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Abstract— This paper addresses a problem of finding an
optimal dynamic quantizer for nonlinear control subject to
discrete-valued signal constraints,i.e., to the condition that some
signals must take a value on a discrete and countable set at
each time instant. The quantizers to be studied are in the
form of a nonlinear difference equation which maps continuous-
valued signals into discrete-valued ones. They are evaluated
by a performance index expressing the difference between the
resulting quantized system and the unquantized system, in terms
of the input-output relation. In this paper, we present a closed-
form solution, which globally minimizes the performance index.
This result shows the performance limitation of a general class
of dynamic quantizers. In addition to this, some results on the
structure and the stability are given in order to clarify the
mechanism of the best dynamic quantization in nonlinear control
systems.

Index Terms— quantized control, dynamic quantizers, nonlin-
ear systems, hybrid systems.

I. I NTRODUCTION

QUANTIZED control, i.e., control of systems subject to
discrete-valued signal constraints, has become one of the

major topics in the systems and control field. The reason lies
in its numerous applications, including embedded systems,
remote systems, trading systems, and biological systems. In
fact, digital devises embedded in them, such as A/D and
D/A converters, discrete-level actuators/sensors, and commu-
nication channels, are indispensable to make control systems
robust, intelligent, and low-cost. Furthermore, it is often the
case that the control input is restricted to be one of finite
actions, e.g.,sell or buy in trading systems andactivate or
inhibit in genetic systems. It is, however, necessary to handle
discrete-valued signals as well as continuous-valued ones,
which poses challenging control problems.

In this topic, a basic problem is to design the quantizer
Q : U → V in such a way that the resulting quantized system
(the system includingQ) achieves desired performance, where
U andV are respectively the continuous-valued and discrete-
valued signal sets. Various issues arising in quantized control
can be reduced into this type of problem with an appropriately
selected performance index and quantizer class.

So far, this problem has been studied along two directions:
the networked controland thecommand-driven control, as
summarized in Table I. In the former, the quantizers play a
role of the coder-decoder pair in the communication between
a plant and a controller. There, the control designer has
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flexibility in choosing both the mapQ and the output signal
setV. Several results have been obtained as the minimum data
rates for stabilization and estimation [1]–[6] and the (coarsest)
quantizers for stabilization and identification [7]–[14]. In the
latter, on the other hand, the quantizers are required to adapt
continuous-valued signals to the command-driven devices,
such as discrete-level actuators, where the quantizer input is
assumed to take values on afixeddiscrete set. So, unlike the
former, the mapQ is the design parameter and the setV
is a given constraint in the problem. From this standpoint,
quantizers have been developed in [15]–[25]. However, the
above results have been devoted mainly to linear systems.
Namely, except for a few pioneering works, the quantizer
design problem has never been studied for nonlinear systems.
In fact, in the nonlinear setting, there are some results [26]–
[30] for the networked control andno result for the command-
driven control, as shown in Table I.

This paper thus addresses a quantizer design problem for
the command-driven control of a class of nonlinear systems.
The quantizers considered here aredynamic, i.e., in the form
of a nonlinear difference equation which determines its output
depending upon the past input sequence. The discrete-valued
signal is restricted to take a value on a uniform and countable
set at each time instant. The following problem is then
considered: when a nonlinear plant and a nonlinear controller
are given for the quantized feedback system in Fig. 1 (a), find
a quantizer such that the system in (a)optimallyapproximates
the usual (unquantized) feedback system in Fig. 1 (b), in terms
of the input-output relation. This is a nonlinear version of the
authors’ quantizer design problem for linear systems [22]–
[25], and it is much more challenging.

For the problem, the main contributions of this paper are
summarized as follows. First, aglobally optimal solutionis
derived as a closed-form expression assuming that the initial
state of the system to be quantized is known, even though the
problem is nonlinear and nonconvex. The key idea is to ana-
lyze the lower and upper bounds of the optimal performance
and characterize the dynamic quantizer whose performance is
not larger than the lower bound. Second, the structure of the
optimal solution is clarified. In particular, it is disclosed that
the optimal quantizer is mainly composed of (i) the direct
transmission of the input and (ii) an approximated inverse
of the error system between the quantized and unquantized
systems in Fig. 1. This exhibits the mechanism of the optimal
dynamic quantization in nonlinear control systems. Finally,
observer-based dynamic quantizers are presented so as to apply
our result to the case where the information of the initial state
is unavailable. This is provided by fully exploiting the essence
of the optimal dynamic quantizers.

It is stressed that, although this paper presents a generaliza-
tion of the result in [23], [25] for linear systems, the solution is
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TABLE I

SUMMARY OF DESIGN ISSUES OF QUANTIZERQ : U→ V

Networked control Command-driven control

Purpose of quantization
to transmit signals via digital
communication channel

to adapt continuous-valued signals
to command-driven devices

Parameters to be designed Q andV Q

Existing results
for linear systems [1]–[14] [15]–[25]
for nonlinear systems [26]–[30] none (←this paper)
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(a) Quantized feedback system.
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(b) Unquantized feedback system (Usual system).

Fig. 1. Quantized and unquantized feedback systems.

derived in a different way. In [23], [25], anexact expressionof
the quantizer performance is provided, from which an optimal
quantizer is directly derived. In contrast, it is hopeless to obtain
such an expression in the nonlinear setting. So, in this paper,
we derive an optimal quantizer in an implicit way based on
the bound analysis of the optimal performance. Moreover, we
have a different result on the optimal structure from the linear
case studied in [31].

Also, it should be noted that, to our best knowledge, there is
no result dealing with both nonlinear systems and (behavioral)
performance optimality at the same time, on quantizer design
for control. For instance, the main interest of the existing
results for nonlinear systems [26]–[30] (see Table I) is the
relation to the stability of quantized systems. In this paper,
to mathematically clarify an essential mechanism of nonlinear
optimal quantization, we mainly consider a somewhat limited
case, where the plant and controller are input-affine, the initial
states of the systems are available to the quantizer, and the set
on which the discrete-valued signal takes a value at each time
instant is uniform and countable; but it is remarkable that an
exact solution for the unexplored problem is analytically de-
rived. In other words, in the research area of quantized control,
this paper provides the first result showing that there exists a
nonlinear optimal quantization problem whose solution can
be analytically and exactly derived, and the rather restrictive
case is regarded as a sufficient condition for the problem to
be analytically solved. This will be an important first step to
solve the problem for more general situations.

Finally, to avoid misunderstanding, we would like to notify
again that the target of this paper isnot the networked

control but the command-driven control, e.g., by discrete-level
actuators. This means that typical techniques for networked
control may not be applied to our situation. Especially, the
zooming/scaling [32], which is a conventional coding tech-
nique, cannot be used for the quantizer in Fig. 1 (a), because
the zooming/scaling violates the constraint that the quantizer
output setV is fixed in advance.

This paper is organized as follows. The quantizer design
problem is formulated in Section II. In Section III, a solution,
i.e., an optimal quantizer, is presented in an analytical way and
is demonstrated by a numerical example. Next, some results on
the structure and the stability are given in Section IV. Section
V presents observer-based dynamic quantizers and Section VI
concludes this paper.

Note that this paper is based on our preliminary version
[33], published in a conference proceedings, and contains full
explanations and proofs omitted there.
Notation (i) General mathematical notions:Let R, R0+,
R+, andN be the real number field, the set of nonnegative
real numbers, the set of positive real numbers, and the set
of nonnegative integers, respectively. We denote by0n×m

and In (or, for simplicity of notation,0 and I) the n × m
zero matrix and then × n identity matrix. Let ⌈a⌉ be the
minimum integer greater than or equal to the numbera ∈ R.
The vector inequalityx1 ≤ x2 represents that each element
of x1 − x2 is nonpositive. For the infinite vector sequences
X := (x1, x2, . . .) and Y := (y1, y2, . . .), let X − Y be
the vector sequence(x1 − y1, x2 − y2, . . .). For the vector
x, the matrixM , and the vector sequenceX, we use∥x∥,
∥M∥, and∥X∥ to express their∞-norms. Note that∥M∥ is
the induced norm corresponding tomaxx∈Rn\{0} ∥Mx∥/∥x∥
(where M ∈ Rm×n), and that∥X∥ := supi∈N\{0} ∥xi∥.
When another kind of norm is used or the use of the∞-norm
has to be emphasized, they are denoted with the subscript,
e.g., ∥X∥ρ for theρ-norm. The set of infinite sequences ofp-
dimensional vectors having finite∞-norm is denoted byℓp∞.
The functionψ : R0+ ×R0+ → R0+ is said to beclass-KL
if the following two conditions hold: (a) for eacht ∈ R0+,
ψ(0, t) = 0 andψ(s, t) is strictly increasing with respect to
s, (b) for eachs ∈ R0+, limt→∞ ψ(s, t) = 0 andψ(s, t) is
decreasing with respect tot.
(ii) Notions for dynamical systems:Consider the discrete-time
system

S :

{
x(t+1)= f(x(t), u(t)),
y(t) = h(x(t), u(t))

where x(t) ∈ Rn is the state,u(t) ∈ Rm is the input,
y(t) ∈ Rp is the output, andf : Rn × Rm → Rn and
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h : Rn ×Rm → Rp are functions. The systemS is said to
be stableif (x(1), x(2), . . .) ∈ ℓn∞ holds for everyx(0) ∈ Rn

and(u(0), u(1), . . .) ∈ ℓm∞. The systemS is said to beoutput-
stable if (y(1), y(2), . . .) ∈ ℓp∞ for every x(0) ∈ Rn and
(u(0), u(1), . . .) ∈ ℓm∞. These are stability notions based on
the boundedness of the state and the output. Note thatS is
output-stable ifh is a continuous function (on its domain)
and S is stable. Next, we introduce an equivalence relation
between two systems. Consider the systemsS(i) (i = 1, 2, 3)
given by

S(i) :

{
x(i)(t+1)= f (i)(x(i)(t), u(i)(t)),
y(i)(t) = h(i)(x(i)(t), u(i)(t))

wherex(i)(t) ∈ Rn(i)

, u(i)(t) ∈ Rm(i)

, and y(i)(t) ∈ Rp.
The systemsS(1) and S(2) are said to beequivalentif the
following two conditions hold: (i)n(1) = n(2) = n andm(1) =
m(2) = m for somen andm, (ii) y(1)(t) ≡ y(2)(t) for every
x(1)(0) ∈ Rn, (u(1)(0), u(1)(1), . . .) ∈ ℓm∞, x(2)(0) ∈ Rn, and
(u(2)(0), u(2)(1), . . .) ∈ ℓm∞ satisfyingx(1)(0) = x(2)(0) and
u(1)(t) ≡ u(2)(t). The equivalence relation is often denoted
by S(1)(u(1)) = S(2)(u(2)), which is convenient to express
the equivalence between interconnected systems. For instance,
when n(1) + n(2) = n(3) and m(1) + m(2) = m(3), the
relation S(1)(u(1)) − S(2)(u(2)) = S(3)(u(3)) represents the
equivalence between the parallel system in Fig. 2 (a) and the
systemS(3). Whenn(1)+n(2) = n(3), u(1)(t) is decomposed
into u(1)1 (t) ∈ Rm

(1)
1 andu(1)2 (t) ∈ Rm

(1)
2 , i.e., m(1)

1 +m
(1)
2 =

m(1) andu(1)(t) = [(u
(1)
1 (t))⊤ (u

(1)
2 (t))⊤]⊤, p = m

(1)
2 , and

m
(1)
1 + m(2) = m(3), the relationS(1)(u

(1)
1 , S(2)(u(2))) =

S(3)(u(3)) means that the cascade system in Fig. 2 (b) andS(3)

are equivalent. Note in the interconnected systems that their
state variables are assumed to be[(x(1)(t))⊤ (x(2)(t))⊤]⊤ (not
[(x(2)(t))⊤ (x(1)(t))⊤]⊤). In addition, it is worth mentioning
that if S(1)(u(1))= S(2)(u(2)) andS(1) is output-stable, then
S(2) is output-stable. Finally, an inverse relation is introduced.
For the systemsS(1) andS(2), assume thatn(1) = n(2) = n,
m(1) = m(2) = m ≥ p for some n and m. Let u(i)1 (t)

andu(i)2 (t) denote the firstn− p elements ofu(i)(t) and the
others,i.e., u(i)(t) = [(u

(i)
1 (t))⊤ (u

(i)
2 (t))⊤]⊤ ∈ Rm−p ×Rp.

The systemS(2) is called theinverse ofS(1) for the input
u
(1)
2 if for every x(1)(0) ∈ Rn and x(2)(0) ∈ Rn satisfying
x(1)(0) = x(2)(0) and every(u(2)(0), u(2)(1), . . .) ∈ ℓm∞, the
relation y(1)(t) ≡ u

(2)
2 (t) holds undery(2)(t) ≡ u

(1)
2 (t) and

u
(1)
1 (t) ≡ u

(2)
1 (t) as shown in Fig. 3. The inverse system is

denoted by(S(1))−1

u
(1)
2

. For example, for the system{
x(1)(t+ 1) = (x(1)(t))2+ u

(1)
1 (t)+ u

(1)
2 (t),

y(1)(t) = (2+sinx(1)(t))−1u
(1)
2 (t),

the inverse for the inputu(1)2 is given by{
x(2)(t+ 1)= (x(2)(t))2 + u

(2)
1 (t) + (2+sinx(2)(t))u

(2)
2 (t),

y(2)(t) = (2+sinx(2)(t))u
(2)
2 (t).

This can be confirmed by the definition and the fact that
x(1)(t) ≡ x(2)(t) underx(1)(0) = x(2)(0), y(2)(t) ≡ u

(1)
2 (t),

andu(1)1 (t) ≡ u
(2)
1 (t).

S
(1)  u  

(1) 

+

S
(2) 

_ 

 u  
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(a) Parallel systemS(1)(u(1))− S(2)(u(2)).

S
(1) 

 u1  
(1) 

 y  
(1) 

S
(2)  u  

(2) 

 u2  
(1) 

(b) Cascade systemS(1)(u
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1 , S(2)(u(2))).

Fig. 2. Two types of interconnected systems.
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Fig. 3. SystemS(1) and its inverse for inputu(1)
2 .

II. PROBLEM FORMULATION

A. System Description

Consider the feedback systemΣQ shown in Fig. 4 (a), which
is composed of the discrete-time nonlinear systemG and the
dynamic quantizerQ.

The systemG is given by

G :

x(t+1) = f(x(t)) + g1(x(t))r(t) + g2(x(t))v(t),
z(t) = h1(x(t)) + k1(x(t))r(t),
u(t) = h2(x(t)) + k2(x(t))r(t)

(1)

where x(t) ∈ Rn is the state,r(t) ∈ Rp and v(t) ∈ Rm

are the inputs,z(t) ∈ Rl and u(t) ∈ Rm are the outputs,
and t ∈ N is the time. Further,f : Rn → Rn, g1 : Rn →
Rn×p, g2 : Rn → Rn×m, h1 : Rn → Rl, h2 : Rn → Rm,
k1 : Rn → Rl×p, andk2 : Rn → Rm×p are functions. The
initial state is given asx(0) = x0 for x0 ∈ Rn. In order to
show a general formulation of our quantizer design problem
first, specific assumptions for the systemG will be given at the
beginning of the next section, where, for example,h1(x)=Cx
andk1(x)=D are assumed for constant matricesC andD.

The quantizerQ is of the form

Q :

{
ξ(t+1) = α(ξ(t)) + β1(ξ(t))u(t) + β2(ξ(t))v(t),
v(t) = q(γ(ξ(t)) + δ(ξ(t))u(t) )

(2)

where ξ(t) ∈ Rν , u(t) ∈ Rm, and v(t) ∈ Vm :=
{0,±d,±2d, . . .}m are the state, the input, and the output,
andα : Rν → Rν , β1, β2 : Rν → Rν×m, γ : Rν → Rm,
δ : Rν → Rm×m are functions. The setVm is a discrete set
specified by the quantization intervald ∈ R+. The function
q : Rm → Vm is the nearest-neighbor static quantizer toward
−∞. More precisely, theith element of the vectorq(µ) is
given byd⌈(µi/d)−(1/2)⌉ whereµ ∈ Rm andµi ∈ R is the
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(a) Quantized feedback systemΣQ.
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Fig. 4. General expressions of quantized and unquantized feedback systems.

ith element ofµ. An example for the casem := 1 is shown
in Fig. 5. The quantization error ofq satisfies

∥q(µ)− µ∥ ≤ d

2
(∀µ ∈ Rm), (3)

which will be an important property in this paper. The initial
state ofQ is given asξ(0) = ξ0 ∈ Rν . Note that the quantizer
Q determines its outputv(t) from the past and present inputs
(u(0), u(1), . . . , u(t)) (soQ is dynamic), andQ is equivalent
to the typical static quantizerv(t) = q(u(t)) if γ(ξ(t)) ≡ 0
and δ(ξ(t)) ≡ I. Note also thatQ includes the self feedback
by v as seen in the state equation of (2). In what follows,Q is
often regarded as a tuple of the dimensionν, the initial state
ξ0, and the functionsα, β1, β2, γ, δ, which will be treated as
the design parameters.

The systemΣQ is a generalized version of the quantized
feedback system in Fig. 1 (a). It can be seen thatΣQ is
equivalent to the system in Fig. 1 (a) by regarding the part
indicated by the dotted line frame (in Fig. 1 (a)) asG. Thus the
following discussion holds not only for the feedback system
in Fig. 1 (a) but also for various types of quantized systems.

B. Dynamic Quantizer Design Problem

In this paper, the quantizerQ is evaluated by a performance
index expressing the difference between the quantized system
ΣQ and theunquantizedsystemΣI (introduced as anIdeal
system) in Fig. 4. For this, some symbols are prepared. To
distinguish the signals of the two systemsΣQ and ΣI , we
use the symbolsxQ, rQ, vQ, zQ, uQ and xI , rI , vI , zI ,
uI for x, r, v, z, u. In ΣQ (with a given Q), when the
initial state and the external input are fixed to the specific
valuesx0 ∈ Rn and R := (r0, r1, . . .) ∈ ℓp∞, we denote
by ZQ(x0, R) the output sequence(zQ(1), zQ(2), . . .) and
by zQ(t, x0, R) the output at timet. For ΣI , the symbols
ZI(x0, R) and zI(t, x0, R) are similarly defined. Note here
that, though it may look thatZQ(x0, R) and zQ(t, x0, R) do
not depend on the initial stateξ0 of Q, their subscriptsQ
correspond to the all design parameters(ν, ξ0, α, β1, β2, γ, δ)

d 

2d 

2d 

_ 

d 

_ 

d 2d 

d 

_ 

2d 

_ 

0 

q (µ) 

µ

Fig. 5. Static quantizerq(µ) for µ ∈ R1.

(including ξ0) and so the dependency onξ0 is expressed at
ZQ(x0, R) andzQ(t, x0, R) in a proper fashion.

Then the following problem is considered.
Problem 1: For the systemΣQ, suppose that the system

G and the quantization intervald ∈ R+ are given. Then, find
a quantizerQ (that is, a dimensionν, an initial stateξ0, and
functionsα, β1, β2, γ, δ) minimizing the performance index

E(Q) := sup
(x0,R)∈Rn×ℓp∞

∥ZQ(x0, R)− ZI(x0, R)∥. (4)

In this problem, the performance indexE(Q) corresponds to
the difference between the quantized and unquantized systems
ΣQ andΣI in terms of the input-output relation. IfE(Q) is
small, we can conclude that the systemΣQ behaves similarly
to the ideal systemΣI .

Solving the problem provides us a practical design method
of nonlinear control systems with discrete-valued signal con-
straints. For example, consider the feedback system in Fig. 1
(a), and suppose that the input ofP is restricted to be a
discrete-valued signal onVm. Then, in spite of the severe
restriction,ΣQ would have good performance with

• a controllerK achieving desirable performance in the
unquantized system in Fig. 1 (b) (where it is supposed
that the input ofP is continuous-valued),

• a dynamic quantizerQ such thatE(Q) is small.
Therefore, the combination of the conventional (nonlinear)
control theory and the solution to Problem 1 enables us to
construct high-performance quantized systems.

Finally, four remarks on Problem 1 are given. First, the
system modelG can represent a combination of an input-
affine plant model and input-affine controller in discrete-
time. Plants described inG include the cart-spring-damper
system in [34] and the stirred tank reactor system in [35]
for example. The discrete-time models in the literatures are
provided by the Euler approximation of the continuous-time
models. Second, the quantizer output setVm is a uniform
lattice in Rm, which fits quantized control problems with
D/A converters or discrete-level actuators. Even if the quan-
tization intervals are different for each input channels as
di ∈ R+ (i = 1, 2, . . . ,m), the following discussion holds
by replacing the input matrixg2(x) with the scaled matrix
g2(x) diag{1, d2/d1, d3/d1, . . . , dm/d1} [24]. Third,ΣI is an
ideal system and soΣI should be a stable system in common
situations. Meanwhile, the stability ofΣI is not assumed in
Problem 1 because, with or without the assumption, there
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exists a solutionQ to Problem 1 such thatE(Q) <∞ under
a condition not implying the stability ofΣI . This fact will be
shown in Theorem 1. Fourth, in our setting, the performance
is evaluated based on not the1- or 2-norm but the∞-norm.
This is because the signalv is restricted to be a value on
the uniform latticeVm and thus the asymptotic stability of
ΣQ is not always possible, e.g., in the case whereP is
unstable in Fig. 1 (a). More concretely, whenΣI is (globally)
asymptotically stable andΣQ cannot be asymptotically stable
with any Q, we have limt→∞ zQ(t, x0, R) ̸= zI(t, x0, R),
i.e., ∥ZQ(x0, R) − ZI(x0, R)∥ρ = ∞ for ρ = 1, 2, under an
observability condition (note thatZQ(x0, R) and ZI(x0, R)
are infinite sequences). In contrast, we may have∥ZQ(x0, R)−
ZI(x0, R)∥∞ < ∞ in the same situation, which means that
the index based on the∞-norm can capture the performance
of Q more precisely.

III. O PTIMAL DYNAMIC QUANTIZERS

A. Assumptions and Outline of Derivation

In this paper, we aim at obtaining an analytical solution
to Problem 1 in order to clarify an essential mechanism of
optimal quantization. To this end, the problem is considered
under the following assumptions:

(A1) h1(x) = Cx and k1(x) = D for constant matrices
C ∈ Rl×n andD ∈ Rl×p.

(A2) The matrixk2(x) is square and nonsingular for every
x ∈ Rn.

(A3) The matrix Cg2(x) is square and nonsingular for
everyx ∈ Rn, whereC is given in (A1).

The first assumption means that the controlled outputz is
given as a linear combination ofx and r, i.e., z(t) =
Cx(t) +Dr(t). The others are technical assumptions for the
existence of the inverses ofk2(x) and Cg2(x), which also
imply that r, v, z, and u have all the same dimensions.
Roughly speaking, in the feedback system in Fig. 1 (a), these
two are usually satisfied in the case wherev and z have all
the same dimensions andr is directly transmitted tou in K
(though it depends on how to get the discrete-time modelG).

The idea to find the solution is outlined as follows:
(Step 1)︷ ︸︸ ︷

ϕ(d) ≤ min
Q

E(Q) ≤ ϕ(d). (5)︸ ︷︷ ︸
(Step 2)

In Step 1, we derive a lower bound ofminQE(Q), which is
a function ofd and is denoted byϕ(d). In Step 2, it is shown
that, if a condition called(Ω) is satisfied, the lower bound
ϕ(d) becomes an upper bound ofminQE(Q). These steps
prove thatminQE(Q) = ϕ(d) holds under(Ω), from which
a solution to Problem 1 is provided.

B. Lower and Upper Bound Analysis of Optimal Performance

1) Step 1: Lower bound:For the systemΣQ, suppose that
Q is given. By the definition ofE(Q), we have

sup
(x0,R)∈Rn×ℓp∞

∥zQ(1, x0, R)− zI(1, x0, R)∥ ≤ E(Q). (6)

From (1), (2), and (A1), the termzQ(1, x0, R)− zI(1, x0, R)
is expressed as

zQ(1, x0, R)− zI(1, x0, R)

= Cg2(x0)(vQ(0)− vI(0))

= Cg2(x0)(q(a(x0, ξ0, r0))−a(x0, ξ0, r0)) + Cg2(x0)γ(ξ0)

+ Cg2(x0)(δ(ξ0)−I)(h2(x0)+k2(x0)r0) (7)

for

a(x0, ξ0, r0) := γ(ξ0) + δ(ξ0)(h2(x0) + k2(x0)r0). (8)

In fact, (1) and (2) givevQ(0) = q(γ(ξ0) + δ(ξ0)uQ(0) )
= q(γ(ξ0)+ δ(ξ0)(h2(x0)+k2(x0)r0)) andvI(0) = uI(0) =
h2(x0) + k2(x0)r0, from which (7) is confirmed. Note that,
for the first term of (7), we have

∥Cg2(x0)(q(a(x0, ξ0, r0))− a(x0, ξ0, r0))∥ ≤ ∥Cg2(x0)∥
d

2

from (3). It can be shown by (7) that

sup
(x0,R)∈Rn×ℓp∞

∥zQ(1, x0, R)− zI(1, x0, R)∥≥ sup
x0∈Rn

∥Cg2(x0)∥
d

2
if δ(ξ0) = I,

= ∞ otherwise

(9)

holds under (A1)–(A3) (see Appendix I for the exact proof of
(9)). Equations (6) and (9), which hold for anyQ, establish a
lower bound ofminQE(Q) as

sup
x∈Rn

∥Cg2(x)∥
d

2
≤ min

Q
E(Q). (10)

This completes Step 1 forϕ(d) := supx∈Rn ∥Cg2(x)∥(d/2).

2) Step 2: Upper bound:Next, we show that the lower
bound is an upper bound ofminQE(Q) under a suitable
condition.

Let

fcl(x) := f(x) + g2(x)h2(x), (11)

gcl(x) := g1(x) + g2(x)k2(x). (12)

Under (A1) andrQ(t) ≡ rI(t) ≡ r(t) for some r(t), the
output difference betweenΣQ andΣI is described by

zQ(t+ 1)− zI(t+ 1)

= CxQ(t+ 1) +Dr(t+ 1)− CxI(t+ 1)−Dr(t+ 1)

= C
(
f(xQ(t)) + g1(xQ(t))r(t) + g2(xQ(t))v(t)

)
− C

(
fcl(xI(t)) + gcl(xI(t))r(t)

)
. (13)

If

v(t) = q
(
σ(xQ(t), xI(t), r(t))

)
(14)

for

σ(xQ, xI , r) :=−(Cg2(xQ))
−1[C −C]

[
f(xQ) + g1(xQ)r
fcl(xI) + gcl(xI)r

]
(15)

(where(Cg2(xQ))−1 is given under (A3)), then

zQ(t+ 1)− zI(t+ 1) = Cg2(xQ(t))(q(σ(t))− σ(t))
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and (3) yield

∥zQ(t+ 1)− zI(t+ 1)∥ ≤ ∥Cg2(xQ(t))∥ ∥q(σ(t))− σ(t)∥

≤ sup
x∈Rn

∥Cg2(x)∥
d

2
(∀t ∈ N),

(16)

whereσ(t) stands forσ(xQ(t), xI(t), r(t)). That is,

∥zQ(t+1, x0, R)− zI(t+1, x0, R)∥ ≤ sup
x∈Rn

∥Cg2(x)∥
d

2

holds for everyt ∈ N and (x0, R) ∈ Rn × ℓp∞. Therefore, if
the condition

(Ω) there exists aQ satisfying (14)

holds, we have

min
Q

E(Q) ≤ sup
x∈Rn

∥Cg2(x)∥
d

2
. (17)

This achieves Step 2 in (5).

C. Optimal Dynamic Quantizers

Equations (10) and (17) establish the relation

min
Q

E(Q) = sup
x∈Rn

∥Cg2(x)∥
d

2
(18)

subject to the condition(Ω), which presents the following re-
sult.

Theorem 1: For the systemΣQ, suppose thatG andd are
given and assume (A1)–(A3). Then the following statements
hold.
(i) A solution to Problem 1 is given by

Q∗ := (ν∗, ξ∗0 , α
∗, β∗

1 , β
∗
2 , γ

∗, δ∗) (19)

where

ν∗ := 2n, (20)

ξ∗0 :=

[
x0
x0

]
, (21)

α∗(ξ(t)) :=

[
f(ξ1(t))−g1(ξ1(t))k−1

2 (ξ1(t))h2(ξ1(t))
fcl(ξ2(t))−gcl(ξ2(t))k−1

2 (ξ1(t))h2(ξ1(t))

]
, (22)

β∗
1(ξ(t)) :=

[
g1(ξ1(t))k

−1
2 (ξ1(t))

gcl(ξ2(t))k
−1
2 (ξ1(t))

]
, (23)

β∗
2(ξ(t)) :=

[
g2(ξ1(t))
0n×m

]
, (24)

γ∗(ξ(t)) := −(Cg2(ξ1(t)))
−1[C −C]α∗(ξ(t)), (25)

δ∗(ξ(t)) := −(Cg2(ξ1(t)))
−1[C −C]β∗

1(ξ(t)), (26)

ξ1, ξ2 ∈ Rn are the first half and the second half of the vector
ξ, i.e., ξ = [ξ⊤1 ξ⊤2 ]⊤, andfcl andgcl are the functions given
in (11) and (12).
(ii) The minimum value ofE(Q) is given by

E(Q∗) = sup
x∈Rn

∥Cg2(x)∥
d

2
. (27)

Proof: We prove that (14) holds forQ := Q∗, since this
fact implies thatQ∗ is a solution to Problem 1 and (27) holds.
Under (A2), the third equation of (1) is rewritten as

r(t) = k−1
2 (x(t))(u(t)− h2(x(t))). (28)

From this and the first equation of (1), it follows thatxQ
evolves according to
xQ(t+1)= f(xQ(t))− g1(xQ(t))k

−1
2 (xQ(t))h2(xQ(t))

+ g1(xQ(t))k
−1
2 (xQ(t))u(t)+ g2(xQ(t))v(t),

xQ(0) = x0.

By comparing this equation with the dynamics ofξ1 in Q∗, it
turns out that

ξ1(t) = xQ(t) (∀t ∈ N) (29)

holds forQ∗. In a similar way to the above, we also get

ξ2(t) = xI(t) (∀t ∈ N). (30)

Thus, applying (15), (19), (22), (23), (25), (26), (28), (29), and
(30) to the output equation in (2), we havev(t) = q(γ∗(ξ(t))+
δ∗(ξ(t))u(t)) = q(σ(ξ1(t), ξ2(t), r(t))) = q(σ(xQ(t), xI(t),
r(t))), which implies that (14) holds forQ∗.

Theorem 1 provides an analytical solution to Problem 1
(which is globally optimal) and an expression of the minimum
value of E(Q). The latter corresponds to the performance
limitation of the dynamic quantizers in the form of (2), which
shows the relation between the achievable performance and
the problem parametersG andd.

An intuitive interpretation of the optimal quantizerQ∗ is
as follows. As shown in (29) and (30), the states ofΣQ and
ΣI are estimated in the state equation ofQ∗. They are in
general different due to the quantization byQ. Considering
that [C −C]ξ(t) is equal to the output difference between
the two systems, we see that the term[C −C]α∗(ξ(t)) +
[C −C]β∗

1(ξ(t))u(t) expresses the difference expected at
the next time (timet + 1). Then if the multiplication by
−(Cg2(ξ1(t)))

−1, i.e., γ∗(ξ(t)) + δ∗(ξ(t))u(t), is applied to
ΣQ, the signal completely cancels out the expected difference
in ΣQ. Namely, the quantizer outputv(t) = q(γ∗(ξ(t)) +
δ∗(ξ(t))u(t)) is the optimal discrete-valued signal to reduce
the difference betweenΣQ andΣI .

It should be noted that the exact information of the initial
statex0 of G is required to construct the optimal quantizer
Q∗, as seen in (21). So it can be directly applied only to
systems whose state is measurable and available toQ or to
systems which operates from a fixed initial state such as robot
manipulators for a repetitive work. An extended version of
Q∗, which do not use the information ofx0, will be provided
in Section V.

It is also notified that the optimally quantized systemΣQ∗ ,
ΣQ with Q := Q∗, is not always stable in the stability concept
defined in Section I. However, it can be shown thatΣQ∗ is
stable under a suitable condition, and even when the condition
does not hold, there is a practical method to avoid instability.
This will be detailed in Section IV.

Remark 1: Theorem 1 is a generalized version of the
authors’ previous result [23], [25] for linearG, which has
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f(x) := Ax, g1(x) := B1, g2(x) := B2, h1(x) := C1x,
h2(x) := C2x, k1(x) := D1, k2(x) := D2. In fact,
by substituting the linear functions and constant matrices
and eliminating redundant states inQ∗, we have a solu-
tion to Problem 1 as(ν, ξ0, α, β1, β2, γ, δ) = (n, 0, (A+
B2C2)ξ, −B2, B2, −(C1B2)

−1C1(A+B2C2)ξ, I), which is
the same as given in [23], [25].

Remark 2: Since the optimal quantizerQ∗ depends on
x0, one may consider that the optimal performanceE(Q∗)
must depend onx0. However, as seen in (4), the argument
of the functionE(Q), i.e., (ν, ξ0, α, β1, β2, γ, δ), specifies the
functionto be maximized with respect to(x0, R) ∈ Rn× ℓp∞,
that is,∥ZQ(x0, R)− ZI(x0, R)∥. Thus, even ifQ∗ depends
on x0, E(Q∗) does not depend onx0.

Remark 3: The solution in Theorem 1 is derived by fully
utilizing the fact thatVm is a uniform discrete set. However,
even whenVm is not uniform, a similar result can be obtained
as long as∥q(µ)− µ∥ ≤ ∆ (∀µ ∈ Rm) for some∆ ∈ R0+.
In fact, it is trivial in this case that, instead of (16),∥zQ(t+
1)− zI(t+ 1)∥ ≤ supx∈Rn ∥Cg2(x)∥∆ (∀t ∈ N) and so

E(Q∗) ≤ sup
x∈Rn

∥Cg2(x)∥∆ (31)

for the proposed quantizerQ∗ in (19). AlthoughQ∗ may not
be optimal in this case, it will be a practical quantizer in the
sense of (31).

D. Example

Consider the quantized systemΣQ for the feedback system
in Fig. 1 (a). The plantP and the controllerK are given by

P :



[
x1(t+1)
x2(t+1)

]
=

[
1.0x1(t)+0.1x2(t)+0.4e−|x2(t)|cos3x1(t)

0.2x1(t)+1.1x2(t)+0.4e−|x1(t)|
√

| cosx1(t)|

]
+

[
σ(x1(t))
σ(x1(t))

]
v(t),

z(t) = 1.45x1(t) + x2(t),

y(t) =

[
x1(t)
x2(t)

]
,

K : u(t) = − 1

σ(x1(t))
[0.2 0.5]y(t) + r(t)

for x1, x2 ∈ R and

σ(x1(t)) := 0.01

(
1 +

1

(x1(t))4 + 0.1

)
.

The quantizerQ is of (19) with the quantization intervald :=2.
Fig. 6 shows the simulation result on the time responses of

ΣQ for x0 := [0.1 −0.2]⊤ and r(t) ≡ 0. In the third figure,
the output response of the unquantized systemΣI in Fig. 4 (b)
(Fig. 1 (b)) is also depicted by the thin line, where the same
condition is imposed. Though the coarse discrete-valued signal
is applied toΣQ, the output behavior ofΣQ is quite similar to
that ofΣI . This result is quantified asE(Q∗) = 0.2695 by (27)
(for the worst(x0, R)) andmaxt∈{0,1,...,75} |zQ(t)− zI(t)| =
0.2565 by the simulation (for the given(x0, R)).

For comparison, we also consider the static quantizer case
Q = q, i.e., the case ofγ(ξ(t)) ≡ 0 and δ(ξ(t)) ≡ I. Fig. 7
illustrates the responses in the same fashion. We see that the

0 10 20 30 40 50 60 70

−6

−4

−2

0

2

u(
t)

0 10 20 30 40 50 60 70

−6

−4

−2

0

2

v(
t)

0 10 20 30 40 50 60 70

−1

−0.5

0

0.5

1

z(
t)

t

Fig. 6. Responses ofΣQ∗ (thick lines) and output response ofΣI (thin
line).

result for the static quantizer case is different from that for the
dynamic quantizer case.

This example shows that, even if the control input is
restricted to be a coarse signal, high performance, which
cannot be achieved by the static quantizer, is obtained by the
optimal dynamic quantizer.

It should be remarked that the above system is an academic
example selected to show our result more clearly. As stated in
Theorem 1, a similar result can be obtained for any systems
satisfying (A1)–(A3).

IV. STRUCTURAL ANALYSIS OF OPTIMAL DYNAMIC

QUANTIZERS

In this section, we analyze the structure of the optimal
quantizerQ∗ in order to understand the mechanism. Based on
this, a stability condition for the optimally quantized system
ΣQ∗ is provided.

A. Structure of Optimal Dynamic Quantizers

Consider the quantizerQ in (2). To express the static
quantization error,i.e., produced by the static quantizerq, we
introduce the new variable

w(t) := q(γ(ξ(t))+δ(ξ(t))u(t) )− (γ(ξ(t))+δ(ξ(t))u(t) ),

(32)

which satisfies

∥w(t)∥ ≤ d

2
(∀t ∈ N) (33)
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Fig. 7. Responses ofΣQ with Q := q (thick lines) and output response of
ΣI (thin line).

from (3). With this variable,Q is equivalently represented as

Q :


ξ(t+1) = α(ξ(t)) + β2(ξ(t))γ(ξ(t))

+ (β1(ξ(t)) + β2(ξ(t))δ(ξ(t)))u(t)
+ β2(ξ(t))w(t),

v(t) = γ(ξ(t)) + δ(ξ(t)))u(t) + w(t).

(34)

If (29) is assumed and the third equation of (1) is applied to
(34), we have

Q :

{
ξ(t+1) = α̃(ξ(t)) + β2(ξ(t))w(t) + β3(ξ(t))r(t),
v(t) = γ̃(ξ(t)) + u(t) + w(t) + δ3(ξ(t))r(t)

where

α̃(ξ) := α(ξ) + β1(ξ)h2(ξ1) + β2(ξ)(γ(ξ) + δ(ξ)h2(ξ1)),

β3(ξ) := (β1(ξ) + β2(ξ)δ(ξ))k2(ξ1),

γ̃(ξ) := γ(ξ) + (δ(ξ)− I)h2(ξ1),

δ3(ξ) := (δ(ξ)− I)k2(ξ1).

So, under the condition (29),Q can be formally regarded as
a nonlinear system driven by its original inputu, the static
quantization errorw, and the external inputr for G, though
these are not independent each other. ThenQ is expressed as
Fig. 81 by defining the subsystem

H :

{
ξ(t+1) = α̃(ξ(t)) + β2(ξ(t))w(t) + β3(ξ(t))r(t),
s(t) = γ̃(ξ(t)) + w(t) + δ3(ξ(t))r(t).

(35)

1In Figs. 8 and 9,w is not purely exogenous as shown in (32) but the
dependency on the other signals is omitted in the figure, because we will
consider the signal transfer fromw to e and it would be helpful for us to
regardw as a virtual exogenous signal in order to understand the following
discussion.

Furthermore, the error system betweenΣQ and ΣI is illus-
trated as Fig. 9. Based on these expressions, the following
result is obtained for the structure ofQ∗.

Theorem 2: For the systemΣQ, suppose thatG and d
are given and assume (A1)–(A3). LetΣ denote the system
in Fig. 10, which is a subsystem of the error system in Fig. 9.
Then the optimal quantizerQ∗ is composed of
(a) the direct transmission ofu,
(b) a systemH such that

H(r, w) = (zΣ)−1
s (r, Cg2(xQ)w) (36)

wherezΣ is the time-shifted system ofΣ,
(c) the initial stateξ(0) = [x⊤0 x⊤0 ]

⊤.
Note in (36) that(zΣ)−1

s is the inverse ofzΣ for the inputs,
Cg2(xQ) is the time-varying gain (because ofxQ(t)), and the
right-hand side is the system(zΣ)−1

s whose inputs arer and
Cg2(xQ)w. Note also that the equivalence and the inverse are
introduced in Section I, and the notions are not restricted to
the structured initial state in (c).

Proof: Fig. 8 shows thatQ is equivalent to the sum of the
direct transmission ofu and the systemH, which implies (a).
Furthermore, (c) corresponds to (21). So, in what follows, we
prove (b) by showing that the systemH for (α, β1, β2, γ, δ) :=
(α∗, β∗

1 , β
∗
2 , γ

∗, δ∗) satisfies (36). Consider the systemΣ in
Fig. 10 and suppose thatxQ(0), xI(0) ∈ Rn are given. Note
that we donot restrict the casexQ(0) = xI(0). From Fig. 10,
(A1), (1), (11), and (12), the outpute(t+1) is represented as

e(t+ 1) = zQ(t+ 1)− zI(t+ 1)

= CxQ(t+1) +Dr(t+1)− CxI(t+1)−Dr(t+1)

= [C −C]
[
fcl(xQ(t)) + gcl(xQ(t))r(t)
fcl(xI(t)) + gcl(xI(t))r(t)

]
+ Cg2(xQ(t))s(t). (37)

On the other hand, we consider the systemH for
(α∗, β∗

1 , β
∗
2 , γ

∗, δ∗) and ξ(0) := [x⊤Q(0) x⊤I (0)]
⊤. For the

stateξ = [ξ⊤1 ξ⊤2 ]⊤, we can obtain the relations

ξ1(t) = xQ(t), ξ2(t) = xI(t) (∀t ∈ N) (38)

in a similar way to (29) and (30), wherexQ(t) andxI(t) are
the states ofΣ (for the followings). Moreover, the outputs(t)
is expressed as

s(t) = γ∗(ξ(t)) + w(t)

+ (δ∗(ξ(t))− I)(h2(ξ1(t)) + k2(ξ1(t))r(t))

= −(Cg2(ξ1(t)))
−1[C −C]

[
f(ξ1(t)) + g1(ξ1(t))r(t)
fcl(ξ2(t)) + gcl(ξ2(t))r(t)

]
− h2(ξ1(t))− k2(ξ1(t))r(t) + w(t), (39)

where the first equality is given by (35) and the second one
is done by (1), (22), (23), (25), and (26). Applying (38) and
(39) to (37) provides

e(t+ 1) = Cg2(xQ(t))w(t). (40)

This implies (36) (note the definition of the inverse).
Theorem 2 shows the components of the optimal quantizer

Q∗. Part (a) is the same as the unity feedback in the unquan-
tized systemΣI and plays a role to imitateΣI . Part (b) is for
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Fig. 8. Equivalent representation ofQ under assuming (29) (where actually,
w is not an exogenous signal but the static quantization error depending on
u andξ).
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Fig. 9. Error system betweenΣQ andΣI under assuming (29) (where note
again thatw is not exogenous).

minimizing the influence of the static quantization error on the
performance indexE(Q). In fact, Fig. 9 shows that the error
system is a cascade system ofΣ andH (in the form of Fig. 3),
and (36) means thatH for Q := Q∗ is a cascade system of the
inverse ofzΣ and the gainCg2(xQ). So, in the error system,
the signal transfer fromw to e is reduced byQ∗ as shown in
(40). Note that (40) corresponds to (27) by considering that
the output errore specifiesE(Q) and the quantization errorw
satisfies (33). Finally, (c) comes from the definition ofE(Q)
in (4). In this way, we have structural interpretation ofQ∗.

The above result is somewhat unexpected due to the follow-
ing reasons. First, the optimal structure ofQ can berigorously
explained by an approximate inverse ofΣ, even thoughQ
is a continuous-to-discrete map butΣ is a continuous-to-
continuous map. Second, Theorem 2 is not the same as the
result in [31] given for linearG; it has been shown in [31]
that the optimal quantizers for linearG include an approximate
inverse not ofΣ but of Σ′

I given in Fig. 11.

B. Stability of Optimally Quantized Feedback Systems

Now, a stability condition of the optimally quantized system
ΣQ∗ is given. We employ the stability notion defined in
Section I, because the systemΣQ for someG cannot be
asymptotically stable with anyQ, as stated at the end of
Section II.

+

+

s 

G

r

G

+

_
e

Fig. 10. SystemΣ.

G

zr

+

+

s 

Fig. 11. SystemΣ′
I .

Theorem 3: For the systemΣQ, suppose thatG andd are
given and assume (A1)–(A3). LetΣ′

I denote the system in
Fig. 11, which is the unquantized systemΣI with the new
input s. Then the optimally quantized systemΣQ∗ is stable
if f , g1, g2, h2, and k2 are continuous functions (on their
domains),E(Q∗) < ∞ (i.e., supx∈Rn ∥Cg2(x)∥ < ∞), and
the systemsΣ′

I and (zΣ′
I)

−1
s are stable.

Proof: The proof directly follows from the five facts: (i)
under the condition (29),ΣQ is stable ifH (in (35)) andΣ′

I

are stable andH is output-stable, (ii) (29) holds forQ := Q∗,
(iii) H∗ (i.e., H for Q := Q∗) is stable ifΣ′

I is stable andH∗

is output-stable, (iv)H∗ is output-stable if(zΣ)−1
s is output-

stable andE(Q∗) <∞, (v) (zΣ)−1
s is output-stable ifΣ′

I and
(zΣ′

I)
−1
s are stable. These facts are shown as follows. (i) Note

that the cascade system in the form of Fig. 3, whereS(2) is
not necessarily an inverse ofS(1), is stable ifS(1) andS(2)

are stable andS(2) is output-stable. Using this, it is proven by
the fact that, under (29),ΣQ is a cascade system ofH andΣ′

I

as shown in Fig. 9. (ii) It is shown in the proof of Theorem 1.
(iii) Consider the state[x⊤Q(t) x⊤I (t)]

⊤ of the error system in
Fig. 9 whereH := H∗. As can imagine from the figure,xI(t)
is finite if Σ′

I is stable, whilexQ(t) is finite if Σ′
I is stable and

the outputs(t) of H∗ is finite (H∗ is output-stable). On the
other hand, (38) holds between the state ofH∗ and the state
of the error system. These complete the proof. (iv) It turns out
from (36) thatH∗ is output-stable if the system in the right-
hand side of (36) is output-stable. The system in the right-hand
side is the cascade system of(zΣ)−1

s and the time-varying
gainCg2(xQ), and thus it is output-stable if(zΣ)−1

s is output-
stable andCg2(xQ(t)) is finite. On the other hand, from (27),
E(Q∗) <∞ implies thatCg2(xQ(t)) is finite. So (iv) holds.
(v) From Figs. 10 and 11,Σ(r, s) = Σ′

I(r, s) − Σ′
I(r, 0).

This and the definition of the inverse system (Section I)
give (zΣ)−1

s (r, w) = (zΣ′
I)

−1
s (r, w + zΣ′

I(r, 0)). Namely,
(zΣ)−1

s (r, w) is equivalent to the cascade system of(zΣ′
I)

−1
s
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and w + zΣ′
I(r, 0). Then (33) holds,zΣ′

I(r, 0) is stable if
and only if Σ′

I(r, 0) is stable, andzΣ′
I(r, 0) is output-stable

if zΣ′
I(r, 0) is stable. Moreover, the output map of(zΣ′

I)
−1
s

is continuous for continuousf , g1, g2, h2, andk2. Thus we
have (v).

From this result, it follows that the stability of the optimally
quantized systemΣQ∗ can be verified by the stability of
the two usual systems (which do not involve discrete-valued
signals). In particular, the stability of(zΣ′

I)
−1
s is essential

becauseΣ′
I (i.e., ΣI ) is a reference system forΣQ and is

usually provided as a stable system.
An example is given. Consider the optimally quantized

systemΣQ∗ for

G :



x(t+1) =

[
x1(t) sin(x2(t))

0.5x2(t) + 1.4x1(t) sin(x2(t))

]
+

[
−1
1

]
r(t) +

[
1
1

]
v(t),

z(t) = [1 0]x(t),
u(t) = −1.4x1(t) sin(x2(t)) + r(t)

and d := 10, where x(t) := [x1(t) x2(t)]
⊤ ∈ R2. The

correspondingΣ′
I is given by

Σ′
I :


xI(t+1) =

[
−0.4xI1(t) sin(xI2(t))

0.5xI2(t)

]
+

[
0
2

]
r(t) +

[
1
1

]
s(t),

zI(t) = [1 0]xI(t),

for xI(t) := [xI1(t) xI2(t)]
⊤ ∈ R2. Furthermore,(zΣ′

I)
−1
s is

(zΣ′
I)

−1
s :


χ(t+1) =

[
0

0.5χ2(t) + 0.4χ1(t) sin(χ2(t))

]
+

[
0
2

]
r(t) +

[
1
1

]
ω(t),

η(t) = 0.4χ1(t) sin(χ2(t)) + ω(t)

whereχ(t) := [χ1(t) χ2(t)]
⊤ ∈ R2, ω(t) ∈ R, andη(t) ∈ R

are the state, input, and output. Then the systemΣ′
I is stable

because

∥xI(t+1)∥ ≤
∥∥∥∥[−0.4 sin(xI2(t)) 0

0 0.5

]∥∥∥∥ ∥xI(t)∥
+

∥∥∥∥[ 02
]
r(t)+

[
1
1

]
s(t)

∥∥∥∥
≤ 0.5∥xI(t)∥+ 2∥r(t)∥+ ∥s(t)∥

and thus∥xI(t)∥ ≤ 0.5t∥xI(0)∥+
∑t−1

i=0 0.5
t−1−i(2∥r(i)∥+

∥s(i)∥). By the same way, it can be shown that(zΣ′
I)

−1
s is

stable. Moreover,E(Q∗) = supx∈Rn ∥Cg2(x)∥(d/2) = 5 <
∞. Therefore, we conclude from Theorem 3 thatΣQ∗ is stable.

Remark 4: In Theorem 3, the stability of(zΣ′
I)

−1
s is con-

cerned with the minimum phase property ofΣ′
I . In particular,

in Fig. 1 (a),(zΣ′
I)

−1
s will be unstable ifP is non-minimum

phase. Meanwhile, even whenP is non-minimum phase, the
following technique is useful to avoid the instability. It is well-
known that the parallel connection of a given non-minimum
phase system and some compensator could be minimum phase.
So by constructing a parallel connection forP so as to be
minimum phase and regarding it as a new plant, a stable
quantized system can be obtained by Theorem 1.

V. OBSERVER-BASED DYNAMIC QUANTIZERS

As seen in Theorem 1, the optimal dynamic quantizerQ∗

contains the initial statex0 of G in its inside. This means that
the exact information ofx0 is required to constructQ∗ and so
it may be a limitation in practice. In this section, we extend
the result of Theorem 1 to the case where the information of
x0 is not available.

The idea for the extention is as follows. As shown in (29),
the first half of the state equation ofQ∗ corresponds to a
perfect state estimator forΣQ with the information ofx0.
Thus, by replacing the perfect estimator with an asymptotic
observer, it can be expected to obtain a sub-optimal quantizer
without the information ofx0.

Now, this idea is formalized. Consider the quantized system
ΣQ in Fig. 12, which is a modified version of that in Fig. 4
(a). The systemG is the same as in (1). The quantizerQ is
an extended version of (2) so thatr is available and the state
equation is of the more general form

Q :

{
ξ(t+1)= α̂(ξ(t), u(t), v(t), r(t)),
v(t) = q(γ(ξ(t)) + δ1(ξ(t))u(t) + δ2(ξ(t))r(t) )

(41)

where α̂ : Rν × Rm × Rm × Rp → Rν , γ : Rν → Rm,
δ1 : Rν → Rm×m, andδ2 : Rν → Rm×p are functions. The
quantizers in this form allow us to construct an observer for
the systemG in its inside. The initial state ofΣQ is given as
x(0) = x0 andξ(0) = ξ0, andν, ξ0, α̂, γ, δ1, andδ2 are the
parameters to be designed.

For the systemΣQ, we employ the performance index

ÊT (Q) :=

sup
(x0,R)∈X0×ℓp⋆
x̂0∈Rns.t.∥x0−x̂0∥≤κ

sup
t∈{T+1,T+2,...}

∥zQ(t, x0, R)− zI(t, x̂0, R)∥

(42)

where T ∈ N is the time specifying the time interval on
which Q is evaluated,X0 ⊆ Rn and ℓp⋆ ⊆ ℓp∞ are the sets
of the initial states and the input sequences of interest, and
κ ∈ R+ is the upper bound of the initial estimation error
∥x0−x̂0∥, that is, the difference between the true value and the
initial guess of the initial state ofG. The symbolszQ(t, x0, R)
andzI(t, x̂0, R) are similarly defined as before, but note that
the former is for the systemΣQ in Fig. 12 and the latter is
for the systemΣI in Fig. 4 (b) and the initial statêx0. The
index ÊT (Q) represents the maximum output difference on
the time interval{T + 1, T + 2, . . .} between the systemΣQ

with xQ(0) = x0 and the systemΣI with xI(0) = x̂0. The
time T will be related to the settling time of an observer, in
order to purely capture the quantization performance without
the transient performance of the observer. Note from (42) and
(4) that ÊT (Q) = E(Q) if T = 0, X0 = Rn, ℓp⋆ = ℓp∞, and
κ = 0. Note also thatÊT (Q) depends onX0, ℓp⋆, andκ but
which are assumed to be fixed in advance; so the dependence
is not explicitly denoted in the symbol “̂ET (Q)”.

In considering the quantizer design problem withÊT (Q),
we assume (A1), (A3), and

(A4) there exists aρ ∈ R+ such that∥R∥ < ρ for every
R ∈ ℓp⋆, and the reachable set of the systemΣI , i.e.,
XI := {x ∈ Rn|∃(t, x0, R) ∈ N×X0 × ℓp⋆ s.t.x =
xI(t, x0, R)}, is bounded,
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Fig. 12. Quantized feedback systemΣQ for observer-based dynamic
quantizer design.

(A5) the function σ(xQ, xI , r) in (15) is differentiable
with respect toxQ ∈ Rn, and there exists anM ∈
R+ such that

sup
(xQ,xI ,r)∈Rn×XI×

∪
t∈N πt(ℓ

p
⋆)

∥∥∥∥ ∂σ

∂xQ
(xQ, xI , r)

∥∥∥∥ ≤M

(43)

whereπt(ℓ
p
⋆) is the projection ofℓp⋆ onto thert-space,

(A6) there exists a function̂α1 : Rn×Rm×Rm×Rp →
Rn such thatξ1(t + 1) = α̂1(ξ1(t), u(t), v(t), r(t))
is an asymptotic observer forG such that
∥xQ(t) − ξ1(t)∥ is bounded by a class-KL function
ψ(max{∥xQ(0)− ξ1(0)∥, ∥(r(0), r(1), . . .)∥}, t).

Assumption (A4) is concerned with the boundedness of the
input sequence setℓp⋆ and the reachable setXI . The condition
onXI may not be easily checked but it holds ifX0 andℓp⋆ are
bounded andΣI is globally exponentially stable. (A5) enables
us to estimate the influence of the estimation error of an
observer, and (A6) guarantees the existence of an asymptotic
observer forG (see, e.g., [36] for nonlinear observers).

Then, we obtain the following result.
Theorem 4: For the systemΣQ with (1) and (41), suppose

thatG, d, X0, ℓp⋆, andκ are given. Assume (A1) and (A3)–
(A6), and letρ,M , α̂1, andψ be given by (A4)–(A6). Consider
the dynamic quantizer

Q◦ := (ν◦, ξ◦0 , α̂
◦, γ◦, δ◦1 , δ

◦
2) (44)

with

ν◦ := 2n, (45)

ξ◦0 :=

[
x̂0
x̂0

]
, (46)

α̂◦(ξ(t), u(t), v(t), r(t)) :=

[
α̂1(ξ1(t), u(t), v(t), r(t))
fcl(ξ2(t)) + gcl(ξ2(t))r(t)

]
, (47)

γ◦(ξ(t)) := −(Cg2(ξ1))
−1[C −C]

[
f(ξ1)
fcl(ξ2)

]
, (48)

δ◦1(ξ(t)) := 0, (49)

δ◦2(ξ(t)) := −(Cg2(ξ1))
−1[C −C]

[
g1(ξ1)
gcl(ξ2)

]
(50)

whereξ1, ξ2 ∈ Rn are the first half and the second half of the
vectorξ andx̂0 ∈ Rn is arbitrarily given so that∥x̂0−x0∥ ≤
κ. Then

ÊT (Q
◦) ≤ 3 sup

x∈Rn

∥Cg2(x)∥
d

2
(51)

holds for everyT satisfying

ψ(max{κ, ρ}, T ) ≤ d

2M
. (52)

Proof: For the systemΣQ with Q := Q◦, suppose
that (x0, x̂0) ∈ X0 × Rn and R := (r0, r1, . . .) ∈ ℓp⋆ are
given and assume that∥x̂0 − x0∥ ≤ κ, xQ(0) = x0, and
(r(0), r(1), . . .) = R. From (41), (44), (46), (47), and (A6),
the following relations hold for the stateξ of Q◦:

ξ1(t) = xQ(t, x0, R) + ε(t) (∀t ∈ N), (53)

ξ2(t) = xI(t, x̂0, R) (∀t ∈ N) (54)

whereε(t) ∈ Rn is the estimation error such that

∥ε(t)∥ ≤ ψ(max{∥x0 − x̂0∥, ∥R∥}, t)
≤ ψ(max{κ, ρ}, t) (∀t ∈ N) (55)

and xQ(t, x0, R) and xI(t, x̂0, R) are the states ofΣQ in
Fig. 12 and ofΣI in Fig. 4 (b), defined in a similar way
to zQ(t, x0, R) and zI(t, x̂0, R). So ξ1 and ξ2 correspond to
the estimation ofxQ and the copy ofxI . Then (15), (41), (44),
(48), (49), (50), (53), (54), (A5), and the mean value theorem
enable us to expressv(t) as

v(t) = q
(
σ(ξ1(t), ξ2(t), r(t))

)
= q

(
σ(xQ(t, x0, R)+ε(t), xI(t, x̂0, R), rt)

)
= q

(
σ(xQ(t, x0, R), xI(t, x̂0, R), rt)

+
∂σ

∂xQ
(x̌Q(t, x0, R), xI(t, x̂0, R), rt) ε(t)

)
(56)

where x̌Q(t, x0, R) is some vector on the line segment be-
tweenxQ(t, x0, R) andxQ(t, x0, R) + ε(t). Meanwhile,

∂σ

∂xQ
(x̌Q(t, x0, R), xI(t, x̂0, R), rt) ε(t) ∈

[
−d
2
,
d

2

]m
(57)

holds for t ∈{T, T+1, . . .}, since (43) and (55) provide∥∥∥∥ ∂σ

∂xQ
(x̌Q(t), xI(t), rt)ε(t)

∥∥∥∥ ≤
∥∥∥∥ ∂σ

∂xQ
(x̌Q(t), xI(t), rt)

∥∥∥∥∥ε(t)∥
≤Mψ(max{κ, ρ}, t)

and (52) means thatMψ(max{κ, ρ}, t) ≤ Md/(2M) = d/2
for t ∈ {T, T + 1, . . .}. Therefore, we have the following
expression ofv(t) from (56), (57), and the definition ofq
(in Section II-A):

v(t) = q
(
σ(xQ(t, x0, R), xI(t, x̂0, R), rt)

)
+ θ(t) (∀t ≥ T )

(58)

whereθ(t) is some vector such that

θ(t) ∈ {−d, 0, d}m . (59)

By applying (15) and (58) to (13), the output differencezQ(t+
1, x0, R)− zI(t+ 1, x̂0, R) for t ≥ T is calculated as

zQ(t+1, x0, R)− zI(t+1, x̂0, R)

= C
(
f(xQ(t, x0, R)) + g1(xQ(t, x0, R))rt

+ g2(xQ(t, x0, R))v(t)
)

− C
(
fcl(xI(t, x̂0, R)) + gcl(xI(t, x̂0, R))rt

)
= Cg2(xQ(t, x0, R))

(
q(σ(t))− σ(t) + θ(t)

)
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whereσ(t) stands forσ(xQ(t, x0, R), xI(t, x̂0, R), rt) and we
note that (13) holds under (A1). Sinceq(σ(t))−σ(t)+θ(t) ∈
[−3d/2, 3d/2]m from (3) and (59), it follows that

∥zQ(t, x0, R)− zI(t, x̂0, R)∥ ≤ 3∥Cg2(xQ(t−1, x0, R))∥
d

2
(∀t ≥ T + 1),

which, together with (42), proves (51).
This result presents an observer-based quantizerQ◦ together

with the performance evaluation of (51). In (51),T expresses
the time when the estimation error∥ξ1(t)− xQ(t)∥ becomes
sufficiently small, and the right-hand side is an upper bound of
the output difference afterT . An interesting point in this result
is that the right-hand side of (51) is the triple of the right-hand
side of (27). This means that introducing an observer gives a
dynamic quantizer without the information of the initial state
x0 but degrades the performance in terms of the timeT and
the three-times larger bound. The former degradation is caused
by the transient of the observer and the latter comes from the
nonzero estimation error in the steady state,i.e., the fact that
∥ξ1(t) − xQ(t)∥ will be nearly zero but not be just zero for
any t ∈ N.

Remark 5: Though the dynamic quantizer in the form of
(41) is a generalized version of that in (2), it is a fact under
(A1)–(A3) that the right-hand side of (27) is a lower bound
of the minimum value ofE(Q) with respect toQ in the form
of (41). This can be proven in the same way as in Section III-
B.1.

Remark 6: A lower bound of the minimum value of
ÊT (Q), which holds for anyT ∈ N, is given as

inf
x∈Rn

∥Cg2(x)∥
d

2
≤ min

Q
ÊT (Q)

subject to (A1), (A2), and
(A3’) p = l = m = 1 andC(g1(x1) − gcl(x2)) ̸= 0 for

every (x1, x2) ∈ Rn ×Rn.
This can be derived by the fact that the right-hand
side of (13) is equal toCg2(xQ(t))((d/2) + v(t)) for
r(t) := (C(g1(xQ(t)) − gcl(xI(t))))

−1(Cg2(xQ(t))(d/2) −
C(f(xQ(t)) − fcl(xI(t)))) and v(t) ∈ {0,±d,±2d, . . .} for
anyQ. Thus, in addition to the above observation, it turns out
that, if (A1), (A2), (A3’), and (A4)–(A6) hold andCg2(x)
is a constant (i.e.,infx∈Rn ∥Cg2(x)∥ = supx∈Rn ∥Cg2(x)∥),
the right-hand side of (51) is the triple of a lower bound of
minQ ÊT (Q).

VI. CONCLUSION

This paper has discussed a dynamic quantizer design prob-
lem for command-driven nonlinear control. Based on the
bound analysis of the optimal performance, we have obtained
an optimal dynamic quantizer in a closed form. This has
also shown the performance limitation of a general class of
nonlinear dynamic quantizers. Moreover, the structure of the
optimal quantizer and the stability of the optimally quantized
system have been disclosed. Finally, observer-based dynamic
quantizers have been presented so as to be utilized in many
practical situations. We expect that the result will be a founda-
tion for the dynamic quantization of nonlinear control systems.

Since this paper has aimed at obtaining analytical results,
the problem has been solved in somewhat limited cases. In
the future, a method to solve the problem in its full generality
should be developed. For such an issue, the idea of numerical
optimization, which has been proposed in [24] for linear
systems, will be useful.

APPENDIX I
PROOF OF RELATION(9)

A. Notation

For the vectorx and the matrixM , let ⟨x⟩i and ⟨M⟩i
denote theith element ofx and theith row vector ofM ,
respectively. The symbolsign(x) expresses the vector obtained
by elementwisely applying the signum function to the vectorx.

B. Main Part

The first case of (9) is the direct consequence of the
following lemma.

Lemma 1: For the systemΣQ, suppose thatG, Q, andd
are given. Then the following statements hold.
(i) Let R∗(ϵ) ∈ ℓp∞ be an external input sequence parameter-
ized by a numberϵ ∈ (0, d/2). Then

sup
(x0,R)∈Rn×ℓp∞

∥zQ(1, x0, R)− zI(1, x0, R)∥

≥ sup
x0∈Rn

sup
ϵ∈(0,d/2)

∥zQ(1, x0, R∗(ϵ))− zI(1, x0, R
∗(ϵ))∥.

(ii) Let R∗(ϵ) := (r∗0(ϵ), r1, r2, . . .) for

r∗0(ϵ) := k−1
2 (x0)

(
−sign(⟨Cg2(x0)γ(ξ0)⟩i∗)

× sign(⟨Cg2(x0)⟩i∗)⊤
(
d

2
−ϵ

)
− h2(x0)− γ(ξ0)

)
and arbitrarily given (r1, r2, . . .) ∈ ℓp∞ where i∗ ∈
{1, 2, . . . ,m} is defined by (61) andΛ := Cg2(x0) in the
next subsection. Ifδ(ξ0) = I, then

sup
x0∈Rn

sup
ϵ∈(0,d/2)

∥zQ(1, x0, R∗(ϵ))− zI(1, x0, R
∗(ϵ))∥

≥ sup
x0∈Rn

∥Cg2(x0)∥
d

2
. (60)

Proof: Statement (i) is trivial, while (ii) is proven in
Appendix I-C.

The second case of (9) is given by the fact that the right-
hand side of (7) isnot a bounded function with respect to
r0 ∈ Rp. Note here thatCg2(x0)(δ(ξ0) − I)k2(x0) ̸= 0l×p

under (A2), (A3), andδ(ξ0) ̸= I.

C. Proof of Lemma 1 (ii)

1) Preliminary: First, we provide a preliminary result.
Lemma 2: (i) Suppose that a matrixΛ ∈ Rl×m and a

positive numberζ ∈ R+ are given. Let

i∗ := argmaxi∈{1,2,...,m}

m∑
j=1

|Λij | (61)
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whereΛij is the (i, j)th element ofΛ. Then∥∥Λsign(⟨Λ⟩i∗)⊤ζ
∥∥ = ∥Λ∥ ζ.

(ii) Suppose that vectorsλ1, λ2 ∈ Rl are given. If there
exists ani ∈ {1, 2, . . . ,m} such that∥λ1∥ = |⟨λ1⟩i| and
⟨λ1⟩i⟨λ2⟩i ≥ 0, then

∥λ1 + λ2∥ ≥ ∥λ1∥.

Proof: The statements are straightforwardly proven by
the definition of the∞-norm.

2) Main Part: From (8), we have

a(x0, ξ0, r
∗
0(ϵ))

= (I − δ(ξ0))γ(ξ0)

− δ(ξ0) sign(⟨Cg2(x0)γ(ξ0)⟩i∗)sign(⟨Cg2(x0)⟩i∗)⊤
(
d

2
−ϵ

)
for R := R∗(ϵ). Sinceq(a(x0, ξ0, r∗0(ϵ))) = 0 underδ(ξ0) =
I, (7) provides

zQ(1, x0, R
∗(ϵ))− zI(1, x0, R

∗(ϵ))

= Cg2(x0)

(
sign(⟨Cg2(x0)γ(ξ0)⟩i∗)

× sign(⟨Cg2(x0)⟩i∗)⊤
(
d

2
−ϵ

))
+ Cg2(x0)γ(ξ0) (62)

subject toδ(ξ0) = I. Note here thatsign(⟨Cg2(x0)γ(ξ0)⟩i∗) is
a scalar, and⟨Cg2(x0)sign(⟨Cg2(x0)⟩i∗)⊤⟩i∗ ≥ 0. By apply-
ing Lemma 2 to (62) withΛ := Cg2(x0), ζ := (d/2)−ϵ, λ1 :=
Cg2(x0)sign(⟨Cg2(x0)γ(ξ0)⟩i∗)sign(⟨Cg2(x0)⟩i∗)⊤((d/2)−ϵ),
andλ2 := Cg2(x0)γ(ξ0), it follows that

∥zQ(1, x0, R∗(ϵ))− zI(1, x0, R
∗(ϵ))∥ ≥ ∥Cg2(x0)∥

(
d

2
−ϵ

)
.

This proves (60).
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