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Various ways to compute the continuous-discrete
Extended Kalman Filter

Paul Frogerais, Jean-Jacques Bellanger and Lotfi Senhadji

Abstract—The Extended Kalman Filter (EKF) is a very
popular tool dealing with state estimation. Its continuous-
discrete version (CD-EKF) estimates the state trajectory of
continuous-time nonlinear models, whose internal state is
described by a stochastic differential equation and which
is observed through a noisy nonlinear form of the sampled
state. The prediction step of the CD-EKF leads to solve
a differential equation that cannot be generally solved in
a closed form. This technical note presents an overview
of the numerical methods, including recent works, usually
implemented to approximate this filter. Comparisons of
theses methods on two different nonlinear models are
finally presented. The first one is the Van der Pol oscillator
which is widely used as a benchmark. The second one is
a neuronal population model. This more original model is
used to simulate EEG activity of the cortex. Experiments
showed better stability properties of implementations for
which the positivity of the prediction matrix is guaranteed.

Index Terms—Extended Kalman filters, Continuous-
discrete filters, Runge-Kutta method, nonlinear models

I. INTRODUCTION

The present study focuses on the way to implement the
continuous-discrete Extended Kalman Filter [1] (EKF).
This non-linear extension of the Kalman filter turns out
pertinent and more appropriate in many circumstances.
In fact, EKF is popular in many domains [2] [3] and
in some situations it can outperform more sophisticated
filters [4]. Moreover, it is often used in benchmarking
when a new filtering approach is proposed [5] [6] [7].
To implement this Continuous-Discrete filter (CD-EKF)
[1] an intricate design is necessary to avoid instability
and ensure good accuracy. Indeed CD-EKF cannot be
directly implemented because a system of two ordinary
differential equations, called the moment differential
equation, must be integrated between two consecutive
sampling time instants. Thus, still today researchers
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propose methods to integrate them efficiently in order
to improve its performances [8] [9] [4].

In this paper, after a reminder of the Extended Kalman
filter in section II, an overview of recent developments in
CD-EKF is reported and an original CD-EKF approach
is presented and compared with preexisting ones in
section III. Two approaches are pointed out. The first
one uses deterministic schemes to numerically integrate
the moment differential equation in the prediction step
of the EKF [8] [4]. The second approach uses stochas-
tic scheme approximation to simulate the continuous-
discrete model with a discrete-discrete one and to apply
the discrete-discrete EKF [9] [10]. Finally in the last
section, all these methods are compared experimentally
on a Van der Pol oscillator and a neuronal population
model [11] to investigate their accuracy and stability.

II. EXTENDED KALMAN FILTERING (EKF)

A. Discrete-Discrete Extended Kalman Filter

Nonlinear models considered here are described by:

Xk = f(Xk−1,Wk) (1)

Yk = h(Xk) + Vk (2)

where Wk ∼ N (0, Qw), Vk ∼ N (0, Qv), k ∈ Z are
mutually independent and where f : RNx 7→ RNx and
h : RNx 7→ RNy are nonlinear functions. The discrete-
discrete EKF (DD-EKF) [1] uses a first order Taylor
approximation of the nonlinear state function (1) around
the current estimation X̂k−1|k−1 of Xk−1 and around
the mean E[Wk] = 0 of the state noise to obtain the
following local approximation:

Xk ' X̃k = f(X̂k−1|k−1, 0)+

Fk(Xk−1 − X̂k−1|k−1) +GkWk

(3)

where,

Fk =
∂f

∂Xk−1
(X̂k−1|k−1, 0)

and

Gk =
∂f

∂Wk
(X̂k−1|k−1, 0)
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The prediction step of the DD-EKF is then given by:

X̂k|k−1 = E[X̃k] = f(X̂k−1|k−1, 0)

Pk|k−1 = E[X̃kX̃
T
k ]

= FkPk−1|k−1F
T
k +GkQWG

T
k (4)

The correction step obeys to:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Qv)

−1

X̂k|k = X̂k|k−1 +Kk(Yk − h(X̂k|k−1))

Pk|k = Pk|k−1 −KkHkPk|k−1 (5)

where Hk corresponds to the linearization of the obser-
vation function h(.) around the prediction X̂k|k−1 :

Hk =
∂h

∂Xk
(X̂k|k−1)

B. Continuous-Discrete Extended Kalman Filter

The Markov models evolution considered here will be
described by the following nonlinear stochastic differen-
tial equation (SDE):

dX = f(X, t)dt+G(t)dβ (6)

where X(t) ∈ RNx , f is a nonlinear function, G(t) is
a Nx × Nw matrix and {β(t), t > 0} is a Brownian
process with diffusion matrix Q(t). The observation
follows equation (2) with Xk = X(tk) and the sampling
period ∆y = tk − tk−1 is a constant. The prediction
step of the continuous-discrete EKF (CD-EKF) consists
in integrating from tk−1 to tk a system of two coupled
ordinary differential equations [1] called differential mo-
ment equation in [8]:

dm

dt
= f(m, t) (7)

dP

dt
= R(P, t) (8)

= F (m, t)P + PF (m, t)T +G(t)Q(t)G(t)T

with m(tk−1) = X̂k−1|k−1 and P (tk−1) = Pk−1|k−1

where F (m, t) = ∂f
∂X (m, t). Then we obtain the pre-

diction mean X̂k|k−1 = m(tk) and covariance Pk|k−1 =
P (tk). The correction step is the same as in the discrete-
discrete EKF, equation (5).

III. NUMERICAL APPROXIMATION METHODS

Two methodologies to approximate the CD-EKF in
general cases are presented. The first one uses deter-
ministic scheme to integrate the differential moment
equation (7)(8) and the second one introduces a discrete-
discrete EKF filter on a discrete version of the stochastic
differential equation (6).

TABLE I
RUNGE-KUTTA OPERATOR RKδi ON A FUNCTION

f : RNx × R 7→ RNx

Euler (RKδ1f)(X, t) = δf(X, t)
(i = 1)
Heun (RKδ2f)(X, t) =

δ
2
(K1 +K2)

(i = 2) K1 = f(X, t)
K2 = f(X + δK1, t+ δ)

RK4 (RKδ4f)(X, t) =
δ
6
(K1 + 2K2 + 2K3 +K4)

(i = 4) K1 = f(X, t)
K2 = f(X + δ

2
K1, t+ δ

2
)

K3 = f(X + δ
2
K2, t+ δ

2
)

K4 = f(X + δK3, t)

A. Numerical integration of the differential moment
equation

A natural way is to use numerical integration scheme
[8] [4] to solve numerically (7) and (8) on [tk−1, tk].
By introducing intermediate time steps tk,1 < ... <
tk,n < ... < tk,α, where tk,1 = tk−1, tk,α = tk and
δ = tk,n − tk,n−1 is a constant, the mean m(tk + nδ)
and the covariance P (tk+nδ) can be recursively approx-
imated by a i-th order explicit Runge-Kutta method:

mk,n = mk,n−1 + (RKδi f)(mk,n−1, tk,n−1) (9)

Pk,n = Pk,n−1 + (RKδiR)(Pk,n−1, tk,n−1)

where RKδi f(X, t) is a i-th order Runge-Kutta operator
defined in the table I.

Unfortunately, for large δ the stability of these
schemes is not ensured. Furthermore approximated so-
lution of the covariance can lead to a non-positive semi-
definite matrix and this last property is essential to
guarantee the convergence of the EKF. That is why
in [8] Mazzoni proposes a Taylor Heun approximation
scheme for the mean equation (7) and a modified Gauss-
Legendre scheme for the covariance equation (8). Both
schemes are A-stable and consistent with order O(δ2)
[8]. Furthermore the Gauss Legendre scheme was spe-
cially developed to ensure the semi-positivity of the
prediction error covariance matrix.

To guarantee this semi-positivity, another convenient
approach is used in [4]. The matrix Pk|k−1 can also be
obtained by integrating from tk−1 to tk the differential
equation which governs the fundamental matrix φ cor-
responding to system (7) after linearization:

dφ(t)

dt
= F (m, t)φ(t) (10)

where F = ∂f
∂X , m(t) fulfills equation (7) and φ(tk−1) =

I where I is the identity matrix. The prediction error
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covariance matrix is then:

Pk|k−1 = φ(tk)Pk−1|k−1φ(tk)
T

+

∫ tk

tk−1

φ(t)G(t)QG(t)Tφ(t)Tdt (11)

Then, classical numerical schemes can be used for the
integration of (7) and (10) and the integral in the covari-
ance equation (11) can be approximated by quadrature.
This leads to a semi-positive definite approximation
of the prediction covariance matrix. This formulation
is used in [4] where authors introduce a fourth order
Runge-Kutta scheme to solve (10) and (7).

B. Discrete approximation of the SDE

Another original approach, proposed in this section,
consists in using Stochastic Runge-Kutta schemes [12]
[10] to approximate the process {X(t), tk−1 ≤ t ≤ tk}
described by the SDE (6) at discrete instants of time
tk,1 < ... < tk,n < ... < tk,α where tk,0 = tk−1, tk,α =
tk and δ = tk,n − tk,n−1:

Xk,n = Xk,n−1 + (RKδi f
δ
wk,n)(Xk,n−1, tk,n−1) (12)

Xk,n = f δrki(Xk,n−1, wk,n) (13)

with wk,n ∼ N (0, Qδ) and

f δw(X, t) = f(X, t) +
G(t)

δ
w

Then we can rewrite Xk = Xk,α ' X(tk) from Xk−1 =
Xk,0 ' X(tk−1) and Wk = [wk,1, ..., wk,α], as:

Xk = gδrki(Xk−1,Wk) (14)

where gδrki is a composite function:

gδrki(Xk−1,Wk) = f δrki(f
δ
rki(...

f δrki(f
δ
rki(Xk−1, wk,1), wk,2)...), wk,α)

Then we obtain a discrete approximation (14) of the
SDE (6) by a i-th order stochastic Runge-Kutta scheme
which has the same form as a nonlinear discrete-discrete
model, equations (1) and (2). The DD-EKF needs then
to calculate the Jacobian functions GXδ

rki = ∂gδrki
∂X and

GW δ
rki = ∂gδrki

∂W . If we know the Jacobian functions of the
i-th order stochastic Runge-Kutta scheme FXδ

rki = ∂fδrki
∂X

and Fwδrki = ∂fδrki
∂w (see appendix), they follow the form:

GXδ
rki(Xk−1,Wk) =

α∏
n=1

FXδ
rki(Xk,n−1, wk,n)

GW δ
rki(Xk−1,Wk) = [Gwδrki,1(Xk,0, wk,1)|

Gwδrki,2(Xk,1, wk,2)|...|Gwδrki,α(Xk,α−1, wk,α)]

where for j = 1, ..., α− 1

Gwδrki,j(Xk,j−1, wk,j) =
∂gδrki
∂wk,j

(Xk,j−1, wk,j) =

α−j−1∏
n=0

FXδ
rki(Xk,α−n−1, wk,α−n)Fwδrki(Xk,j−1, wk,j)

and for j = α:

Gwδrki,α(Xk,α−1, wk,α) = Fwδrki(Xk,α−1, wk,α)

An interesting property of this second way to compute
the CD-EKF is that it ensures the semi-definite positivity
of Pk|k−1, see (4). In [9], the author proposes a similar
approach but with an ordinary stochastic Euler approx-
imation of the SDE which correspond to let i = 1.
The extension to higher order stochastic Runge-Kutta
schemes (i = 2, i = 4) proposed here improves stability
and precision of the filter. However, explicit Runge-Kutta
schemes are not stochastically A-stable [13] and a priori
can lead to unstable solution for large δ, whereas in [8]
deterministic A-stability is ensured.

C. Performed implementations

From these two main methodologies, five approxi-
mated CD-EKF named here MC-THGL [8], MC-RK4,
MF-RK4 [4], D-EULER [9] and D-SRK4 (proposed
here) have been implemented in the experimental sec-
tion. These implementations written in C++ program-
ming language use BFilt [14] which is an open-source
library on Bayesian filtering (Kalman, EKF, UKF, par-
ticle filter, ...). Main features of these methods are
summarized in the table II. MC-RK4 and MC-THGL
methods numerically integrate the differential equation
of the Mean (7) and the Covariance prediction error
(8). A RK4 scheme is used for the first one. Note that
this intuitive CD-EKF implementation, proposed in [15]
does not guarantee the positivity of the covariance Pk|k−1

when the step size is too large. For the second one [8],
a Taylor Heun approximation is used for the mean and
a modified Gauss-Legendre scheme for the covariance.
This scheme guarantees A-stability and semi-positivity
of Pk|k−1. The MF-RK4 [4] integrates the Mean (7)
and the Fundamental matrix (10) by a RK4 method and
thus also ensures the semi-positivity of Pk|k−1. The D-
Euler and D-SRK4 methods use discretization method of
the SDE by respectively a stochastic Euler scheme and
a fourth order Stochastic Runge-Kutta (SRK4) scheme.
The D-Euler method is equivalent to the method imple-
mented in [9].
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TABLE II
FEATURES OF THE DIFFERENT IMPLEMENTATIONS OF THE CD-EKF TESTED IN THE SECTION IV-B

Implementation Numerical integration Discrete Approximation Stable properties References
methods of (7) and (8) of (7) and (10) of the SDE (6) A-Stable Pk|k−1 > 0
MC-THGL * * * [8]
MC-RK4 * [15]
MF-RK4 * * [4]
D-EULER * * [9]
D-SRK4 * * proposed here

IV. APPLICATIONS

CD-EKF of a Van der Pol oscillator and a neuronal
population model used to model EEG activity is pre-
sented in this section. These models are described in
section IV-A. In section IV-B, the different ways to
compute the CD-EKF (table II) are implemented and
compared for each model.

A. Models

1) The Van der Pol oscillator: This oscillator, which
produces sustained oscillation, is a classical benchmark
for numerical computation [16] [8]. It obeys the follow-
ing stochastic differential equation:

d

[
v
u

]
=

[
u

λ(1− v2)u− v

]
dt+

[
0
1

]
dβ(t) (15)

where λ = 3 and initial conditions X0 = [0.5, 0.5]T and
P0 = diag[0, 0.1]. The observation Yk is a noisy measure
of the voltage v at discrete instants of time:

Yk = v(tk) + Vk (16)

where Vk ∼ N (0, σv) is the white measurement noise.
2) The Jansen model: The neuronal population model

(Fig. 1) is made up of three sub-populations Pe1, Pe2,
Pi. They represent excitatory pyramidal cells (Pe1, Pe2)
and inhibitory sub-population Pi. Pe1 excites Pe2 and
Pi, Pi inhibits Pe1 and Pe2 excites Pe1. Each sub-
population connects to another through a connectivity
constant Ci (mean number of synaptic contacts) sup-
posed known and time invariant [11]. The nonlinear
function S(.) describes saturation and threshold effects
in the soma and converts the (mean) membrane po-
tential into a (mean) firing rate of action potentials.
Two synaptic linear dynamics are distinguished for the
two respective sub-populations types, each represented
by a Laplace transfer function: h(s) = α

(α+s)2 , where
α ∈ {a, b} . Time constant values 1/a and 1/b are fixed
in accordance with the literature [11]. The influence of
the cortical neighborhood is described by a continuous-
time Gaussian white noise W (t) with a positive mean
mw and a diffusion coefficient σ. Synaptic gains A, B

Ahe

C2 S(.) Ahe C1

S(.)

hin

C4 S(.) Ahe C3

+

-
Yk

Pe1

Pi

+

+

mw +W (t)

Pe2

Bhi

Fig. 1. The jansen model

from respectively excitatory and inhibitory cells are fixed
here to A = 5 and B = 30. The gain GPH , the high
pass filter transfer function hph and the sampler (Fig.
1) represent the instrumentation device used. The signal
recorded corresponds to the mean membrane potential
of the pyramidal cells Pe. This model can be expressed
by the following stochastic differential equation:

dX = f(X)dt+Gdβt (17)

where X ∈ R7 is the state vector, G is a constant
diffusion vector and f is the nonlinear drift (it contains
S(.) and h functions). {βt, t > 0} is a scalar Brownian
motion process where βt−βτ ∼ N (0, t−τ) with t > τ .
Gaussian white noise W (t) = Gdβt/dt corresponds to
a formal derivative of the Brownian process βt. The
influence of the input mean mw is included in f(X).
The output signal Yk is a noisy linear form of the state
X(t) at instants t = tk:

Yk = HX(tk) + vk (18)

with an additive white instrumental noise vk ∼ N (0, σv).

B. EKF Filtering

The five approximated CD-EKF presented in section
III-C, were implemented for each model. Main features
of these methods are reported in table II. In the sequel,
we explore the stability of each implementation for
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0.001

0.1

0.01 0.1 1

ε V
D
P

(∆
y
)

∆y(s)

Van Der Pol

MC-RK4
MC-THGL

MF-RK4
D-Euler

D-SRK4

Fig. 2. Estimation error of the different CD-EKF approximation for
the Van Der Pol model

different values of the sampling period ∆y where α = 1.
For each model M ∈ {V DP = Van der Pol, J =
Jansen} several sets {(Y i

1:N,∆y
, Xi

1:N,∆y
), i = 1, ..., Nβ}

of state trajectories and observation signals were sim-
ulated numerically (Stochastic Runge Kutta 4) with
different Brownian realizations {βi(t), 0 < t < T},
i = 1, ..., Nβ , each with a very small increment time
to obtain weak error relatively to time continuous tra-
jectory, and different values of the sampling period
∆y = tk − tk−1. For each M , SRK4 method was used
with a simulation step δs kept sufficiently large. Then for
each couple (Y i

1:N,∆y
, Xi

1:N,∆y
) an estimation X̂i

1:N,∆y

of the corresponding state trajectory was performed by
each implemented method MC-THGL, MC-RK4, MF-
RK4, D-EULER and D-SRK4. A distance εiM (∆y) =
lM (Si1:N,∆y

, Ŝi1:N,∆y
) was then evaluated by calculating

the sum on a set of selected state variables of the mean
square errors between the true simulated trajectories
and the estimated ones. For the Van der Pol oscillator
the selected state coordinate correspond to the voltage
S1:N,∆y

= v1:N . For the Jansen model the selected
variables are the three mean membrane potentials.

Results are reported in Fig. 2 and 3. For each imple-
mented method, εM (∆y) is plotted for different values of
the sampling period ∆y which here is always equal to the
step size of the integration methods δ (α = 1). Note that
when ∆y becomes larger, errors due to the integration
method appear and can affect the stability of the filter.
On Fig. 2 and 3, some curves stop before reaching the
right side illustrating that the corresponding implemented
CD-EKF becomes suddenly unstable for higher values.

For the Van der Pol model (Fig. 2), all filters failed for
∆y > 0.18s. For all values, MF-RK4 and the proposed
method: D-SRK4 have a larger stability range. However

0.01

0.1

1

10

100

0.001 0.01 0.1

ε J
(∆

y
)

∆y(s)

Jansen

MC-RK4
MC-THGL

MF-RK4
D-Euler

D-SRK4

Fig. 3. Estimation error of the different CD-EKF approximation for
the Jansen model

MF-RK4 and D-Euler lead, on their stability ranges,
to larger errors. For the Jansen model (Fig. 3), MF-
RK4, MC-THGL and D-SRK4 implementations have
large stability ranges. For ∆y < 0.01s, estimation error
values are quite similar for all methods except for the
MF-RK4 where they are bigger. Globally, MF-RK4,
MC-THGL and D-SRK4 implementations give the best
performances in stability and estimation error. Results
show that MC-RK4 method (the only case where the
positivity of Pk|k−1 is not guaranteed), is stable over a
smaller range of ∆y values than other implementations.

V. DISCUSSION

Different ways to implement the CD-EKF were pre-
sented and evaluated on a classical benchmark model and
on a more original model simulating EEG activity. In [9]
authors proposed to discretize the stochastic differential
equation with the stochastic Euler scheme. Here, an ex-
tension to higher order stochastic Runge-Kutta schemes
is proposed to enlarge discretization step intervals in
which the stability is ensured. To our knowledge, this ex-
tension has never been proposed. Other implementations
were also investigated and experimentally compared with
this one. Results pointed out that the proposed D-SRK4
approach is only slightly more expensive in terms of
computation than methods proposed by [4] [9] [8] and
furthermore can be more stable for the two models.
Experiments confirmed also that when schemes guaran-
tee the semi-positivity of Pk|k−1 implementations give
better stability results. The discretization methodology of
the stochastic differential equation (reported in section
III-B) to compute numerically the continuous-discrete
extended Kalman filter can obviously be extended to
other filtering methods as the unscented Kalman filtering,
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particle filtering, divided difference filters (DD1 and
DD2).

APPENDIX

Here the Jacobian functions FXδ
rki = ∂fδrki

∂X and
Fwδrki = ∂fδrki

∂w are expressed for a discrete Runge-Kutta
scheme (12) from the Jacobian function JX(x, t) =
∂f
∂X (x, t) of the drift term of the SDE (6) and Jw(t) =
G(t)/δ where G(t) is the diffusion term of (6) with i=1
(Euler):

FXδ
rk1(X,wn) = I + JX(X, t)δ

Fwδrk1(X,wn) = Jw(t)δ

i = 2 (Heun):

K1 = f δw(Xk−1, tk−1)

K2 = f δw(Xk−1 +K1δ, tk)

J1X = JX(Xk−1, tk−1)

J2X = JX(Xk−1 +K1δ, tk)(I + δJ1X)

J1w = Jw(tk−1)

J2w = JX(Xk−1 +K1δ, tk)(δJ1w)

FXδ
rk2(X,wn) = I +

1

2
(J1X + J2X)δ

Fwδrk2(X,wn) =
1

2
(J1w + J2w)δ

and i = 4 (SRK4):

K1 = f δw(Xk−1, tk)

K2 = f δw(Xk−1 +
1

2
K1δ, tk−1 +

1

2
δ)

K3 = f δw(Xk−1 +
1

2
K2δ, tk−1 +

1

2
δ)

K4 = f δw(Xk−1 +K3δ, tk)

J1X = JX(Xk−1, tk−1)

J2X = JX(Xk−1 +
1

2
K1δ, tk−1 +

1

2
δ)(I +

1

2
δJ1X)

J3X = JX(Xk−1 +
1

2
K2δ, tk−1 +

1

2
δ)(I +

1

2
δJ2X)

J4X = JX(Xk−1 +K3δ, tk)(I + δJ3X)

J1w = Jw(tk−1)

J2w = JX(Xk−1 +
1

2
K1δ, tk−1 +

1

2
δ)(

1

2
δJ1w)

J3w = JX(Xk−1 +
1

2
K2δ, tk−1 +

1

2
δ)(

1

2
δJ2w)

J4w = JX(Xk−1 +K3δ, tk)(δJ3w)

FXδ
rk4(X,wn) = I +

1

2
(J1X + 2J2X + 2J3X + J4X)δ

Fwδrk4(X,wn) =
1

2
(J1w + 2J2w + 2J3w + J4w)δ
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