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Dynamic Quantization of Nonlinear Control Systems

Shun-ichi AzumaMember, IEEEand Toshiharu Sugidsellow, IEEE

Abstract—This paper addresses a problem of finding an flexibility in choosing both the may) and the output signal
optimal dynamic quantizer for nonlinear control subject to setV. Several results have been obtained as the minimum data
discrete-valued signal constraintsj.e., to the condition that some rates for stabilization and estimation [1]-[6] and the (coarsest)

signals must take a value on a discrete and countable set at . e . -
each time instant. The quantizers to be studied are in the quantizers for stabilization and identification [7]-[14]. In the

form of a nonlinear difference equation which maps continuous- latter, on the other hand, the quantizers are required to adapt
valued signals into discrete-valued ones. They are evaluated continuous-valued signals to the command-driven devices,
by a performance index expressing the difference between the such as discrete-level actuators, where the quantizer input is
resulting quantized system and the unquantized system, in terms assumed to take values orfigsed discrete set. So, unlike the

of the input-output relation. In this paper, we present a closed- . .
form solution, which globally minimizes the performance index. former, the mapQ is the design parameter and the 3ét

This result shows the performance limitation of a general class IS @ given constraint in the problem. From this standpoint,
of dynamic quantizers. In addition to this, some results on the quantizers have been developed in [15]-[25]. However, the

structure and the stability are given in order to clarify the above results have been devoted mainly to linear systems.
mechanism of the best dynamic quantization in nonlinear control Namely, except for a few pioneering works, the quantizer
systems. design problem has never been studied for nonlinear systems.
Index Terms—quantized control, dynamic quantizers, nonlin- |n fact, in the nonlinear setting, there are some results [26]-
ear systems, hybrid systems. [30] for the networked control ando result for the command-
driven control, as shown in Table I.
|. INTRODUCTION This paper thqs addresses a quantizer desi.gn problem for
the command-driven control of a class of nonlinear systems.
UANTIZED control, i.e., control of systems subject toThe quantizers considered here dgmamic i.e., in the form
discrete-valued signal constraints, has become one of #f& nonlinear difference equation which determines its output
major topics in the systems and control field. The reason liggpending upon the past input sequence. The discrete-valued
in its numerous applications, including embedded systendggnal is restricted to take a value on a uniform and countable
remote systems, trading systems, and biological systems.sbt at each time instant. The following problem is then
fact, digital devises embedded in them, such as A/D ar@nsidered: when a nonlinear plant and a nonlinear controller
D/A converters, discrete-level actuators/sensors, and commnge given for the quantized feedback system in Fig. 1 (a), find
nication channels, are indispensable to make control system§uantizer such that the system in ¢@timally approximates
robust, intelligent, and low-cost. Furthermore, it is often thge usual (unquantized) feedback system in Fig. 1 (b), in terms
case that the control input is restricted to be one of finiif the input-output relation. This is a nonlinear version of the
actions, e.g.sell or buy in trading systems andctivate or  authors’ quantizer design problem for linear systems [22]-
inhibit in genetic systems. It is, however, necessary to handigs], and it is much more challenging.
discrete-valued Signals as well as continuous-valued ONeSFor the pr0b|em' the main contributions of this paper are
which poses challenging control problems. summarized as follows. First, globally optimal solutionis
In this topic, a basic problem is to design the quantizgferived as a closed-form expression assuming that the initial
@ : U — V in such a way that the resulting quantized systegiate of the system to be quantized is known, even though the
(the system including)) achieves desired performance, whergroblem is nonlinear and nonconvex. The key idea is to ana-
U andV are respectively the continuous-valued and discretgze the lower and upper bounds of the optimal performance
valued signal sets. Various issues arising in quantized contild characterize the dynamic quantizer whose performance is
can be reduced into this type of problem with an appropriatett |larger than the lower bound. Second, the structure of the
selected performance index and quantizer class. optimal solution is clarified. In particular, it is disclosed that
So far, this problem has been studied along two directione optimal quantizer is mainly composed of (i) the direct
the networked controland thecommand-driven contrplas transmission of the input and (i) an approximated inverse
summarized in Table I. In the former, the quantizers play ¢f the error system between the quantized and unquantized
role of the coder-decoder pair in the communication betweggstems in Fig. 1. This exhibits the mechanism of the optimal
a plant and a controller. There, the control designer hagnamic quantization in nonlinear control systems. Finally,
Manuscript submitted April, 2010, observer-based dynamic quantizgrs are p.resented so as to apply
This work was supported byy Scientific Research (B) 21360202 and GraRr result to the case where the information of the initial state
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TABLE |
SUMMARY OF DESIGN ISSUES OF QUANTIZERY : U — V

[ I Networked control [ Command-driven control |

Purpose of quantization to transmit signals via digital to adapt continuous-valued signals|

p a communication channel to command-driven devices
Parameters to be designed Q andV Q
Existing results for linear systems [1]-[14] [15]-[25] _
for nonlinear systems [26]-[30] none ¢—this paper)

e control but the command-driven control, e.g., by discrete-level

—— % L o > p actuators. This means that typical techniques for networked
o I - o yg control may not be applied to our situation. Especially, the
= ontroller ; Quantizer ant 5 zooming/scaling [32], which is a conventional coding tech-

nigue, cannot be used for the quantizer in Fig. 1 (a), because
the zooming/scaling violates the constraint that the quantizer
(@) Quantized feedback system. output setV is fixedin advance.

This paper is organized as follows. The quantizer design
problem is formulated in Section Il. In Section lll, a solution,

S % - p i.e, an optimal quantizer, is presented in an analytical way and
is demonstrated by a numerical example. Next, some results on
r —I the structure and the stability are given in Section IV. Section
V presents observer-based dynamic quantizers and Section VI
(b) Unquantized feedback system (Usual system). concludes this paper.
Note that this paper is based on our preliminary version
Fig. 1. Quantized and unquantized feedback systems. [33], published in a conference proceedings, and contains full

explanations and proofs omitted there.

Notation (i) General mathematical notiond:et R, Ry,
derived in a different way. In [23], [25], aexact expressioof R, andIN be the real number field, the set of nonnegative
the quantizer performance is provided, from which an optime¢al numbers, the set of positive real numbers, and the set
guantizer is directly derived. In contrast, it is hopeless to obtairi nonnegative integers, respectively. We denoteOhy,,
such an expression in the nonlinear setting. So, in this papend I,, (or, for simplicity of notation,0 and I) the n x m
we derive an optimal quantizer in an implicit way based orero matrix and the: x n identity matrix. Let[a] be the
the bound analysis of the optimal performance. Moreover, wnimum integer greater than or equal to the number R.
have a different result on the optimal structure from the linedie vector inequalityr; < x, represents that each element
case studied in [31]. of 1 — x5 IS nonpositive. For the infinite vector sequences

Also, it should be noted that, to our best knowledge, thered§ := (z1,22,...) andY := (y1,%2,...), let X — Y be
no result dealing with both nonlinear systems and (behaviordhle vector sequencér; — yi,z2 — ¥2,...). For the vector
performance optimality at the same time, on quantizer designthe matrix A/, and the vector sequenck, we use|z||,
for control. For instance, the main interest of the existingg) ||, and| X to express theibo-norms. Note that| /|| is
results for nonlinear systems [26]-[30] (see Table 1) is tHée induced norm corresponding tieax,.cr-\ o} [[M || /| ||
relation to the stability of quantized systems. In this papdtvhere M € R™*"), and that| X|| := sup;en oy ll2ill-
to mathematically clarify an essential mechanism of nonline#hen another kind of norm is used or the use of shenorm
optimal quantization, we mainly consider a somewhat limitdtas to be emphasized, they are denoted with the subscript,
case, where the plant and controller are input-affine, the initg, || X|, for the p-norm. The set of infinite sequencesef
states of the systems are available to the quantizer, and thedsatensional vectors having finiteo-norm is denoted by?,.
on which the discrete-valued signal takes a value at each tifflee functiony : Ro; x Roy — Ro4 is said to beclass-KL
instant is uniform and countable; but it is remarkable that ahthe following two conditions hold: (a) for each € R,
exact solution for the unexplored problem is analytically det(0,t) = 0 and (s, t) is strictly increasing with respect to
rived. In other words, in the research area of quantized contrs),(b) for eachs € Ro,, lim; ¥(s,t) = 0 and (s, t) is
this paper provides the first result showing that there existslacreasing with respect to
nonlinear optimal quantization problem whose solution cdji) Notions for dynamical system&onsider the discrete-time
be analytically and exactly derived, and the rather restrictigystem
Eisaengl rggarded as a su_fflcu?nt COﬂdI'FIOﬂ for the. problem to _{a:(t—H) — (@b, u(t)),

ytically solved. This will be an important first step to S
solve the problem f | situat y() = h(x(®),ult)
problem for more general situations.

Finally, to avoid misunderstanding, we would like to notifywhere z(t) € R™ is the state,u(t) € R™ is the input,

again that the target of this paper i®t the networked y(t) € RP is the output, andf : R x R™ — R" and
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h: R"™ x R™ — RP are functions. The systerfi is said to
be stableif (z(1),z(2),...) € £ holds for everyz(0) € R"
and(u(0),u(1),...) € £Z2. The systent is said to beoutput-
stableif (y(1),y(2),...) € ¢&, for every z(0) € R™ and
(u(0),u(1),...) € £7. These are stability notions based on u?
the boundedness of the state and the output. Note Shiat
output-stable ifh is a continuous function (on its domain)
and S is stable. Next, we introduce an equivalence relation
between two systems. Consider the systeffis (i = 1,2, 3)

given by ut’ > PO

Ll SU)
. . . . 2) >
50) :{x(l)(t+1) = f(l,)(x(z.)( ),u(l (1)), u? L go J_uz“’
y(z)(t) = h(z)(x(z)( ,
where 2z (t) € R™”, u(t) € R™

)
), ul(t))
@ andy®(t) € RP.
The systemsS™) and S(?) are said to beequivalentif the
following two conditions hold: (i(") = n? = pandm® =
m®) = m for somen andm, (i) ™) (t) =y (t) for every
M (0) € R, (uM(0),uM(1),...) € £, 2 (0) € R", and
(u®(0),u®(1),...) € tm satisfyingz™) (0) = (3 (0) and v \
uM(t) = uP(t). The equivalence relation is often denoted q0
by S (uM) = S@)(4(2)), which is convenient to express
the equivalence between interconnected systems. For insta@pgeg_
when nM + 7@ = G and m® + Mm@ = Mm® the
relation S (u(M) — §@) (@) = §G)(4()) represents the
equivalence between the parallel system in Fig. 2 (a) and the
systemS®). Whenn™ +n(2) = n®) 41 (¢) is decomposed 1.
into u{ () € R andul?(t) e R™" i.e, mP +m{!) = A. System Description

m® andu® () = [(u{? ()T (@ (©)T)T, p=ms"’, and  Consider the feedback systeng, shown in Fig. 4 (a), which
m) + m® = m®, the relations® (u{V, 5@ (u@)) = s composed of the discrete-time nonlinear systérand the
5@ (u®) means that the cascade system in Fig. 2 (b)$idt dynamic quantizer).

are equivalent. Note in the interconnected systems that theirhe system is given by

state variables are assumed tg/e" (¢)) T () (¢))T]T (not

()

S(U

;J’» y‘l)_y‘l)
oO—>>

ks

(a) Parallel systens() (u(1)) — §(2) (4,(2)),

Srz)

t
t

(b) Cascade systei()) (u{"), 5@ (u(2))).

Fig. 2. Two types of interconnected systems.

1)
uf

Systems()) and its inverse for inputi".

PROBLEM FORMULATION

(@ )T (M (¢))T]T). In addition, it is worth mentioning w(t+1) = f(z(t) + g1(2(6)) r(t) + g2(x(2)) v (2),
that if SO (u()= $ (u?®) and SO is output-stable, then G () = hi(z(t)) + ki(a(1))r(?), 1)
S is output-stable. Finally, an inverse relation is introduced. u(t) = ho(x(t) + ka(z(t))r(1)

For the systems&) and S(?), assume that") = n(?) = n,

: where z(t) € R"™ is the statey(t) € R? andv(t) € R™
m® = m® = m > p for somen and m. Let u”(t)

are the inputsz(t) € R andu(t) € R™ are the outputs,

andul” (t) denote the first — p elements ofu?(¢) and the
others,i.e, u®(t) = [(ul?(#)T (WS (#)T]T € Rm—P x RP.
The systemS®) is called theinverse of S() for the input
ul? if for every () (0) € R™ andz(®(0) € R™ satisfying
1 (0) = 23 (0) and every(u®(0),u(1),...) € £, the
relation y ™ () = u{? (¢) holds undery®(¢) = 'V (¢) and
u{V(t) = u{?(¢) as shown in Fig. 3. The inverse system
denoted by(S™)~},. For example, for the system
Ug

2D(t+1) = @02+ ui” (O + uy” (1),
y (1) = @24sina® () ug” (1),

the inverse for the inpu&él) is given by

2@ (t +1)= (@@ 1))? +uf® (1) + 2+sinz® (1))us? (¢),
y@(t) = (2+sinz@ ()u? (b).

andt € N is the time. Furtherf : R — R", g; : R" —
R P, g, : R® = R™™ h; : R” — R!, hy : R* = R™,
k1 : R™ = R>*P andk, : R — R™*P are functions. The
initial state is given as(0) = x¢ for g € R™. In order to
show a general formulation of our quantizer design problem
first, specific assumptions for the systéhwill be given at the
ibeginning of the next section, where, for examplgiz) =Cx
andk;,(x)=D are assumed for constant matricesand D.

The quantizeiQ is of the form

0 .{é(t+1) = a(&(t)) + Hr(E()ult) + Fa(E(E)v(t), o)
Lov®) = q(v(E®) + (&) ult))

where £(t) € RY, u(t) € R™, andv(t) € V™
{0,+d, £2d,...}'* are the state, the input, and the output,
anda : R — RY, 51,682 : RV - RY*™, ~: R¥ — R™,

0 : R¥ — R™*™ are functions. The sé¢™ is a discrete set
specified by the quantization intervdle R. The function

This can be confirmed by the definition and the fact that: R™ — V™ is the nearest-neighbor static quantizer toward

2 (8) = 2@ (8) underzM(0) = 2@ (0), y@(t) = iV (1),
andulV(t) = u{? (1).

—oo. More precisely, theith element of the vectog(u) is
given byd[(u;/d) —(1/2)] wherey € R™ andy; € R is the
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a) Quantized feedback systen.
@Q ysteny O od
rrrrrrrrrrrrrrrrrrr .
a > “y Fig. 5. Static quantizeq(p) for u € R,
‘ \ (including &) and so the dependency @p is expressed at
L v=u Zgo(xo, R) and zg (t, zo, R) in a proper fashion.

Then the following problem is considered.

Problem 1: For the systen®, suppose that the system

Fig. 4. General expressions of quantized and unquantized feedback systecn{lsa.'nd t,he quantlzaftlon m_terle_e Ry ar,e ,g_lven' Then, find
a quantizerQ (that is, a dimensiomw, an initial state&,, and

functionsa, 81, B2, 7, 6) minimizing the performance index

(b) Unquantized feedback systeny.

?th Qlement ofu. An .exa}mple for the casen = 1 is shown E(Q) = sup 1Zo(x0, R) — Zi(z0, R)||.  (4)
in Fig. 5. The quantization error af satisfies (z0,R)ER™ x 2, .
lla(p) — |l < g (Y € R™), (3) In this problem, the performance indéX Q) corresponds to

the difference between the quantized and unquantized systems

which will be an important property in this paper. The initia}gQ andX; in terms of the input-output relation. IE(Q) is
state of@ is given asg(0) = & € R”. Note that the quantizer small, we can conclude that the syst&ip behaves similarly
() determines its output(¢) from the past and present inputsg the ideal systent;.
(u(0),u(1),...,u(t)) (soQ is dynamic), and) is equivalent  Solving the problem provides us a practical design method
to the typical static quantizer(t) = g(u(?)) if ¥(£(t)) = 0 of nonlinear control systems with discrete-valued signal con-
and4(¢(t)) = I. Note also that) includes the self feedback straints. For example, consider the feedback system in Fig. 1
by v as seen in the state equation of (2). In what follo@ss (a), and suppose that the input &f is restricted to be a
often regarded as a tuple of the dimensiarthe initial state discrete-valued signal ov™. Then, in spite of the severe
€0, and the functionsy, 51, fs, 7, 4, which will be treated as restriction, X would have good performance with
the design parameters. _ _ _ . a controller K achieving desirable performance in the

The systemX, is a generalized version of the quantized unquantized system in Fig. 1 (b) (where it is supposed
feedback system in Fig. 1 (a). It can be seen that is that the input ofP is continuous-valued),
equivalent to the system in Fig. 1 (a) by regarding the part, 4 dynamic quantize® such thatEZ(Q) is small.

|nd|ca'ted by the d'otted line frame (in Fig. 1 ())@sThus the Therefore, the combination of the conventional (nonlinear)
following discussion holds not only for the feedback system

A . . control theory and the solution to Problem 1 enables us to
in Fig. 1 (a) but also for various types of quantized systems. . .
construct high-performance quantized systems.
) . ) Finally, four remarks on Problem 1 are given. First, the
B. Dynamic Quantizer Design Problem system modelG can represent a combination of an input-
In this paper, the quantiz€) is evaluated by a performanceaffine plant model and input-affine controller in discrete-
index expressing the difference between the quantized systiime. Plants described i include the cart-spring-damper
Yo and theunquantizedsystem; (introduced as arideal system in [34] and the stirred tank reactor system in [35]
system) in Fig. 4. For this, some symbols are prepared. flar example. The discrete-time models in the literatures are
distinguish the signals of the two systerig) and ¥;, we provided by the Euler approximation of the continuous-time
use the symbolsig, rq, vg, 2@, ug andzy, rr, vy, z;, models. Second, the quantizer output 3&t is a uniform
ur for z, r, v, 2z, u. In ¥ (with a given @), when the lattice in R™, which fits quantized control problems with
initial state and the external input are fixed to the specifidg/A converters or discrete-level actuators. Even if the quan-
valueszy € R™ and R := (ro,r1,...) € (2, we denote tization intervals are different for each input channels as
by Zo(zo, R) the output sequencézg(l),zg(2),...) and d; € Ry (¢ = 1,2,...,m), the following discussion holds
by zg(t,x0, R) the output at timet. For ¥;, the symbols by replacing the input matrix(z) with the scaled matrix
Zi(xo, R) and z;(t, zg, R) are similarly defined. Note heregs(x)diag{l,ds/d1,ds/d1,...,dm/d1} [24]. Third, 37 is an
that, though it may look thakq(zo, R) and zg(t, zo, R) do ideal system and sB; should be a stable system in common
not depend on the initial stat§ of @, their subscripts) situations. Meanwhile, the stability df; is not assumed in
correspond to the all design parametérsty, «, 51, 82,7,0) Problem 1 because, with or without the assumption, there
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exists a solutior) to Problem 1 such thab(Q) < co under From (1), (2), and (A1), the termg(1, zo, R) — z1(1, z0, R)
a condition not implying the stability ofl;. This fact will be is expressed as

shown in Theorem 1. Fourth, in our setting, the performance
is evaluated based on not the or 2-norm but theso-norm. 2@ (L0 1) = z1(1,z0, B)

This is because the signal is restricted to be a value on = Cg2(z0)(vq(0) —v1(0))

the uniform lattice V'™ and thus the asymptotic stability of = Cg,(z0)(q(a(xo,&0,70))—a(xo,&0,70)) + Cga(z0)v(&0)
Yo is not always possible, e.g., in the case whéteis _

ur?stable in Fig. 1 (a). More concretely, whEn is (globally) T C92(20) (0(60) =) (ha(@0) +ka(@o)ro) @
asymptotically stable ankly cannot be asymptotically stablefor

with any @, we havelim;_, . zq(t, 0, R) # z1(t,zo, R), .

. | Zo(wo, B) — Z1(z0, R)|, = o0 for p = 1,2, under an ~ (#0:80:70) := 7(&0) +0(&0) (ha(@o) + ka(wo)ro)- - (8)
observability condition (note thaZg(zo, R) and Z;(xo, R) In fact, (1) and (2) givevg(0) = q(~v(&) + 6(£0)ug(0))
are infinite sequences). In contrast, we may Hgg(zo, R)— = q(v(&) + (&) (ha(xo) + k2(z0)ro)) andvr(0) = ur(0) =
Z1(zo, R)||eoc < oo in the same situation, which means thaks(zg) + k2(zo)ro, from which (7) is confirmed. Note that,
the index based on th&>-norm can capture the performancéor the first term of (7), we have

of @ more precisely.

d
|Cga(x0)(q(alxo,&0,70)) — alxo,&o,70))|| < ||Cg2(370)||§
IIl. OPTIMAL DYNAMIC QUANTIZERS from (3). It can be shown by (7) that
A. Assumptions and Outline of Derivation

sup llzo(1, o, R) — z1(1, 20, R)|

In this paper, we aim at obtaining an analytical solution ' o/ cgn

to Problem 1 in order to clarify an essential mechanism of d
optimal quantization. To this end, the problem is considered 2 sup |[Cga(wo)ll5 if (&) =1, :
under the following assumptions: | TeeRr herwis ©)
(Al) hi(x) = Cz andky(z) = D for constant matrices - orherwise
C € R*™ and D € Ri*p, holds under (A1)—(A3) (see Appendix | for the exact proof of
(A2) The matrixks(z) is square and nonsingular for every(9)). Equations (6) and (9), which hold for agy, establish a
z € R”. lower bound ofming E(Q) as
(A3) The matrix Cgo(z) is square and nonsingular for d .
everyz € R™, whereC is given in (Al). sup. 1Cg2(2)l|5 < ménE(Q) (10)
The first assumption means that the controlled outpus i
given as a linear combination of and r, i.e, z(t) = This completes Step 1 faf(d) := sup,ern [|Cg2(2)||(d/2).

Cz(t) + Dr(t). The others are technical assumptions for the 2) Step 2: Upper boundNext, we show that the lower

existence of the inverses dh(z) and Cg2(x), which also hound is an upper bound afiing E(Q) under a suitable
imply that r, v, z, and u have all the same dimensionscondition.

Roughly speaking, in the feedback system in Fig. 1 (a), thesg et

two are usually satisfied in the case wherand > have all

the same dimensions andis directly transmitted ta: in K fa(z) = f(2) + g2(x)ha(), (11)

(though it depends on how to get the discrete-time maétjel gei(z) := g1(x) + go(x)ka(z). (12)
The idea to find the solution is outlined as follows:

Step 1 Under (Al) andrq(t) = ri(t) = r(t) for somer(t), the
tep

. output difference betweeB andX; is described by
¢(d) < min E(Q) < ¢(d). B zot+1)—z(t+1)
—_— =Czxo(t+1)+Dr(t+1)—Cxi(t+1)—Dr(t+1)

(Step 2)

In Step 1, we derive a lower bound ofing E(Q), which is C;(J;(m(t)) J;gl(xQ(t))r(t) :gQ(mQ(t)W(tD 13
a function ofd and is denoted by(d). In Step 2, it is shown (fer(@r(t)) + ga(er(®)r(t). (13)
that, if a condition called(?) is satisfied, the lower bound |f

¢(d) becomes an upper bound afing E(Q). These steps

prove thatming E(Q) = ¢(d) holds under(€2), from which v(t) = q(o(zq(t), z1(1),r(1)) (14
a solution to Problem 1 is provided. for
- f(zq) + g1(zq)r
B. Lower and Upper Bound Analysis of Optimal Performanc@(z@, z1,7):=—(Cgz(2q)) "'[C —~C] fcz(ff) -|-glcl(.rQ[)T
1) Step 1: Lower boundFor the systent, suppose that (15)
Q is given. By the definition off'(Q), we have

(where (Cyg2(z¢))~! is given under (A3)), then
13 7R - 17 ,R >~ E . 6
oy, QU0 B =2 (Lo RIS BUQ) )y 1) = Canea () (a(o(®) — o)
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and (3) yield
lza(t +1) — 22(t-+ V| < [ Canlaa @)l la(e(t) —o(0)]
< swp [Cp(@)] 5 (vt €N,

whereo(t) stands foro(zg(t),

x](t),

d
R)| < swp [ Cone)] &
zeR"

r(t)). That is,
lzo(t+1,z0, R) — 27 (t+1, xo,

holds for everyt € N and (z¢, R) € R™ x ¢2_. Therefore, if

the condition
(©2) there exists &) satisfying (14)
holds, we have

. d
min B(Q) < sup [[Cga(z)]|5- 17)
Q zeR” 2

This achieves Step 2 in (5).

C. Optimal Dynamic Quantizers
Equations (10) and (17) establish the relation

min B(Q) = sup | Coa (e (18)

zeR™

Proof: We prove that (14) holds fa@ := @Q*, since this
fact implies thatQ* is a solution to Problem 1 and (27) holds.
Under (A2), the third equation of (1) is rewritten as

r(t) = Ky (2 () (u(t) — ha(a(2))).

From this and the first equation of (1), it follows thag
evolves according to

zQ(t+1) = flzq(t)) — gl(fﬂQ( ) kg Hzq(t) b
+ g1 (zQ(t) ky Mz () u(t)+ ga(x
2q(0) = zo

(28)

2(zq(1))
(t))v(t),

By comparing this equation with the dynamics&fin Q*, it
turns out that

&(t) =z0(t) (VteN) (29)

holds forQ*. In a similar way to the above, we also get
&(t) =xr(t)  (VtEN). (30)

Thus, applying (15), (19), (22), (23), (25), (26), (28), (29), and
(30) to the output equation in (2), we hawg) = q(v*(£(t))+
5 (EM)ut)) = q(o(&a(t), &), 7 (1) = qlo(zq(t), zr(1),
r(t))), which implies that (14) holds fof)*. [ |
Theorem 1 provides an analytical solution to Problem 1
(which is globally optimal) and an expression of the minimum
value of E(Q). The latter corresponds to the performance
limitation of the dynamic quantizers in the form of (2), which

subject to the conditioi2), which presents the following re- shows the relation between the achievable performance and

sult.
Theorem 1: For the systent, suppose thatr andd are

the problem parameters andd.
An intuitive interpretation of the optimal quantizé€}* is

given and assume (A1)-(A3). Then the following statemengg follows. As shown in (29) and (30), the statesSk and

hold.
(i) A solution to Problem 1 is given by
Q* = (V*vfgva*aﬁrvﬁgvv*’d*) (19)
where
v* = 2n, (20)
& = [ﬁg} (21)
* _[ &) =g1(& () k5 (& (6) ha(éa(t))
= @) - gale )k @ 0) ma(e )]
: RGO I0))
He) = e G ) #)
O R (24)
Y (E()) = (ng(&(t )THC —Cla*(£(1), (25)
5*(5( ) = —(Cga(&1(1)))1[C —CIBT(£(F)), (26)

Y are estimated in the state equation @f. They are in
general different due to the quantization By Considering
that [C —C]&(t) is equal to the output difference between
the two systems, we see that the tef@h —Cla*(£(t)) +

[C —C]B;(&(t))u(t) expresses the difference expected at
the next time (timet + 1). Then if the multiplication by
~(Cgal&r(t)) ", e, 7*(E() + 6*(€(t))u(t), is applied to
X, the signal completely cancels out the expected difference
in Xg. Namely, the quantizer output(t) = q(v*(£(¢)) +
5*(&(t))u(t)) is the optimal discrete-valued signal to reduce
the difference betweeRy andX;.

It should be noted that the exact information of the initial
statex, of G is required to construct the optimal quantizer
Q*, as seen in (21). So it can be directly applied only to
systems whose state is measurable and availabtg & to
systems which operates from a fixed initial state such as robot
manipulators for a repetitive work. An extended version of
@*, which do not use the information af), will be provided
in Section V.

&1,& € R™ are the first half and the second half of the vector It is also notified that the optimally quantized syst&ig-,

e, &=
in (11) and (12).
(i) The minimum value ofE(Q) is given by
d
E(Q*) = sup HC’gg(x)H§ 27)
z€R»

(€] &7, andf, andg,. are the functions given X¢ with Q := Q*, is not always stable in the stability concept

defined in Section |. However, it can be shown thaj- is
stable under a suitable condition, and even when the condition
does not hold, there is a practical method to avoid instability.
This will be detailed in Section IV.

Remark 1: Theorem 1 is a generalized version of the
authors’ previous result [23], [25] for linea®, which has
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fx) == Az, gi(x) := By, ¢g2(x) := Bs, hi(z) = Cyz,
hao(z) := Cox, ki(x) = D;, ko(z) := Ds. In fact 2| ]
by substituting the linear functions and constant mat
and eliminating redundant states @*, we have a soll
tion to Problem 1 agv,¢&o,«, 81,02,7,6) = (n, 0, (A+
BQCQ)f, —Bs, Bs, —(ClBg)_lcl(A—i-BQCQ)f, I), which is
the same as given in [23], [25]. [ |

Remark 2: Since the optimal quantize®* depends ¢
Zo, ONe may consider that the optimal performarfceQ™*)
must depend orxy. However, as seen in (4), the argun
of the functionE(Q), i.e,, (v, &o, a, b1, B2,7,9), specifies th
functionto be maximized with respect {@, R) € R™ x (2_,
that is, || Zg (zo, R) — Z1(xo, R)||. Thus, even ifQ* depend

on zq, E(Q*) does not depend ony. [ |
Remark 3: The solution in Theorem 1 is derived by ft 6k i

utilizing the fact thatV™ is a uniform discrete set. Howev
even wheriV™ is not uniform, a similar result can be obtail
as long ad|q(p) — p|| < A (Vu € R™) for someA € Ry
In fact, it is trivial in this case that, instead of (16 (¢t +
1) — z1(t + 1)|| < supyern [|Cg2(2)]|A (Vt € N) and so

E(Q") < sup [|Cgz(x)[|A (31)
zeR"™

0 10 20 30 40 50 60 70

z(t)

for the proposed quantiz&p* in (19). Although@Q* may no - ‘ ‘ ‘ ‘ ‘ ‘ ]
be optimal in this case, it will be a practical quantizer in 0 10 20 30 40 50 60 70
sense of (31). [ |

Fig. 6. Responses df g« (thick lines) and output response &f7 (thin
line).

D. Example

~ Consider the quantized systery, for the feedback syste  agylt for the static quantizer case is different from that for the
in Fig. 1 (a). The plant”? and the controlledS are given by dynamic quantizer case.

This example shows that, even if the control input is

{xl(t—l—l)] B {1.0:}61(t)—|—O.1:B2(t)+0.4e_“”2(t)‘c083361(t) restricted to be a coarse signal, high performance, which
Ta(t+1) ] [0.221 () +1.122(t)+0.4e "1 M1 /Tcos 21 (t)]  cannot be achieved by the static quantizer, is obtained by the
b, . [U(xl(t))] ) optimal dynamic quantizer. . '
- o(z1(t)) ’ It should be remarked that the above system is an academic
2(t) = 145z (1) + w2(t), example selected to show our result more clearly. As stated in
y(t) = Blgﬂ , Theorem 1, a similar result can be obtained for any systems
. 2 satisfying (A1)—(A3).
K: u(t)= o @) [0.2 0.5]y(t) + r(t)
IV. STRUCTURAL ANALYSIS OF OPTIMAL DYNAMIC
for z1,22 € R and QUANTIZERS
1 In this section, we analyze the structure of the optimal

o(x1(t)) := 0.01 <1 + (xl(t))4+0.1) : quantizerQ* in order to understand the mechanism. Based on

this, a stability condition for the optimally quantized system

The quantizer is of (19) with the quantization interval:=2. Z?* is provided.
0

Fig. 6 shows the simulation result on the time responses
Y for zp := [0.1 —0.2]" andr(¢) = 0. In the third figure
the output response of the unquantized systgnn Fig. 4 (b)
(Fig. 1 (b)) is also depicted by the thin line, where the same Consider the quantize€) in (2). To express the static
condition is imposed. Though the coarse discrete-valued sighintization errori.e, produced by the static quantizgrwe
is applied toX, the output behavior af, is quite similar to introduce the new variable

that of ;. This result is quantified ak(Q*) = 0.2695 by (27) — _
(for the \INorst(xo’ 7)) andmasic o1, oo, 120(0) — 21(8)] = w(t) == q(y(§()+0(&(8))ult)) — (v(§(1))+8(&(E))ult) ),

"’ A. Structure of Optimal Dynamic Quantizers

0.2565 by the simulation (for the givelo, R)). (32)
For comparison, we also consider the static quantizer cagkich satisfies

Q = q, i.e, the case ofy(£(t)) =0 andd(&(t)) = I. Fig. 7 d

illustrates the responses in the same fashion. We see that the lw@®ll =5 (VteN) (33)
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Furthermore, the error system betweEp and X; is illus-
2f ' ' ' ' ' ' "] trated as Fig. 9. Based on these expressions, the following
result is obtained for the structure f.
Theorem 2: For the systemXg, suppose thatZ and d
are given and assume (A1)-(A3). L& denote the system
in Fig. 10, which is a subsystem of the error system in Fig. 9.

-6 : : : : : : o Then the optimal quantizep* is composed of
0 10 20 30 40 50 60 70 (a) the direct transmission aof,
(b) a systemH such that
] H(r,w) = (257 (r, Cgs(zq)w) (36)
_ ° | wherezX is the time-shifted system of,
52 (c) the initial state¢(0) = [z zg]".
-4f : ~ Note in (36) that(zX); ! is the inverse ok for the inputs,
6k A Cyga(zq) is the time-varying gain (because ©f(t)), and the
o T 20 2 20 =0 P 7 right-hand side is the systefa);! whose inputs are and

Cyg2(zq)w. Note also that the equivalence and the inverse are
: : : : : : : introduced in Section |, and the notions are not restricted to
the structured initial state in (c).

05 1 Proof: Fig. 8 shows thaf) is equivalent to the sum of the
e o direct transmission of, and the systeni#/, which implies (a).
_osh v , i Furthermore, (c) corresponds to (21). So, in what follows, we

prove (b) by showing that the systefhfor («, 51, 52,7,9) =

: m = = m = = -~ (a*, By, B3, ~*,0%) satisfies (36). Consider the systethin
t Fig. 10 and suppose that;(0), z;(0) € R™ are given. Note

that we donot restrict the case(0) = z;(0). From Fig. 10,

;ig.(t7h._ Fes)ponses ot with @ := ¢ (thick lines) and output response of (Al), (1) (11)' and (12), the outple(t + 1) is represented as
7 (thin line).

e(t+1)=zg(t+1) — z(t+ 1)

from (3). With this variable( is equivalently represented as = Czq(t+1) + Dr(t+1) — Cx;(t+1) — Dr(t+1)
E(t+1) = al€(t)) + B2 (€(6)v(£(1)) ¢ —c[falza(t)) + galz(®)r(t)
Q: + (A1) + B2 ult) 3y fa(@r(8)) + ga(zr(t))r(t)

+ Ba(E())w(t), + Cga(zq(1))s(t). @37)

) v(t) =)+ 5(_£(t)))u(t_) (). _ ~On the other hand, we consider the system for

If (29) is assumed and the third equation of (1) is applied @, 87, 85, 7%, 6%) and £(0) := [wg(o) 2] (0)]T. For the
(34), we have state¢ = [¢] &), we can obtain the relations

[E(1) = G(E(W) + Bale®)u®) + B DI, _ _
Qi) S5+ Sy o) @l =ae(t), &) =ol) (Hern) - (9)

where in a similar way to (29) and_ (30), whetey (t) andz(t) are
the states oE (for the following s). Moreover, the outpus(t)

a(§) == a(&) + B1(§h2(&1) + B2(E) (v(E) + 6(Eh2(&1)), is expressed as
B5(&) = (B1(&) + B2(£)8(€))k2(&1), s(t) = v (£(1)) + w(t)

3(E) = (E) + (3(6) ~ Dha(), (5 (E(0) — D(ha(a(6)) + Fala(0)r(1))

%(8) = (6(6) = Dha(&1). - FEW®) +g1(&O)r(t)
So, under the condition (2919 can be formally regarded as ~(Co&@) e ~C] fcz(ﬁlz(t)) +glcz(é2(t))r(t)
a nonlinear system driven by its original inpuf the static — ho(&1(1)) — k(&1 (2))r(t) + w(t), (39)

guantization errorw, and the external input for G, though
these are not independent each other. TQeis expressed as
Fig. 8 by defining the subsystem

- (39) to (37) provides
g JEEF1) = a(€(®) + B2(E()w(t) + Bs(£(1))r (1), (35)
{ s(t) = 5(&@)) +w(t) + s(£(t))r (). e(t+1) = Cga(xqt))w(t). (40)

in Figs. 8 and 9w is not purely exogenous as shown in (32) but thelhis implies (36) (note the definition of the inverse). =B

dependency on the other signals is omitted in the figure, because we willThegrem 2 shows the components of the optimal quantizer
consider the signal transfer froma to e and it would be helpful for us to

regardw as a virtual exogenous signal in order to understand the folIowirQ*- Part (a) is the same as the Uni_ty _feedbaCk in the_ unquan-
discussion. tized systen®; and plays a role to imitat&;. Part (b) is for

where the first equality is given by (35) and the second one
is done by (1), (22), (23), (25), and (26). Applying (38) and
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\

—_—
w -
| G
Fig. 8. Equivalent representation f under assuming (29) (where actually,
w IS ot an exogenous signal but the static quantization error depending on
u and§).
O — T e ' Fig. 10. Systend.
H -~ H Zp
> -
’ o r . z,
> G -
o
+ :
H \ A
r H e +
> u j N G -—
—_— : -
W :
Fig. 11. Systenk/.
,,,,,,,,,,,,,,,,,,, Y E—
[ . Zi
> -
Theorem 3: For the systent,, suppose that: andd are
given and assume (Al)—(A3). Lét; denote the system in
i Fig. 11, which is the unquantized systen} with the new

input s. Then the optimally quantized systeHy)- is stable
if f, g1, g2, ho, and ko are continuous functions (on their
Fig. 9. Error system betweedl, andX; under assuming (29) (where notedomains), F(Q*) < oo (i.e., sup,cg~ [[Cg2(z)| < oc), and
again thatw is not exogenous). the system&, and (zX); ! are stable.
Proof: The proof directly follows from the five facts: (i)
under the condition (292, is stable if # (in (35)) andX};
minimizing the influence of the static quantization error on there stable and is output-stable, (ii) (29) holds fa@ := Q*,
performance index.(Q). In fact, Fig. 9 shows that the error(iii) H* (i.e., H for Q := Q*) is stable ifY’, is stable and{*
system is a cascade systendbénd H (in the form of Fig. 3), is output-stable, (iv)H* is output-stable ifzX) ! is output-

S

and (36) means thdf for Q := Q* is a cascade system of thestable and®(Q*) < oo, (V) (zX); ! is output-stable it and

S

inverse ofzX and the gairCg»(zq). So, in the error system, (z3}); ! are stable. These facts are shown as follows. (i) Note
the signal transfer fronw to e is reduced byQ* as shown in that the cascade system in the form of Fig. 3, whgf€ is
(40). Note that (40) corresponds to (27) by considering thabt necessarily an inverse 6f%), is stable if $(*) and $(®
the output erroe specifiesE(Q) and the quantization erras  are stable and(?) is output-stable. Using this, it is proven by
satisfies (33). Finally, (c) comes from the definition6fQ?) the fact that, under (29}, is a cascade system &f andY
in (4). In this way, we have structural interpretation(@f. as shown in Fig. 9. (ii) It is shown in the proof of Theorem 1.
The above result is somewhat unexpected due to the follogif) Consider the stat@cg(t) z] (t)]" of the error system in
ing reasons. First, the optimal structure(@tan berigorously Fig. 9 whereH := H*. As can imagine from the figure;; (¢)
explained by an approximate inverse Bf even though@ s finite if 37 is stable, whilexg(¢) is finite if ¥/ is stable and
is a continuous-to-discrete map bdl is a continuous-to- the outputs(¢) of H* is finite (H* is output-stable). On the
continuous map. Second, Theorem 2 is not the same as ditieer hand, (38) holds between the statetof and the state
result in [31] given for linearG; it has been shown in [31] of the error system. These complete the proof. (iv) It turns out
that the optimal quantizers for lineétinclude an approximate from (36) that H* is output-stable if the system in the right-
inverse not ofX but of &/, given in Fig. 11. hand side of (36) is output-stable. The system in the right-hand
side is the cascade system @Y);! and the time-varying
- . . gainCgz(z¢), and thus it is output-stable (%), is output-
B. Stability of Optimally Quantized Feedback Systems stable andg,(zo(t)) is finite. On the other hand, from (27),
Now, a stability condition of the optimally quantized systenE(Q*) < oo implies thatCgz(zq(t)) is finite. So (iv) holds.
Yo+ is given. We employ the stability notion defined in(v) From Figs. 10 and 11%(r,s) = X/(r,s) — X}(r,0).
Section |, because the systeBy, for some G cannot be This and the definition of the inverse system (Section I)
asymptotically stable with anyy, as stated at the end ofgive (zX);1(r,w) = (%)) (r,w + zX}(r,0)). Namely,
Section 1. (z¥); ! (r,w) is equivalent to the cascade system(=f/) !
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and w + zX(r,0). Then (33) holdszX’(r,0) is stable if

and only if £7(r,0) is stable, andzX}(r,0) is output-stable

if zX(r,0) is stable. Moreover, the output map @f¥;) !
is continuous for continuoug, g1, g2, ho, andks. Thus we
have (v). ]

10

V. OBSERVERBASED DYNAMIC QUANTIZERS

As seen in Theorem 1, the optimal dynamic quanti@ér
contains the initial state, of GG in its inside. This means that
the exact information of, is required to construad* and so
it may be a limitation in practice. In this section, we extend

From this result, it follows that the stability of the optimallyihe result of Theorem 1 to the case where the information of

guantized systenEg- can be verified by the stability of

is not available.

€T
the two usual systems (which do not involve discrete—valuec?-rhe idea for the extention is as follows. As shown in (29),

signals). In particular, the stability ofz¥/);! is essential
becauseX; (i.e, Xj) is a reference system fdty and is
usually provided as a stable system.

An example
systemXy- for

‘ B x1(t) sin(z2(t))
2(t+1) [O.ng(t + Loy (1) sin(m(t)J
. +[_11}r(t)+{ﬂv(t)v
2() = (1 0J(),
uw(t) = —1.4z(t)sin(z2(t)) + (1)

t)
and d := 10, where 2(t) := [z1(t) z2(t)]" € R2? The
correspondingz’ is given by

e = [~OA) sG]
o +[4] v+ 1] st
zr(t) =1 0Jz(¢),

for z;(t) := [x11(t) z12(t)] T € R2. Furthermore(zX}); 1 is

0
D = o540+ 00 it
()7 ) 1

+ 9 r(t) + 1 w(t),

n(t) = 0.4x1(t) sin(x2(t)) + w(t)
wherex(t) := [x1(t) x2(t)]" € R? w(t) € R, andn(t) € R
are the state, input, and output. Then the sysignis stable
because

|z (t+1)] < H {_0-4511“(9512@)) 0

w2 O et

o |[2]0+ 3 ]o]
<05Jex (Ol + 2 )] + 1)

and thus|a;(¢)[| < 0.5 (0)]] + 32325 0.5 (2[|r(§)|] +
|ls(@)|]). By the same way, it can be shown that’);! is
stable. MoreoverE(Q*) = sup,cr» [|Cg2(z)||(d/2) =5 <
oo. Therefore, we conclude from Theorem 3 thigf- is stable.

Remark 4: In Theorem 3, the stability ofz%}); ! is con-
cerned with the minimum phase propertyXf. In particular,
in Fig. 1 (a),(z%});! will be unstable if P is non-minimum

S

the first half of the state equation @)* corresponds to a
perfect state estimator faCy with the information ofzxy.
Thus, by replacing the perfect estimator with an asymptotic

is given. Consider the optimally quantizeghserver, it can be expected to obtain a sub-optimal quantizer

without the information ofxy.

Now, this idea is formalized. Consider the quantized system
Y in Fig. 12, which is a modified version of that in Fig. 4
(a). The systenGG is the same as in (1). The quantizgris
an extended version of (2) so thais available and the state
equation is of the more general form

0 ,{£(t+1) =a(&(t),u(t), v(t), r(t)),

Lov(®) =a(v(E®) + 01 (€(E)ult) + 62(E()r(t))
whered : RY x R™ x R™ x R — RY, v : RY - R™,
01 : RV — R™ ™ andd, : RY — R™*P are functions. The
qguantizers in this form allow us to construct an observer for
the system(7 in its inside. The initial state oE is given as
x(0) = zo and{(0) = &, andv, &, &, v, 41, andd, are the
parameters to be designed.

For the systentg, we employ the performance index

BEr(Q) =
sup sup llzo(t, o, R) — z1(t, &0, R)||

(z0,R)EXoxlP  te{T+1,T+2,..}
ZoER"s.t.||lzo—2o||<k

(41)

(42)

whereT € N is the time specifying the time interval on
which @ is evaluated X, C R™ and /£ C ¢2_ are the sets

of the initial states and the input sequences of interest, and
k € R, is the upper bound of the initial estimation error
|lzo—2Z0l|, thatis, the difference between the true value and the
initial guess of the initial state a&. The symbolsq (¢, zo, R)

and z;(t, o, R) are similarly defined as before, but note that
the former is for the systerit in Fig. 12 and the latter is
for the systemd}; in Fig. 4 (b) and the initial staté,. The
index ET(Q) represents the maximum output difference on
the time interva{T + 1,7 + 2,...} between the syste®

with z¢(0) = zo and the systenX; with z;(0) = &,. The
time T" will be related to the settling time of an observer, in
order to purely capture the quantization performance without
the transient performance of the observer. Note from (42) and
(@) that E7(Q) = E(Q) if T =0, Xo = R", & = (£, and

x = 0. Note also thattr(Q) depends orX,, /£, and s but
which are assumed to be fixed in advance; so the dependence

phase. Meanwhile, even wheh is non-minimum phase, theis not explicitly denoted in the symbol'r(Q)”.
following technique is useful to avoid the instability. It is well- In considering the quantizer design problem wiih(Q),
known that the parallel connection of a given non-minimurwe assume (A1), (A3), and

phase system and some compensator could be minimum phasgA4) there exists @ € R, such that||R|| < p for every

So by constructing a parallel connection fBr so as to be

minimum phase and regarding it as a new plant, a stable

guantized system can be obtained by Theorem 1. ]

R ¢ /%, and the reachable set of the systEm i.e.,
Xr:={z e R"3(t,z0,R) e Nx Xogx § st.x =
zr(t, o, R)}, is bounded,
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I L e ; holds for everyl" satisfying

i > iz
: o G T d
i < —
) ) Y(max{k, p},T) < S (52)
Proof: For the system¥, with @ = @°, suppose
0 that (zg,40) € Xo x R® and R := (ro,r1,...) € % are
—<_| given and assume thadtto — xo| < &, 2¢(0) = zo, and

(r(0),r(1),...) =

the following relations hold for the stateof Q°:

R. From (41), (44), (46), (47), and (A6),

Fig. ;2. Q_uantized feedback systel, for observer-based dynamic
uantizer desion. &i(t) = zq(t,wo, R) +e(t)  (Vt€N), (53)
&(t) = x1(t, 2o, R) (Vt € N) (54)
(A5) the functiono(zg,zr,r) in (15) is differentiable wheres(t) € R” is the estimation error such that
with respect targ € R", and there exists aM € .
R such that le(®)] < ¥ (max{|[zo — Zol|, | RI|}, 1)
oo < p(max{s, p}.t) (¥t € N) (55)
sup (.’1? LI, T ) S M A H
(w001 ) ER XXy XUy opg 70 (E2) g Q and xq(t, o, R) and z;(t, %o, R) are the states oEy in

Fig. 12 and ofX; in Fig. 4 (b), defined in a similar way
to zg(t, zo, R) and z; (¢, &9, R). So & and &, correspond to
the estimation ofg and the copy of;. Then (15), (41), (44),
there exists a functiori; : R* x R x R™ x R? —  (48), (49), (50), (53), (54), (A5), and the mean value theorem
R such thatg (t + 1) = aa(&1(t), u(t), v(t), r(t)) enable us to express?) as
is an asymptotic observer forG such that £ = ¢ A or(t
l7(f) — &1()] is bounded by a class-KL function "\ - qug( (z’ff( 1)%’)1(5)()2) o1t 0. ), )
Y(max{||zq(0) = & ()], 1(r(0),r(1),.. )lI}, 1) - A7t To T AT

= q(O'(ZCQ(t,LUO7 R)7 Z’[(t,{fﬁo, R>7Tt)

(43)

wherer; (%) is the projection of%, onto ther;-space,
(A6)

Assumption (A4) is concerned with the boundedness of the
input sequence séf and the reachable s&t;. The condition
on X; may not be easily checked but it holdsXf, and/% are n 570( (t,x0, R), x1(t, &0, R), 1) 5(t)> (56)
bounded and; is globally exponentially stable. (A5) enables dzg ' e
us to estimate the influence of the estimation error of gpere Zq(t,z, R) is some vector on the line segment be-
observer, and (A6) guarantees the existence of an asymptg)\y@enxQ(t 20, R) andzq(t, z0, R) + (t). Meanwhile,
observer forG (see, e.g., [36] for nonlinear observers). m
Then, we obtain the following result. 870(33@(15 20, R), x1(t, 20, R),r¢) e(t) € {_d7 d] (57)
Theorem 4: For the systent, with (1) and (41), suppose 97¢ 2°2
that G, d, Xo, %, andx are given. Assume (Al) and (A3)-holds fort € {T,T+1,...}, since (43) and (55) provide
(AB), and letp, M, &1, andy be given by (A4)—(A6). Consider oo oo
the dynamic quantizer — —(Zq(t),zr(t), ) ||lle@)|l
8:5Q 8.%‘@

(fQ<t>,m<t>7n>e<t>H <

Q° = (v°,65.0°,7°.67.53) (44) < My(max{x, p},?)
with and (52) means that/y(max{x, p},t) < Md/(2M) = d/2
for t € {T.,T+1,...}. Therefore, we have the following
v = 2n, (45) expression ofv(t) from (56), (57), and the definition of
o . | o (in Section 1I-A):
§o = Lvo} ) (46)
i (6(8). (), 0(8). 7(8)) v(t) = q(o(zq(t, o, R), x1(t, &0, R),7¢))+ 0(t) (Vt>T)
6°(€(0), u(t), (1), (1) = [f; SO @ (58)
(et c 48 wheref(t) is some vector such that
(60 = (o)l )| )] (49 e (a0 50
01(E(1) =0, (49) By applying (15) and (58) to (13), the output differengg(t+
85(E(t)) = —(Cyga(&1))™ [5 ] (50) 1,70, R) — 21(t+ 1,40, R) for t > T'is calculated as

ZQ(t+1, xg, R) — Z](t+1, Zo, R)
whereé, & € R™ are the first half and the second half of the

vectoré andz, € R™ is arbitrarily given so thaljZg — zo|| <
k. Then

Br(Q) < 3 sup [ Con()] (51)

zeR"

= C(f(xq(t, xo, R)) + g1(xq(t, w0, R))re
+ g2(xq(t, 20, R))v(t))
— C(fa(zi(t, &0, R)) + gcl(fUI(t 3307 R))ry)
= Cga(zq(t, 20, R))(q(o(t)) — ®)
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whereo (t) stands foto(xq (¢, zo, R), z1 (¢, &9, R), ;) and we Since this paper has aimed at obtaining analytical results,
note that (13) holds under (Al). Singéo (t)) —o(t)+6(t) € the problem has been solved in somewhat limited cases. In
[—3d/2,3d/2]™ from (3) and (59), it follows that the future, a method to solve the problem in its full generality
4  should be developed. For such an issue, the idea of numerical
Iz (t, z0, B) = 21(t, 20, R)|| < 3[|Cg2(zq(t =1, 20, R))lI5  optimization, which has been proposed in [24] for linear
(Vt>T + 1), systems, will be useful.

which, together with (42), proves (51). [ ]
This result presents an observer-based quanf)2é¢ogether
with the performance evaluation of (51). In (5%),expresses
the time when the estimation errfi¢; (t) — 2 (t)|| becomes A. Notation

sufficiently small, and the right-hand side is an upper bound of For the vectorz and the matrix)/, let (x); and (M);
the output difference aftef. An interesting point in this result denote theith element ofx and theith row vector of M,
is that the right-hand side of (51) is the triple of the right-hangspectively. The symbalgn(z) expresses the vector obtained

side of (27). This means that introducing an observer give$@ elementwisely applying the signum function to the veator
dynamic quantizer without the information of the initial state

xo but degrades the performance in terms of the tifhand )
the three-times larger bound. The former degradation is cau$egMain Part
by the transient of the observer and the latter comes from theThe first case of (9) is the direct consequence of the
nonzero estimation error in the steady stag, the fact that following lemma.
I€1(t) — zq(t)]| will be nearly zero but not be just zero for Lemma 1: For the systenty, suppose tha, Q, andd
anyt € N. are given. Then the following statements hold.

Remark 5: Though the dynamic quantizer in the form of(i) Let R*(e) € ¢2, be an external input sequence parameter-
(41) is a generalized version of that in (2), it is a fact undézed by a numbet € (0,d/2). Then
(A1)—(A3) that the right-hand side of (27) is a lower bound

APPENDIXI
PROOF OF RELATION(9)

of the minimum value of£2(Q) with respect taQ in the form R)Seurﬁ’nxgp lzq(1, 20, R) = 21(1, 20, R)|
of (41). This can be proven in the same way as in Section Ili—(” = . .
B.1. - > sugn sup |zo(1,zo, R*(€)) — z1(1, 20, R*(€))||.
_Remark 6: A lower bound of the minimum value of TOERT c(0.4/2)
Er(Q), which holds for anyl" € N, is given as (i) Let R*(e) := (rg(e),m1,12,...) for
. d R
i €05 < ngn Br(Q) ro(e) = ky ! (x0) (‘Sign(<092($0)7(§o)>i*)
subject to (Al), (A2), and . +(d
(A3) p=1=m=1andC(g(z1) — gu(za)) # 0 for x sign((Cg2(z0))ir) " | 5 =€ | = halwo) = (%)

every (z1,z2) € R™ x R™. L . .

. i . nd arbitrarily given (ry,rs,...) € (2, where i* €
T.hIS can be.derlved by the fact that the right-han 1,2,...,m) is defined by (61) anch := Cgo(zo) in the
side of (13) is equal toCg2(zq(t))((d/2) + v(t)) for ot subsection 15(0) = I, th

4 . o) =1, then
r(t) = (Clgi(zq(t) — ga(z1(t)))) ™ (Cgalzq(t))(d/2) —
C(f(zq(t)) — fa(zr(t)))) andwv(t) € {0,+d, +2d,...} for sup  sup ||zg(1,z0, R*(€)) — z1(1, 20, R*(€))]]
any Q. Thus, in addition to the above observation, it turns out zo€R™ ec(0,d/2)

that, if (Al), (A2), (A3, and (A4)—(A6) hold andgs(z) > sup 1Cas(x d 60
is a constant (i.einf,cr | Coa(2)]| = sup,cr- [Caa (), = sup |Cg2(mo)l3. (60)
the right-hand side of (51) is the triple of a lower bound of  pryof:  Statement (i) is trivial, while (i) is proven in

ming Er(Q). B Appendix I-C. [
The second case of (9) is given by the fact that the right-
VI. ConcLusION hand side of (7) isnot a bounded function with respect to

This paper has discussed a dynamic quantizer design prep-< R?. Note here thatgs(xo)((&o) — I)k2(20) # Oixy

lem for command-driven nonlinear control. Based on thgnder (A2), (A3), and§(&) # I.

bound analysis of the optimal performance, we have obtained

an optimal dynamic quantizer in a closed form. This ha;

also shown the performance limitation of a general class

nonlinear dynamic quantizers. Moreover, the structure of thel) Preliminary: First, we provide a preliminary result.

optimal quantizer and the stability of the optimally quantized Lemma 2: (i) Suppose that a matrid € R™™ and a

system have been disclosed. Finally, observer-based dynapgsitive numberg € R are given. Let

guantizers have been presented so as to be utilized in many m

practical situations. We expect that the result will be a founda- iT 1= argmaX;cqy o m) Z |Aij] (61)

tion for the dynamic quantization of nonlinear control systems. =1

f Proof of Lemma 1 (ii)
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whereA;; is the (i, j)th element ofA. Then [10]
| Asign((A))T¢] = 1Al -
(i) Suppose that vectors,;, A, € R! are given. If there
exists ani € {1,2,...,m} such that||A;|| = [(\):| and [12]
<)\1>i<)\2>i >0, then
A1+ Azl = [|A]l- [13]

Proof: The statements are straightforwardly proven by

the definition of theco-norm. m (14
2) Main Part: From (8), we have

a(o, €0,75 () el
= (I = 3(&0)(&) . s

- 3(6)sign( (Canlau(€ol) s Jign((Cantea)) (5 )
[17]

for R := R*(e). Sinceq(a(zo, o, r5(€))) = 0 underd(&p) =
1, (7) provides [18]
20(1,20, R*(€)) — 21(1, 20, R*(€)) (el
~ Caafan) (sign( (Con(o) 60 o

+ Cg2(20)v(&o) (62)
[22]

subject tad(&y) = I. Note here thatign((Cg2(x0)v(£0))s-) IS

a scalar, andCgs (o) sign((Cga(0))i+) T )i > 0. By apply- [23]
ing Lemma 2 to (62) with\ := Cga(z0), ¢ := (d/2)—¢€, A1 :=
Cg2(wo)sign((Cgz(20)7(60))i- )sign((Cygz(w0))i-) ' ((d/2)—€), 1pg
and Az := Cga(x0)7v(&o), it follows that

(1,20, () = 2L 0 ] > [t (§—c) . 2

This proves (60).
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