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Abstract. In recent years we have witnessed a move of the major industrial

automation providers into the wireless domain. While most of these compa-
nies already offer wireless products for measurement and monitoring purposes,

the ultimate goal is to be able to close feedback loops over wireless networks

interconnecting sensors, computation devices, and actuators. In this paper we
present a decentralized event-triggered implementation, over sensor/actuator

networks, of centralized nonlinear controllers. Event-triggered control has been

recently proposed as an alternative to the more traditional periodic execution
of control tasks. In a typical event-triggered implementation, the control sig-

nals are kept constant until the violation of a condition on the state of the plant

triggers the re-computation of the control signals. The possibility of reducing
the number of re-computations, and thus of transmissions, while guarantee-

ing desired levels of control performance, makes event-triggered control very
appealing in the context of sensor/actuator networks. In these systems the

communication network is a shared resource and event-triggered implementa-

tions of control laws offer a flexible way to reduce network utilization. Moreover
reducing the number of times that a feedback control law is executed implies

a reduction in transmissions and thus a reduction in energy expenditures of

battery powered wireless sensor nodes.

1. Introduction

For many years, control engineers have designed their controllers as if there were
infinite-bandwidth, noise- and delay-free channels between sensors, controllers, and
actuators. The effects of non-idealities in the channels, in practice, could be miti-
gated by employing better hardware. However, on implementations over Wireless
Sensor Actuator Networks (WSAN) these limitations of the communication medium
can no longer be neglected. This fact, combined with the recent interest from in-
dustry, e.g. the WirelessHART initiative [1], have fueled the study of control under
communication constraints in the past decade. Much research has been devoted
to the effects of: quantization in the sensors; delay and jitter; limited bandwidth;
or even packet losses. Some good overviews of these topics can be found in the
report resulting from the RUNES project [2], and the special issue of the IEEE
proceedings [3].

One aspect common to most modern control systems, and something assumed in
most of the studies mentioned above, is the implementation of control strategies in
embedded microprocessors. But in controlling the physical world, which is of con-
tinuous nature, the use of microprocessors brings a new question: how often should
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we sample the physical environment [4]? Many researchers have worked on the
analysis of this sole problem. Tools like the delta-transform [5] were developed, and
many books discussed this issue [6, 7]. More recently, Nesic and collaborators have
proposed techniques to select periods retaining closed-loop stability in networked
systems [8, 9]. However, engineers still rely mostly on rules of thumb such as sam-
pling with a frequency 20 times the system bandwidth, and then check if it actually
works [4, 6, 7]. A shift in perspective was brought by the notion of event-triggered
control [10], [11]. In event-triggered control, instead of periodically updating the
control input, the update instants are generated by the violation of a condition on
the state of the plant. Many researchers have shown a renewed interest on these
techniques [12, 13, 14, 15, 16, 17]. Recently, one of the authors proposed a formal-
ism to generate asymptotically stable event-triggered implementations of nonlinear
controllers [18], and in [19] the authors explored the application of event-triggered
and self-triggered techniques to distributed implementations of linear controllers.
For more details about these event-triggered and self-triggered techniques we refer
the reader to [20] and [21]. Following the formalism in [18], Wang and Lemmon pro-
posed a distributed event-triggered implementation for weakly-coupled distributed
systems [22]. The present work complements the techniques described in [22] by
addressing systems without weak-coupling assumptions.

The main contribution of this paper is a strategy for the construction of decen-
tralized event-triggered implementations over WSAN of centralized controllers. The
event-triggered techniques introduced in [18] are based on a criterion that depends
on the norm of the vector of measured quantities. This is natural in the setting
discussed in [18] since sensors were collocated with the micro-controller. However,
in a WSAN the physically distributed sensor nodes do not have access to all the
measured quantities. Hence, we cannot use the same criterion to determine when
the control signal should be re-computed. Using classical observers or estimators
(as the Kalman filter) would require filters of dimension as large as the number of
states in each sensor node, which would be unpractical given the low computing
capabilities of sensor nodes. Moreover, we do not assume observability from every
measured output, thus ruling out observer-based techniques. Approaches based on
consensus algorithms are also unpractical as they require large amounts of com-
munication and thus large energy expenditures by the sensor nodes. Instead, we
present an approach to decentralize a centralized event-triggered condition that
relies only on the locally measured quantities. Our technique also provides a mech-
anism to enlarge the resulting times between controller re-computations without
altering performance guarantees.

We do not address in this paper practical issues such as delays or jitter in the
communication and focus solely on the reduction of the actuation frequency (with
its associated communication and energy savings). In particular, the issue of com-
munication delays has been shown to be easily addressed in the context of event-
triggered control in [18] and similarly in [22]. The approach followed in those papers
is applicable to the techniques introduced in this paper. Moreover, our techniques
can be implemented over the WirelessHART standard [1], which addresses other
communication concerns such as medium access control, power control, and routing.

The present paper is organized as follows: we introduce basic notation in Sec-
tion 2; Section 3 states the problem, briefly reviews the results of [18] and presents
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our proposal for decentralization; the paper finalizes with an example in Section 4
and a discussion in Section 5.

2. Notation

We denote by N the natural numbers, by N0 = N ∪ {0}, by R+ the positive
real numbers, and by R+

0 = R+ ∪ {0}. The usual Euclidean (l2) vector norm is
represented by | · |. When applied to a matrix, | · | denotes the l2 induced matrix
norm. A matrix P ∈ Rn×n is said to be positive definite, denoted P > 0, whenever
xTPx > 0 for all x 6= 0, x ∈ Rn. By λm(P ), λM (P ) we denote the minimum and
maximum eigenvalues of P respectively. A function γ : [0,∞[→ R+

0 , is of class K∞
if it is continuous, strictly increasing, γ(0) = 0 and γ(s)→∞ as s→∞. Given an
essentially bounded function ξ : R+

0 → Rn we denote by ‖ξ‖∞ its L∞ norm, i.e.,
‖δ‖∞ = ess supt∈R+

0
{|ξ(t)|} <∞.

In the following we consider systems defined by differential equations of the form:

(1)
d

dt
ξ = f(ξ, υ)

with input υ : R+
0 → Rm an essentially bounded piecewise continuous function of

time and f : Rn × Rm → Rn a smooth map. We also use the simpler notation
ξ̇ = f(ξ, υ) to refer to (1). We refer to such systems as control systems. Solutions
of (1) with initial condition x and input υ, denoted by ξxυ, satisfy: ξxυ(0) = x and
d
dtξxυ(t) = f(ξxυ(t), υ(t)) for almost all t ∈ R+

0 . The notation will be relaxed by
dropping the subindex when it does not contribute to the clarity of exposition. A
feedback law for a control system is a smooth map k : Rn → Rm; we sometimes
refer to such a law as a controller for the system.

3. Decentralized event-triggered control

Consider a nonlinear control system and a hardware platform consisting of a set
of wireless sensors and actuators and a computation node. This last node is in
charge of computing the control signal with the measurements obtained from the
sensors. We consider scenarios in which none of these sensor nodes has access to the
full state of the plant. We model the execution of the control loop in three steps:
data retrieval from sensors, controller computation, and provision of the control
commands to the actuators. Furthermore, we assume that the computation of the
controller happens in just one device which retrieves all the measurement infor-
mation from the sensors, computes the inputs for all actuators, and disseminates
these new commands to the actuator nodes. This scenario is a typical configuration
considered in the WirelessHART standard, see [23], which addresses the problem of
scheduling links and channels for disseminating the information in WirelessHART
networks.

Our goal is to provide a mechanism triggering the execution of the control loop
which reduces the frequency of the controller updates. In order to reduce the
frequency of controller updates we abandon the periodic transmission paradigm,
and instead we propose to close the loop whenever certain events happen. In
particular, we consider the event-triggered implementation techniques proposed
in [18] which guarantee the asymptotic stability of the closed-loop system. These
techniques, however, require the knowledge of the full state to decide when to trigger
new updates, but such information is not available at any sensing node under our



4 MANUEL MAZO JR AND PAULO TABUADA

premises. In the following we discuss a decentralization of the decision process
triggering controller updates. We propose the use of conditions depending solely
on the information available at each node. Whenever any of these conditions is
violated at a node, this node informs the computation device. Upon receipt of such
an event, the computation device requests fresh measurements, updates the control
signals, and forwards the new commands to the actuation nodes.

3.1. Event-triggered control. We begin by revisiting the results from [18], which
serve as the basis for the rest of our work. Let us start by considering a nonlinear
control system:

(2) ξ̇ = f(ξ, υ)

and assume that a feedback control law k : Rn → Rm, υ = k(ξ) is available, ren-
dering the closed-loop system:

(3) ξ̇ = f(ξ, k(ξ + ε))

input-to-state stable (ISS) [24] with respect to measurement errors ε : R+
0 → Rn.

We do not provide the definition of ISS, but rather the following characterization
that lies at the heart of our techniques:

Definition 3.1. A smooth function V : Rn → R+
0 is said to be an ISS Lyapunov

function for the closed-loop system (3) if there exists class K∞ functions α,α, α
and γ such that for all x ∈ Rn and e ∈ Rn the following is satisfied:

α(|x|) ≤ V (x) ≤ α(|x|)
∂V

∂x
f(x, k(x+ e)) ≤ −α(|x|) + γ(|e|).(4)

The closed-loop system (3) is said to be ISS with respect to measurement errors
ε, if there exists an ISS Lyapunov function for (3).

In a sample-and-hold implementation of the control law k(ξ), the input signal is
held constant between update times, i.e.:

ξ̇(t) = f(ξ(t), υ(t))

υ(t) = k(ξ(tk)), t ∈ [tk, tk+1[,(5)

where {tk}k∈N+
0

is a divergent sequence of update times. An event-triggered im-

plementation defines such a sequence of update times {tk}k∈N+
0

for the controller,

rendering the closed loop system asymptotically stable.
We now consider the signal ε : R+

0 → Rn defined by ε(t) = ξ(tk)− ξ(t) for
t ∈ [tk, tk+1[ and regard it as a measurement error. By doing so, we can rewrite (5)
for t ∈ [tk, tk+1[ as:

ξ̇(t) = f(ξ(t), k(ξ(t) + ε(t))),

ε̇(t) = −f(ξ(t), k(ξ(t) + ε(t))), ε(tk) = 0.

Hence, as (3) is ISS with respect to measurement errors ε, from (4) we know that
by enforcing:

(6) γ(|ε(t)|) ≤ ρα(|ξ(t)|), ∀t > 0, ρ ∈]0, 1[

the following holds:

∂V

∂x
f(x, k(x+ e)) ≤ −(1− ρ)α(|x|), ∀x, e ∈ Rn
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and asymptotic stability of the closed-loop follows. Moreover, if one assumes that
the system operates in some compact set S ⊆ Rn and α−1 and γ are Lipschitz
continuous on S, the inequality (6) can be replaced by the simpler inequality
|ε(t)|2 ≤ σ|ξ(t)|2, for a suitably chosen σ > 0. Hence, if the sequence of update
times {tk}k∈N+

0
is such that:

(7) |ε(t)|2 ≤ σ|ξ(t)|2, t ∈ [tk, tk+1[,

the sample-and-hold implementation (5) is guaranteed to render the closed loop
system asymptotically stable.

Condition (7) defines an event-triggered implementation that consists of continu-
ously checking (7) and triggering the recomputation of the control law as soon as the
inequality evaluates to equality. Note that recomputing the controller at time t = tk
requires a new state measurement and thus resets the error ε(tk) = ξ(tk)− ξ(tk) to
zero which enforces (7).

3.2. Decentralized event-triggering conditions. We consider, for simplicity
of presentation, a decentralized scenario in which each state variable is measured
by a different sensor. However, the same ideas apply to more general decentralized
scenarios as we briefly discuss at the end of Section 3.3. In this setting, no sensor can
evaluate condition (7), since (7) requires the knowledge of the full state vector ξ(t).
Our goal is to provide a set of simple conditions that each sensor can check locally
to decide when to trigger a controller update, thus triggering also the transmission
of fresh measurements from sensors to the controller.

Using a set of parameters θ1, θ2, . . . , θn ∈ R such that
∑n
i=1 θi = 0, we can

rewrite inequality (7) as:
n∑
i=1

(
ε2i (t)− σξ2i (t)

)
≤ 0 =

n∑
i=1

θi,

where εi and ξi denote the i-th coordinates of ε and ξ respectively. Hence, the
following implication holds:

(8)

n∧
i=1

(
ε2i (t)− σξ2i (t) ≤ θi

)
⇒ |ε(t)|2 ≤ σ|ξ(t)|2,

which suggests the use of:

(9) ε2i (t)− σξ2i (t) ≤ θi
as the local event-triggering conditions.

In this decentralized scheme, whenever any of the local conditions (9) becomes
an equality, the controller is recomputed. We denote by tk + τi(x) the first time
at which (9) is violated, when ξ(tk) = x, ε(tk) = 0. If the time elapsed between
two events triggering controller updates is smaller than the minimum time τmin
between updates of the centralized event-triggered implementation1, the second
event is ignored and the controller update is scheduled τmin units of time after the
previous update.

Not having an equivalence in (8) entails that this decentralization approach is
in general conservative: times between updates will be shorter than in the central-
ized case. The vector of parameters θ = [θ1 θ2 . . . θn]T can be used to reduce the

1It was proved in [18] that such a minimum time exists for the centralized condition, and that
lower bounds can be explicitly computed.
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mentioned conservatism and thus reduce utilization of the communication network.
It is important to note that the vector θ can change every time the control input
is updated. From here on we show explicitly this time dependence of θ by writ-
ing θ(k) to denote its value between the update instants tk and tk+1. Following
the presented approach, as long as θ satisfies

∑n
i=1 θi(k) = 0, the stability of the

closed-loop is guaranteed regardless of the specific value that θ takes and the rules
used to update θ.

We summarize the previous discussion in the following proposition:

Proposition 3.2. For any choice of θ satisfying:
n∑
i=1

θi(k) = 0, ∀ k ∈ N+
0 ,

the sequence of update times {tk}k∈N+
0

given by:

tk+1=tk + max{τmin, min
i=1,...,n

τi(ξ(tk))}

τi(ξ(tk))=min{τ ∈ R+
0 | ε2i (tk + τ)− σξ2i (tk + τ) = θi(k)}

renders the system (5) asymptotically stable.

3.3. Decentralized event-triggering with on-line adaptation. We present
now a family of heuristics to adjust the vector θ whenever the control input is
updated. We define the decision gap at sensor i at time t ∈ [tk, tk+1[ as:

Gi(t) = ε2i (t)− σξ2i (t)− θi(k).

The heuristic aims at equalizing the decision gap at some future time. We propose
a family of heuristics parametrized by an equalization time te and an approximation
order q.

For the equalization time te : N0 → R+ we present the following two choices:
constant and equal to the minimum time between controller updates te(k) = τmin;
the previous time between updates te(k) = tk − tk−1.

The approximation order is the order of the Taylor expansion used to estimate
the decision gap at the equalization time te:

Ĝi(tk + te) = ε̂2i (tk + te)− σξ̂2i (tk + te)− θi(k).

where for t ∈ [tk, tk+1[:

ξ̂i(t) = ξi(tk) + ξ̇i(tk)(t− tk) +
1

2
ξ̈i(tk)(t− tk)2 + . . .

+
1

q!
ξ
(q)
i (tk)(t− tk)q,

ε̂i(t) = 0 − ξ̇i(tk)(t− tk)−
1

2
ξ̈i(tk)(t− tk)2 − . . .

− 1

q!
ξ
(q)
i (tk)(t− tk)q,

using the fact that ε̇ = −ξ̇ and ε(tk) = 0.
Finally, once an equalization time te and an approximation order q are chosen,

the vector θ(k) ∈ Rn is computed so as to satisfy:

Ĝi(tk + te) = Ĝj(tk + te) ∀i, j ∈ {1, 2, . . . , n},
n∑
i=1

θi(k) = 0.(10)
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Note that finding such θ, after the estimates ξ̂ and ε̂ have been computed, amounts
to solving a system of n linear equations. Note also that θ is computed2 in the
controller node, which has access to ξ(tk).

The choice of te and q has a great impact on the amount of actuation required.
The use of a large te leads, in general, to poor estimates of the state of the plant
at time tk + te and thus degrades the equalization of the gaps. On the other
hand, one expects that equalizing at times tk + te as close as possible to the next
update time tk+1 (according to the centralized event-triggered implementation)
provides larger times between updates. In practice, these two objectives (small te,
and tk + te close to the ideal tk+1) can be contradictory, namely when the time
between controller updates is large. The effect of the order of approximation q
depends heavily on te and enlarging q does not necessarily improve the estimates.
An heuristic providing good results in several case studies performed by the authors
is given by Algorithm 1.

Input: q, tk−1, tk, τmin, ξ(tk)
Output: θ(k)
te := tk − tk−1;
Compute θ(k) according to equation (10);
if ∃ i ∈ {1, 2, . . . , n} such that −ξ2i (tk) > θi(k) then

te := τmin;
Compute θ(k) according to equation (10);
if ∃ i ∈ {1, 2, . . . , n} such that −ξ2i (tk) > θi(k) then

θ(k) := 0;
end

end
Algorithm 1: The θ-adaptation heuristic algorithm.

While we assumed, for simplicity of presentation, that each node measured a
single state of the system, in practice there may be scenarios in which one sensor
has access to several (but not all) states of the plant. The same approach applies
by considering local triggering rules of the kind |ε̄i(t)|2− σ|ξ̄i(t)|2 ≤ θi, where ξ̄i(t)
is now the vector of states sensed at node i, ε̄i(t) is its corresponding error vector,
and θi is a scalar.

3.4. Comments on practical implementations. The proposed technique, while
clearly reducing the amount of information that needs to be transmitted from sen-
sors to actuators, might suggest that sensor nodes need to be continuously listening
for events triggered at other nodes. This poses a practical problem since the energy
required to keep the radios on to listen for possible events could potentially be
very large. In practice, however, sensor nodes have their radio modules asleep most
of the time and are periodically awaken according to a time multiplexing medium
access protocol. Time multiplexing is typically used in protocols for control over
wireless networks, like WirelessHART, in order to provide non-interference and
strict delay guarantees. The use of time multiplexing can be accommodated in the
proposed technique by regarding its effect as a bounded and known delay between

2The resulting θ computed in this way could be such that for some sensor i, −ξ2i (tk) > θi(k).

Such choice of θ results in an immediate violation of the triggering condition at t = tk, i.e.,
τi(ξ(tk)) would be zero. In practice, when the unique solution of (10) results in −ξ2i (tk) > θi(k),

one resets θ to some default value such as the zero vector.
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the generation of an event and the corresponding change in the control signal. As
was shown in [18], delays can be accommodated in event-triggered implementations
by adequately reducing the value of σ, therefore making the triggering conditions
more conservative.

4. Examples and simulation results

We present in what follows an example illustrating the effectiveness of the pro-
posed technique. We select the quadruple-tank model from [25] describing the
multi-input multi-output nonlinear system consisting of four water tanks as shown
in Figure 1. The water flows from tanks 3 and 4 into tanks 1 and 2, respectively,
and from these two tanks to a reservoir. The state of the plant is composed of the
water levels of the tanks: ξ1, ξ2, ξ3 and ξ4. Two inputs are available: υ1 and υ2,
the input flows to the tanks. The input flows are split at two valves γ1 and γ2 into
the four tanks. The positions of these valves are given as parameters of the plant.
The goal is to stabilize the levels x1 and x2 of the lower tanks at some specified
values x∗1 and x∗2.

x1 x2

x3
x4

u1 u2

γ1 γ2

Figure 1. The quadruple-tank system.

The system dynamics are given by the equation:

ξ̇(t) = f(ξ(t)) + gcυ,

with:

f(x) =


−a1

√
2gx1
A1

+ a3
√
2gx3
A1

−a2
√
2gx2
A2

+ a4
√
2gx4
A2

−a3
√
2gx3
A3

−a4
√
2gx4
A4

 , gc =


γ1
A1

0
0 γ2

A2

0 1−γ2
A3

1−γ1
A4

0

 ,
and g denoting gravity’s acceleration and Ai and ai denoting the cross sections of

the i− th tank and outlet hole respectively.
The controller design from [25] requires the extension of the plant with two

extra artificial states ξ5 and ξ6. These states are nonlinear integrators used by the
controller to achieve zero steady-state offset and evolve according to:

ξ̇5(t) = kI1a1
√

2g
(√

ξ1(t)−
√
x∗1

)
,

ξ̇6(t) = kI2a2
√

2g
(√

ξ2(t)−
√
x∗2

)
,
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where kI1 and kI2 are design parameters of the controller. Note how stabilizing
the extended system implies that in steady-state ξ1 and ξ2 converge to the desired
values x∗1 and x∗2. We assume in our implementation that the sensors measuring ξ1
and ξ2, also compute ξ5 and ξ6 locally and sufficiently fast. Hence, we can consider
ξ5 and ξ6 as regular state variables.

The controller proposed in [25] is given by the following feedback law:

(11) υ(t) = −K(ξ(t)− x∗) + u∗

with

u∗ =

[
γ1 1− γ2

1− γ1 γ2

]−1 [
a1
√

2gx∗1
a2
√

2gx∗2

]
=

[
0 1− γ2

1− γ1 0

]−1 [
a1
√

2gx∗3
a2
√

2gx∗4

]
,(12)

and K = QP where Q is a positive definite matrix and P is given by

P =

[
γ1k1 (1− γ1)k2 0 (1− γ1)k4 γ1k1 (1− γ1)k2

(1− γ2)k1 γ2k2 (1− γ2)k3 0 (1− γ2)k1 γ2k2

]
,

where k1, k2, k3 and k4 are design parameters of the controller. Note how equa-
tion (12) can be used to compute x∗3 and x∗4 from the specified x∗1 and x∗2. When com-
puting the control υ, the remaining entries x∗5 and x∗6 of x∗ = [x∗1 x

∗
2 x
∗
3 x
∗
4 x
∗
5 x
∗
6]T

can be set to any arbitrary (fixed) values x̂∗5 and x̂∗6. This can be done because
the errors: x̂∗5 − x∗5 and x̂∗6 − x∗6, between the arbitrary values and the actual states
x∗5 and x∗6 of the equilibrium, can be reinterpreted as a perturbation on the initial
states ξ5(0) and ξ6(0).

Using this controller the following function:

Hd(x)=
1

2
(x− x∗)TPTQP (x− x∗)− u∗TPx+(13)

4∑
i=1

2

3
kiaix

3/2
i

√
2g + k1a1x5

√
2gx∗1 + k2a2x6

√
2gx∗2,

which is positive definite and has a global minimum at x∗, is an ISS Lyapunov
function with respect to ε, as evidenced by the following bound 3:

d

dt
Hd(ξ) ≤ −λm(R)|∇Hd(ξ)|2 + |∇Hd(ξ)||g′cK||ε|.

This equation suggests the use of the triggering condition:

|∇Hd(ξ)||g′cK||ε| ≤ ρλm(R)|∇Hd(ξ)|2, ρ ∈]0, 1[.

Moreover, assuming the operation of the system to be confined to a compact set
containing a neighborhood of x∗, |∇Hd(ξ)| can be bounded as |∇Hd(ξ)| ≥ ρm|ξ−x∗|
and the following triggering rule can be applied to ensure asymptotic stability:

|ε(t)|2 ≤ σ|ξ(t)− x∗|2, σ =

(
ρmρ

λm(R)

|g′cK|

)2

> 0.

We simulated the decentralized event-triggered implementation of this controller
following the techniques in Section 3. The physical parameters of the plant and
the parameters of the controller are the same as those in [25]. Assuming that the
system operates in the compact set S = {x ∈ R6 | 1 ≤ xi ≤ 20, i = 1, . . . , 4; 0 ≤

3The expression for the matrix R is not included because of space limitations. The value of
λm(R) can be easily deduced from [25].
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xi ≤ 20, i = 5, 6}, one can take ρm = 0.14, and for the choice of ρ = 0.25 a
value of σ = 0.00542 was selected. A bound for the minimum time between con-
troller updates, computed as explained in [18], is given by τmin = 0.1ms. The
decentralized event-triggered controller is implemented adapting θ as specified by
Algorithm 1 with q = 1. Furthermore, the pairs of states x1, x5 and x2, x6 are as-
sumed to be measured at the same sensor node, and therefore combined in a single
triggering condition at the respective nodes. For comparison purposes, we present
in the first row of Figure 2 the time between controller updates, the evolution of
the ratio ε/ξ vs σ and the state trajectories, for a centralized event-triggered im-
plementation, starting from initial condition (12, 10, 5, 7) and setting x∗1 = 15 and
x∗2 = 13. The corresponding results for the proposed decentralized event-triggered
implementation are shown in the second row of Figure 2, and the results for a de-
centralized event-triggered implementation without adaptation, i.e., with θ(k) = 0
for all k ∈ N, are shown in the last row of the same figure. For completeness, Fig-
ure 3 presents the evolution of adaptation vector θ for the adaptive decentralized
event-triggered implementation. We can observe that, as expected, a centralized
event-triggered implementation is far more efficient, in terms of time between up-
dates, than a decentralized event-triggered implementation without adaption. It
is also clear that, although Algorithm 1 fails to recover the performance of the
centralized event-triggered implementation exactly, it produces very good results.
The results are even better if we look at the performance in terms of the number
of executions which are presented in the legend of these plots. Finally we would
like to remark that, although the times between updates in the three implementa-
tions can differ quite drastically, the three systems are stabilized producing almost
undistinguishable state trajectories.

5. Discussion

In [22] Wang and Lemmon proposed a method for distributed event-triggered
control under the assumption that the control system was composed of weakly
coupled subsystems. Exploiting this fact, they were able to update inputs inde-
pendently of each other. Our approach, while not updating inputs independently,
does not rely on any internal weak coupling assumptions about the system. Thus,
our techniques could be used to complement the techniques in [22] at the local
subsystem level.

The proposed techniques have been shown effective in decentralizing an event-
triggered implementation of a quadruple water-tank system. The centralized con-
troller of this example is a dynamic controller. In this particular case, by allowing
the dynamical part of the controller to be continuously computed by the sensors,
we successfully obtained a decentralized event-triggered implementation. However,
the implementation of general dynamic controllers in event-triggered form, central-
ized or not, remains a question for future research. The design of more efficient
adaptation rules is another interesting question to investigate further. Finally, we
would like to emphasize the low computational requirements of the proposed im-
plementation, which makes it suitable for sensor/actuator networks with limited
computation capabilities at the sensor level.
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Figure 2. Times between updates, evolution of the trigger-
ing condition, and evolution of the states for the centralized
event-triggering implementation (first row), decentralized event-
triggering implementation with adaptation (second row), and de-
centralized event-triggering implementation without adaptation
(third row).
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[9] D. Nesić, A. Teel, and D. Carnevale, “Explicit computation of the sampling period in emu-

lation of controllers for nonlinear sampled-data systems,” IEEE Transactions on Automatic

Control, vol. 59, pp. 619–624, Mar. 2009.
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