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Connectivity and Set Tracking of Multi-agent

Systems Guided by Multiple Moving Leaders∗

Guodong Shi, Yiguang Hong†and Karl Henrik Johansson ‡

Abstract

In this paper, we investigate distributed multi-agent tracking of a convex set specified by

multiple moving leaders with unmeasurable velocities. Various jointly-connected interaction

topologies of the follower agents with uncertainties are considered in the study of set tracking.

Based on the connectivity of the time-varying multi-agent system, necessary and sufficient

conditions are obtained for set input-to-state stability and set integral input-to-state stability

for a nonlinear neighbor-based coordination rule with switching directed topologies. Condi-

tions for asymptotic set tracking are also proposed with respect to the polytope spanned by

the leaders.

Keywords. Multi-agent systems, multiple leaders, set input-to-state stability (SISS), set

integral input-to-state stability (SiISS), set tracking.

1 Introduction

The last decade has witnessed tremendous interest devoted to the investigation of collective

phenomena in multiple autonomous agents, due to broad applications in various fields of science

ranging from biology to physics, engineering, and ecology, just to name a few [8, 9, 10, 11, 12].

Concerning the issues of multi-agent systems and distributed design, the revolutionary idea

is underpinning a strong interaction of individual dynamics, communication topologies, and
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distributed controls. The problem is generally very challenging due to the complex dynamics

and hierarchical structures of the systems. However, efforts have been started with relatively

simple problems such as consensus, formation, and rendezvous, and many significant results

have been obtained.

The leader-follower coordination is an important multi-agent control problem, where the

leader may be a real leader (such as a target, an evader, or a predefined position), or a virtual

leader (such as a reference trajectory or a specified path). In most theoretical work, a single

leader with exact measurement is considered on multi-agent systems for each agent to follow.

However, in practical situations, multiple leaders and target sets with unmeasurable variables are

considered to achieve desired collective behaviors. In [8], a simple model was given to simulate

fish foraging and demonstrate the leader effectiveness when the leaders (or informed agents)

guide a school of fish to a particular food region. In [23], a straight-line formation of a group

of agents was discussed, where all the agents converge to the line segment specified by two edge

leaders. A containment control scheme was proposed with fixed undirected interaction in [24],

which aimed at driving a group of agents to a given target location and making their positions

contained in the polytope spanned by multiple stationary or moving leaders during their motion.

Region following formation control was constructed [25], where all the robots are driven and

then stay within a moving target region as a group. Moreover, different dynamic connectivity

conditions were obtained to guarantee that the multiple leaders (or informed agents) aggregate

the whole multi-agent group within a convex target set in [26]. Additionally, control strategies

were demonstrated and analyzed to drive a collection of mobile agents to stationary/moving

leaders with connectivity-maintenance and collision-avoidance with fixed and switching directed

network topologies in [27]. As a matter of fact, multiple leaders are usually assigned to increase

control effectiveness, enhance communication/sensing range, improve reliability, and optimize

energy cost in multi-agent coordination.

Connectivity plays a key role in the coordination of multi-agent networks, which is related to

the influence of agents and controllability of the network. Due to mobility of the agents, inter-

agent topologies usually keep changing in practice. Therefore, the various connectivity conditions

to describe frequently switching topologies in order to deal with multi-agent consensus or flocking

[15, 16, 18, 21]. In fact, the “joint connection” or similar concepts are important in the analysis of

stability and convergence to guarantee multi-agent coordination with time-dependent topology.

Uniformly jointly-connected conditions have been employed for different problems. [28] studied
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the distributed asynchronous iterations, while [22] proved the consensus of a simplified Vicsek

model. Furthermore, [14] and [6] investigated the jointly-connected coordination for second-order

agent dynamics via different approaches, while [30] worked on nonlinear continuous-time agent

dynamics with jointly-connected interaction graphs. Also, flocking of multi-agent system with

state-dependent topology was studied with non-smooth analysis in [18, 20]. What is more, the

[t,∞) joint connection condition, which is more generalized than the uniformly joint connection

assumption, was discussed by Moreau, in order to achieve the consensus for discrete-time agents

in [31]. This [t,∞) connectivity concept was then extended in the distributed control analysis

for the target set convergence in [26].

It is well known that input-to-state stability (ISS) is an important and very useful tool in the

study of the stability and stabilization of control systems [29, 35]. Its variants such as integral

input-to-state stability (iISS) were discussed in [34]. Then few works on set input-to-state

stability (SISS) were done with respect to fixed sets in [33]. On the other hand, ISS or related

ideas can facilitate the control analysis and synthesis with interconnection conditions like small

gains (referring to [29], for example). ISS has recently been applied to the stability study of a

group of interconnected nonlinear systems [32]. Moreover, an extended concept called leader-

to-formation stability was introduced to investigate the stability of the formation of a group of

agents in light of ISS properties [19]. In fact, ISS application in multi-agent systems is promising.

The contributions of the paper include:

• We propose the generalized set input-to-state stability (SISS) and set integral-input-to-

state stability (SiISS) to handle moving sets with time-varying shapes for switching multi-

agent networks.

• We study the multi-leader coordination from the ISS viewpoint. With the help of SISS and

SiISS, we give explicit expressions to estimate the convergence rate and tracking error of

a group of mobile agents that try to enter the convex hull determined by multiple leaders.

• We show relationships between the connectivity and set tracking of the multi-agent sys-

tem, and find that various jointly-connected conditions usually provide necessary and/or

sufficient conditions for distributed coordination.

• We develop a method to study SISS and SiISS for a moving set and switching topology with

graph theory and non-smooth analysis. In fact, we cannot take the standard approaches

to conventional ISS or iISS using equivalent ISS-Lyapunov functions [34, 35]. In addition,

3



the classic algebraic methods based on Laplacian may fail due to disturbances in nonlinear

agent dynamics, uncertain leader velocities, or moving multi-leader set.

This paper is organized as follows. Section 2 presents the preliminaries and problem formu-

lation, while Section 3 proposes results for the convergence estimation. Section 4 mainly reports

a necessary and sufficient condition for the SISS with respect to the moving multi-leader set

with switching inter-agent topologies, and then presents a set-tracking case based on the SISS.

Correspondingly, Section 5 obtains necessary and sufficient conditions for SiISS and then shows

set-tracking results related to SiISS. Finally, Section 6 gives concluding remarks.

2 Problem Formulation

In this section, we introduce some preliminary knowledge for the following discussion.

First we introduce some basic concepts in graph theory (referring to [13] for details). A

directed graph (digraph) G = (V, E) consists of a finite set V = {1, 2, ..., n} of nodes and an arc

set E , in which an arc is an ordered pair of distinct nodes of V. (i, j) ∈ E describes an arc which

leaves i and enters j. A walk in digraph G is an alternating sequence W : i1e1i2e2 . . . em−1im of

nodes iκ and arcs eκ = (iκ, iκ+1) ∈ E for κ = 1, 2, . . . ,m− 1. A walk is called a path if the nodes

of this walk are distinct, and a path from i to j is denoted as (̂i, j). Node j is called reachable

from i if there is a path (̂i, j). If the nodes i1, . . . , im−1 are distinct and i1 = im, W is called a

(directed) cycle. A digraph without cycles is said to be acyclic.

The union of the two digraphs G1 = (V, E1) and G2 = (V, E2) is defined as G1 ∪ G2 =

(V, E1 ∪ E2) if they have the same node set. Furthermore, a time-varying digraph is defined as

Gσ(t) = (V, Eσ(t)) with σ : t → Q as a piecewise constant function, where Q is the finite set

which consists of all the possible digraphs with node set V. Moreover, the joint digraph of Gσ(t)

in time interval [t1, t2) with t1 < t2 ≤ +∞ is denoted as

G([t1, t2)) = ∪t∈[t1,t2)G(t) = (V,∪t∈[t1,t2)Eσ(t)). (1)

Next, we recall some notations in convex analysis (see [2]). A set K ⊂ Rd is said to be

convex if (1 − λ)x + λy ∈ K whenever x ∈ K, y ∈ K and 0 ≤ λ ≤ 1. For any set S ⊂ Rd,

the intersection of all convex sets containing S is called the convex hull of S, denoted by co(S).

Particularly, the convex hull of a finite set of points x1, . . . , xn ∈ Rd is a polytope, denoted by

co{x1, . . . , xn}. In fact, we have co{x1, . . . , xn} = {λ1x1 + · · ·+ λnxn|λ1 + · · ·+ λn = 1, λi ≥ 0}.
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Let K be a closed convex subset in Rd and denote |x|K , inf{|x − y| | y ∈ K}, where | · |
denotes the Euclidean norm for a vector or the absolute value of a scalar ([35, 34]). Then we

can associate to any x ∈ Rd a unique element PK(x) ∈ K satisfying |x− PK(x)| = |x|K , where
the map PK is called the projector onto K and

〈PK(x)− x,PK(x)− y〉 ≤ 0, ∀y ∈ K. (2)

Clearly, |x|2K is continuously differentiable at point x, and (see [1])

∇|x|2K = 2(x− PK(x)). (3)

The following lemma was obtained in [26], which is useful in what follows.

Lemma 2.1 Suppose K ⊂ Rd is a convex set and xa, xb ∈ Rd. Then

〈xa − PK(xa), xb − xa〉 ≤ |xa|K · ||xa|K − |xb|K | . (4)

Particularly, if |xa|K > |xb|K , then

〈xa − PK(xa), xb − xa〉 ≤ −|xa|K · (|xa|K − |xb|K). (5)

Then we consider the Dini derivative for the following non-smooth analysis. Let a and b (> a)

be two real numbers and consider a function h : (a, b) → R and a point t ∈ (a, b). The upper

Dini derivative of h at t is defined as

D+h(t) = lim sup
s→0+

h(t+ s)− h(t)

s
.

It is well known that when h is continuous on (a, b), h is non-increasing on (a, b) if and only if

D+h(t) ≤ 0 for any t ∈ (a, b) (more details can be found in [3]). The next result is given for the

calculation of Dini derivative [4, 30].

Lemma 2.2 Let Vi(t, x) : R × Rd → R (i = 1, . . . , n) be C1 and V (t, x) = maxi=1,...,n Vi(t, x).

If I(t) = {i ∈ {1, 2, . . . , n} : V (t, x(t)) = Vi(t, x(t))} is the set of indices where the maximum is

reached at t, then D+V (t, x(t)) = maxi∈I(t) V̇i(t, x(t)).

In this paper, we consider the set coordination problems for a multi-agent system consisting

of n follower-agents and k leader-agents (see Fig. 1). The follower set is denoted as VF ,

{v1, . . . , vn}, and the leader set is denoted as VL , {v̂1, . . . , v̂k}. In what follows, we will identify

follower vi or leader v̂i with its index i (namely, agent i or leader i) if there is no confusion.
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Figure 1: Multiple agents (vi, i = 1, 2, 3, 4) with multiple leaders (v̂i, i = 1, 2, 3)

Then we describe the communication in the multi-agent network. At time t, if i ∈ VF can

“see” j ∈ VF , there is an arc (j, i) (marking the information flow) from j to i, and then agent

j is said to be a neighbor of agent i. Moreover, if i ∈ VF “sees” j ∈ VL at time t, there is an

arc (j, i) leaving from j and entering i, and then j is said to be a leader of agent i. Let Ni and

Li represent the set of agent i’s neighbors and the set of agent i’s leaders (that is, the leaders

which are connected to agent i), respectively. Note that, since the leaders are not influenced by

the followers, there is no arc leaving from VF entering VL.

Define V = VF ∪ VL as the whole agent set (including leaders and followers). Denote P as

the set of all possible interconnection topologies, and σ : [0,+∞) → P as a piecewise constant

switching signal function to describe the switchings between the topologies. Thus, the interaction

topology of the considered multi-agent network is described by a time-varying directed graph

Gσ(t) = (V, Eσ(t)). Correspondingly, GF
σ(t) is denoted as the communication graph among the

follower agents. Additionally, let Ni(σ(t)) and Li(σ(t)) represent the set of agent i’s neighbors

and the set of its connected leaders in Gσ(t), respectively.

As usual in the literature [22, 30, 26], an assumption is given for the switching signal σ(t).

Assumption 1 (Dwell Time) There is a lower bound τD > 0 between two switching instants.

We give definitions for the connectivity of a multi-agent system with multiple leaders.

Definition 2.1 (i) Gσ(t) is said to be L-connected if, for any i ∈ VF , there exists a leader j ∈ VL

such that there is a path from leader j to agent i in Gσ(t) at time t. Moreover, Gσ(t) is said to be

jointly L-connected in time interval [t1, t2) if the union graph G([t1, t2)) is L-connected;

(ii) Gσ(t) is said to be jointly L-connected (JLC) if the union graph G([t,∞)) is L-connected

6



for any t;

(iii) Gσ(t) is said to be uniformly jointly L-connected (UJLC) if there exists T > 0 such that

the union graph G([t, t + T )) is L-connected for any t ≥ 0.

Remark 2.1 Note that the L-connectedness describes the capacity for the follower agents to get

the information from the moving multi-leader set in the information flow, and an L-connected

graph may not be connected since the graph with leaders as its nodes may not be connected. In

fact, if we consider the group of the leaders as one virtual node in V, then the L-connectedness

becomes the quasi-strong connectedness for a digraph [5, 30].

The state of agent vi ∈ VF , is denoted as xi ∈ Rd (i = 1, . . . , n), and the state of leader

v̂i ∈ VL, is denoted as yi ∈ Rd (i = 1, . . . , k). Denote x = (x1, . . . , xn)
T ∈ Rnd and y =

(y1, . . . , yk)
T ∈ Rkd and let the continuous function aij(x, y, t) > 0 be the weight of arc (j, i), if

any, for i, j ∈ VF , and continuous function bij(x, y, t) > 0 be the weight of arc (j, i), if any, for

i ∈ VF ; j ∈ VL.

Then we present the multi-agent model for the active leaders and the (follower) agents





ẏi = ui(y, t), i = 1, . . . , k

ẋi =
∑

j∈Ni(σ(t))

aij(x, y, t)(xj − xi) +
∑

j∈Li(σ(t))

bij(x, y, t)(yj − xi) + wi(t), i = 1, . . . , n

(6)

where ui(y, t) describes the control inputs of the leader i, i ∈ VL, which is continuous in y for

fixed t and piecewise continuous in t for fixed y, and wi(t) is a continuous function to describe

the disturbances in communication links and individual dynamics to follower agent i. Then

another assumption is given on the weight functions aij(x, y, t) and bij(x, y, t).

Assumption 2 (Bounded Weights) There are 0 < a∗ ≤ a∗ and b∗ > 0 such that a∗ ≤
aij(x, y, t) ≤ a∗, b∗ ≤ bij(x, y, t) for any x, y, t.

Remark 2.2 In (6), the weights, aij and bij, may not be constant. Instead, because of the

complex communication and environment uncertainties, they are dependent on time or space or

relative measurement (see nonlinear models given in [30, 26, 31, 18]). Some models such as those

studied in [30, 26] can be written in the form of (6), while other nonlinear multi-agent models

may be transformed to this class of multi-agent systems in some situations. Here aij(x, y, t) and

bij(x, y, t) are written in a general form simply for convenience, and global information is not

required in our study. For example, aij and bij can depend only on the state of xi, time t and
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xj (j ∈ Ni), which is certainly a special form of aij(x, y, t) or bij(x, y, t). In other words, the

control laws in specific decentralized forms are still decentralized.

Without loss of generality, we assume the initial time t = 0, and the initial condition x0 =

(x1(0), . . . , xn(0))
T ∈ Rnd and y0 = (y1(0), . . . , yk(0))

T ∈ Rkd.

Denote the time-varying polytope formed by the k active leaders

L(y(t)) , co{y1(t), . . . , yk(t)}, (7)

and let

|x(t)|L(y(t)) , max
i∈VF

|xi(t)|L(y(t))

be the maximal distance for the followers away from the moving multi-leader set L(y(t)).
The following definition is to describe the convergence to the moving convex set L(y(t)).

Definition 2.2 The (global) set tracking (ST) with respect to L(y(t)) for system (6) is achieved

if

lim
t→+∞

|x(t)|L(y(t)) = 0 (8)

for any initial condition x0 ∈ Rnd and y0 ∈ Rkd.

For a stationary convex set K, set tracking can be reduced to set stability and attractivity,

and methods to analyze |xi(t)|K were proposed in some existing works [26]. In fact, [24, 27]

discussed the convergence to the static convex set determined by stationary leaders with well

designed control protocols. Moreover, if we assume that the target set is exactly the polytope

with the positions of the stationary leaders (or informed agents) as its vertices, then the conver-

gence to the polytope, treated as a target set, can be obtained straightforwardly based on the

results and limit-set-based methods given in [26].

Input-to-state stability has been widely used in the stability analysis and set input-to-state

stability (SISS) for a fixed set has been studied in [33]. To study the multi-leader set tracking

in a broad sense, we introduce a generalized SISS with respect to L(y(t)), a moving set with a

time-varying shape, for multi-agent systems with switching interaction topologies. Denote u ,

(u1, . . . , uk)
T , w , (w1, . . . , wn)

T , z , (uT wT )T , and L∞ , {z : R≥0 → R(n+k)m | ‖z‖∞ < ∞}
with ‖z‖∞ , sup{|z(t)|, t ≥ 0} ([35]).

A function γ : R≥0 → R≥0 is said to be a K-class function if it is continuous, strictly

increasing, and γ(0) = 0. Moreover, a function β : R≥0 × R≥0 → R is a KL-class function if

β(·, t) is of class K for each fixed t ≥ 0 and β(s, t) decreases to 0 as t→ ∞ for each fixed s ≥ 0.
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Definition 2.3 System (6) is said to be globally generalized set input-to-state stable (SISS) with

respect to L(y(t)) with input z if there exist a KL-function β and a K-function γ such that

|x(t)|L(y(t)) ≤ β(|x0|L(y0), t) + γ(‖z‖∞) (9)

for z ∈ L∞ and any initial conditions x0 ∈ Rnd and y0 ∈ Rkd.

Integral-input-to-state stability (iISS) was introduced as an integral variant of ISS, which has

been proved to be strictly weaker than ISS [34]. We also introduce a definition of (generalized)

set integral-input-to-state stability (SiISS) with respect to a time-varying and moving set.

Definition 2.4 System (6) is (globally) generalized set integral-input-to-state stable (SiISS) with

respect to L(y(t)) if there exist a KL-function β and a K-function γ such that

|x(t)|L(y(t)) ≤ β(|x0|L(y0), t) +
∫ t

0
γ(|z(s)|)ds, (10)

for any initial conditions x0 ∈ Rnd and y0 ∈ Rkd.

The conventional SISS was given for a fixed set K ([33]), while the generalized SISS or SiISS

is proposed with respect to a time-varying set L(y(t)). In the following, we still use SISS or

SiISS instead of generalized SISS or SiISS for simplicity.

Remark 2.3 Similar to the study of conventional ISS, local SISS and SiISS can be defined. In

this paper, we focus on the global SISS and SiISS. In fact, it is rather easy to extend research

ideas of global set tracking to study local cases.

3 Convergence Estimation

For the set tracking with respect to a moving multi-leader set of system (6), we have to deal

with the estimation of |xi(t)|L(y(t)) when L(y(t)) is a time-varying convex set, where y(t) is a

trajectory of the moving leaders in system (6) with initial condition y0 = y(0). Define

r(t) , max
i∈VL

|ui(y(t), t)|; q(t) , max
i∈VL

|ui(y(t), t)|+max
i∈VF

|wi(t)|. (11)

Obviously,

q(t) ≤ |u(y(t), t)| + |w(t)| ≤
√
2|z(t)| ≤

√
2max{√n,

√
k}q(t). (12)

The following result is given to estimate the changes of the distance between an agent and

the convex hull spanned by the leaders.
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Lemma 3.1 For any t, t0 ≥ 0 and i = 1, . . . , n,

||xi(t)|L(y(t)) − |xi(t)|L(y(t0))| ≤
∫ t

t0

r(s)ds. (13)

Proof: Suppose

PL(y(t0))(xi(t)) =
k∑

i=1

λiyi(t0) ∈ L(y(t0)),

where λi ≥ 0 for i = 1, . . . , k with
k∑

i=1
λi = 1. Define ŷ(t) ,

k∑
i=1

λiyi(t), and then

|ŷ(t)− ŷ(t0)| ≤
k∑

i=1

λi|yi(t)− yi(t0)| =
k∑

i=1

λi|
∫ t

t0

ui(y(s), s)ds| ≤
∫ t

t0

r(s)ds

Moreover,

|xi(t)|L(y(t)) ≤ |xi(t)− ŷ(t)|

≤ |xi(t)− ŷ(t0)|+ |ŷ(t)− ŷ(t0)|

≤ |xi(t)|L(y(t0)) +
∫ t

t0

r(s)ds (14)

Also, similar analysis leads to

|xi(t)|L(y(t0)) ≤ |xi(t)|L(y(t)) +
∫ t

t0

r(s)ds (15)

Therefore, (14) and (15) lead to the conclusion. �

For simplicity, define ψi(t) , |xi(t)|2L(y(t)), i = 1, . . . , n and

Ψ(t) , max
i∈VF

ψi(t),

which is locally Lipschitz but may not be continuously differentiable. Clearly, |xi(t)|L(y(t)) =
√
ψi(t), i = 1, . . . , n and ‖x(t)‖L(y(t)) =

√
Ψ(t).

Then, we get the following lemma to estimate the set convergence.

Lemma 3.2 D+
√
Ψ(t) ≤ q(t).

Proof: It is not hard to see that

dψi(t)

dt
= lim

∆t→0

ψi(t+∆t)− ψi(t)

∆t

= lim
∆t→0

|xi(t+∆t)|2L(y(t+∆t)) − |xi(t+∆t)|2L(y(t))
∆t

+ lim
∆t→0

|xi(t+∆t)|2L(y(t)) − |xi(t)|2L(y(t))
∆t

. (16)
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Then, according to (3), we obtain

lim
∆t→0

|xi(t+∆t)|2L(y(t)) − |xi(t)|2L(y(t))
∆t

=
d

ds
|xi(s)|2L(y(t))

∣∣∣∣
s=t

= 〈∇|xi(s)|2L(y(t)), ẋi(s)〉
∣∣∣
s=t

= 2〈xi(t)− PL(y(t))(xi(t)),
∑

j∈Ni(σ(t))

aij(xj(t)− xi(t)) +
∑

j∈Li(σ(t))

bij(yj(t)− xi(t)) + wi(t)〉.

(17)

Furthermore, according to Lemma 3.1,

lim
∆t→0

|xi(t+∆t)|L(y(t+∆t)) − |xi(t+∆t)|L(y(t))|
∆t

≤ lim
∆t→0

∫ t+∆t

t
r(s)ds

∆t
= r(t),

and then it is easy to find that

lim
∆t→0

|xi(t+∆t)|2L(y(t+∆t)) − |xi(t+∆t)|2L(y(t))
∆t

= lim
∆t→0

|xi(t+∆t)|L(y(t+∆t)) − |xi(t+∆t)|L(y(t))
∆t

·(|xi(t+∆t)|L(y(t+∆t)) + |xi(t+∆t)|L(y(t)))

≤ 2r(t)|xi(t)|L(y(t)). (18)

Therefore,

d

dt
ψi(t) ≤ 2〈xi − PL(y(t))(xi),

∑

j∈Ni(σ(t))

aij(x)(xj − xi) +
∑

j∈Li(σ(t))

bij(x)(yj − xi) + wi(t)〉

+2r(t)|xi(t)|L(y(t)). (19)

Moreover, let I(t) denote the set containing all the agents that reach the maximal distance away

from L(y(t)) at time t. Then, for any i ∈ I(t), according to (2), one has

〈xi − PL(y(t))(xi), yj − xi〉 ≤ 〈xi − PL(y(t))(xi), yj − PL(y(t))(xi)〉

+〈xi − PL(y(t))(xi),PL(y(t))(xi)− xi〉

≤ 〈xi − PL(y(t))(xi),PL(y(t))(xi)− xi〉

= −ψi(t) (20)

for any j ∈ Li(σ(t)). Furthermore, in light of Lemma 2.1, since i ∈ I(t),

〈xi − PL(y(t))(xi), xj − xi〉 ≤ −|xi|L(y(t))(|xi|L(y(t)) − |xj |L(y(t))) ≤ 0

11



for any j ∈ Ni(σ(t)). Therefore, the conclusion follows since

D+Ψ(t) = max
i∈I(t)

d

dt
ψi(t)

≤ 2 max
i∈I(t)

[〈xi − PL(y(t))(xi), wi(t)〉+ 2r(t)|xi(t)|L(y(t))]

≤ 2(r(t) + max
i∈VF

|wi(t)|) max
i∈I(t)

|xi(t)|L(y(t))

= 2q(t)
√

Ψ(t)

according to Lemma 2.2. �

4 Connectivity and SISS

In this section, we study the SISS with respect to the convex set spanned by the moving leaders

in an important connectivity case, uniformly jointly L-connected (UJLC) topology. Without

loss of generality, we will assume n ≥ 2 in the sequel.

4.1 Main results

Suppose z = (uT , wT )T ∈ L∞ in this section. Then we have the main result on SISS.

Theorem 4.1 System (6) is SISS with respect to L(y(t)) and with z as the input if and only if

Gσ(t) is UJLC.

The main difficulties to obtain the SISS inequalities in the UJLC case are how to estimate the

convergence rate in a time interval by “pasting” time subintervals together and how to estimate

the impact of the input z to the agent motion.

To prove Theorem 4.1, we first present two lemmas to estimate the distance error in the two

standard cases during t ∈ [t0, t0 + T∗] for t0 ≥ 0 and a constant T∗ > τD with τD as the dwell

time of switching.

Lemma 4.1 If there is an arc (j, i) leaving from follower j ∈ VL entering i ∈ VF in Gσ(t) for

all t ∈ [t0, t0 + τD), then there exist a continuous function µ(s) : [0, T∗] 7→ (0, 1] and a constant

γ1 > 0 such that

|xi(t)|L(y(t)) ≤ µ(t− t0)|x(t0)|L(y(t0)) + γ1‖z‖∞, ∀t ∈ [t0, t0 + T∗]. (21)

Proof: See Appendix A.1. �
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Lemma 4.2 If there is an arc (i,m) leaving from i ∈ VF entering m ∈ VF in Gσ(t) for all

t ∈ [t0, t0 + τD), and

|xi(t)|L(y(t)) ≤ µ0|x(t0)|L(y(t0)) + d0, ∀t ∈ [t0, t0 + τD) (22)

for constants µ0 ∈ (0, 1) and d0 > 0, then there exist a continuous function ξµ0
(s) : [0, T∗] 7→

(0, 1] and a positive constant γ2 such that

‖xm(t)‖L(y(t)) ≤ ξµ0
(t− t0)|x(t0)|L(y(t0)) + γ2‖z‖∞ + d0, ∀t ∈ [t0, t0 + T∗] (23)

Proof: See Appendix A.2. �

Remark 4.1 The following properties of µ(s) and ξµ0
(s) are quite critical in the study of the

set tracking with jointly L-connected topology (see Fig. 2):

(i) µ(0) = ξµ0
(0) = 1.

(ii) µ(s) and ξµ0
(s) are strictly decreasing during s ∈ [0, τD].

(iii) µ(s) and ξµ0
(s) are strictly increasing during s ∈ [τD, T

∗], and µ(T ∗) < 1, ξµ0
(T ∗) < 1.

Figure 2: µ(s) and ξµ0
(s)

Next, we introduce the following lemma to state an important property for UJLC graphs.

Lemma 4.3 If Gσ(t) is UJLC, then, for any t > 0 and i ∈ VF , there is a path (̂j, i) from some

leader j ∈ VL to follower i in G([t, t+ T0)) with T0 , T + 2τD, and each arc of (̂j, i) exists in a

time interval with length τD at least during [t, t+ T0).
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Proof: Denote t1 as the first moment when the interaction topology switches within [t, t + T0)

(suppose there are switchings without loss of generality). If t1 ≥ t + τD, then, for any i ∈ VF ,

there is a path (̂j, i) from some leader with index j ∈ VL to agent i in G([t, t + T )), where each

arc stays there for at least the dwell time τD during [t, t+ T + τD) due to the definition of τD.

On the other hand, if t1 < t + τD, t1 + T + τD < t + T0. Then, for any i ∈ VF , there is also a

path (̂j, i) from some leader j ∈ VL to agent i in G([t1, t1 +T )) in [t1, t1 +T + τD) with each arc

exists for at least τD. This completes the proof. �

Remark 4.2 If there is a convex set Ω such that L(y(t)) ∈ Ω,∀t ≥ 0, that is, Ω is a positively

invariant set for the leaders, then |x(t)|Ω ≤ |x(t)|L(y(t)). By Theorem 4.1, system (6) is SISS

with respect to Ω with w as the input if Gσ(t) is UJLC.

Sometimes, the velocities of the moving leaders and uncertainties in agent dynamics (maybe

because of the online estimation) may vanish. To be strict, consider the following condition




limt→+∞ ui(y, t) = 0uniformly for y; i = 1, . . . , k;

limt→+∞wj(t) = 0, j = 1, . . . , n.

(24)

Clearly, (24) yields that for any ε > 0, there is Tε > 0 such that ‖zTε‖∞ < ε, where zTε is

the truncated part of z defined on [Tε,+∞). Suppose (24) holds and Gσ(t) is UJLC. Based on

Theorem 4.1, for any ε > 0, there is Tε > 0 such that

|x(t)|L(y(t)) ≤ β(|x(Tε)|L(y(Tε)), t) + γ(ε).

Hence, the set tracking for system (6) with respect to set L(y(t)) is achieved easily. On the other

hand, similar to the proof of Theorem 4.1, the necessity of the global set tracking for system (6)

with condition (24) can also be simply proved by counterexamples since |z(t)| may be large and

the distance error may accumulate to a very large value over a sufficiently long period of time.

Therefore, we have the following result.

Corollary 4.1 The global set tracking with respect to L(y(t)) is achieved for all z(t) satisfying

(24) if and only if Gσ(t) is UJLC.

4.2 Proof of Theorem 4.1

We are now in a position to prove Theorem 4.1: “If” part: Denote T∗ = nT0 with T0 = T +2τD.

Then we estimate Ψ(t) at subintervals [t∗ + (j − 1)T0, t
∗ + jT0] for j = 1, . . . , n.

14



Based on Lemma 4.3, in [t∗, t∗ + T0), there must be an arc (j1, i1) ∈ E([t∗, t∗ + T0)) leaving

from a leader j1 ∈ VL to a follower i1 ∈ VL and this arc remains for at least τD. Suppose

(j1, i1) ∈ Eσ(t) for t ∈ [t1, t1 + τD) ⊂ [t∗, t∗ + T0). According to Lemma 4.1,

|xi1(t)|L(y(t)) ≤ µ(t− t1)|x(t1)|L(y(t1)) + γ1‖z‖∞, t ∈ [t1, t1 + T∗], (25)

where µ(s) and γ1 were defined in Lemma 4.1. Take η1 = sup{µ(s) | s ∈ [T0, T∗]} = µ(T∗). Since

0 < µ1 < 1,

|xi1(t)|L(y(t)) ≤ η1|x(t1)|L(y(t1)) + γ1‖z‖∞, t ∈ [t∗ + T0, t
∗ + T∗]. (26)

Furthermore, in [t∗ + T0, t
∗ + 2T0), there must be a follower i2 ∈ VF , i2 6= i1, such that there

exists an arc (j2, i2) for some j2 ∈ VL, or an arc (i1, i2) in E([t∗ + T0, t
∗ + 2T0)).

There are two cases:

1) If (j2, i2) ∈ Eσ(t) for t ∈ [t2, t2 + τD) ⊂ [t∗ + T0, t
∗ + 2T0), one also has

|xi2(t)|L(y(t)) ≤ η1|x(t2)|L(y(t2)) + γ1‖z‖∞, t ∈ [t∗ + 2T0, t
∗ + T∗]. (27)

2) If (i1, i2) ∈ Eσ(t) for t ∈ [t2, t2 + τD) ⊂ [t∗ + T0, t
∗ + 2T0). According to (12) and Lemma

3.2, one has

|x(t1)|L(y(t1)) ≤ |x(t2)|L(y(t2)) +
√
2‖z‖∞ · |t2 − t1| ≤ |x(t2)|L(y(t2)) + 2

√
2‖z‖∞T0,

Thus, (26) will lead to

|xi1(t)|L(y(t)) ≤ η1|x(t2)|L(y(t2)) + (2
√
2η1T0 + γ1)‖z‖∞, t ∈ [t∗ + T0, t

∗ + T∗]. (28)

Then, by Lemma 4.2, if we take η2 = ξη1((n − 1)T0), then

|xi2(t)|L(y(t)) ≤ η2|x(t2)|L(y(t2)) + (γ2 + 2
√
2η1T0 + γ1)‖z‖∞, t ∈ [t∗ + 2T0, t

∗ + T∗]. (29)

Because η2 > η1,

|x(t)|L(y(t)) ≤ η2|x(t2)|L(y(t2))+(γ2+2
√
2η1T0+γ1)‖z‖∞,  = i1, i2, t ∈ [t∗+2T0, t

∗+T∗]. (30)

Repeating the above procedure yields

ηj = ξηj−1
((n − j + 1)T0), j = 3, . . . , n
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and tj ∈ [t∗ + jT0, t
∗ + T∗) such that, there exists ij ∈ VF , j = 3, . . . , n satisfying

|x(t)|L(y(t)) ≤ ηj |x(tj)|L(y(tj )) + [(j − 1)γ2 + 2
√
2

j−1∑

l=1

ηlT0 + γ1]‖z‖∞,  = i1, . . . , ij (31)

for t ∈ [t∗ + jT0, t
∗ + T∗]. Moreover, the nodes ij , j = 1, 2, . . . , n are distinct.

Denote η∗ = ηn, and then 0 < η∗ < 1. Thus, (31) leads to

|x(t∗ + T∗)|L(y(t∗+T∗)) ≤ η∗|x(t∗)|L(y(t∗)) + [(1 + 2
√
2)η∗T∗ + (n− 1)γ2 + γ1]‖z‖∞, (32)

for any  ∈ VF , which leads to

|x(t∗ + T∗)|L(y(t∗+T∗)) ≤ η∗|x(t∗)|L(y(t∗)) + [(1 + 2
√
2)η∗T∗ + (n− 1)γ2 + γ1]‖z‖∞. (33)

Therefore, ∀N = 1, 2, . . . ,

|x(NT∗)|L(y(NT∗)) ≤ ηN∗ |x0|L(y0) +
N−1∑

j=0

ηj∗[(1 + 2
√
2)η∗T∗ + (n− 1)γ2 + γ1]‖z‖∞. (34)

Again by Lemma 3.2, one has

|x(t)|L(y(t)) ≤ β(|x0|L(y0), t) + γ(‖z‖∞) (35)

with

β(|x0|L(y0), t) , η
⌊ t
T∗ ⌋

∗ |x0|L(y0), γ(s) , [
(1 + 2

√
2)η∗T∗ + (n− 1)γ2 + γ1

1− η∗
+ T∗]s

where ⌊ t
T ∗ ⌋ denotes the largest integer no greater than t

T ∗ , which implies the conclusion.

“Only if” part: If Gσ(t) is not UJLC, there is a time sequence 0 < T1 < T2 < . . . such that

G([T2κ−1, T2κ)) is not L-connected for κ = 1, 2, . . . with limκ→∞(T2κ − T2κ−1) = ∞. Taking

xi(0) = (0, . . . , 0)T ∈ Rd,∀i ∈ VF and yi(0) = (1, . . . , 1)T ∈ Rd,∀i ∈ VL with wi(t) ≡ 0,∀i ∈ VF

and ui(y, t) ≡ (1, . . . , 1)T ,∀i ∈ VL, we obtain L(y(t)) = {(1+t, . . . , 1+t)T }. Since G([T2κ−1, T2κ))

is not L-connected, there is i ∈ VF such that agent i is reachable from no leader. Define

V̂1
i , {j ∈ V|i is reachable from j in graph G([T2κ−1, T2κ))}. Since V̂1

i contains no leader and

there is no arc entering V̂1
i , no agent in V̂1

i leaves co{x(T2κ−1),  ∈ V̂1
i } when t ∈ [T2κ−1, T2κ).

Moreover, none of the followers can enter L(y(t)) in finite time. Therefore,

lim
κ→∞

|x(T2κ)|L(y(T2κ)) ≥ lim
κ→∞

(T2κ − T2κ−1) = +∞, ∀ ∈ V̂1
i .

Thus, the SISS with respect to L(y(t)) cannot be achieved. �
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5 Connectivity and SiISS

In this section, we aim at the connectivity requirement to ensure the set integral-input-to-state

stability (SiISS) when Gσ(t) is jointly L-connected (JLC).

5.1 Main results

Theorem 4.1 showed an equivalent relationship between SISS and UJLC. However, this is not

true for SiISS. Here, we propose a couple of theorems about SiISS. The proofs of these conclusions

can be found in the following subsection.

First of all, we propose a sufficient condition.

Theorem 5.1 System (6) is SiISS with respect to L(y(t)) if Gσ(t) is UJLC.

Remark 5.1 JLC of Gσ(t) (i.e., G([t,∞)) is L-connected for any t) is necessary for the SiISS,

though it is not sufficient. If G([T̃ ,∞)) is not L-connected for some T̃ > 0, there is a subset

V̂F ⊆ VF such that no arcs enter V̂F in G([T̃ ,∞)). Hence, the agents in V̂F may not be SiISS

for some initial conditions since they will not be influenced by the convex leader-set after T̃ .

UJLC, which is a special case of JLC, provides a sufficient condition for SiISS, but UJLC is

not necessary to ensure SiISS. In fact, there are other cases of JLC to make SiISS hold. Here

we consider two important special JLC cases i.e., bidirectional graphs and acyclic graphs.

A digraph G is called a bidirectional graph when i is a neighbor of j if and only if j is a

neighbor of i, but the weight of arc (i, j) may not be equal to that of arc (j, i). The next result

shows a necessary and sufficient condition for the bidirectional case.

Theorem 5.2 Suppose that GF
σ(t) is bidirectional for all t ≥ 0. Then system (6) is SiISS if and

only if Gσ(t) is JLC.

The next lemma shows an important property for an acyclic digraph, that is, a digraph

without cycles.

Lemma 5.1 Assume that GF ([0,+∞)) is acyclic and G([0,+∞)) is L-connected. Then there

is a partition of VF by VF =
⋃k0

i=1 VF
i , k0 ≥ 1 such that in graph G([0,+∞)), all the arcs

entering node set VF
1 are from VL ; and all the arcs entering node set VF

j , j = 2, . . . , k0 are from

VL ∪ (
⋃j−1

i=1 VF
i ).
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Proof: First we prove VF
1 exists by contradiction. If VF

1 does not exist, every agent i, i ∈ VF has

neighbors within VF in G([0,+∞)). Denote V̂F
1 , {j ∈ VF |there is an arc leaving from VL entering j}.

Clearly V̂F
1 6= ∅. Take i0 ∈ V̂F

1 . Then, there is j1 ∈ VF such that (j1, i0) ∈ G([0,+∞)). Moreover,

we can associate j1 with i1 ∈ V̂F
1 (i1 cannot be i0, of course) such that there is a path (̂i1, j1)

in G([0,∞)) (i1 = j1 if j1 ∈ V̂F
1 ). Hence, a path (̂i1, i0) in G([0,+∞)) is found. Regarding i1 as

i0 and repeating the above procedure yields the existence of (̂i2, i1) in G([0,+∞)) with i2 ∈ V̂F
1 .

In this way, we obtain a path ̂(il+1, il) in G([0,+∞)) with il ∈ V̂F
1 , l = 2, 3, . . . . Since the nodes

in V̂F
1 are finite, there has to be il1 = il2 for some l1 > l2 ≥ 0, which lead to a directed cycle in

G([0,+∞)). Therefore, there is VF
1 to make the conclusion hold.

Next, by replacing VL with VF
1 ∪ VL in G([0,∞)), with the same analysis we can find VF

2 to

make the conclusion hold. Repeating this procedure, since the number of all the agents is finite,

there will be a constant k0 ≥ 1 such that VF =
⋃k0

i=1 VF
i . This completes the proof. �

Then we have a SiISS result for the acyclic graph case.

Theorem 5.3 Assume that GF ([0,+∞)) is acyclic. Then system (6) is SiISS if and only if

Gσ(t) is JLC.

Furthermore, consider the following inequality

∫ +∞

0
|z(t)|dt <∞. (36)

It is not hard to obtain the following results based on Theorems 5.1, 5.2, and 5.3. The proofs

are omitted for space limitations.

Corollary 5.1 System (6) achieves the set tracking if (36) holds and Gσ(t) is UJLC.

Corollary 5.2 Suppose (36) holds with either GF
σ(t) being bidirectional for all t ≥ 0 or GF ([0,+∞))

being acyclic. Then system (6) achieves the global set tracking if and only if Gσ(t) is JLC.

Remark 5.2 In general, the condition (24) does not imply and is not implied by the condition

(36). In fact, the considered leaders converge to some points with (36), but the leaders can go to

infinity with (24). However, if z(t) is uniformly continuous in [0,+∞) (which can be guaranteed

once ż(t) is bounded for t ∈ [0,+∞)), (24) will then be implied by (36) according to Barbalat’s

Lemma.

Remark 5.3 Corollaries 5.1 and 5.2 are consistent with Proposition 6 in [34], where (36)

and integral-ISS together resulted in the state stability. Moreover, the two corollaries are also
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consistent with Theorems 15 and 17 in [26], respectively, when z ≡ 0. However, different from

the limit-set-based approach given in [26], the proposed method by virtue of (43) and (50) also

provides the estimation of the convergence rate.

Remark 5.4 Theorems 4.1 and 5.1 with Remark 5.1 proved that for system (6), SISS is equiv-

alent to UJLC, which implies SiISS, while JLC is a necessary condition, namely,

SISS ⇐⇒ UJLC =⇒ SiISS =⇒ JLC.

Thus, SISS =⇒ SiISS, which is consistent with Corollary 4 of [34], where ISS implies iISS.

Moreover, Theorems 5.2 and 5.3 show that, in either bidirectional or acyclic case,

SiISS ⇐⇒ JLC.

Remark 5.5 As for set tracking (ST), Corollary 4.1 shows that

UJLC ⇐⇒ ST,∀z(t) satifying (24).

Moreover, Corollaries 5.1 and 5.2 show that as long as (36) holds,

UJLC =⇒ ST

in general directed cases, and

JLC ⇐⇒ ST

in either bidirectional or acyclic case. Usually, SISS goes with (24) and SiISS with (36), con-

sistent with discussions on ISS and iISS [34, 35]. Additionally, it is worth pointing out that the

differences between the statements in Corollaries 4.1 and those in 5.1 result from the fact that

UJLC is necessary for SISS, but not necessary to SiISS.

Although our results are consistent with the results on conventional ISS or iISS, the analysis

methods given in [34, 35] are mainly based on an equivalent ISS-Lyapunov function, which

cannot be applied to our cases with a moving set and switching topologies.

5.2 Proofs

To establish the SiISS in the JLC case, we will analyze the impact of the integral of input z(t) in a

time interval and estimate the convergence rates during this time interval by “pasting” different

time subintervals together within the interval. The following lemmas are given to estimate the

convergence rates in different cases.
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Lemma 5.2 If there is an arc (j, i) leaving from j ∈ VL entering i ∈ VF in Gσ(t) for t ∈
[t0, t0 + τD), then there exists a strictly decreasing function δ(s) : [0, τD] 7→ (0, 1] with δ(0) = 1

such that

|xi(t)|L(y(t)) ≤ δ(t− t0)|x(t0)|L(y(t0)) + 2
√
2

∫ t0+τD

t0

|z(s)|ds, t ∈ [t0, t0 + τD]. (37)

Proof: According to Lemma 3.2, ψj(t) ≤
√

Ψ(t) ≤
√
Ψ(t0) +

∫ t

t0

√
2|z(s)|ds, j = 1, ..., n for any

t > t0 > 0. Since there is an arc (j, i) with j ∈ VL, i ∈ VF in Gσ(t) for t ∈ [t0, t0 + τD),

d

dt
ψi(t) ≤ −2b∗ψi(t) + 2

√
2|z(t)|

√
ψi(t) + 2〈xi − PL(y(t))(xi),

∑

j∈Ni(σ(t))

aij(x)(xj − xi)〉.

Based on Lemma 2.1, when t ∈ [t0, t0 + τD),

〈xi(t)− PL(y(t))(xi(t)), xj(t)− xi(t)〉 ≤
√
ψi(t)(

√
Ψ(t)−

√
ψi(t))

≤
√
ψi(t)(

√
Ψ(t0) +

∫ t

t0

√
2|z(s)|ds −

√
ψi(t))

Therefore,

d

dt
ψi(t) ≤ −2[b∗ + (n− 1)a∗]ψi(t) + 2[

√
2|z(t)| + (n− 1)a∗(

√
Ψ(t0) +

∫ t

t0

√
2|z(s)|ds)]

√
ψi(t),

or equivalently,

d

dt

√
ψi(t) ≤ −λ

√
ψi(t) + [

√
2|z(t)| + (n− 1)a∗(

√
Ψ(t0) +

∫ t0+τD

t0

√
2|z(s)|ds)]

where λ , b∗ + (n− 1)a∗ for t ∈ [t0, t0 + τD). Thus,

√
ψi(t) ≤ δ(t− t0)

√
Ψ(t0) +

b∗ + 2(n − 1)a∗

λ

∫ t0+τD

t0

√
2|z(s)|ds, t ∈ [t0, t0 + τD)

with δ(s) , b∗e
−λs+(n−1)a∗

λ
, s ∈ [0, τD], which implies the conclusion. �

Lemma 5.3 Suppose there is an edge (i,m) leaving from i ∈ VF entering m ∈ VF in Gσ(t) and

|xi(t)|L(y(t)) ≤ δ0|x(t0)|L(y(t0)) + c̃0 with constants δ0 ∈ (0, 1) and c̃0 > 0 when t ∈ [t0, t0 + τD).

Then there is a strictly decreasing function ϕδ0(s) : [0, τD] 7→ (0, 1] with ϕδ0(0) = 1 such that

|xm(t)|L(y(t)) ≤ ϕδ0(t− t0)|x(t0)|L(y(t0)) + c̃0 + 2
√
2

∫ t0+τD

t0

|z(s)|ds, t ∈ [t0, t0 + τD]. (38)

Lemma 5.4 Given a constant T̂ > 0, if there is t1 ≥ t0 with ‖xi(t1)‖L(y(t1)) ≤ ε0|x(t0)|L(y(t0))+
ĉ0 for constants ε0 ∈ (0, 1) and ĉ0 > 0, then there is a strictly increasing function φε0(s) :

[0, T̂ ] 7→ [ε0, 1) with φε0(0) = ε0 such that

|xi(t)|L(y(t)) ≤ φε0(t− t1)|x(t0)|L(y(t0)) + ĉ0 + 2
√
2

∫ t1+T̂

t0

|z(s)|ds, t ∈ [t1, t1 + T̂ ], (39)

where φε0(s) = 1− e−(n−1)a∗s(1− ε0).
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The proofs of Lemmas 5.3 and 5.4 are similar to that of Lemma 5.2, and therefore, omitted.

Lemma 5.5 Suppose V1
F ⊂ VF is an nonempty subset. If there are no arcs leaving from VF \V1

F

entering V1
F in G([t1, t1+ T̂ )) for a given constant T̂ > 0 and ‖xi(t1)‖L(y(t1)) ≤ ε0|x(t0)|L(y(t0))+

ĉ0, ∀i ∈ V1
F for constants ε0 ∈ (0, 1) and ĉ0 > 0, then

|xi(t)|L(y(t)) ≤ ε0|x(t0)|L(y(t0)) + ĉ0 +
√
2

∫ t1+t

t1

|z(s)|ds, (40)

Taking Ψ1(t) = max
i∈V1

F

{ψi(t)} gives D+
√

Ψ1(t) ≤
√
2|z(t)| for t ∈ [t1, t1 + T̂ ] by virtue of the

analysis given for Lemma 3.2. Then Lemma 5.5 can be obtained straightforwardly.

Now we are ready to prove Theorems 5.1, 5.2, and 5.3.

Proof of Theorem 5.1: Denote T∗ = nT0 with T0 = T + 2τD defined in Lemma 4.3. If

G([t∗, t∗ + T0)) is L-connected, there has to be an arc (j1, i1) ∈ Eσ(t) for t ∈ [t1, t1 + τD) ⊂
[t∗, t∗+T0) leaving from a leader j1 ∈ VL entering i1 ∈ VL and this arc is kept there for a period

of at least τD. Invoking Lemmas 5.2 and 5.4,

|xi1(t)|L(y(t)) ≤ c1|x(t1)|L(y(t1)) + 4
√
2

∫ t∗+T∗

t∗
|z(s)|ds, t ∈ [t1, t

∗ + T∗],

where c1 = φδ(τD)(T∗).

Furthermore, when t ∈ [t∗ + T0, t
∗ + 2T0), there must be a follower i2 ∈ VF , i2 6= i1 such

that there exists an arc (j2, i2) for some j2 ∈ VL, or an arc (i1, i2) when t ∈ [t2, t2 + τD) ⊂
[t∗ + T0, t

∗ + 2T0)). According to Lemmas 5.3 and 5.4,

|xi2(t)|L(y(t)) ≤ c2|x(t1)|L(y(t1)) + 8
√
2

∫ t∗+T∗

t∗
|z(s)|ds, t ∈ [t2, t

∗ + T∗],

where c2 = φϕ2
(T∗) with ϕ2 = ϕc1(τD).

Repeating the above procedure yields

|xiℓ(t)|L(y(t)) ≤ cℓ|x(t1)|L(y(t1)) + 4
√
2ℓ

∫ t∗+T∗

t∗
|z(s)|ds, t ∈ [t∗ + ℓT0, t

∗ + T∗].

for iℓ ∈ VF , ℓ = 3, . . . , n, where

cℓ = φϕℓ−1
(T∗), ϕℓ = ϕcℓ−1

(τD), [tℓ, tℓ + τD) ⊂ [t∗ + (ℓ− 1)T0, t
∗ + ℓT0) (41)

Moreover, the nodes of iℓ, ℓ = 1, 2, . . . , n are distinct.

Denote ĉ , cn from (41). Then we obtain

|x(t∗ + T∗)|L(y(t∗+T∗)) ≤ ĉ|x(t∗)|L(y(t∗)) + (4n+ 1)
√
2

∫ t∗+T∗

t∗
|z(s)|ds. (42)
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It follows immediately that

|x(KT∗)|L(y(KT∗)) ≤ ĉK |x0|L(y0) + (4n + 1)
√
2

K∑

j=1

∫ jT∗

(j−1)T∗

ĉK−j|z(s)|ds, K = 1, 2, . . . (43)

Based on Lemma 3.2 and (12), we have

|x(t)|L(y(t) ≤ ĉ⌊
t

T∗ ⌋|x0|L(y0) + (4n + 1)
√
2

⌊ t
T∗ ⌋∑

j=1

∫ jT∗

(j−1)T∗

ĉ⌊
t

T∗ ⌋−j|z(s)|ds +
√
2

∫ t

⌊ t
T∗ ⌋

|z(s)|ds

≤ ĉ⌊
t

T∗ ⌋|x0|L(y0) + (4n + 1)
√
2

∫ t

0
ĉ⌊

t
T∗ ⌋−p(s)|z(s)|ds (44)

where

p(s) =





i, s ∈ [(i− 1)T ∗, iT ∗) for i = 1, . . . , ⌊ t
T ∗ ⌋

⌊ t
T ∗ ⌋, s ∈ [T ∗ · ⌊ t

T ∗ ⌋, t)
(45)

Hence, (10) holds with γ(s) = (4n + 1)
√
2s since |ĉ⌊ t

T∗ ⌋−p(s)| ≤ 1, which completes the proof.�

Proof of Theorem 5.2: The “only if” part is quite obvious, so we focus on the “if” part.

Since Gσ(t) is JLC, there exists a sequence of time instants

0 = T1 < T2 < · · · < Ti < Ti+1 < . . . (46)

such that

Ti , Ti1 < Ti2 < · · · < Tin+1
= Ti+1, i = 1, 2, . . . (47)

and G([Tiκ , Tiκ+1
)) is L-connected for κ = 1, . . . , n. Moreover, each arc in G([Tik , Tik+1

)) will

be kept for at least the dwell time τD during the time interval [Tiκ , Tiκ+1
), i = 1, 2, . . . ;κ =

1, 2, . . . , n.

Then we estimate Ψ(t) during t ∈ [Ti, Ti+1]. Since G([Ti1 , Ti2)) is L-connected, there is a

time interval [t1, t1 + τD) ⊆ [Ti1 , Ti2) such that there is an edge (l,m0) ∈ Eσ(t) between a leader

l ∈ VL and a follower m0 ∈ VF for t ∈ [t1, t1 + τD). Based on Lemma 5.2,

|xm0
(t1 + τD)|L(y(t1+τD)) ≤ δ1|x(t1)|L(y(t1)) + 2

√
2

∫ t1+τD

t1

|z(s)|ds,

where δ1 , δ(τD).

Furthermore, we define V1
L , {vm0

} ∪ VL,

t2 , inf
t
{t ∈ [t1 + τD, Ti3)|there is an edge leaving from V1

L entering V \ V1
L in Gσ(t)},

and V1
F , { ∈ VF \m0|there is an edge leaving from V1

L entering  when t = t2}.
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Noting that G([Ti2 , Ti3)) is L-connected, thus, according to Lemma 5.5, one has

|xm0
(t2)|L(y(t2)) ≤ δ1|x(t1)|L(y(t1)) +

√
2

∫ t2

t1+τD

|z(s)|ds + 2
√
2

∫ t1+τD

t1

|z(s)|ds

Further, by Lemma 5.4,

|xm0
(t)|L(y(t)) ≤ φ1|x(t1)|L(y(t1)) +

√
2[2

∫ t2+τD

t1

+

∫ t2

t1+τD

+2

∫ t1+τD

t1

]|z(s)|ds

≤ φ1|x(t1)|L(y(t1)) + 4
√
2

∫ t2+τD

t1

|z(s)|ds (48)

for t ∈ [t2, t2 + τD], where φ1 , φδ1(τD). Moreover, according to Lemma 5.3,

|x(t2 + τD)|L(y(t2+τD)) ≤ ϕφ1
(τD)|x(t1)|L(y(t1)) +

√
2[4

∫ t2+τD

t1

+2

∫ t2+τD

t2

+2

∫ t2

t1

]|z(s)|ds

≤ ϕφ1
(τD)|x(t1)|L(y(t1)) + 8

√
2

∫ t2+τD

t1

|z(s)|ds (49)

for  ∈ V1
F . Because φ1 < ϕφ1

(τD), (48) and (49) lead to

|xi(t2 + τD)|L(y(t2+τD)) ≤ δ2|x(t1)|L(y(t1)) + 8
√
2

∫ t2+τD

t1

|z(s)|ds, ∀i ∈ {vm0
} ∪ V1

F ,

where δ2 , ϕφ1
(τD).

Next, define V2
L , V1

L ∪ V1
F ,

t3 , inf
t
{t ∈ [t2 + τD, Ti4)|there is an edge leaving from V2

L and entering V \ V2
L in Gσ(t)}

and V2
F , { ∈ V \ V2

L|there is an edge leaving from V2
L entering  when t = t3}.

Similarly, from Lemma 5.5, by φ2 , φδ2(τD), δ3 , ϕφ2
(τD), one has

|xi(t3 + τD)|L(y(t3+τD)) ≤ δ3|x(t1)|L(y(t1)) + 12
√
2

∫ t3+τD

t1

|z(s)|ds, ∀i ∈ {vm0
} ∪ V1

F ∪ V2
F

Repeating the process gives

φκ , φδκ(τD), δκ+1 , ϕφκ
(τD),

for κ = 3, 4, . . . , k0 until VF = {vm0
} ∪ V1

F ∪ V2
F ∪ · · · ∪ Vk0

F for some k0 ≤ n such that

|xi(tk0 + τD)|L(y(tk0+τD)) ≤ δk0 |x(t1)|L(y(t1)) + 4
√
2k0

∫ tk0+τD

t1

|z(s)|ds, ∀i ∈ VF

Hence

|x(tk0 + τD)|L(y(tk0+τD)) ≤ δk0 |x(t1)|L(y(t1)) + 4
√
2k0

∫ tk0+τD

t1

|z(s)|ds
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According to Lemma 5.5, we obtain

|x(Ti+1)|L(y(Ti+1)) ≤ δk0 |x(Ti)|L(y(Ti)) + (4k0 + 1)
√
2

∫ Ti+1

Ti

|z(s)|ds.

It is obvious to see that k0 ≤ n and 0 < δ1 ≤ δ2 ≤ . . . δn < 1. Therefore, denote δ̂ , δn, then for

K = 1, 2, . . . ,

|x(TK+1)|L(y(TK+1)) ≤ δ̂K |x0|L(y0) + (4n+ 1)
√
2

K∑

i=1

δ̂K−i

∫ Ti+1

Ti

|z(s)|ds (50)

Thus, similar to the proof of Theorem 5.1, we also have

|x(t)|L(y(t) ≤ δ̂Γ(t)|x0|L(y0) + (4n+ 1)
√
2

∫ t

0
δ̂Γ(t)−p̂(s)|z(s)|ds (51)

where Γ(t) = K0 − 1 when t ∈ [TK0
, TK0+1),K0 = 1, 2, . . . , and

p̂(s) =





i, s ∈ [Ti, Ti+1) for i = 1, . . . ,K0 − 1

K0 − 1, s ∈ [TK0
, t)

(52)

Then it is obvious to see that (51) leads to Theorem 5.2 immediately. �

Proof of Theorem 5.3: We also focus on the “if” part since the “only if” part is quite obvious.

Because Gσ(t) is JLC, there is an infinite sequence in the form of (46) with (47) such that

G([Tiκ , Tiκ+1
)) is L-connected for κ = 1, . . . , n.

Then, for any ℓ ∈ V1, there is tℓ ∈ [Ti1 , Ti2) such that there is an arc leaving from VF entering

ℓ in Gσ(t). Hence, recalling Lemma 5.2,

|xℓ(tℓ + τD)|L(y(tℓ+τD)) ≤ d1|x(tℓ)|L(y(tℓ)) + 2
√
2

∫ tℓ+τD

tℓ

|z(s)|ds, ℓ ∈ VF
1

with a constant d1 , δ(τD). According to Lemma 5.1, for any ℓ ∈ VF
1 , we have

|xℓ(t)|L(y(t)) ≤ d1|x(Ti)|L(y(Ti)) + 2
√
2

∫ Ti+1

Ti

|z(s)|ds, t ∈ [Ti2 , Ti+1]

Again by Lemmas 5.3 and 5.1, for any ℓ ∈ VF
2 ,

|xℓ(t)|L(y(t)) ≤ d2|x(Ti)|L(y(Ti)) + 4
√
2

∫ Ti+1

Ti

|z(s)|ds, t ∈ [Ti3 , Ti+1],

where d2 = ϕd1(τD). Similarly, with dj = ϕdj−1
(τD), j = 3, . . . , k0,

|xℓ(t)|L(y(t)) ≤ dj|x(Ti)|L(y(Ti)) + 2
√
2j

∫ Ti+1

Ti

|z(s)|ds, t ∈ [Tij+1
, Ti+1],

for any ℓ ∈ VF
j , j = 3, . . . , k0, which leads to

|x(Ti+1)|L(y(Ti+1)) ≤ dk0 |x(Ti)|L(y(Ti)) + 2
√
2k0

∫ Ti+1

Ti

|z(s)|ds.

Similar to the proof of Theorem 5.2, SiISS can be obtained. �
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6 Conclusions

This paper addressed multi-agent set tracking problems with multiple leaders and switching

communication topologies. At first, the equivalence between UJLC and the SISS of a group

of uncertain agents with respect to a moving multi-leader set was shown. Then it was shown

that UJLC is a sufficient condition for SiISS of the multi-agent system with disturbances in

agent dynamics and unmeasurable velocities in the dynamics of the leaders. Moreover, when

communication topologies are either bidirectional or acyclic, JLC is a necessary and sufficient

condition for SiISS. Also, set tracking was achieved in special cases with the help of SISS and

SiISS.

Multiple leaders, in some practical cases, can provide an effective way to overcome the

difficulties and constraints in the distributed design. On the other hand, ISS-based tools were

proved to be very powerful in the control synthesis. Therefore, the study of multiple active

leaders and related ISS tools deserves more attention.

Appendix

A.1 Proof of Lemma 4.1

Due to D+
√

Ψ(t) ≤
√
2‖z‖∞ by Lemma 3.2 and (12), we obtain

√
ψj(t) ≤

√
Ψ(t) ≤

√
Ψ(t0) +

√
2‖z‖∞(t− t0), j = 1, ..., n. (53)

Since there is an arc (j, i) with j ∈ VL and i ∈ VF in Gσ(t) for t ∈ [t0, t0+ τD), based on (20),

one has

〈xi − PL(y(t))(xi),
∑

j∈Li(σ(t))

bij(x)(yj − xi)〉 ≤ −b∗ψi(t). (54)

Thus, with (19) and the fact that r(t) +wi(t) ≤ q(t) ≤
√
2‖z‖∞, we obtain

d

dt
ψi(t) ≤ −2b∗ψi(t) + 2〈xi −PL(y(t))(xi),

∑

j∈Ni(σ(t))

aij(xj − xi)〉+ 2(r(t) + wi(t))
√
ψi(t)

≤ −2b∗ψi(t) + 2〈xi −PL(y(t))(xi),
∑

j∈Ni(σ(t))

aij(xj − xi)〉+ 2
√
2‖z‖∞

√
ψi(t) (55)

for t ∈ [t0, t0 + τD).

Then, by Lemma 2.1, if
√
ψj(t) <

√
ψi(t), j ∈ Ni(σ(t)) for t ∈ [t0, t0 + τD), then

〈xi(t)− PL(y(t))(xi(t)), xj(t)− xi(t)〉 ≤ 0. (56)
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On the other hand, if
√
ψj(t) ≥

√
ψi(t), j ∈ Ni(σ(t)), from Lemma 2.1 and (53),

〈xi(t)− PL(y(t))(xi(t)), xj(t)− xi(t)〉 ≤
√
ψi(t)(

√
ψj(t)−

√
ψi(t))

≤
√
ψi(t)(

√
Ψ(t0) +

√
2‖z‖∞(t− t0)−

√
ψi(t))

≤
√
ψi(t)(

√
Ψ(t0)−

√
ψi(t) +

√
2‖z‖∞τD) (57)

t ∈ [t0, t0 + τD). Therefore, with (55), (56) and (57), it follows that

d

dt
ψi(t) ≤ −2λψi(t) + 2[

√
2‖z‖∞(1 + (n − 1)a∗τD) + (n− 1)a∗

√
Ψ(t0)]

√
ψi(t),

where λ , b∗ + (n− 1)a∗, or equivalently,

d

dt

√
ψi(t) ≤ −λ

√
ψi(t) + [

√
2‖z‖∞(1 + (n− 1)a∗τD) + (n− 1)a∗

√
Ψ(t0))]

for t ∈ [t0, t0 + τD). As a result,

√
ψi(t) ≤ e−λ(t−t0)

√
Ψ(t0) + (1− e−λ(t−t0))

(n− 1)a∗
√
Ψ(t0) + (‖u‖∞ + ‖w‖∞)(1 + (n− 1)a∗τD)

λ

≤ µ̂(t− t0)
√

Ψ(t0) + c0
√
2‖z‖∞, t ∈ [t0, t0 + τD) (58)

where µ̂(s) , b∗e
−λs+(n−1)a∗

b∗+(n−1)a∗ , s ∈ [0, τD] and c0 ,
1+(n−1)a∗τD
b∗+(n−1)a∗ , because 1− e−λ(t−t0) < 1.

Then we evaluate
√
ψi(t) for t ∈ [t0+ τD, t0+T∗) no matter whether there is any connection

between the followers and the leaders. Similar analysis gives

d

dt
ψi(t) ≤ 2

√
2‖z‖∞

√
ψi(t) + 2〈xi − PL(y(t))(xi),

∑

j∈Ni(σ(t))

aij(x)(xj − xi)〉

≤ 2
√
2‖z‖∞

√
ψi(t) + 2(n − 1)a∗

√
ψi(t)(

√
Ψ(t0)−

√
ψi(t) +

√
2‖z‖∞T∗)

= −2(n− 1)a∗ψi(t) + 2[
√
2‖z‖∞(1 + (n− 1)a∗T∗) + (n− 1)a∗

√
Ψ(t0)]

√
ψi(t),

which is equivalent to

d

dt

√
ψi(t) ≤ −(n− 1)a∗

√
ψi(t) + [

√
2‖z‖∞(1 + (n− 1)a∗T∗) + (n− 1)a∗

√
Ψ(t0)]. (59)

Denote µ̂∗ , µ̂(τD). From (58), when t ∈ [t0 + τD, t0 + T∗),

√
ψi(t) ≤ e−(n−1)a∗(t−(t0+τD))

√
ψi(t0 + τD)

+(1− e−(n−1)a∗(t−(t0+τD)))[
√

Ψ(t0) +
√
2‖z‖∞

1 + (n− 1)a∗T∗
(n− 1)a∗

]

≤ e−(n−1)a∗(t−(t0+τD))[µ̂∗
√

Ψ(t0) + c0
√
2‖z‖∞]

+(1− e−(n−1)a∗(t−(t0+τD)))[
√

Ψ(t0) +
√
2‖z‖∞ · 1 + (n− 1)a∗T∗

(n− 1)a∗
]

≤ µ̃(t− t0)
√

Ψ(t0) + γ1‖z‖∞, (60)
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where γ1 ,
√
2 · 1+(n−1)a∗T∗

(n−1)a∗ > c0 and µ̃(s) , 1−e−(n−1)a∗(s−τD))(1− µ̂∗), s ∈ [τD, T∗]. Therefore,

based on (58) and (60),

√
ψi(t) ≤ µ(t− t0)

√
Ψ(t0) + γ1‖z‖∞, µ(s) =





µ̂(s), s ∈ [0, τD)

µ̃(s), s ∈ [τD, T∗]

where µ(s) is continuous. Thus, the conclusion follows. �

A.2 Proof of Lemma 4.2

If there is an arc (vi, vm) in Gσ(t) for t ∈ [t0, t0 + τD), then based on (53), Lemmas 2.1 and

3.1, it is easy to see

d

dt
ψm(t) ≤ 2〈xm − PL(y(t))(xm),

∑

j∈Nm(σ(t))

amj(x)(xj − xm) +
∑

j∈Lm(σ(t))

bmj(x)(yj − xm)〉

+2
√
2‖z‖∞

√
ψm(t)

≤ 2
√
2‖z‖∞

√
ψm(t) + 2〈xm − PL(y(t))(xm),

∑

j∈Nm(σ(t))

amj(x)(xj − xm)〉

= 2
√
2‖z‖∞

√
ψm(t) + 2

∑

j∈Nm(σ(t))\vi

amj(x)〈xm − PL(y(t))(xm), xj − xm〉

+2ami(x)〈xm − PL(y(t))(xm), xi − xm〉

≤ 2
√
2‖z‖∞

√
ψm(t) + 2(n− 2)a∗

√
ψm(t)(

√
Ψ(t0)−

√
ψm(t) +

√
2‖z‖∞τD)

−2a∗
√
ψm(t)(

√
ψm(t)−

√
ψi(t))

for t ∈ [t0, t0 + τD). Then, if (22) holds, as done in the proof of Lemma 4.1, we can obtain

d

dt

√
ψm(t) ≤ −λ1

√
ψm(t) + d̂1

where λ1 , (n−2)a∗+a∗ and d̂1 , (1+(n−2)a∗τD)
√
2‖z‖∞+((n−2)a∗+a∗µ0)

√
Ψ(t0)+a∗d0.

Here are two cases.

• when t ∈ [t0, t0 + τD):

√
ψm(t) ≤ e−λ1(t−t0)

√
ψm(t0) + (1− e−λ1(t−t0))

d̂1

λ1

≤ (n− 2)a∗ + (µ0 + (1− µ0)e
−λ1(t−t0))a∗

(n− 2)a∗ + a∗

√
Ψ(t0) + (1− e−λ1(t−t0))

·
√
2‖z‖∞(1 + (n− 2)a∗τD) + a∗d0

(n− 2)a∗ + a∗

≤ ξ̂(t− t0)
√

Ψ(t0) + γ0, (61)

where ξ̂(s) , (n−2)a∗+(µ0+(1−µ0)e−λ1s)a∗
(n−2)a∗+a∗

, s ∈ [0, τD] and γ0 ,
(1+(n−2)a∗τD)

√
2‖z‖∞+a∗d0

(n−2)a∗+a∗
.
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• when t ∈ [t0 + τD, t0 + T∗): Denote ξ̂∗ , ξ̂(τD). By (61), similarly, we have

√
ψm(t) ≤ e−(n−1)a∗(t−(t0+τD))

√
ψm(t0 + τD)

+(1− e−(n−1)a∗(t−(t0+τD)))[
√

Ψ(t0) +
√
2‖z‖∞

1 + (n− 1)a∗T∗
(n− 1)a∗

]

≤ e−(n−1)a∗(t−(t0+τD))[ξ̂∗
√

Ψ(t0) + γ0]

+(1− e−(n−1)a∗(t−(t0+τD)))[
√

Ψ(t0) +
√
2‖z‖∞

1 + (n− 1)a∗T∗
(n− 1)a∗

]

≤ ξ̃(t− t0)
√

Ψ(t0) + γ2‖z‖∞ + d0, (62)

where γ2 ,
√
2 · 1+(n−1)a∗T∗

(n−2)a∗+a∗
and ξ̃(s) , 1− e−(n−1)a∗(s−τD)(1− ξ̂∗), s ∈ [τD, T∗], because

max{γ0,
√
2‖z‖∞

1 + (n − 1)a∗T∗
(n − 1)a∗

} ≤
√
2‖z‖∞

1 + (n− 1)a∗T∗
(n− 2)a∗ + a∗

+ d0,

With (61) and (62), we have

√
ψm(t) ≤ ξµ0

(t− t0)
√

Ψ(t0) + γ2‖z‖∞ + d0, ξµ0
(s) =





ξ̂(s), s ∈ [0, τD)

ξ̃(s), s ∈ [τD, T∗]

where ξµ0
(s) which is continuous. Thus, the conclusion follows. �
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