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Abstract

A novel optimization method is proposed to minimize a convex function subject to bilinear
matrix inequality (BMI) constraints. The key idea is to decompose the bilinear mapping as a
difference between two positive semidefinite convex mappings. At each iteration of the algorithm
the concave part is linearized, leading to a convex subproblem.Applications to various output
feedback controller synthesis problems are presented. In these applications the subproblem
in each iteration step can be turned into a convex optimization problem with linear matrix
inequality (LMI) constraints. The performance of the algorithm has been benchmarked on the
data from COMPleib library.

Keywords: Static feedback controller design, linear time-invariant system, bilinear matrix
inequality, semidefinite programming, convex-concave decomposition.

1 Introduction

Optimization involving matrix constraints have broad interest and applications in static state/output
feedback controller design, robust stability of systems, topology optimization (see, e.g. [3, 5, 21, 19]).
Many problems in these fields can be reformulated as an optimization problem of linear matrix
inequality (LMI) constraints [5, 21] which can be solved efficiently and reliably by means of interior
point methods for semidefinite programming (SDP) [3, 25] and efficient open-source software tools
such as Sedumi [31], SDPT3 [33]. However, solving optimization problems involving nonlinear matrix
inequality constraints is still a big challenge in practice. The methods and algorithms for nonlinear
matrix constrained optimization problems are still limited [9, 11, 19].

In control theory, many problems related to the design of a reduced-order controller can be
conveniently reformulated as a feasibility problem or an optimization problem with bilinear matrix
inequality (BMI) constraints by means of, for instance, Lyapunov’s theory. The BMI constraints
make the problems much more difficult than the LMI ones due to their nonconvexity and possible
nonsmoothness. It has been shown in [4] that the optimization problems involving BMI are NP-hard.
Several approaches to solve optimization problems with BMI constraints have been proposed. For
instance, Goh et al [12] considered problems in robust control by means of BMI optimization using
global optimization methods. Hol et al in [16] proposed to used a sum-of-squares approach to fixed
order H-infinity synthesis. Apkarian and Tuan [2] proposed local and global methods for solving
BMIs also based on techniques of global optimization. These authors further considered this problem
by proposing parametric formulations and difference of two convex functions (DC) programming
approaches. A similar approach can be found in [1]. However, finding a global optimum is in
general impractical while global optimization methods are usually recommended to a low dimensional
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problem. Our method developed in this paper is classified as a local optimization method which
aims as finding a local optimum based on solving a sequence of convex semidefinite programming
problems. Sequential semidefinite programming method for nonlinear SDP and its application to
robust control was considered by Fares et al in [10]. Thevenet et al [34] studied spectral SDP methods
for solving problems involving BMI arising in controller design. Another approach is based on the
fact that problems with BMI constraints can be reformulated as problems with LMI constraints with
additional rank constraints. In [26] Orsi et al developed a Newton-like method for solving problems
of this type.

In this paper, we are interested in optimization problems arising in static output feedback con-
troller design for a linear, time-invariant system of the form:







ẋ = Ax+ B1w +Bu,
z = C1x+D11w +D12u,
y = Cx+D21w,

(1.1)

where x ∈ Rn is state vector, w ∈ Rnw is the performance input, u ∈ Rnu is input vector, z ∈ Rnz is
the performance output, y ∈ R

ny is physical output vector, A ∈ R
n×n is state matrix, B ∈ R

n×nu

is input matrix and C ∈ Rny×n is the output matrix. Using a static feedback controller of the form
u = Fy with F ∈ Rnu×ny , we can write the closed-loop system as follows:

{

ẋF = AFxF +BFw,
z = CFxF +DFw.

(1.2)

The stabilization, H2, H∞ optimization and other control problems for this closed-loop system will
be considered.

Contribution. Many control problems can be expressed as optimization problems of BMI con-
straints and these optimization problems can conveniently be reformulated as optimization problems
of difference of two positive semidefinite convex (psd-convex) mappings (or convex-concave decom-
position) constraints (see Definition 2.1 below). In this paper, we propose to use this reformulation
leading to a new local optimization method for solving some classes of optimization problems involv-
ing BMI constraints. We provide a practical algorithm and prove the convergence of the algorithm
under certain standard assumptions.

The algorithm proposed in this paper is very simple to implement by using available SDP software
tools. Moreover, it does not require any globalization strategy such as line-search procedures to
guarantee global convergence to a local minimum. The method still works in practice for nonsmooth
optimization problems, where the objective function and the concave parts are only subdifferentiable,
but not necessarily differentiable. Note that our method is different from the standard DCA approach
in [28] since we work directly with positive semidefinite matrix inequality constraints instead of
transforming into DC representations as in [2].

We show that our method is applicable to many control problems in static state/output feedback
controller design. The numerical results are benchmarked using the data from COMPleib library.
Note, however, that this method is also applicable to other nonconvex optimization problems with
matrix inequality constraints which can be written as a convex-concave decomposition.

Outline of the paper. The remainder of the paper is organized as follows. Section 2 provides
some preliminary results which will be used in what follows. Section 3 presents the formulation of
optimization problems involving convex-concave matrix inequality constraints and a fundamental
assumption, Assumption A1. The algorithm and its convergence results are presented in Section 4.
Applications to control problems on static feedback controller design and numerical benchmarking
are given in Section 5. The last section contains some concluding remarks.

2 Preliminaries

Let Sp be the set of symmetric matrices of size p × p, Sp
+, and resp., Sp

++ be the set of symmetric
positive semidefinite, resp., symmetric positive definite matrices. For given matrices X and Y in
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Sp, the relation X � Y (resp., X � Y ) means that X − Y ∈ Sp
+ (resp., Y −X ∈ Sp

+) and X ≻ Y
(resp., X ≺ Y ) is X − Y ∈ Sp

++ (resp., Y −X ∈ Sp
++). The quantity X ◦ Y := trace(XTY ) is an

inner product of two matrices X and Y defined on Sp, where trace(Z) is the trace of matrix Z.

Definition 2.1. [29] A matrix-valued mapping G : Rn → Sp is said to be positive semidefinite
convex (psd-convex ) on a convex subset C ⊆ Rn if for all t ∈ [0, 1] and x, y ∈ C, one has

G(tx + (1− t)y) � tG(x) + (1− t)G(y). (2.1)

If (2.1) holds true for � instead of ≺ and t ∈ (0, 1) then G is said to be strictly psd-convex on C.
Alternatively, if we replace � in (2.1) by � then G is said to be psd-concave on C. It is obvious
that any convex function f : Rn → R is psd-convex (p = 1).

A function f : Rn → R is said to be strongly convex with the parameter ρ > 0 if f(·)− 1
2ρ‖ · ‖

2

is convex.
The derivative of a matrix-valued mapping G at x is a linear mapping DG from Rn to Rp×p

which is defined by

DG(x)h :=

n
∑

i=1

hi
∂G

∂xi
(x), ∀h ∈ R

n.

For a given convex set X ∈ Rn, the matrix-valued mapping G is said to be differentiable on
a subset X if its derivative DG(x) exists at every x ∈ X . The definitions of the second order
derivatives of matrix-valued mappings can be found, e.g., in [29]. Let A : Rn → Sp be a linear
mapping defined as Ax =

∑n
i=1 xiAi, where Ai ∈ Sp for i = 1, . . . , n. The adjoint operator of A,

A∗, is defined as A∗Z = (A1 ◦ Z,A2 ◦ Z, . . . , An ◦ Z)T for any Z ∈ Sp.

Lemma 2.1. a) A matrix-valued mapping G is psd-convex on X if and only if for any v ∈ Rp

the function ϕ(x) := vTG(x)v is convex on X.

b) A mapping G is psd-convex on X if and only if for all x and y in X, one has

G(y)−G(x) � DG(x)(y − x). (2.2)

Proof. The proof of the statement a) can be found in [29]. We prove b). Let ϕ(x) = vTG(x)v for
any v ∈ Rp. If G is psd-convex then ϕ is convex. We have ϕ(y) − ϕ(x) ≥ ∇ϕ(x)T (y − x). Now,
∇ϕ(x)T (y− x) =

∑n
i=1(yi − xi)v

T ∂G
∂xi

(x)v = vT [DG(x)(y − x)]v. Hence, vT [G(y)−G(x) −DG(x)
(y − x)] v ≥ 0 for all v. We conclude that (2.2) holds. Conversely, if (2.2) holds then, for any v, we
have vT [G(y)−G(x) −DG(x)(y − x)] v ≥ 0, which is equivalent to ϕ(y)− ϕ(x) ≥ ∇ϕ(x)T (y − x).
Thus ϕ is convex. By virtue of a), the mapping G is psd-convex.

For simplicity of discussion, throughout this paper, we assume that all the functions and matrix-
valued mappings are twice differentiable on their domain [29, 34]. However, this assumption can
be reduced to the subdifferentiability of the objective function and the concave parts of the matrix-
valued mappings.

Definition 2.2. A matrix-valued mapping F : Rn → Sp is said to be a psd-convex-concave mapping
if F can be represented as a difference of two psd-convex mappings, i.e. F (x) = G(x)−H(x), where
G and H are psd-convex. The pair (H,G) is called a psd-DC (or psd-convex-concave) decomposition
of F .

Note that each given psd-convex-concave mapping possesses many psd-convex-concave decom-
positions.

3 Optimization of convex-concave matrix inequality con-

straints

3.1 Psd-convex-concave decomposition of BMIs

Instead of using the vector x as a decision variable, we use from now on the matrix X as a matrix
variable in Rm×n. Note that any matrix X can be considered as an m × n-column vector by
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vectorizing with respect to its columns, i.e. x = vec(X) := (X11, X21, . . . , Xmn)
T . The inverse

mapping of vec is called mat. Since vec and mat are linear operators, the psd-convexity is still
preserved under these operators.

A mapping F : Rp×q ×Sp → Sp given by F (X,Y ) := XQ−1XT −Y , where Q ∈ Sq is symmetric
positive definite, is called a Schur psd-convex 1 mapping.

Consider a bilinear matrix form

F (X,Y ) := XTY + Y TX. (3.1)

By using the Kronecker product, we can write F as vec(F (X,Y )) = (In ⊗ XT )vec(Y ) + (Iy ⊗
Y T )vec(X) = (

∑

i,j xiyj), where In, Iy are appropriate identity matrices, ⊗ denotes the Kronecker
product. Hence, the vectorization of F (X,Y ) is indeed a bilinear form of two vectors x := vec(X)
and y := vec(Y ).

The following lemma shows that the bilinear matrix form (3.1) can be decomposed as a difference
of two psd-convex mappings.

Lemma 3.1. a) The mapping f(X) := XTX, g(X) := XXT ) are psd-convex on R
m×n. The

mapping f(X) := X−1 is psd-convex on Sp
++.

b) The bilinear matrix form XTY + Y TX can be represented as a psd-convex-concave mapping
of at least three forms:

XTY + Y TX = (X + Y )T (X + Y )− (XTX + Y TY )

= XTX + Y TY − (X − Y )T (X − Y ) (3.2)

=
1

2
[(X + Y )T (X + Y )− (X − Y )T (X − Y )].

The statement b) provides at least three different explicit psd-convex-concave decompositions of
the bilinear form XTY + Y TX . Intuitively, we can see that the first decomposition has a “strong
curvature” on the second term, while the second and the third decompositions have “less curvature”
on the second term due in case of a compensation between X and Y .

The following result will be used to transform Shur psd-convex constraints to LMI constraints.

Lemma 3.2. a) Suppose that A ∈ Sn. Then the matrix inequality BBT −A ≺ (�) 0 is equivalent
to

[

A B
BT I

]

≻ (�) 0. (3.3)

b) Suppose that A ∈ Sn, D ≻ 0, then we have:

[

A−BBT C
CT D

]

≻ (�) 0 ⇐⇒





A B C
BT I O
CT O D



 ≻ (�) 0. (3.4)

The proof of this lemma immediately follows by applying Schur’s complement and Lemma 2.1
[6]. We omit the proof here.

3.2 Optimization involving convex-concave matrix inequality constraints

Let us consider the following optimization problem:







min
x

f(x)

s.t. Gi(x) −Hi(x) � 0, i = 1, . . . , l,
x ∈ Ω,

(3.5)

1Due to Schur’s complement form
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where f : Rn → R is convex, Ω ⊆ Rn is a nonempty, closed convex set, and Gi and Hi (i = 1, . . . , l)
are psd-convex. Problem (3.5) is referred to as a convex optimization with psd-convex-concave
matrix inequality constraints.

Let Ω be a polyhedral in Rn. Then, if f is nonlinear or one of the mappings Gi orHi (i = 1, . . . , l)
is nonlinear then (3.5) is a nonlinear semidefinite program. If Hi (i = 1, . . . , l) are linear then (3.5)
is a convex nonlinear SDP problem. Otherwise, it is a nonconvex nonlinear SDP problem.

Let us define L(x,Λ) := f(x)+
∑l

i=1 Λi ◦ [Gi(x)−Hi(x)] as the Lagrange function of (3.5), where
Λi ∈ Sp (i = 1, . . . , l) considered as Lagrange multipliers. The generalized KKT condition of (3.5)
is presented as:







0 ∈ ∇f(x) +
∑l

i=1 D[Gi(x) −Hi(x)]
∗Λi +NΩ(x),

Gi(x)−Hi(x) � 0, Λi � 0,
[Gi(x)−Hi(x)] ◦ Λi = 0, i = 1, . . . , l.

(3.6)

Here, NΩ(x) is the normal cone of Ω at x defined as

NΩ(x) :=

{ {

w ∈ Rn | wT (y − x) ≥ 0, ∀y ∈ Ω
}

, if x ∈ Ω,
∅, otherwise.

A pair (x∗,Λ∗) satisfying (3.6) is called a KKT point, x∗ is called a stationary point and Λ∗ is the
corresponding multiplier of (3.5). The generalized optimality condition for nonlinear semidefinite
programming can be found in the literature (e.g., [29, 32]).

Let us denote by
D := {x ∈ Ω | Gi(x) −Hi(x) � 0, l = 1, . . . , l} , (3.7)

the feasible set of (3.5) and ri(D) is the relative interior of D which is defined by

ri(D) := {x ∈ ri(Ω) | Gi(x) −Hi(x) ≺ 0, i = 1, . . . ,m} ,

where ri(Ω) is the set of classical relative interiors of Ω [6, 18]. The following condition is a funda-
mental assumption in this paper.

Assumption A.1. ri(D) is nonempty.

Note that this assumption is crucial for our method, because, as we shall see, it requires a strictly
feasible starting point x0 ∈ ri(D). Finding such a point is in principle not an easy task. However,
in many problems, this assumption is always satisfied. In Section 5 we will propose techniques to
determine a starting point for the control problems under consideration.

4 The algorithm and its convergence

In this section, a local optimization method for finding a stationary point of problem (3.5) is pro-
posed. Motivated from the DC programming algorithm developed in [28] and the convex-concave
procedure in [30] for scalar functions, we develop an iterative procedure for finding a stationary
point of (3.5). The main idea is to linearize the nonconvex part of the psd-convex-concave matrix
inequality constraints and then transform the linearized subproblem into a quadratic semidefinite
programming problem. The subproblem can be either directly solved by means of interior point
methods or transformed into a quadratic problem with LMI constraints. In the latter case, the
resulting problem can be solved by available software tools such as Sedumi [31] and SDPT3 [33].

4.1 The algorithm

Suppose that xk ∈ Ω is a given point, the linearized problem of (3.5) around xk is written as







min
x

{

fk(x) := f(x) + ρk

2 ‖Qk(x − xk)‖22
}

s.t. Gi(x)−Hi(x
k)−DHi(x

k)(x−xk)�0, i = 1, . . . , l,
x ∈ Ω.

(4.1)
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Here, we add a regularization term into the objective function of the original problem, where Qk

is a given matrix that projects x − xk in a certain subspace of Rn and ρk ≥ 0 is a regularization
parameter. Since Gi (i = 1, . . . , l) are psd-convex and the objective function is convex, problem (4.1)
is convex. The linearized convex-concave SDP algorithm for solving (3.5) is described as follows.

Algorithm 1.
Initialization: Choose a positive number ρ0 and a matrixQ0 ∈ Sn

+. Find an initial point x0 ∈ ri(D).
Set k := 0.
Iteration k: For k = 0, 1, . . . . Perform the following steps:

Step 1: Solve the convex semidefinite program (4.1) to obtain a solution xk+1.

Step 2: If ‖xk+1 − xk‖ ≤ ε for a given tolerance ε > 0 then terminate. Otherwise, update ρk
and Qk (if necessary), set k := k + 1 and go back to Step 1.

The following main property of the method makes an implementation very easy. If the initial
point x0 belongs to the relative interior of the feasible set D, i.e. x0 ∈ ri(D), then Algorithm 1
generates a sequence xk which still belongs to D. Consequently, no line-search procedure is needed
to ensure the global convergence.

This property follows from the fact that the linearization of the concave part −Hi is its an upper
approximation of this mapping (in the sense of positive semidefinite cone), i.e.

−Hi(x) � −Hi(x
k)−DHi(x

k)(x − xk), ∀x ∈ Ω,

which is equivalent to

Gi(x)−Hi(x) � Gi(x) −Hi(x
k)−DHi(x

k)(x − xk), ∀x ∈ Ω.

Hence, if the subproblem (4.1) has a solution xk+1 then it is feasible to (3.5). Geometrically,
Algorithm 1 can be seen as an inner approximate method.

The main tasks of an implementation of Algorithm 1 consist of:

• determining an initial point x0 ∈ ri(D), and

• solving the convex semidefinite program (4.1) repeatedly.

As mentioned before, since D is nonconvex, finding an initial point x0 in ri(D) is, in principle, not an
easy task. However, in some practical problems, this can be done by exploiting the special structure
of the problem (see the examples in Section 5).

To solve the convex subproblem (4.1), we can either implement an interior point method and
exploit the structure of the problem or transform it into a standard SDP problem and then make
use of available software tools for SDP. The regularization parameter ρk and the projection matrix
Qk can be fixed at appropriate choices for all iterations, or adaptively updated.

Lemma 4.1. If xk is a solution of (4.1) linearized at xk then it is a stationary point of (3.5).

Proof. Suppose that Λk+1 is a multiplier associated with xk, substituting xk into the generalized
KKT condition (.1) of (4.1) we obtain (3.6). Thus xk is a stationary point of (3.5).

4.2 Convergence analysis
In this subsection, we restrict our discussion to the following special case.

Assumption A.2. The mappings Gi (i = 1, . . . , l) are Schur psd-convex and Ω is formed by a finite
number of LMIs. In addition, f is convex quadratic on Rn with a convexity parameter ρf ≥ 0.

This assumption is only technical for our implementation. If the mapping Gi is Schur psd-convex
then the linearized constraints of problem (4.1) can directly be transformed into LMI constraints
(see Lemma 3.2). In practice, Gi (i = 1, . . . , l) can be a general psd-convex mappings and f can be
a general convex function.
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Under Assumption A2, the convex subproblem (4.1) can be transformed equivalently into a
quadratic semidefinite program of the form:

{

min
z∈Rnz

1
2z

TBz + hT z

s.t. A(z) + C � 0,
(4.2)

where A is a linear mapping from Rnz to Spz , C ∈ Spz and B is a symmetric matrix, by means of
Lemma 3.2.

A vector ẑ is said to satisfy the Slater condition of (4.2) if A(ẑ)+C ≺ 0. Suppose that the triple
(z̄, V̄ , S̄) satisfies the KKT condition of (4.2) (see [11]), where z̄ is a primal stationary point, V̄ is a
Lagrange multiplier and S̄ is a slack variable associated with z̄ and V̄ . Then, problem (4.2) is said
to satisfy the strict complementarity condition at (z̄, V̄ , S̄) if V̄ + S̄ ≻ 0.

Let z̄ be a stationary point of (4.2). We say that 0 6= p ∈ Rnz is a feasible direction to (4.2) if
z̄+εp is a feasible point of (4.2) for all ε > 0 sufficiently small. As in [11], we assume that the second
order sufficient condition holds for (4.2) at z̄ with modulus µ > 0 if for all feasible directions p at
z̄ with pT (h + Bz̄) = 0, one has pTBp ≥ µ‖p‖2. We say that the convex problem (4.2) is solvable
and satisfies the strong second order sufficient condition if there exists a KKT point (z̄, V̄ , S̄) of the
KKT system of (4.2) satisfies the second order sufficient condition and the strict complementary
condition.

Assumption A.3. The convex subproblem (4.1) is solvable and satisfies the strong second order
sufficient condition.

Assumption A3 is standard in optimization and is usually used to investigate the convergence of
the algorithms [10, 11, 29].

The following lemma shows that ∆xk := xk+1 − xk is a descent direction of problem (3.5) whose
proof is given in the Appendix. 7.

Lemma 4.2. Suppose that {(xk,Λk)}k≥0 is a sequence generated by Algorithm 1. Then:

a) The following inequality holds for k ≥ 0:

f(xk+1)− f(xk) ≤ −
ρf
2
‖xk+1 − xk‖22 − ρk‖Qk(x

k+1 − xk)‖22, (4.3)

where ρf is the convexity parameter of f .

b) If there exists at least one constraint i0, i0 ∈ {1, 2, . . . , l}, to be strictly feasible at xk, i.e.
Gi0(x

k)−Hi0(x
k) ≺ 0, then f(xk+1) < f(xk) provided that Λk+1

i0
≻ 0.

c) If ρk > 0 and Qk is full-row-rank then ∆xk is a sufficiently descent direction of (3.5).

The following theorem shows the convergence of Algorithm 1 in a particular case.

Theorem 4.1. Under Assumptions A1, A2 and A3, suppose that f is bounded from below on D,
where D is assumed to be bounded in Rn. Let {(xk,Λk)} be a sequence generated by Algorithm
1 starting from x0 ∈ ri(D). Then if either f is strongly convex or ρk ≡ ρ > 0 and Qk ≡ Q is
full-row-rank for all k ≥ 0 then every accumulation point (x∗,Λ∗) of {(xk,Λk)} is a KKT point of
(3.5). Moreover, if the set of the KKT points of (3.5) is finite then the whole sequence {(xk,Λk)}
converges to a KKT point of (3.5).

Proof. Let M(x0) :=
{

xk
}

be a sequence of the sample points generated by Algorithm 1 starting
from x0. For a given x ∈ Ω, let us define the following mapping:

Asol(x) := argmin
{

f(y) +
ρ

2
‖Q(y − x)‖22 | y ∈ Ω, (4.4)

Gi(y)−Hi(x)−DHi(x)(y − x) � 0, i = 1, . . . ,m
}

.
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Then, Asol is a multivalued mapping and it can be considered as the solution mapping of the convex
subproblem (4.1). Note that the sequence {xk} generated by Algorithm 1 satisfies xk+1 ∈ Asol(x

k).
We first prove that Asol is a closed mapping. Indeed, since the convex subproblem (4.1) satisfies
Slater’s condition and has a solution that satisfies the strict complementarity and the second order
sufficient condition, applying Theorem 1 in [11] we conclude that the mapping Asol is differentiable
in a neighborhood of the solution. Consequently, it is closed due to the compactness of D.

On the other hand, since f is either strongly convex or ρk ≡ ρ > 0 for all k ≥ 0 and Qk ≡ Q
is full-row-rank, it follows from Lemma 4.2 that the objective function f is strictly monotone on
M(x0). Since M(x0) ⊆ D and D is compact, M(x0) is also compact. Applying Theorem 2 in [24]
we conclude that every limit points of the sequence {xk} belongs to the set of stationary points S∗.
Moreover, S∗ is connected and if S∗ is finite then the whole sequence {xk} converges to x∗ in S∗.

Remark 4.1. The condition that f is quadratic in Assumption 2 can be relaxed to f being twice
continuously differentiable. However, in this case, we need a direct proof for Theorem 4.1 instead of
applying Theorem 1 in [11].

5 Applications to robust controller design

In this section, we apply the method developed in the previous section to the following static
state/output feedback controller design problems:

1. Sparse linear static output feedback controller design;

2. Spectral abscissa and pseudo-spectral abscissa optimization;

3. H2 optimization;

4. H∞ optimization;

5. and mixed H2/H∞ synthesis.

We used the system data from [14, 27] and the COMPleib library [20]. All the implemen-
tations are done in Matlab 7.11.0 (R2010b) running on a PC Desktop Intel(R) Core(TM)2
Quad CPU Q6600 with 2.4GHz and 3Gb RAM. We use the YALMIP package [22] with the
SeDuMi 1.1 solver [31] to solve the LMI optimization problems arising in Algorithm 1 at
the initial phase (Phase 1) and subproblem (4.1). The Matlab codes can be downloaded at
http://www.kuleuven.be/optec/software/BMIsolver. We also benchmarked our method with
various examples and compared our results with HIFOO [13] and PENBMI [15] for all control prob-
lems. HIFOO is an open-source Matlab package for fixed-order controller design. It computes a
fixed-order controller using a hybrid algorithm for nonsmooth, nonconvex optimization based on
quasi-Newton updating and gradient sampling. PENBMI [15] is a commercial software for solving
optimization problems with quadratic objective and BMI constraints. PENBMI is free licensed for
academic purposes. We initialized the initial controller for HIFOO and the BMI parameters for
PENBMI to the initial values of our method. As we shall see, we can reformulate the spectral
abscissa optimization problem as a rank constrained LMI problem. Therefore, we also compared
our results with LMIRank [26], a MATLAB toolbox for solving rank constrained LMI problems, for
the spectral abscissa optimization.

Note that all problems addressed here lead to at least one BMI constraint. To apply the method
developed in the previous section, we propose a unified scheme to treat these problems.

Scheme A.1.

Step 1. Find a convex-concave decomposition of the BMI constraints as G(x)−H(x) � 0.

Step 2. Find a starting point x0 ∈ ri(D).

Step 3. For a given xk, linearize the concave part to obtain the convex constraint G(x) −
Hk(x) � 0, where Hk is the linearization of H at xk.
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Step 4. Reformulate the convex constraint as LMI constraint by means of Lemma 3.2.

Step 5. Apply Algorithm 1 with SDP solver to solve the problem.

5.1 Sparse linear constant output-feedback design

Let us consider a BMI optimization problem of sparse linear constant output-feedback design given
as:

min
α,P,F

−σα+
∑nu

i=1

∑ny

j=1 |Fij |

s.t (A+ BFC)TP + P (A+BFC) + 2αP ≺ 0, P = PT , P ≻ 0.
(5.1)

Here, matrices A, B, C are given with appropriate dimensions, P and F are referred as variables
and σ > 0 is a weighting parameter. The objective function consists of two terms: the first term
σα is to stabilize the system (or to maximize the decay rate) and the second one is to ensure the
sparsity of the gain matrix F . This problem is a modification of the first example in [14]. Let us
illustrate Scheme A.1 for solving this problem.

Step 1: Let BF := A + BFC + αI, where I is the identity matrix. Then, applying Lemma 3.1
we can write

(A+BFC)TP+P (A+BFC) + 2αP = BT
FP + PBF

= BT
FBF + PTP − (BF − P )T (BF − P ), (5.2)

=
1

2

[

(BF + P )T (BF + P )− (BF − P )T (BF − P )
]

. (5.3)

In our implementation, we use the decomposition (5.3).
If we denote by

G(α, P, F ) :=
1

2
(BF + P )T (BF + P ), and H(α, P, F ) :=

1

2
(BF − P )T (BF − P ), (5.4)

then the BMI constraint in (5.1) can be written equivalently as a psd-convex-concave matrix inequal-
ity constraint (of a variable x formed from (α, P, F ) as x := (α, vec(P )T , vec(F )T )T ) as follows:

G(α, P, F ) −H(α, P, F ) ≺ 0. (5.5)

Note that the objective function of (5.1) is convex but nonsmooth which is not directly suitable
for the SSDP approach in [9], but, the nonconvex problem (5.1) can be reformulated in the form of
(3.5) using slack variables.

Steps 2-5: The implementation is carried out as follows:

Phase 1. (Determine a starting point x0 ∈ ri(D)). Set F 0 := 0, α0 := −α0(A
T +A)/2 where

α0(·) is the maximum real part of the eigenvalues of the matrix, and compute P = P 0 as the
solution of the LMI feasibility problem

(A+BF 0C)TP + P (A+BF 0C) + 2α0P ≺ 0. (5.6)

The above choice for (α0, F 0) originates from the property that P 0 = I renders the left hand
size of (5.6) negative semi-definite (but not negative definite).

Phase 2. Perform Algorithm 1 with a starting point x0 found at Phase 1.

Let us now illustrate Step 4 of Scheme A.1. After linearizing the concave part of the convex-concave
reformulation of the last BMI constraint in (5.1) at (F k, P k, αk) we obtain the linearization:

(A+BFC+αI+P )T (A+BFC+αI+P )−Hk(F, P, α) ≺ 0, (5.7)

where Hk(F, P, α) is a linear mapping of F , P and α. Now, applying Lemma 3.2, (5.7) can be
transformed to an LMI constraint:

[

Hk(F, P, α) (A+BFC+αI+P )T

(A+BFC+αI+P ) I

]

≻ 0.
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With the above approach we solved problem (5.1) for the same system data as in [14]. Here, matrices
A, B and C are given as:

A=







2.45 −0.90 1.53 −1.26 1.76
−0.12 −0.44 −0.01 0.69 0.90
2.07 −1.20 −1.14 2.04 −0.76

−0.59 0.07 2.91 −4.63 −1.15
−0.74 −0.23 −1.19 −0.06 −2.52






, B=







0.81 −0.79 0.00 0.00 −0.95
−0.34 −0.50 0.06 0.22 0.92
−1.32 1.55 −1.22 −0.77 −1.14
−2.11 0.32 0.00 −0.83 0.59
0.31 −0.19 −1.09 0.00 0.00






, C=

[

0.00 0.00 0.16 0.00 −1.78
1.23 −0.38 0.75 −0.38 −0.00
0.46 0.00 −0.05 0.00 0.00
0.00 −0.12 0.23 −0.12 1.14

]

.

The weighting parameter σ is chosen by σ = 3. Algorithm 1 is terminated if one of the following
conditions is satisfied:

• subproblem (4.1) encounters a numerical problem;

• ‖∆xk‖∞/(‖xk‖∞ + 1) ≤ 10−3;

• the maximum number of iterations, Kmax, reaches;

• or the objective function is not significantly improved after two successive iterations (i.e.
|fk+1 − fk| ≤ 10−4(1 + |fk|), for some k = k̄ and k = k̄ + 1, where fk := f(xk)).

In this example, Algorithm 1 is terminated after 15 iterations, whereas the objective function is not
significantly improved. However, after the 2nd iteration, matrix F only has 3 nonzero elements, while
the decay rate α is 1.17316. This value is much higher than the one reported in [14], α = 0.3543
after 6 iterations. We obtain the gain matrix F as

F =









0.6540 0.0000 0.0000 0.0000
0.0000 −0.4872 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 1.1280 0.0000 0.0000









.

With this matrix, the maximum real part of the eigenvalues of the closed-loop matrix in (1.2),
AF := A+BFC, is α0(AF ) := −1.40706. Simultaneously, α0(A

T
FP +PAF +2αP ) = −0.327258 < 0

and α0(P ) = 0.587574 > 0. Note that α0(AF ) 6= −α due to the in-activeness of the BMI constraint
in (5.1) at the 2nd iteration step.

5.2 Spectral abscissa and pseudo-spectral abscissa optimization

One popular problem in control theory is to optimize the spectral abscissa of the closed-loop system
ẋ = (A + BFC)x. Briefly, this problem is presented as an unconstrained optimization problem of
the form:

min
F∈R

nu×ny

α0(A+BFC), (5.8)

where α0(A+BFC) := sup {Re(λ) | λ ∈ Λ(A+BFC)} is the spectral abscissa of A+BFC, Re(λ)
denotes the real part of λ ∈ C and Λ(A + BFC) is the spectrum of A + BFC. Problem (5.8)
has many drawbacks in terms of numerical solution due to the nonsmoothness and non-Lipschitz
continuity of the objective function α0 [7].

In order to apply the method developed in this paper, we reformulate problem (5.8) as an
optimization problem with BMI constraints [7, 21]:

{

max
P,F,β

β

s.t. (A+BFC)TP + P (A+BFC) + 2βP ≺ 0, P = PT , P ≻ 0.
(5.9)

Here, matrices A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n are given. Matrices P ∈ Rn×n and F ∈ Rnu×ny

and the scalar β are considered as variables. If the optimal value of (5.9) is strictly positive then
the closed-loop feedback controller u = Fy stabilizes the linear system ẋ = (A+BFC)x.

Problem (5.9) is very similar to (5.1). Therefore, using the same trick as in (5.1), we can
reformulate (5.9) in the form of (3.5). More precisely, if we define BF := A + BFC + βI then the
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bilinear matrix mapping AT
FP +PAF can be represented as a psd-convex-concave decomposition of

the form (5.3) and problem (5.9) can be rewritten in the form of (3.5). We implement Algorithm
1 for solving this resulting problem using the same parameters and the stopping criterions as in
Subsection 5.1. In addition, we regularize the objective function by adding the term ρF

2 ‖F −F k‖2F +
ρP

2 ‖P − P k‖2F , with ρF = ρP = 10−2. The maximum number of iterations Kmax is set to 150.
We test for several problems in COMPleib and compare our results with the ones reported by

HIFOO, PENBMI and LMIRank. For LMIRank, we implement the algorithm proposed in [26].
We initialize the value of the decay rate α0 at 10−4 and perform an iterative loop to increase α as
αk+1 := αk + 0.1. The algorithm is terminated if either the problems (12) or (21) in [26] with a
correspondence α can not be solved or the maximum number of iterations Kmax = 100 is reached.
The numerical results of four algorithms are reported in Table 1. Here, we initialize the algorithm

Table 1: Computational results for (5.9) in COMPleib
Problem Other Results, α0(AF ) Results and Performances

Name α0(A) HIFOO LMIRANK PENBMI α0(AF ) Iter time[s]

AC1 0.000 -0.2061 -8.4766 -7.0758 -0.8535 41 12.44
81AC4 2.579 -0.0500 -0.0500 -0.0500 -0.0500 14 4.60
AC5a 0.999 -0.7746 -1.8001 -2.0438 -0.7389 28 63.33
AC7 0.172 -0.0322 -0.0204 0.0896 -0.0673 150 111.46
2AC8 0.012 -0.1968 -0.4447 0.4447 -0.0755 24 21.95
6AC9 0.012 -0.3389 -0.5230 -0.4450 -0.3256 78 74.57
7AC11 5.451 -0.0003 -5.0577 - -3.0244 61 38.44
52AC12 0.580 -10.8645 -9.9658 -1.8757 -0.3414 150 86.72
100HE1 0.276 -0.2457 -0.2071 -0.2468 -0.2202 150 87.64
32.8000, 4HE3 0.087 -0.4621 -2.3009 -0.4063 -0.8702 47 48.80
700.8300, 25HE4 0.234 -0.7446 -1.9221 -0.0909 -0.8647 63 71.66
21HE5 0.234 -0.1823 - -0.2932 -0.0587 150 178.71
HE6 0.234 -0.0050 -0.0050 -0.0050 -0.0050 12 41.00
2REA1 1.991 -16.3918 -5.9736 -1.7984 -3.8599 77 79.23
61REA2 2.011 -7.0152 -10.0292 -3.5928 -2.1778 40 39.15
REA3 0.000 -0.0207 -0.0207 -0.0207 -0.0207 150 362.21
DIS2 1.675 -6.8510 -10.1207 -8.3289 -8.4540 28 37.28
DIS4 1.442 -36.7203 -0.5420 -92.2842 -8.0989 72 124.23
WEC1 0.008 -8.9927 -8.7350 -0.9657 -0.8779 150 305.36
IH 0.000 -0.5000 -0.5000 -0.5000 -0.5000 7 39.41
CSE1 0.000 -0.4509 -0.4844 -0.4490 -0.2360 38 158.67
TF1 0.000 - - -0.0618 -0.1544 56 137.98
TF2 0.000 - - -1.0e-5 -1.0e-5 8 20.41
TF3 0.000 - - -0.0032 -0.0031 93 237.93
NN1 3.606 -3.0458 -4.4021 -4.3358 -0.8746 12 37.53
53.1700, 65NN5a 0.420 -0.0942 -0.0057 -0.0942 -0.0913 11 42.62
NN9 3.281 -2.0789 -0.7048 - -0.0279 33 111.41
NN13 1.945 -3.2513 -4.5310 -9.0741 -3.4318 150 572.50
NN15 0.000 -6.9983 -11.0743 -0.0278 -0.8353 150 524.80
NN17 1.170 -0.6110 -0.5130 - -0.6008 99 342.67

in HIFOO with the same initial guess F 0 = 0. Since PENBMI and our methods solve the same BMI
problems, they are initialized by the same initial values for P , F and β.

The notation in Table 1 consists of: Name is the name of problems, α0(A), α0(AF ) are the
maximum real part of the eigenvalues of the open-loop and closed-loop matrices A, AF , respectively;
iter is the number of iterations, time[s] is the CPU time in second. The columns titled HIFOO,
LMIRank and PENBMI give the maximum real part of the eigenvalues of the closed-loop system for
a static output feedback controller computed by available software HIFOO [13], LMIRank [26] and
PENBMI [15], respectively. Our results can be found in the sixth column. The entries with a dash
sign indicate that there is no feasible solution found. Algorithm 1 fails or makes only slow progress
toward to a local solution with 6 problems: AC18, DIS5, PAS, NN6, NN7, NN12 in COMPleib.
Problems AC5 and NN5 are initialized with a different matrix F 0 to avoid numerical problems.

Note that Algorithm 1 as well as the algorithms implemented in HIFOO, LMIRank and PENBMI
are local optimization methods, which only report a local minimizer and these solutions may not be
the same. To apply the LMIRank package for solving problem (5.9), we have used a direct search
procedure for finding α. The computational time of this procedure is very high compared with the
other methods.

To conclude this subsection, we show that our method can be applied to solve the optimization
problem of pseudo-spectral abscissa in static feedback controller designs. This problem is described
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as follows (see [7, 21]):

max
β,µ,ω,F,P

β

s.t.

[

2βP+AT
FP+PAF+µI−ωIz εP

εP ωI

]

�0, P ≻ 0, P = PT , µ > 0,
(5.10)

where AF = A+BFC as before and ω ≤ 0.
Using the same notation BF = A + BFC + βI as in (5.9) and applying the statement b) of

Lemma 3.2, the BMI constraint in this problem can be transformed into a psd-convex-concave one:
[

BT
FBF +PTP+(µ−ω)I ǫP

ǫP ωI

]

−

[

(BF −P )T(BF −P ) 0
0 0

]

�0.

If we denote the linearization of (BF − P )T (BF − P ) at the iteration k by Hk, i.e. Hk = (BF −
P )T (Bk

F − P k) + (Bk
F − P k)T (BF − P )− (Bk

F − P k)T (Bk
F − P k), then the linearized constraint in

the subproblem (4.1) can be represented as an LMI thanks to Lemma 3.2:








Hk + (ω − µ)I BT
F P −εP

BF I 0 0
P 0 I 0

−εP 0 0 −ωI









� 0.

Hence, Algorithm 1 can be applied to solve problem (5.10).

Remark 5.1. If we define F̄ := BFC then the bilinear matrix mapping AT
FP+PAF can be rewritten

as

AT
FP + PAF =

1

2

[

(P + F̄ )T (P + F̄ )− (P − F̄ )T (P − F̄ )
]

−ATP − PA.

Using this decomposition, one can avoid the contribution of matrix A on the bilinear term. Conse-
quently, Algorithm 1 may work better in some specific problems.

5.3 H2 optimization: BMI formulation

In this subsection, we consider an optimization problem arising in the H2 synthesis of the linear
system (1.1). Let us assume that D12 = 0 and D21 = 0, then this problem is formulated as the
following optimization problem with BMI constraints [20].

min
F,Q,X

trace(X)

s.t. (A+BFC)Q +Q(A+BFC)T +B1B
T
1 � 0,

[

X C1Q
QCT

1 Q

]

� 0, Q ≻ 0.
(5.11)

Here, we also assume that B1B
T
1 is positive definite. Otherwise, we use B1B

T
1 + εI instead of B1B

T
1

with ε = 10−5 in (5.11).
In order to apply Algorithm 1 for solving problem (5.11), a starting point x0 ∈ ri(D) is required.

This task can be done by performing some extra steps called Phase 1. The algorithm is now split
in two phases as follows.
Phase 1: (Determine a starting point x0).

Step 1. If α0(A+AT ) < 0 then we set F 0 := 0. Otherwise, go to Step 3.

Step 2. Solve the following optimization problem with LMI constraints:

min
Q,X

trace(X) s.t. AF 0Q+QAT
F 0 +B1B

T
1 ≺ 0,

[

X C1Q
QCT

1 Q

]

≻ 0, Q ≻ 0, (5.12)

where AF 0 := A + BF 0C. If this problem has a solution Q0 and X0 then terminate Phase 1
and using F 0 together with Q0, X0 as a starting point x0 for Phase 2. Otherwise, go to Step
3.
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Step 3. Solve the following feasibility problem with LMI constraints:

Find P ≻ 0 and K such that:
[

PA+ATP +KC + CTKT PB1

BT
1 P −σ2

0Iw

]

� 0,

[

X C1

CT
1 P

]

� 0,

to obtain K∗ and P ∗, where σ0 is a given regularization factor. Compute F ∗ := B+(P ∗)−1K∗,
where B+ is a pseudo-inverse of B, and resolve problem (5.12) with F 0 := F ∗. If problem
(5.12) has a solutionQ0 andX0 then terminate Phase 1 and set x0 := (F 0, Q0, X0). Otherwise,
perform Step 4.

Step 4. Apply the method in Subsection 5.2 to solve the following BMI feasibility problem:

Find F and Q ≻ 0 such that : (A+BFC)Q+Q(A+BFC)T +B1B
T
1 ≺ 0. (5.13)

If this problem has a solution F 0 then go back to Step 2. Otherwise, declare that no strictly
feasible point is found.

Phase 2: (Solve problem (5.11)). Perform Algorithm 1 with the starting point x0 found at Phase
1. �

Note that Step 3 of Phase 1 corresponds to determining a full state feedback controller and
approximating it subsequently with an output feedback controller. Step 4 of Phase 1 is usually
expensive. Therefore, in our numerical implementation, we terminate Step 4 after finding a point
such that α0((A +BFC)Q +Q(A+BFC)T +B1B

T
1 ) ≤ −0.1.

Remark 5.2. The algorithm described in Phase 1 is finite. It terminates either at Step 4 if no feasible
point is found or at Step 2 if a feasible point is found. Indeed, if a feasible matrix F 0 is found at Step
4, the first BMI constraint of (5.12) is feasible with some Q ≻ 0. Thus we can find an appropriate
matrix X such that X −CQCT ≻ 0, which implies the second LMI constraint of (5.12) is satisfied.
Consequently, problem (5.12) has a solution.

The method used in Phase 1 is heuristic. It can be improved when we apply to a certain problem.
However, as we can see in the numerical results, it performs quite acceptable for majority of the test
problems.

In the following numerical examples, we implement Phase 1 and Phase 2 of the algorithm using
the decomposition

AFQ+QAT
F +B1B

T
1 =

1

2
(AF +Q)(AF +Q)T +B1B

T
1 −

1

2
(AF −Q)(AF −Q)T

for the BMI form at the left-top corner of the first constraint in (5.11). The regularization parameters
and the stopping criterion for Algorithm 1 are chosen as in Subsection 5.1 and Kmax = 300. We test
the algorithm for many problems in COMPleib and the computational results are reported in Table
2. For the comparison purpose, we also carry out the test with HIFOO [13] and PENBMI [15], and
the results are put in the columns marked by HIFOO and PENBMI in Table 2, respectively. The
initial controller for HIFOO is set to F 0 and the BMI parameters for PENBMI are initialized with
(F,Q,X) = (F 0, Q0, X0). Here, n, ny, nz, nw, nu are the dimensions of problems, the columns titled
HIFOO and PENBMI give the H2 norm of the closed-loop system for the static output feedback
controller computed by HIFOO and PENBMI; iter and time[s] are the number of iterations and
CPU time in second of Algorithm 1, respectively, included Phase 1 and Phase 2. Problems marked
by “b” mean that Step 4 in Phase 1 is performed. In Table 2, we only report the problems that were
solved by Algorithm 1. The numerical results allow us to conclude that Algorithm 1, PENBMI and
HIFOO report similar values for majority of the test problems in COMPleib.

If D12 6= 0 then the second LMI constraint of (5.11) becomes a BMI constraint:

[

X (C1 +D12FC)Q
Q(C1 +D12FC)T Q

]

� 0, (5.14)
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Table 2: H2 synthesis benchmarks on COMPleib plants
Problem Other Results, H2 Results and Performances

Name nx ny nu nz nw HIFOO PENBMI H2 iter time[s]

AC1b 5 3 3 2 3 0.0250 0.0061 0.0540 3 3.380
AC2b 5 3 3 5 3 0.0257 0.0075 0.0540 3 3.390
AC3 5 4 2 5 5 2.0964 2.0823 2.1117 210 73.380
AC4 4 2 1 2 2 11.0269 - 11.0269 2 0.990
AC6 7 4 2 7 7 2.8648 2.8648 2.8664 153 124.230
AC7 9 2 1 1 4 0.0172 0.0162 0.0176 1 0.670
AC8 9 5 1 2 10 0.6330 0.7403 0.6395 300 282.760
AC12b 4 4 3 1 3 0.0022 0.0106 0.0992 36 28.540
AC15b 4 3 2 6 4 1.5458 1.4811 1.5181 264 85.390
AC16b 4 4 2 6 4 1.4769 1.4016 1.4427 300 99.790
AC17 4 2 1 4 4 1.5364 1.5347 1.5507 171 49.350
HE2 4 2 2 4 4 3.4362 3.4362 4.7406 263 97.310
HE3b 8 6 4 10 1 0.0197 0.0071 0.1596 249 217.360
HE4b 8 6 4 12 8 6.6436 6.5785 7.1242 300 412.830
REA1 4 3 2 4 4 0.9442 0.9422 1.0622 249 80.810
REA2b 4 2 2 4 4 1.0339 1.0229 1.1989 300 101.730
DIS1 8 4 4 8 1 0.6705 0.1174 0.7427 300 255.810
DIS2 3 2 2 3 3 0.4013 0.3700 0.3819 4 1.370
DIS3 6 4 4 6 6 0.9527 0.9434 1.0322 300 210.470
DIS4 6 6 4 6 6 1.0117 0.9696 1.0276 300 210.690
WEC1b 10 4 3 10 10 7.3940 8.1032 12.9093 119 190.150
WEC2b 10 4 3 10 10 6.7908 7.6502 12.2102 261 407.470
AGS 12 2 2 12 12 6.9737 6.9737 6.9838 18 28.830
BDT1 11 3 3 6 1 0.0024 - 0.0017 51 64.410
MFP 4 2 3 4 4 6.9724 6.9724 7.0354 300 114.560
PSM 7 3 2 5 2 0.0330 0.0007 0.1753 300 217.250
EB2b 10 1 1 2 2 0.0640 0.0084 0.1604 114 131.380
EB3 10 1 1 2 2 0.0732 0.0072 0.0079 7 6.240
TF1b 7 4 2 4 1 0.0945 - 0.1599 192 166.810
TF2 7 3 2 4 1 11.1803 - 11.1803 3 2.810
TF3b 7 3 2 4 1 0.1943 0.1424 0.2565 138 128.250
NN2 2 1 1 2 2 1.1892 1.1892 1.1892 4 1.090
NN4 4 3 2 4 4 1.8341 1.8335 1.8590 222 67.260
NN8 3 2 2 3 3 1.5152 1.5117 1.5725 183 50.170
NN11 16 5 3 3 3 0.1178 0.0790 0.1263 39 91.070
NN13b 6 2 2 3 3 26.1012 26.1314 62.3995 138 112.750
NN14b 6 2 2 3 3 26.1448 26.1314 62.3995 138 110.020
NN15 3 2 2 4 1 0.0245 - 0.0210 6 2.060
NN16b 8 4 4 4 8 0.1195 0.1195 0.1195 3 23.030
NN17 3 1 2 2 1 3.2530 3.2404 3.3329 300 88.770
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which is equivalent to X − CFQCT
F � 0, where CF := C1 +D12FC. Since f(Q) := Q−1 is convex

on Snx

++ (see Lemma 3.1 a)), this BMI constraint can be reformulated as a convex-concave matrix
inequality constraint of the form:

[

X CF

CT
F O

]

+

[

O O
O Q−1

]

� 0. (5.15)

By linearizing the concave term −f(Q) at Q = Qk as (Qk)−1− (Qk)−1(Q−Qk)(Qk)−1 (see [6]), the
resulting constraint can be written as an LMI constraint. Therefore, Algorithm 1 can be applied to
solve problem (5.14) in the case D12 6= 0.

5.4 H∞ optimization: BMI formulation

Alternatively, we can also apply Algorithm 1 to solve the optimization with BMI constraints arising
in H∞ optimization of the linear system (1.1). Let us assume that D21 = 0, then this problem is
reformulated as the following optimization problem with BMI constraints [20]:

min
F,X,γ

γ

s.t.





AT
FX +XAF XB1 CT

F

BT
1 X −γIw DT

11

CF D11 −γIz



 ≺ 0, X ≻ 0, γ > 0.
(5.16)

Here, as before, AF = A + BFC and CF = C1 +D12FC. The bilinear matrix term AT
FX +XAF

at the top-corner of the last constraint can be decomposed as (5.2) or (5.3). Therefore, we can
use these decompositions to transform problem (5.16) into (3.5). After linearization, the resulting
subproblem is also rewritten as a standard SDP problem by applying Lemma 3.2. We omit this
specification here.

To determine a starting point, we perform Phase 1 which is similar to the one carried out in the
H2-optimization subsection.
Phase 1. (Determine a starting point x0 ∈ ri(D)).

Step 1. If α0(A
T +A) < 0 then set F 0 = 0. Otherwise, go to Step 3.

Step 2. Solve the following optimization with LMI constraints

min
γ,X

γ s.t.





AT
F 0X +XAF 0 XB1 CT

F 0

BT
1 X −γIw DT

11

CF 0 D11 −γIz



≺ 0, X ≻ 0, γ > 0, (5.17)

where AF 0 := A+BF 0C and CF 0 := C1 +D12F
0C. If this problem has a solution γ0 and X0

then terminate Phase 1 and using F 0 together with γ0, X0 as a starting point x0 for Phase 2.
Otherwise, go to Step 3.

Step 3. Solve the following feasibility problem of LMI constraints:

Find P ≻ 0, γ > 0 and K such that:





PAT+AP+KTBT+BK B1 PC1+KTDT
12

BT
1 −γIw DT

11

C1P+D12K D11 −γIz



≺0,

to obtain K∗, γ∗ and P ∗. Compute F ∗ := K∗(P ∗)−1C+, where C+ is a pseudo-inverse of C,
and resolve problem (5.17) with F 0 := F ∗. If problem (5.17) has a solution X0 and γ0 then
terminate Phase 1. Set x0 := (F 0, X0, γ0). Otherwise, perform Step 4.

Step 4. Apply the method in Subsection 5.2 to solve the following BMI feasibility problem:

Find F and P ≻ 0 such that : (A+BFC)TP + P (A+BFC) ≺ 0. (5.18)

If this problem has a solution F 0 then go back to Step 2. Otherwise, declare that no strictly
feasible point for (5.16) is found. �
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As in the H2 problem, Phase 1 of the H∞ is also terminated after finitely many iterations. In this
subsection, we also test this algorithm for several problems in COMPleib using the same parameters
and the stopping criterion as in the previous subsection. The computational results are shown in
Table 3. The numerical results computed by HIFOO and PENBMI are also included in Table 3.

Table 3: H∞ synthesis benchmarks on COMPleib plants
Problem Other Results, H∞ Results and Performances

Name nx ny nu nz nw HIFOO PENBMI H∞ iter time[s]

AC1 5 3 3 2 3 0.0000 - 0.0177 93 28.050
AC2 5 3 3 5 3 0.1115 - 0.1140 99 32.540
AC3 5 4 2 5 5 4.7021 - 3.4859 210 76.170
AC4 4 2 1 2 2 0.9355 - 69.9900 2 2.620
AC6 7 4 2 7 7 4.1140 - 4.1954 167 138.570
AC7 9 2 1 1 4 0.0651 0.3810 0.0548 300 278.330
AC8 9 5 1 2 10 2.0050 - 3.0520 247 298.070
AC9b 10 5 4 2 10 1.0048 - 0.9237 300 470.910
AC11b 5 4 2 5 5 3.5603 - 3.0104 68 60.260
AC12 4 4 3 1 3 0.3160 - 2.3025 300 181.870
AC15 4 3 2 6 4 15.2074 427.4106 15.1995 105 36.700
AC16 4 4 2 6 4 15.4969 - 14.9881 186 68.820
AC17 4 2 1 4 4 6.6124 - 6.6373 129 42.400
HE1b 4 1 2 2 2 0.1540 1.5258 0.1807 300 143.520
HE2 4 2 2 4 4 4.4931 - 6.7846 177 67.470
HE3 8 6 4 10 1 0.8545 1.6843 0.9243 105 95.000
HE4b 8 6 4 12 8 23.3448 - 22.8713 252 325.580
HE5b 8 2 4 4 3 8.8952 - 37.3906 300 430.820
REA1 4 3 2 4 4 0.8975 - 0.8815 96 34.430
REA2b 4 2 2 4 4 1.1881 - 1.4188 300 118.320
REA3 12 3 1 12 12 74.2513 74.4460 74.5478 2 234.800
DIS1 8 4 4 8 1 4.1716 - 4.1943 93 66.130
DIS2 3 2 2 3 3 1.0548 1.7423 1.1546 54 17.120
DIS3 6 4 4 6 6 1.0816 - 1.1382 285 195.960
DIS4 6 6 4 6 6 0.7465 - 0.7498 126 93.220
TG1b 10 2 2 10 10 12.8462 - 12.9336 45 84.380
AGS 12 2 2 12 12 8.1732 188.0315 8.1732 24 55.290
WEC2 10 4 3 10 10 4.2726 32.9935 6.6082 300 476.010
WEC3 10 4 3 10 10 4.4497 200.1467 6.8402 300 425.330
BDT1 11 3 3 6 1 0.2664 - 0.8562 29 40.910
MFP 4 2 3 4 4 31.5899 - 31.6079 171 57.430
IH 21 10 11 11 21 1.9797 - 1.1858 114 1206.340
CSE1 20 10 2 12 1 0.0201 - 0.0220 3 20.250
PSM 7 3 2 5 2 0.9202 - 0.9227 87 67.470
EB1 10 1 1 2 2 3.1225 39.9526 2.0276 300 295.420
EB2 10 1 1 2 2 2.0201 39.9547 0.8148 84 73.770
EB3 10 1 1 2 2 2.0575 3995311.0743 0.8153 84 75.820
NN1 3 2 1 3 3 13.9782 14.6882 18.4813 300 144.940
NN2 2 1 1 2 2 2.2216 - 2.2216 9 4.060
NN4 4 3 2 4 4 1.3627 - 1.3802 156 51.480
NN8 3 2 2 3 3 2.8871 78281181.1490 2.9345 180 51.830
NN9b 5 2 3 4 2 28.9083 - 32.1222 300 129.920
NN11b 16 5 3 3 3 0.1037 - 0.1566 9 366.890
NN15 3 2 2 4 1 0.1039 - 0.1194 6 3.740
NN16 8 4 4 4 8 0.9557 - 0.9656 48 37.950
NN17 3 1 2 2 1 11.2182 - 11.2381 117 32.160

Here, the notation is the same as in Table 2, except that H∞ denotes the H∞-norm of the closed-
loop system for the static output feedback controller. We can see from Table 3 that the optimal
values reported by Algorithm 1 and HIFOO are almost similar for many problems whereas in general
PENBMI has difficulties in finding a feasible solution.

5.5 H2/H∞ optimization: BMI formulation

Motivated from the H2 and H∞ optimization problems, in this subsection we consider the mixed
H2/H∞ synthesis problem. Let us assume that D11 = 0, D21 = 0 and the performance output z is
divided in two components, z1 and z2. Then the linear system (1.1) becomes:















ẋ = Ax+B1w +Bu,
z1 = Cz1

1 x+Dz1
12u,

z2 = Cz2
1 x+Dz2

12u,
y = Cx.

(5.19)

The mixed H2/H∞ control problem is to find a static output feedback gain F such that, for u = Fy,
the H2-norm of the closed loop from w to z2 is minimized, while the H∞-norm from w to z1 is less
than some imposed level γ [5, 21, 27].
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This problem leads to the following optimization problem with BMI constraints [27]:

min
F,P1,P2,Z

trace(Z)

s.t.

[

AT
FP1 + P1AF + (Cz1

F )TCz1
F P1B1

BT
1 P1 −γ2I

]

≺ 0,
[

AT
FP2 + P2AF P2B1

BT
1 P2 −I

]

≺ 0,

[

P2 (Cz2
F )T

Cz2
F Z

]

≻ 0, P1 ≻ 0, P2 ≻ 0,

(5.20)

where AF := A+BFC, Cz1
F := Cz1

1 +Dz1
12FC and Cz2

F := Cz2
1 +Dz2

12FC. Note that if C = Inx
, the

identity matrix, then this problem becomes a mixed H2/H∞ of static state feedback design problem
considered in [27]. In this subsection, we test Algorithm 1 for the static state feedback and output
feedback cases.

Case 1. The static state feedback case (C = Inx
). First, we apply the method in [27] to find an

initial point via solving two optimization problems with LMI constraints. Then, we use the same
approach as in the previous subsections to transform problem (5.20) into an optimization problem
with psd-convex-concave matrix inequality constraints. Finally, Algorithm 1 is implemented to solve
the resulting problem. For convenience of implementation, we introduce a slack variable η and then
replace the objective function in (5.16) by f(x) = η2 with an additional constraint trace(Z) ≤ η2.

In the first case, we test Algorithm 1 with three problems. The first problem was also considered
in [14] with

A =

[

−1.40 −0.49 −1.93
−1.73 −1.69 −1.25
0.99 2.08 −2.49

]

, B1 =

[

−0.16 −1.29
0.81 0.96
0.41 0.65

]

, B =

[

0.25
0.41
0.65

]

,

Cz1
1 = [−0.41 0.44 0.68], Cz2

1 = [−1.77 0.50 −0.40], Dz1
12 = Dz2

12 = 1, and γ = 2.

If the tolerance ε = 10−3 is chosen then Algorithm 1 converges after 17 iterations and reports the
value η = 0.7489 with F = [1.9485 0.3990 −0.2119] . This result is similar to the one shown in [27].
If we regularize the subproblem (4.1) with ρ = 0.5×10−3 and Q = IPF then the number of iterations
is reduced to 10 iterations.

The second problem is DIS4 in COMPleib [20]. In this problem, we set Cz1
1 = Cz2

1 and Dz1
12 = Dz2

12

as in [27]. Algorithm 1 converges after 24 iterations with the same tolerance ε = 10−3. It reports
η = 1.6925 and γ = 1.1996 with

F =





−0.8663 −0.6504 −1.1115 −0.1951 −0.6099 0.2065
0.1591 −0.4941 −0.6322 −0.5409 −1.2895 0.2774
−0.7017 −0.0785 0.6121 −0.8919 0.2518 −0.2354
−0.0522 −0.5556 −0.5838 0.4497 −1.4279 −0.6677



.

If we regularize the subproblem (4.1) with ρ = 0.5×10−3 and Q = IPF then the number of iterations
is 18 iterations.

The third problem is AC16 in COMPleib [20]. In this example we also choose Cz1
1 = Cz2

1 and
Dz1

12 = Dz2
12 as in the previous problem. As mentioned in [27], if we choose a starting value γ0 = 100,

then the LMI problem can not be solved by the SDP solvers (e.g., Sedumi, SDPT3) due to numerical
problems. Thus, we rescale the LMI constraints using the same trick as in [27]. After doing this,
Algorithm 1 converges after 298 iterations with the same tolerance ε = 10−3. The value of η reported
in this case is η = 12.3131 and γ = 20.1433 with

F =
[

−1.8533 0.1737 0.6980 6.4208
4.2672 −0.9668 −1.5952 −2.9240

]

.

The results obtained by Algorithm 1 for solving problems DIS4 and AC16 in this paper confirm the
results reported in [27].
Case 2. The static output feedback case. Similarly to the previous subsections, we first propose a
technique to determine a starting point for Algorithm 1. We described this phase algorithmically as
follows.
Phase 1. (Determine a starting point x0).
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Step 1. If α0(A
T +A) < 0 then set F 0 = 0. Otherwise, go to Step 3.

Step 2. Solve the following linear SDP problem:

min
P1,P2,Z

trace(Z)

s.t.

[

AT
F 0P1 + P1AF 0 + (Cz1

F 0)
TCz1

F 0 P1B1

BT
1 P1 −γ2I

]

≺ 0,
[

AT
F 0P2 + P2AF 0 P2B1

BT
1 P2 −I

]

≺ 0,

[

P2 (Cz2
F 0)T

Cz2
F 0 Z

]

≻ 0, P1 ≻ 0, P2 ≻ 0,

(5.21)

where AF 0 = A+BF 0C, Cz1
F 0 = Cz1

1 +Dz1
12F

0C and Cz2
F 0 = Cz2

1 +Dz2
12F

0C. If this problem has an
optimal solution P 0

1 , P
0
2 and Z0 then terminate Phase 1. Set x0 := (F 0, P 0

1 , P
0
2 , Z

0) for a starting
point of Algorithm 1. Otherwise go to Step 3.
Step 3. Solve the following LMI feasibility problem:

Find Q ≻ 0, W and Z such that:




AQ+QAT+BW+WTBT B1 (C1+D12W )T

BT
1 −Iw O

C1+D12W O −γ2Iz



≺0,

[

AQ+QAT +BW +WTBT B1

BT
1 −Iw

]

≺ 0,

[

Q (C1Q+D12W )T

C1Q+D12W Z

]

≻ 0,

to obtain a solution Q∗, W ∗ and Z∗. Set F ∗ := W ∗(Q∗)−1C+, where C+ is the pseudo-inverse of
C. Solve again problem (5.21) with F 0 := F ∗. If problem (5.21) has solution then terminate Phase
1. Otherwise, perform Step 4.
Step 4. Solve the following optimization with BMI constraints:

max
β,F,P1,P2

β

s.t. P1 ≻ 0, P2 ≻ 0,
AT

FP1+P1A
T
F +(Cz1

F )TCz1
F + 1

γ2P1B1B
T
1 P1 � −2βP1,

AT
FP2 + P2AF + P2B1B

T
1 P2 � −2βP2

(5.22)

to obtain an optimal solution F ∗ corresponding to the optimal value β∗. If β∗ > 0 then set F 0 := F ∗

and go back to Step 2 to determine P 0
1 , P

0
2 and Z0. Otherwise, declare that no strictly feasible point

of problem (5.20) is found. �

Since at Step 4 of Phase 1, it requires to solve an optimization problem with two BMI constrains.
This task is usually expensive. In our implementation, we only terminate this step after find a
strictly feasible point with a feasible gap 0.1. If matrix C is invertible then the matrix F ∗ at Step
3 is F ∗ = W ∗(Q∗)−1C−1. Hence, we can ignore Step 4 of Phase 1.

To avoid the numerical problem in Step 3, we can reformulate problem (5.5) equivalently to the
following one:

Find Q ≻ 0, W and Z such that:




AQ+QAT+BW+WTBT B1 (C1+D12W )T

BT
1 −γIw O

C1+D12W O −γIz



≺0,

[

Q (C1Q+D12W )T

C1Q+D12W Z

]

≻0.

We test the algorithm described above for several problems in COMPleib with the level values
γ = 4 and γ = 10. In these examples, we assume that the output signals z1 ≡ z2. Thus we have
Cz1

1 = Cz2
1 = C1 and Dz1

12 = Dz2
12 = D12. The parameters and the stopping criterion of the algorithm

are chosen as in Subsection 5.3. The computational results are reported in Table 4 with γ = 4 and
γ = 10. Here, H2/H∞ are the H2 and H∞ norms of the closed-loop systems for the static output
feedback controller, respectively. With γ = 10, the computational results show that Algorithm 1
satisfies the condition ‖P∞(s)‖∞ ≤ γ = 10 for all the test problems. While, with γ = 4, there are
5 problems reported infeasible, which are denoted by “-”. The H∞-constraint of three problems:
AC3, AC11 and NN8 is active with respect to γ = 4.
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Table 4: H2/H∞ synthesis benchmarks on COMPleib plants
Problem Results and Performances (γ = 4) Results and Performances (γ = 10)
Name H2/H∞ iter time[s] H2/H∞ iter time[s]

AC1 0.0585 / 0.0990 3 4.22 0.0585 / 0.0990 3 4.27
AC2 0.1067 / 0.1723 6 7.31 0.1070 / 0.1727 3 7.15
AC3 5.2770 / 3.9999 51 281.53 4.5713 / 5.1298 18 19.18
AC6 - / - - - 4.0297 / 4.8753 283 330.64
AC7 0.0415 / 0.0961 1 3.39 0.0420 / 0.1286 2 3.91
AC8 1.2784 / 2.2288 43 60.78 1.3020 / 2.5719 23 31.59
AC11 4.0704 / 4.0000 76 175.75 4.0021 / 5.1949 117 122.86
AC12 0.0924 / 0.3486 18 73.46 1.4454 / 1.6444 300 234.13
AC17 - / - - - 4.1228 / 6.6472 2 11.620
HE1 0.1123 / 0.2257 2 131.18 0.0973 / 0.2080 1 30.97
HE2 - / - - - 4.7302 / 9.8931 75 55.48
REA1 1.8214 / 1.4740 30 25.64 1.8213 / 1.4730 30 26.65
REA2 3.5014 / 3.5180 42 22.09 3.5015 / 3.5209 45 23.26
DIS1 - / - - - 2.8505 / 4.7904 15 30.51
DIS2 1.5079 / 1.8500 18 7.92 1.5079 / 1.8520 21 7.92
DIS3 2.0577 / 1.7934 27 25.03 2.0577 / 1.7766 30 24.54
DIS4 1.6926 / 1.1952 21 18.62 1.6926 / 1.2009 24 21.55
AGS - / - - - 7.0332 / 8.2035 8 196.73
PSM 1.5115 / 0.9248 177 160.41 1.5115 / 0.9248 180 167.31
EB2 0.7765 / 1.0828 7 9.70 0.7768 / 1.0867 10 13.16
EB3 0.8406 / 0.9249 1 3.21 0.8383 / 0.9418 1 2.93
EB4 1.0147 / 1.0707 6 59.55 0.9981 / 1.2146 12 111.26
NN2 1.5651 / 2.4834 12 5.37 1.5651 / 2.4876 12 5.49
NN4 1.8778 / 2.0501 202 154.49 1.8779 / 2.0519 213 161.00
NN8 2.3609 / 3.9999 21 15.71 2.3376 / 4.6514 15 6.57
NN15 0.0820 / 0.1010 42 18.75 0.0771/0.1012 24 10.47
NN16 0.3187 / 0.9574 90 96.44 0.3319 / 0.9572 258 303.87

6 Concluding remarks

We have proposed a new algorithm for solving many classes of optimization problems involving BMI
constraints arising in static feedback controller design. The convergence of the algorithm has been
proved under standard assumptions. Then, we have applied our method to design static feedback
controllers for various problems in robust control design. The algorithm is easy to implement using
the current SDP software tools. The numerical results are also reported for the benchmark collec-
tion in COMPleib. Note, however, that our method depends crucially on the psd-convex-concave
decomposition of the BMI constraints. In practice, it is important to look at the specific struc-
ture of the problems and find an appropriate psd-convex-concave decomposition for Algorithm 1.
The method proposed can be extended to general nonlinear semidefinite programming, where the
psd-convex-concave decomposition of the nonconvex mappings are available. From a control design
point of view, the application to more general reduced order controller synthesis problems and the
extension towards linear parameter varying or time-varying systems are future research directions.
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Proof of Lemma 4.2.

For any matrices A,B ∈ Sp
+, we have A ◦B ≥ 0. From Step 1 of Algorithm 1, we have xk+1 is the

solution of the convex subproblem (4.1) and Λk+1 is the corresponding multiplier, under Assumption
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3, they must satisfy the following generalized Kuhn-Tucker condition:



















0 ∈ ∇f(xk+1)+ρkQ
T
kQk(x

k+1−xk)+
{

∑l
i=1 D[Gi(x)−Hi(x

k)

−DHi(x
k)(x− xk)]|xk+1

}∗
Λk+1
i +NΩ(x

k+1),
Gi(x

k+1)−Hi(x
k)−DH(xk)(xk+1 − xk) � 0, Λi � 0,

[

Gi(x
k+1)−Hi(x

k)−DH(xk)(xk+1−xk)
]

◦ Λk+1
i = 0.

(.1)

Noting that D
[

Gi(x) −Hi(x
k)−DHi(x

k)(y − xk)
]

|x=xk+1 = DGi(x
k+1)−DHi(x

k) for i = 1, . . . l,
it follows from the first line of (.1) and the convexity of f that

f(y)−f(xk+1)+

{

l
∑

i=1

[DGi(x
k+1)−DHi(x

k)]∗Λk+1
i

}T

(y − xk+1)

≥

{

∇f(xk+1) +

l
∑

i=1

[DGi(x
k+1)−DHi(x

k)]∗Λk+1
i

}T

(y − xk+1)

+
ρf
2
‖y−xk+1‖22≥

ρf
2
‖y−xk+1‖22+ρk(y−xk+1)TQT

kQk(x
k−xk+1), ∀y ∈ Ω. (.2)

On the other hand, we have

{

[DGi(x
k+1)−DHi(x

k)]∗Λk+1
i

}T
(y − xk+1)

= Λk+1
i ◦ [DGi(x

k+1)(y − xk+1)−DHi(x
k)(y − xk+1)]. (.3)

Since Gi and Hi are psd-convex, applying Lemma 2.1 we have

Gi(x
k)−Gi(x

k+1)�DGi(x
k+1)(xk−xk+1),

and Hi(x
k+1)−Hi(x

k)�DHi(x
k)(xk+1−xk), i = 1, . . . , l.

Summing up these inequalities we obtain

Gi(x
k)−Hi(x

k)−[Gi(x
k+1)−Hi(x

k+1)]� [DGi(x
k+1)(xk−xk+1)−DHi(x

k)(xk − xk+1)].

Using the fact that Λk+1
i � 0, this inequality implies that

Λk+1
i ◦

{

Gi(x
k)−Hi(x

k)− [Gi(x
k+1)−Hi(x

k+1)]
}

� Λk+1
i ◦ [DGi(x

k+1)(xk − xk+1)−DHi(x
k)(xk − xk+1)]. (.4)

Substituting y = xk into (.2) and then combining the consequence, (.3), (.4) and the last line of (.1)
to obtain

f(xk)−f(xk+1)+

l
∑

i=1

Λk+1
i ◦ [Gi(x

k)−Hi(x
k)] ≥

ρf
2
‖xk+1 − xk‖22+ρk‖Qk(x

k+1−xk)‖22. (.5)

Now, since xk is the solution of the convex subproblem (4.1) linearized at xk−1. One has Gi(x
k)−

Hi(x
k) � 0. Moreover, since Λk+1

i � 0, we have Λk+1
i ◦

[

Gi(x
k)−Hi(x

k)
]

≤ 0. Substituting this
inequality into (.5), we obtain

f(xk)− f(xk+1) ≥
ρf
2
‖xk − xk+1‖22 + ρk‖Qk(x

k+1 − xk)‖22.

This inequality is indeed (4.3) which proves the item a). If there exists at least one i0 ∈ {1, . . . , l}
such that Gi0(x

k)−Hi0(x
k) ≺ 0 and Λk+1

i0
≻ 0 then Λk+1

i0
◦
[

Gi0(x
k)−Hi0(x

k)
]

< 0. Substituting

this inequality into (.5) we conclude that f(xk+1) < f(xk) which proves item b). The last statement
c) follows directly from the inequality (4.3). �
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