph size n,

we form a random instance of a SVM classification problem as follows. For each i = 1, 2, . . . , n, we
first draw a random vector bi ∈ R

d from the uniform distribution over the unit sphere. We then
randomly generate a random Gaussian vector w ∼ N(0, Id×d), and then let ai = sign(〈w, bi〉)bi,
randomly flipping the sign of 5% of the ai. Note that these choices yield a function f that is Lip-
schitz with parameter L = 1. Although this is a specific ensemble of problems, we have observed
qualitatively similar behavior for other problem ensembles. In order to study the effect of graph
size and topology, we perform simulations with three different graph structures, namely cycles,
grids, and random 5-regular expanders [FKS89], with the number of nodes n ranging from 100 to
900. In all cases, we use the optimal setting of the step size α specified in Theorem 2 and Corollary 1.
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Figure 3. Each plot shows the number of iterations required to reach a fixed accuracy ǫ (vertical
axis) versus the network size n (horizontal axis). Each panel shows the same plot for a different
graph topology: (a) single cycle; (b) two-dimensional grid; and (c) bounded degree expander. Step
sizes were chosen according to the spectral gap, and dotted lines show predictions of Corollary 1.

Figure 2 provides plots of the function error maxi[f(x̂i(T ) − f(x∗)] versus the number of it-
erations for grid graphs with a varying number of nodes n ∈ {225, 400, 625}. In addition to
demonstrating convergence, these plots also show how the convergence time scales as a function of
the graph size n. In particular, for a given class of optimization problems, define TG(ǫ;n) to be the
number of iterations required to obtain ǫ-accurate solution for a graph G with n nodes. As shown
in Figure 2, for any fixed ǫ > 0, the function TG(ǫ;n) shifts to the right as n is increased, and the
goal of network scaling analysis is to gain a precise understanding of this shifting.

As discussed following Corollary 1, for cycles, grids, and expanders, we have the following upper
bounds on the quantity TG(ǫ;n):

Tcycle(ǫ;n) = O
(
n2

ǫ2

)
, Tgrid(ǫ;n) = O

( n
ǫ2

)
, and Texpander(ǫ;n) = O

(
1

ǫ2

)
. (51)

In Figure 3, we compare these theoretical predictions with the actual behavior of dual subgradi-
ent averaging. Each panel shows the function TG(ǫ;n) versus the graph size n for the fixed value
ǫ = 0.1; the three different panels correspond to different graph types: cycles (a), grids (b) and
expanders (c). In each panel, each point on the blue curve is the average of 20 trials, and the bars
show standard errors. For comparison, the dotted black line shows the theoretical prediction (51).
Note that the agreement between the empirical behavior and theoretical predictions is excellent in
all cases. In particular, panel (a) exhibits the quadratic scaling predicted for the cycle, panel (b)
exhibits the the linear scaling expected for the grid, and panel (c) shows that expander graphs have
the desirable property of having constant network scaling.

Though our focus in this paper is mostly a theoretical one, in our final set of experiments we
compare the distributed dual averaging method (DDA) that we present to the Markov incremental
gradient descent (MIGD) method [JRJ09] and the distributed projected gradient method [RNV10],
which seem to have the sharpest convergence rates currently in the literature. In Figure 4, we plot
the quantity TG(ǫ;n) versus graph size n for DDA and MIGD on grid and expander graphs. We use
the optimal stepsize α(t) suggested by the analyses for each method. (We do not plot results for the
distributed projected gradient method [RNV10] because the optimal choice of stepsize according
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Figure 4. Each plot shows the number of iterations required to reach a fixed accuracy ǫ (vertical
axis) versus network size n (horizontal axis) for distributed dual averaging (DDA) and Markov
incremental gradient descent (MIGD) [JRJ09]. The panels show the same plot for different graph
topologies: (a) two-dimensional grid, (b) bounded degree expander.

to the analysis therein results in such slow convergence that it does not fit on the plots.) Fig. 4
makes it clear that—especially on graphs with good connectivity properties such as the expander
in Fig. 4(b)—the dual averaging algorithm gives improved performance.

10 Conclusions and Discussion

In this paper, we proposed and analyzed a distributed dual averaging algorithm for minimizing
the sum of local convex functions over a network. It is computationally efficient, and we provided
a sharp analysis of its convergence behavior as a function of the properties of the optimization
functions and the underlying network topology. Our analysis demonstrates a close connection
between convergence rates and mixing times of random walks on the underlying graph; such a
connection is natural given the local and graph-constrained nature of our updates. In addition
to analysis of deterministic updates, our results also include the case of stochastic communication
protocols, for instance when communication occurs only along a random subset of the edges at each
round. Such extensions allow for the design of protocols that provide interesting tradeoffs between
the amount of communication and convergence rates. We also demonstrate that our algorithm is
robust to noise by providing an analysis for the case of stochastic optimization with noisy gradients.
We confirmed the sharpness of our theoretical predictions by implementation and simulation of our
algorithm.

There are several interesting open questions that remain to be explored. For instance, it would
be interesting to analyze the convergence properties of other kinds of network-based optimization
problems, by combining local information in different structures. It would also be of interest to
study what other optimization procedures from the standard setting can be converted into efficient
distributed algorithms to better exploit problem structure when possible.
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A The Dual Averaging Algorithm

In this section, we give a simple convergence proof for the basic (non-distributed) dual averaging
algorithm (3). In particular, we recall the updates

z(t+ 1) = z(t) + g(t) and x(t+ 1) = argmin
x∈X

{
〈z(t+ 1), x〉+ 1

α(t)
ψ(x)

}
.

Recall our assumptions without any loss of generality that 0 ∈ X , ψ ≥ 0 and ψ(0) = 0. Let
I (x ∈ X ) be the {0,∞}-valued indicator function for membership in X , and for each α > 0, let ψ∗

α

denote the conjugate dual of the convex function 1
αψ(x) + I (x ∈ X ). By definition, the conjugate

takes the form

ψ∗
α(z) = sup

x∈X

{
〈z, x〉 − 1

α
ψ(x)

}
= sup

x

{
〈z, x〉 − 1

α
ψ(x)− I (x ∈ X )

}
. (52)

The definition (4) of the projection ΠψX shows that the supremum (52) is uniquely attained by

ΠψX (−z, α). Moreover, for any fixed z, we note that at x = 0, 〈z, x〉− 1
αψ(x)− I (x ∈ X ) = 0. Thus,

we can restrict the supremum in (52) to the set

{
x | 1

α
ψ(x) + I (x ∈ X )− 〈z, x〉 ≤ 0

}
= X ∩

{
x | 1

α
ψ(x)− 〈z, x〉 ≤ 0

}
,

which is compact since X is closed and ψ is strongly convex. Thus, since the supremum is uniquely
attained and 〈z, x〉 is differentiable in z, ∇ψ∗

α(−z) = ΠψX (z, α) [HUL96a, Theorem 4.4.2].

This fact has two important consequences. First, since the projection is Lipschitz-continuous
(see Lemma 5), we have the bound

‖∇ψ∗
α(−z)−∇ψ∗

α(−z − g)‖ =
∥∥∥ΠψX (z, α) −ΠψX (z + g, α)

∥∥∥ ≤ α ‖g‖∗ .

Consequently, an integration argument (e.g., [Nes04, Lemma 1.2.3]) yields the upper bound

ψ∗
α(−z − g) ≤ ψ∗

α(−z)− 〈g,∇ψ∗
α(−z)〉+

1

2
α ‖g‖2∗ . (53)

The second consequence is that we have

x(t) = ∇ψ∗
α(t−1)(−z(t)) = ΠX (z(t), α(t − 1)).
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A.1 Proof of Lemma 2

To bound the sequence of inner products, we note that for any x∗ ∈ X , we have

−
T∑

t=1

〈g(t), x∗〉 ≤ sup
x∈X

{
−

T∑

t=1

〈g(t), x〉 − 1

α(T )
ψ(x)

}
+

1

α(T )
ψ(x∗)

= ψ∗
α(T )(−z(T + 1)) +

1

α(T )
ψ(x∗). (54)

By definition of the conjugate function ψ∗
α, whenever we have α(t) ≤ α(t − 1), then we are

guaranteed that ψ∗
α(t)(z) ≤ ψ∗

α(t−1)(z) for all z ∈ R
d. Thus, using the upper bound (53) and the

relations x(t) = ∇ψ∗
α(t−1)(−z(t)) and z(t+ 1) = z(t) + g(t), we obtain

ψ∗
α(t)(−z(t+ 1)) ≤ ψ∗

α(t−1)(−z(t+ 1))

= ψ∗
α(t−1)(−z(t)− g(t))

≤ ψ∗
α(t−1)(−z(t))− 〈g(t), x(t)〉 + 1

2
α(t− 1) ‖g(t)‖2∗ .

Rearranging terms yields

〈g(t), x(t)〉 ≤ ψ∗
α(t−1)(−z(t))− ψ∗

α(t)(−z(t+ 1)) +
1

2
α(t− 1) ‖g(t)‖2∗ . (55)

Finally, we combine the upper bound on 〈g(t), x(t)〉 from equation (55) with the earlier bound (54),
thereby obtaining that for any x∗ ∈ X , the sum S(T ) =

∑T
t=1 〈g(t), x(t) − x∗〉 is upper bounded as

S(T ) ≤
T∑

t=1

〈g(t), x(t)〉 + ψ∗
α(T )(−z(T + 1)) +

1

α(T )
ψ(x∗)

≤ 1

2

T∑

t=1

α(t− 1) ‖g(t)‖2∗ +
T∑

t=1

[
ψ∗
α(t−1)(−z(t)) − ψ∗

α(t)(−z(t+ 1))
]
+ ψ∗

α(T )(−z(T + 1)) +
1

α(T )
ψ(x∗)

=
1

2

T∑

t=1

α(t− 1) ‖g(t)‖2∗ +
1

α(T )
ψ(x∗).

The last line exploited the facts that z(1) = 0 and ψ∗
α(0) = 0. This completes the proof of the

claim.

A.2 Proof of Lemma 3

Via the L-Lipschitz continuity of the fi, we can write

T∑

t=1

f(xi(t))− f(x∗) =
T∑

t=1

f(y(t))− f(x∗) +
T∑

t=1

f(xi(t))− f(y(t))

≤
T∑

t=1

f(y(t))− f(x∗) +
T∑

t=1

L ‖xi(t)− y(t)‖ .
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For the second bound, we again use the L-Lipschitz continuity of the fi and the triangle inequality,

f(x̂i(T ))− f(x∗) = f(ŷ(T ))− f(x∗) + f(x̂i(T ))− f(ŷ(T ))

≤ f(ŷ(T ))− f(x∗) + L ‖x̂i(T )− ŷ(T )‖ ≤ f(ŷ(T ))− f(x∗) +
L

T

T∑

t=1

‖xi(t)− y(t)‖ .

Lipschitz-continuity of the projection (Lemma 5) shows that ‖xi(t)− y(t)‖ ≤ α(t) ‖z̄(t)− zi(t)‖∗
which gives both the desired results.

A.3 Lipschitz continuity of projections

The following lemma on the Lipschitz-continuity of the projection operator is well-known, but we
state and prove it for completeness.

Lemma 5. For an arbitrary pair u, v ∈ R
d, we have

∥∥∥ΠψX (u, α) −ΠψX (v, α)
∥∥∥ ≤ α ‖u− v‖∗ .

Proof Lemma 5 is essentially an immediate consequence of the relationship between strong-
convexity and Lipschitz continuity of the gradient for conjugate functions [HUL96b, Theorem
X.4.2.1], but we give a short proof for completeness. For an arbitrary pair u, v ∈ R

d, denote

w = ΠψX (u, α) and x = ΠψX (v, α). By the first-order optimality conditions for convex minimization,
for any y ∈ X , we have

〈
u+

1

α
∇ψ(w), y − w

〉
≥ 0 and

〈
v +

1

α
∇ψ(x), y − x

〉
≥ 0.

Setting y = x and y = w in these two inequalities (respectively) yields

〈αu+∇ψ(w), x − w〉 ≥ 0 and 〈αv +∇ψ(x), w − x〉 ≥ 0.

Adding the above two inequalities, we obtain the bound

〈∇ψ(w) −∇ψ(x), w − x〉 ≤ α 〈u− v, x− w〉 ≤ α ‖v1 − v2‖∗ ‖w − x‖ . (56)

On the other hand the strong convexity of ψ implies that ψ(w) ≥ ψ(x)+〈ψ(x), w − x〉+ 1
2 ‖x− w‖2,

with an analogous bound with the roles of x and w exchanged. Some algebra then leads to

〈∇ψ(w) −∇ψ(x), w − x〉 ≥ ‖w − x‖2 ,

which, when combined with (56), gives the desired result.
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B Background on stochastic matrices

In this section, we briefly review some well-known properties of stochastic matrices; we refer the
reader to Chapter 8 of Horn and Johnson [HJ85] for additional detail. For an n× n matrix A, we
let its singular values be σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A), and for a real symmetric A, we define
the eigenvalues λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). Let 11 be the all ones vector. In our setting,
P = [p1 · · · pn] ∈ R

n×n is a doubly stochastic matrix, so that P11 = 11 and 11TP = 11T . We have
σ1(P ) = 1, λ1(P

TP ) = 1, and 1 − σ2(P ) is the spectral gap, which is known to determine the
mixing properties of the Markov chain induced by P [LPW08].

In order to establish the connection between mixing and spectral gap, define the uniform matrix
F : = 1

n1111
T . Observe that F is idempotent (F 2 = F ), and moreover it satisfies PF = FP = F .

By construction, the eigenspectrum of P −F is equal to that of P except that the largest eigenvalue
1 is removed. Similarly, the eigenspectrum of (P − F )T (P − F ) = P TP − F TP − P TF + F TF =
P TP −F TF is identical to that of P TP but with λ1(P

TP ) = 1 removed. Given these properties, a
simple calculation yields that for any integer t = 1, 2, . . ., we have (P−F )t = P t−F . Consequently,
for any x ∈ R

n, we have

∥∥P tx− Fx
∥∥
2
=
∥∥(P − F )tx

∥∥
2
≤ σ1(P − F )

∥∥(P − F )t−1x
∥∥
2
≤ · · · ≤ σ2(P )

t
∥∥x
∥∥
2
.

If we take x = ei, denoting a canonical basis vector for i = 1, . . . , n, then we see that
∥∥P t − L

∥∥
∞ ≤

σ2(P )
t. Taking x ∈ ∆n, the n-dimensional simplex, gives

∥∥P tx− 11/n
∥∥
TV

=
1

2

∥∥P tx− 11/n
∥∥
1
≤ 1

2

√
n
∥∥P tx− 11/n

∥∥
2
≤ 1

2
σ2(P )

t√n,

which establishes the bound (23). (The
√
n factor in the bound is standard in the Markov chain

literature, e.g., [DS91, Proposition 3].)

C Eigenvalues of paths

Let G be a graph and S be a subset of the nodes in the graph. Let E(S, Sc) denote the set of edges
crossing between S and Sc, and let the volume of S be the sum of the degrees of the nodes in S,
that is, vol(S) =

∑
i∈S δi. The Cheeger constant of a graph G is defined as

hG : = min
S⊂V

card(E(S, Sc))

min{vol(S), vol(Sc)} . (57)

If L is the Laplacian of G, then 2hG ≥ λn−1(L) > 1
2h

2
G (e.g., see Lemma 2.1 and Theorem 2.2 in

Chung [Chu98]).

Lemma 6. Let G be a k-connected path with n nodes and k ≤ √
n. Then its normalized graph

Laplacian L satisfies λn−1(L) = Θ(k2/n2).

Proof We invoke Theorem 4.13 in Chung [Chu98] to conclude that λn−1(L) = O(k2/n2), since
G is a subgraph of the k-connected cycle. It thus suffices to prove that the Cheeger constant is
lower bounded as hG = Ω(k/n).

Let S be the set of nodes achieving the minimum in the definition (57). To make the rest of the
proof easier, assume that the degree of each node is 2k. (We may do so without loss of generality,
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since it only has the effect of increasing vol(S) and vol(Sc) in the Cheeger constant calculation, and
so any Cheeger constant calculated under this assumption lower bounds the true Cheeger constant.)

First, note that one of the nodes in S must be against the end of the path—if not, shifting the
nodes in S in one direction (taking into account that we must pick the direction in which more
nodes are brought near the end of the path) can only decrease card(E(S, Sc)). Now we show that
all of the nodes in S must be directly adjacent to one another. Suppose the nodes are not adjacent.
Since k ≤ √

n, there must be a pair of nodes in S with a distance of at least k. Let i ∈ Sc be
between those two nodes, and let Sℓ denote the nodes to the left of i and Sr the nodes to the
right. Collapsing all the nodes in Sr to the rightmost end of the path and all the nodes in Sℓ to the
leftmost end can only decrease card(E(S, Sc)). If |S| ≥ k, then at least one of the sets Sr and Sℓ
shares k(k − 1)/4 edges with Sc. Otherwise, if |S| < k, then card(E(S, Sc)) ≥ k and vol(S) ≤ k2,
so card(E(S, Sc))/ vol(S) ≥ 1/k. Under the assumption k2 ≤ n, we have 1/k ≤ k/n, from which
the result follows.

D Composite Objectives

In this section, we show how to generalize the dual averaging algorithm to incorporate composite
objectives, specifically those of the form f+ϕ for known ϕ. Though it is possible to perform similar
derivations to those in Lemma 2, for brevity we refer to recent work of Xiao [Xia10]. Nonetheless,
the algorithm is conceptually very similar to the dual averaging algorithm (updates (5a) and (5b)),
and equally as simple to write. We assume that ϕ is closed convex and non-negative, and X is
closed. We define the composite projection operator ΠtX as

ΠtX (z) = argmin
x∈X

{
〈z, x〉 + tϕ(x) +

1

α(t)
ψ(x)

}
. (58)

The mapping ΠtX is α(t)-Lipschitz with respect to ‖·‖ and ‖·‖∗, that is,
∥∥ΠtX (z1)−ΠtX (z2)

∥∥ ≤ α(t) ‖z1 − z2‖∗ . (59)

As in Lemma 5, (59) is a consequence of the fact that the conjugate dual of a 1/α(t)-strongly
convex function has α(t)-Lipschitz continuous gradient with respect to the associated dual norm,
and the gradient of the conjugate of tϕ(x)+ 1

α(t)ψ(x) is simply ΠtX (z) [HUL96b, Theorem X.4.2.1].

The distributed algorithm based on the update (58) is essentially identical to the dual averaging
algorithm discussed in the main body of the paper. Each agent i maintains the gradient vector

zi(t+ 1) =

n∑

j=1

pij(t)zj(t)− gi(t) where Egi(t) ∈ ∂fi(xi(t)). (60)

The update to xi(t+ 1) is then

xi(t+ 1) = ΠtX (−zi(t+ 1)). (61)

As in (16), we have z̄(t + 1) = z̄(t) − 1
n

∑n
i=1 gj(t). The following proposition, a simplification

of [Xia10, Section B.2], allows us to give a convergence guarantee for the algorithm described by
(60) and (61).
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Proposition 2. Let α(t) be a decreasing sequence and g(t) ∈ R
d be an arbitrary sequence of vectors.

If x(t+ 1) = ΠtX (
∑t

τ=1 g(t)), then for any x∗ ∈ X ,

T∑

t=1

〈g(t), x(t) − x∗〉+ ϕ(x(t))− ϕ(x∗) ≤ 1

α(T )
ψ(x∗) +

1

2

T∑

t=1

α(t− 1) ‖g(t)‖2∗ .

The above proposition, combined with the techniques used to derive Theorem 1, allow us to
easily prove convergence of distributed composite-objective dual averaging. As earlier, let y(t) =
ΠtX (−z̄(t)), and assume that the fi are L-Lipschitz with respect to ‖·‖. Then as in (18), (19), and
(20), for any x∗ ∈ X , we immediately have

T∑

t=1

[
f(y(t)) + ϕ(y(t)) − f(x∗)− ϕ(x∗)

]

≤
T∑

t=1

1

n

〈
n∑

i=1

gi(t), y(t)− x∗
〉

+

T∑

t=1

ϕ(y(t))− ϕ(x∗) +
T∑

t=1

n∑

i=1

2L

n
‖y(t)− xi(t)‖ .

By definition of y(t), we see that Proposition 2 bounds the above by

1

α(T )
ψ(x∗) +

1

2

T∑

t=1

α(t− 1)L2 +

T∑

t=1

n∑

i=1

2L

n
‖y(t)− xi(t)‖ .

Finally, we use the fact that the mapping ΠtX is α(t)-Lipschitz to see that for the distributed
composite-objective projection algorithm of (60) and (61),

T∑

t=1

f(y(t))+ϕ(y(t))−f(x∗)−ϕ(x∗) ≤ 1

α(T )
ψ(x∗)+

1

2

T∑

t=1

α(t−1)L2+
2L

n

T∑

t=1

α(t)

n∑

i=1

‖z̄(t)− zi(t)‖∗ .

(62)
Any of the techniques in the prequel can be used to bound (62).
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