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QuantizedH∞ Control for Nonlinear Stochastic
Time-delay Systems with Missing Measurements

Zidong Wang, Bo Shen, Huisheng Shu and Guoliang Wei

Abstract—In this paper, the quantized H∞ control prob-
lem is investigated for a class of nonlinear stochastic time-
delay network-based systems with probabilistic data missing.
A nonlinear stochastic system with state delays is employed
to model the networked control systems where the measured
output and the input signals are quantized by two logarithmic
quantizers, respectively. Moreover, the data missing phenomena
are modeled by introducing a diagonal matrix composed of
Bernoulli distributed stochastic variables taking values of 1

and 0, which describes that the data from different sensors
may be lost with different missing probabilities. Subsequently,
a sufficient condition is first derived in virtue of the method of
sector-bounded uncertainties, which guarantees that the closed-
loop system is stochastically stable and the controlled output
satisfiesH∞ performance constraint for all nonzero exogenous
disturbances under the zero-initial condition. Then, the sufficient
condition is decoupled into some inequalities for the convenience
of practical verification. Based on that, quantizedH∞ controllers
are designed successfully for some special classes of nonlinear
stochastic time-delay systems by using Matlab linear matrix
inequality toolbox. Finally, a numerical simulation example is
exploited to show the effectiveness and applicability of the results
derived.

Index Terms—Nonlinear systems; stochastic systems; discrete
time-delay systems; networked control systems;H∞ control;
quantized control; data Missing.

I. I NTRODUCTION

In recent years, the study of networked control systems
(NCSs) has gradually become an active area of research
due to their advantages in many aspects such as low cost,
reduced weight and power requirements, simple installation
and maintenance, as well as high reliability [15], [30]. It is well
known that the devices in networks are mutually connected via
communication cables which are of limited capacity. There-
fore, some new challenging issues have inevitably emerged,
for example, network-induced time delay, data missing (also
called packet dropout or missing measurement), quantization
effect, which should all be taken into account in order to
achieve the required performance of the NCSs. Consequently,
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it is not surprising that, in the past few years, the control and
filtering problems of networked systems with communication
delays and/or missing measurements have been extensively
considered by many researchers. For example, theH∞ control
problem has been studied in [11], [12], [28] for networked
systems with random communication delays, and the same
problem has been considered in [24], [27] for networked sys-
tems with random packet losses. With respect to the filtering
problem, we refer the reader to [10], [16] for the case of
communication delays, and [19]–[21] for the case of missing
measurements.

The signal quantization is considered as another source that
has significant impact on the achievable performance of the
networked systems and, therefore, it is necessary to conduct
analysis on the quantizers and understand how much effect the
quantization makes on the overall networked systems. In fact,
the problem of quantized control for non-networked system
has been reported as early as in 1990 [4]. So far, a great
number of results have been available in the literature, seee.g.
[2], [4], [5], [8], [9], [14]. In [2], the feedback stabilization
problems have been considered for linear time-invariant con-
trol systems with saturating quantized measurements. In [14],
some general types of quantizers have been developed to solve
the problem of feedback stabilization for general nonlinear
systems. Recently, a new type of quantizer (called logarithmic
quantizer) has attracted considerable research interest.Such
quantizer has proven to be the coarsest one in the problem
of quadratic stabilization for discrete-time single-input-single-
output linear time-invariant systems using quantized feedback
under the assumption that the quantizer is static and time-
invariant [8]. Base on that, a number of quantized feedback
design problems have been studied in [9] for linear system,
where the major contribution of [9] lies that many quantized
feedback design problems have been found to be equivalent to
the well-known robust control problems with sector-bounded
uncertainties. Later, the elegant results obtained in [8] have
been generalized to the multiple-input-multiple-output systems
and to control design with performance constraints.

Inspiringly, in recent years, there have appeared some new
results on NCSs with the consideration of signal quantization
effects. In [29], the network-based guaranteed cost has been
dealt with for linear systems with state and input quantization
by using the method of sector bound uncertainties. Moreover,
in [18], the problem of quantized state feedbackH∞ stabiliza-
tion has been addressed for linear time-invariant systems over
data networks with limited network quality-of-service. Fol-
lowing that, the problem of output feedback control for NCSs
with limited communication capacity has been investigatedin
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[23], where the packet losses and quantization effect are taken
into account simultaneously. It should be noticed that all the
literature mentioned above has been concerned withlinear
NCSs within adeterministicframework, and the corresponding
results fornonlinear stochasticcase are relatively few, due
primarily to the difficulty in nonlinear analysis and stochastic
analysis. However, it is well known that nonlinearity and
stochasticity are arguably two of the main causes in reality
that have resulted in considerable system complexity, and
it seems more reasonable to model the NCSs by taking
into account both the nonlinearity and the stochasticity [6],
[22]. Unfortunately, to the best of our knowledge, quantized
H∞ control problem forgeneral nonlinear stochastic time-
delay network-based systems with missing measurementshas
not been fully investigated despite its potential in practical
applications, and the purpose of this paper is therefore to
shorten such a gap by providing a rather general framework.

The main contributions of this paper can be summarized as
follows. 1) A new quantizedH∞ control problem is introduced
for a class of nonlinear stochastic time-delay network-based
systems, where the data from different sensors may be missing
with different probabilities. 2) Sufficient conditions areestab-
lished under which the closed-loop system is stochastically
stable and the controlled output satisfies theH∞ performance
constraint for all nonzero exogenous disturbances under zero-
initial condition, where the nonlinear parameters are very
general since there are no assumptions posed on them. 3)
The sufficient conditions are applied to some special cases
(e.g. systems with Lipschitz-type nonlinearities and systems
with sector-bounded nonlinearities) so that the simplifiedin-
equalities can be numerically checked more easily. Finally,
a numerical simulation example is used to demonstrate the
effectiveness and applicability of the results obtained.

Notation The notation used here is fairly standard except
where otherwise stated.Rn and R

n×m denote, respectively,
the n dimensional Euclidean space and the set of alln ×m
real matrices.‖A‖ refers to the norm of a matrixA defined
by ‖A‖ =

√
trace(ATA). The notationX ≥ Y (respectively,

X > Y ), where X and Y are real symmetric matrices,
means thatX − Y is positive semi-definite (respectively,
positive definite).MT represents the transpose of the matrix
M . I denotes the identity matrix of compatible dimension.
diag{· · · } stands for a block-diagonal matrix and the notation

diagn{∗} is employed to stand for diag{
n︷ ︸︸ ︷

∗, · · · , ∗}. Moreover,
let (Ω,F ,Prob) be a complete probability space where,Prob,
the probability measure, has total mass1. E{x} stands for the
expectation of the stochastic variablex with respect to the
given probability measureProb. The set of all nonnegative
integers is denoted byI+ and the set of all nonnegative real
numbers is represented byR+. CK denotes the class of all
continuous nondecreasing convex functionsµ : R

+ → R
+

such thatµ(0) = 0 andµ(r) > 0 for r > 0. Cm(Rn) denotes
the class of functionsV (x) that is m times continuously
differentiable with respect tox ∈ R

n. For a functionV (x) ∈
C2(Rn), we let Vx(x) =

(
∂V (x)
∂x1

, ∂V (x)
∂x2

, · · · , ∂V (x)
∂xn

)T

and

Vxx(x) =
(

∂2V (x)
∂xi∂xj

)
n×n

. The asterisk∗ in a matrix is used
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Fig. 1. Structure of a networked control system with two quantizers

to denote term that is induced by symmetry. Matrices, if they
are not explicitly specified, are assumed to have compatible
dimensions.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the networked nonlinear stochastic control system
with two quantizers shown in Fig. 1. The plant under consid-
eration is assumed to be of the following form





xk+1 =f1(xk, xk−d) + h1(xk)vk + g1(xk)uk

+ fw(xk, xk−d)wk,

zk =f2(xk, xk−d) + h2(xk)vk + g2(xk)uk,

xk =ϕk, k = −d,−d+ 1, · · · , 0

(1)

wherexk ∈ R
n is the state vector,uk ∈ R

p is the control
input, zk ∈ R

l is the controlled output andwk is a one-
dimensional, zero-mean Gaussian white noise sequence on a
probability space(Ω,F ,Prob) with Ew2

k = θ.
Let (Ω, F , {Fk}k∈I+ , Prob) be a filtered probability

space where{Fk}k∈I+ is the family of subσ-algebras ofF
generated by{wk}k∈I+ and assume thatF0 is a set of some
given subσ-algebras ofF , which is independent ofFk for
all k > 0. For the exogenous disturbance inputvk ∈ R

q, it is
assumed that{vk}k∈I+ ∈ l2([0,∞),Rq), wherel2([0,∞),Rq)
is the space of nonanticipatory square-summable stochastic
process{vk}k∈I+ with respect to(Fk)k∈I+ . The nonlinear
functions f1 : R

n × R
n → R

n, f2 : R
n × R

n → R
l,

fw : Rn × R
n → R

n, h1 : Rn → R
n×q, h2 : Rn → R

l×q,
g1 : R

n → R
n×p and g2 : R

n → R
l×p are smooth

matrix-valued functions withf1(0, 0) = 0, f2(0, 0) = 0 and
fw(0, 0) = 0. ϕk is a real-valued initial function on[−d, 0].

The measurement with probabilistic sensor data missing is
described as

yk = Γkl(xk) + k(xk)vk (2)

where yk ∈ R
m is the measurement received at the node

quantizerq(·). The nonlinear functionsl : R
n → R

m and
k : R

n → R
m×q are also smooth matrix-valued functions

with l(0) = 0. Γk = diag{γ1k, · · · , γmk } is a diagonal matrix
that accounts for the different missing rate of the individual
channel. For any1 ≤ r ≤ m, γrk is a Bernoulli distributed
stochastic variable taking values of 1 and 0 with

Prob{γrk = 1} = γ̄r,

Prob{γrk = 0} = 1− γ̄r
(3)

whereγ̄r ∈ [0, 1] is a known constant.
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As shown in Fig. 1, before entering into the controller, the
signalyk ∈ R

m is quantized by quantizerq(·) which is defined
as

ȳk = q(yk) =
[
q1(y

(1)
k ) q2(y

(2)
k ) · · · qm(y

(m)
k )

]T
,

where ȳk ∈ R
m is the signal transmitted into the controller

after the quantization. In this paper, the quantizerq(·) is
assumed to be of the logarithmic type. That is, for each
qj(·) (1 ≤ j ≤ m), the set of quantization levels is described
by

Uj =
{
±χ(j)

i , χ
(j)
i = ρijχ

(j)
0 , i = 0, ± 1, ± 2, · · ·

}
∪ {0},

0 < ρj < 1, χ
(j)
0 > 0.

Each of the quantization level corresponds to a segment such
that the quantizer maps the whole segment to this quantization
level. The logarithmic quantizerqj(·) is defined as

qj(y
(j)
k ) =





χ
(j)
i , 1

1+δj
χ
(j)
i < y

(j)
k ≤ 1

1−δj
χ
(j)
i

0, y
(j)
k = 0

−qj(−y(j)k ), y
(j)
k < 0

with δj = (1− ρj)/(1 + ρj).
By the results derived in [9], it follows thatqj(y

(j)
k ) =

(1 + ∆
(j)
k )y

(j)
k such that |∆(j)

k | ≤ δj . Defining ∆k =

diag{∆(1)
k , · · · ,∆(m)

k }, the measurements after quantization
can be expressed as

ȳk = (I +∆k)yk. (4)

Therefore, the quantizing effects have been transformed into
sector bound uncertainties described above.

The dynamic observer-based control scheme for the plant
(1) is described by





x̂k+1 = fc(x̂k) + gc(x̂k)ȳk,

ūk = uc(x̂k), fc(0) = 0, uc(0) = 0,

x̂k = 0, k = −d,−d+ 1, · · · , 0
(5)

wherex̂k ∈ R
n is the state estimate of the plant (1),ūk ∈ R

p is
the control input without transmission missing, and the matrix-
valued nonlinear functionsfc : Rn → R

n, gc : Rn → R
n×m,

anduc : Rn → R
p are controller parameters to be determined.

When the control signal̄uk is transmitted on the network
from the controller to the quantizer̄q(·), the data missing
phenomenon will probably occur again owing to the limited
bandwidth of the communication channel. Therefore, the data
missing model is applied tōuk again. Here, we introduce
another diagonal matrixΞk = diag{ξ1k, · · · , ξ

p
k} whereξrk is

also assumed to be a Bernoulli distributed stochastic variable
satisfying

Prob{ξrk = 1} = ξ̄r,

Prob{ξrk = 0} = 1− ξ̄r.
(6)

Then, the control input with data missing~uk ∈ R
p can be

described as

~uk = Ξkūk. (7)

Similar to the signalyk ∈ R
m, the control signal~uk ∈ R

p

is also quantized by the quantizerq̄(·) before entering the
plant (1). Here, the quantizer̄q(·) is also assumed to be of
the logarithmic type and has the same form as the quantizer
q(·). Specifically, the quantizer̄q(·) is defined as

uk = q̄(~uk) =
[
q̄1(~u

(1)
k ) q̄2(~u

(2)
k ) · · · q̄p(~u

(p)
k )

]T

whereuk ∈ R
p is the control input actually entering the plant

(1). For each̄qj(·) (1 ≤ j ≤ p), the set of quantization levels
is described by

Ūj =
{
±χ̄(j)

i , χ̄
(j)
i = ρ̄ijχ̄

(j)
0 , i = 0, ± 1, ± 2, · · ·

}
∪ {0},

0 < ρ̄j < 1, χ̄
(j)
0 > 0,

and the quantizer̄qj(·) is defined as

q̄j(~u
(j)
k ) =





χ̄
(j)
i , 1

1+δ̄j
χ̄
(j)
i < ~u

(j)
k ≤ 1

1−δ̄j
χ̄
(j)
i

0, ~u
(j)
k = 0

−q̄j(−~u(j)k ), ~u
(j)
k < 0

with δ̄j = (1− ρ̄j)/(1 + ρ̄j). To the end, the control inputuk
can be expressed as

uk = (I + ∆̄k)~uk (8)

where∆̄k = diag{∆̄(1)
k , · · · , ∆̄(p)

k } and∆̄(j)
k satisfies|∆̄(j)

k | ≤
δ̄j for each1 ≤ j ≤ p.

For the sake of easy manipulation, we introduce two

matrices Cr
p := diag{

r−1︷ ︸︸ ︷
0, · · · , 0, 1, 0, · · · , 0︸ ︷︷ ︸

p

} and Cr
m :=

diag{
r−1︷ ︸︸ ︷

0, · · · , 0, 1, 0, · · · , 0︸ ︷︷ ︸
m

}, and then rewrite the signals̄yk ∈

R
m anduk ∈ R

p as

ȳk = (I +∆k)

m∑

r=1

γrkC
r
ml(xk) + (I +∆k)k(xk)vk (9)

and

uk = (I + ∆̄k)

p∑

r=1

ξrkC
r
puc(x̂k), (10)

respectively.

By settingηk =
[
xTk x̂Tk

]T
, ηk−d =

[
xTk−d x̂Tk−d

]T
and

substituting (9)-(10) into (1) and (5), we obtain the following
closed-loop system:




ηk+1 =F1(ηk, ηk−d) +H1(ηk)vk + Fw(ηk, ηk−d)wk

+

p∑

r=1

(ξrk − ξ̄r)Gr
1 (ηk) +

m∑

r=1

(γrk − γ̄r)Gr
2 (ηk),

zk =F2(ηk, ηk−d) +H2(ηk)vk +

p∑

r=1

(ξrk − ξ̄r)Gr
3(ηk)

(11)
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where

F1(ηk, ηk−d) =

[
f1(xk, xk−d) + g1(xk)(I + ∆̄k)Ξ̄uc(x̂k)

fc(x̂k) + gc(x̂k)(I +∆k)Γ̄l(xk)

]
,

H1(ηk) =

[
h1(xk)

gc(x̂k)(I +∆k)k(xk)

]
, H2(ηk) = h2(xk),

Gr
1(ηk) =

[
g1(xk)(I + ∆̄k)C

r
puc(x̂k)

0

]
,

Gr
2(ηk) =

[
0

gc(x̂k)(I +∆k)C
r
ml(xk)

]
,

Fw(ηk, ηk−d) =

[
fw(xk, xk−d)

0

]
,

F2(ηk, ηk−d) = f2(xk, xk−d) + g2(xk)(I + ∆̄k)Ξ̄uc(x̂k),

Gr
3(ηk) = g2(xk)(I + ∆̄k)C

r
puc(x̂k),

Γ̄ = diag{γ̄1, · · · , γ̄m}, Ξ̄ = diag{ξ̄1, · · · , ξ̄p}. (12)

Throughout this paper, we assume that all the stochastic
variablesvk, wk, ξik (i = 1, · · · , p) andγjk (i = 1, · · · ,m) are
uncorrelated each other.

Definition 1: The zero-solution of the closed-loop system
(11) with vk = 0 is said to be stochastically stable if, for any
ε > 0, there exists aδ > 0 such that

E{‖ηk‖} < ε,

wheneverk ∈ I
+ and maxk∈{−d,−d+1,··· ,0}{‖ϕ̄k‖} < δ

whereϕ̄k =
[
ϕT
k 0

]T
for k = −d,−d+ 1, · · · , 0.

In Definition 1, the notion of stochastic stability is proposed
for the stochastic discrete time-delayed system (11). Other
definitions of stability for different kinds of stochastic systems
can be found in [13], [17].

The purpose of the problem addressed in this paper is
to design the parametersfc(x̂k), gc(x̂k) and uc(x̂k) of the
nonlinear controller such that the following requirementsare
satisfied simultaneously for the given system (1) as well as
the quantizersq(·) and q̄(·):

a) The zero-solution of the closed-loop system (11) with
vk = 0 is stochastically stable.

b) Under the zero-initial condition, the controlled outputzk
satisfies

∞∑

k=0

E{‖zk‖2} ≤ γ2
∞∑

k=0

E{‖vk‖2} (13)

for all nonzerovk, whereγ > 0 is a given disturbance
attenuation level.

III. M AIN RESULTS

To state our main results, we need the following lemma.
Lemma 1: If there exist a Lyapunov functionV (ζ) ∈

C1(R2(d+1)n) and a functiona(r) ∈ CK satisfying the
following conditions:

V (0) = 0, (14a)

a(‖ζ‖) ≤ V (ζ), (14b)

E{V (ζk+1)} ≤ E{V (ζk)}, k ∈ I
+, (14c)

whereζk =
[
ηTk ηTk−1 · · · ηTk−d

]T
, then the zero-solution

of closed-loop system (11) withvk = 0 is stochastically stable.

Proof: First of all, it is noted thatV (0) = 0 and
V (ζ) is continuous. Therefore, for anyε > 0, there exists
a scalarδ > 0 such thatV (ζ0) < a(ε) when ‖ζ0‖ < δ.
We aim to prove thatE{‖ηk‖} < ε wheneverk ∈ I

+ and
maxk∈{−d,−d+1,··· ,0}{‖ϕ̄k‖} < δ. By considering‖ϕ̄k‖ ≤
‖ζ0‖ for all k = −d,−d + 1, · · · , 0, we only need to prove
that every solutionηk with ‖ζ0‖ < δ implies E{‖ηk‖} < ε
for all k ∈ I

+. Let us now prove the latter by contradiction.
Suppose that, for a solutionηk satisfying ‖ζ0‖ < δ, there
exists a k1 ∈ I

+ such thatE{‖ηk1
‖} ≥ ε. Noting the

fact of ‖ηk‖ ≤ ‖ζk‖, one hasE{‖ηk1
‖} ≤ E{‖ζk1

‖}. In
addition, by using the Jensen inequality and considering the
property of functiona(r), it follows from (14b) and (14c)
that a(ε) ≤ a(E{‖ηk1

‖}) ≤ a(E{‖ζk1
‖}) ≤ E{a(‖ζk1

‖)} ≤
E{V (ζk1

)} ≤ E{V (ζ0)} < a(ε), which is a contradiction.
Therefore, it follows easily from Definition 1 that the zero-
solution of the augmented system (11) withvk = 0 is
stochastically stable. The proof is complete.

The following theorem provides a sufficient condition under
which the closed-loop system (11) is stochastically stableand
the controlled outputzk satisfies theH∞ criterion (13) under
zero-initial condition for the given quantizersq(·) and q̄(·).

Theorem 1:Let the disturbance attenuation levelγ > 0
be given. If there exist two real-valued functionalV1(η) ∈
C2(R2n) andV2(η) ∈ C1(R2n) satisfying

V1(0) = 0, V2(0) = 0, (15)

a(‖η‖) ≤ V1(η), a(‖η‖) ≤ V2(η), (16)

where a(r) ∈ CK, and the following inequalities for any
η, ηα, ηd ∈ R

2n:

A (η, ηα)

= γ2I − 1

2
HT

1 (η)V1ηη(ηα)H1(η)−HT
2 (η)H2(η) > 0,(17)

J (η, ηα, ηd)

:= B(η, ηα, ηd)A
−1(η, ηα)B

T (η, ηα, ηd)

+
1

2
FT

1 (η, ηd)V1ηη(ηα)F1(η, ηd)

+
1

2
θFT

w (η, ηd)V1ηη(ηα)Fw(η, ηd) +
1

2
ηTV1ηη(ηα)η

+FT
2 (η, ηd)F2(η, ηd)−FT

1 (η, ηd)V1ηη(ηα)η

+V T
1η(η)F1(η, ηd)− V T

1η(η)η + V2(η) − V2(ηd)

+
1

2

p∑

r=1

α2
rGrT

1 (η)V1ηη(ηα)Gr
1 (η)

+
1

2

m∑

r=1

β2
rGrT

2 (η)V1ηη(ηα)Gr
2 (η)

+

p∑

r=1

α2
rGrT

3 (η)Gr
3 (η) ≤ 0 (18)

where

B(η, ηα, ηd)

=
1

2
V T
1η(η)H1(η) +

1

2
FT

1 (η, ηd)V1ηη(ηα)H1(η)

− 1

2
ηTV1ηη(ηα)H1(η) + FT

2 (η, ηd)H2(η)
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with αr =
√
ξ̄r(1− ξ̄r) and βr =

√
γ̄r(1 − γ̄r), then the

system (11) withvk = 0 is stochastically stable and the
controlled outputzk satisfies theH∞ criterion (13) for all
nonzerovk under the zero-initial condition.

Proof: Choose the Lyapunov functionalV (ζk) as

V (ζk) = V1(ηk) +

k−1∑

i=k−d

V2(ηi) (19)

whereζk is defined in Lemma 1. Note that the first term in
(19) corresponds to the stability conditions for the discrete-
time nonlinear stochastic systemswithout delays, and the
second term in (19) corresponds to delay-independent stability
conditions that account for the delay effects.

Obviously, the Lyapunov functionalV (ζk) constructed as
(19) satisfies (14a) and (14b). By using Taylor’s formula, there
exists a scalar̄αk ∈ (0, 1) such that

V1(ηk+1)− V1(ηk) = V T
1η(ηk)(ηk+1 − ηk)

+
1

2
(ηk+1 − ηk)

TV1ηη(ηαk
)(ηk+1 − ηk)

whereηαk
= ηk + ᾱk(ηk+1 − ηk).

Now, we first prove the stochastic stability of the closed-
loop system (11) withvk = 0. By notingEw2

k = θ,

E{(ξik − ξ̄i)(ξjk − ξ̄j)} =

{
ξ̄i(1 − ξ̄i), i = j

0, i 6= j

for 1 ≤ i ≤ p, 1 ≤ j ≤ p, and

E{(γik − γ̄i)(γjk − γ̄j)} =

{
γ̄i(1 − γ̄i), i = j

0, i 6= j

for 1 ≤ i ≤ m, 1 ≤ j ≤ m, it can be calculated along the
closed-loop system (11) withvk = 0 that

E{V (ζk+1)} − E{V (ζk)}
=E{V1(ηk+1)− V1(ηk) + V2(ηk)− V2(ηk−d)}
=E{V T

1η(ηk)(ηk+1 − ηk) + V2(ηk)− V2(ηk−d)

+
1

2
(ηk+1 − ηk)

TV1ηη(ηαk
)(ηk+1 − ηk)}

=E

{1

2
FT

1 (ηk, ηk−d)V1ηη(ηαk
)F1(ηk, ηk−d)

+
1

2
θFT

w (ηk, ηk−d)V1ηη(ηαk
)Fw(ηk, ηk−d)

+
1

2

p∑

r=1

α2
rGrT

1 (ηk)V1ηη(ηαk
)Gr

1(ηk)

+
1

2

m∑

r=1

β2
rGrT

2 (ηk)V1ηη(ηαk
)Gr

2(ηk)

+
1

2
ηTk V1ηη(ηαk

)ηk −FT
1 (ηk, ηk−d)V1ηη(ηαk

)ηk

+V T
1η(ηk)F1(ηk, ηk−d)− V T

1η(ηk)ηk

+V2(ηk)− V2(ηk−d)
}

≤J (ηk, ηαk
, ηk−d) ≤ 0 (20)

which, from Lemma 1, confirms that the system (11) with
vk = 0 is stochastically stable.

Next, let us show that the closed-loop system (11) satisfies
the H∞ performance constraint for all nonzero exogenous
disturbances under the zero-initial condition. From (11),it
follows that

E
{
V (ζk+1)− V (ζk) + ‖zk‖2 − γ2‖vk‖2

}

= E{V1(ηk+1)− V1(ηk) + V2(ηk)− V2(ηk−d)

+‖zk‖2 − γ2‖vk‖2}
= E

{
V T
1η(ηk)(ηk+1 − ηk) + V2(ηk)− V2(ηk−d)

+
1

2
(ηk+1 − ηk)

TV1ηη(ηαk
)(ηk+1 − ηk)

+‖zk‖2 − γ2‖vk‖2
}

= E

{
V T
1η(ηk)F1(ηk, ηk−d) + V T

1η(ηk)H1(ηk)vk

−V T
1η(ηk)ηk +

1

2
FT

1 (ηk, ηk−d)V1ηη(ηαk
)F1(ηk, ηk−d)

+
1

2
vTk HT

1 (ηk)V1ηη(ηαk
)H1(ηk)vk

+
1

2
θFT

w (ηk, ηk−d)V1ηη(ηαk
)Fw(ηk, ηk−d)

+
1

2
ηTk V1ηη(ηαk

)ηk + FT
1 (ηk, ηk−d)V1ηη(ηαk

)H1(ηk)vk

−ηTk V1ηη(ηαk
)H1(ηk)vk −FT

1 (ηk, ηk−d)V1ηη(ηαk
)ηk

+
1

2

p∑

r=1

α2
rGrT

1 (ηk)V1ηη(ηαk
)Gr

1(ηk)

+
1

2

m∑

r=1

β2
rGrT

2 (ηk)V1ηη(ηαk
)Gr

2(ηk)

+

p∑

r=1

α2
rGrT

3 (ηk)Gr
3(ηk) + FT

2 (ηk, ηk−d)F2(ηk, ηk−d)

+2FT
2 (ηk, ηk−d)H2(ηk)vk + vTk HT

2 (ηk)H2(ηk)vk

+V2(ηk)− V2(ηk−d)− γ2‖vk‖2
}

= E

{
− vTk A (ηk, ηαk

)vk + 2B(ηk, ηαk
, ηk−d)vk

+
1

2
FT

1 (ηk, ηk−d)V1ηη(ηαk
)F1(ηk, ηk−d)

+
1

2
θFT

w (ηk, ηk−d)V1ηη(ηαk
)Fw(ηk, ηk−d)

+
1

2
ηTk V1ηη(ηαk

)ηk + FT
2 (ηk, ηk−d)F2(ηk, ηk−d)

−FT
1 (ηk, ηk−d)V1ηη(ηαk

)ηk + V T
1η(ηk)F1(ηk, ηk−d)

−V T
1η(ηk)ηk + V2(ηk)− V2(ηk−d)

+
1

2

p∑

r=1

α2
rGrT

1 (ηk)V1ηη(ηαk
)Gr

1(ηk)

+
1

2

m∑

r=1

β2
rGrT

2 (ηk)V1ηη(ηαk
)Gr

2(ηk)

+

p∑

r=1

α2
rGrT

3 (ηk)Gr
3(ηk)

}
. (21)
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Applying the “completing the square” rule, it can be easily
seen that (21) is equal to

E

{
− (vk − v∗k)

TA (ηk, ηαk
)(vk − v∗k)

+ B(ηk, ηαk
, ηk−d)A

−1(ηk, ηαk
)BT (ηk, ηαk

, ηk−d)

+
1

2
FT

1 (ηk, ηk−d)V1ηη(ηαk
)F1(ηk, ηk−d)

+
1

2
θFT

w (ηk, ηk−d)V1ηη(ηαk
)Fw(ηk, ηk−d)

+
1

2
ηTk V1ηη(ηαk

)ηk + FT
2 (ηk, ηk−d)F2(ηk, ηk−d)

−FT
1 (ηk, ηk−d)V1ηη(ηαk

)ηk + V T
1η(ηk)F1(ηk, ηk−d)

− V T
1η(ηk)ηk + V2(ηk)− V2(ηk−d)

+
1

2

p∑

r=1

α2
rGrT

1 (ηk)V1ηη(ηαk
)Gr

1(ηk)

+
1

2

m∑

r=1

β2
rGrT

2 (ηk)V1ηη(ηαk
)Gr

2(ηk)

+

p∑

r=1

α2
rGrT

3 (ηk)Gr
3(ηk)

}

(22)

wherev∗k = A −1(ηk, ηαk
)BT (ηk, ηαk

, ηk−d). Noticing (17),
it follows from (22) that

E
{
V (ζk+1)− V (ζk) + ‖zk‖2 − γ2‖vk‖2

}

≤E

{
B(ηk, ηαk

, ηk−d)A
−1(ηk, ηαk

)BT (ηk, ηαk
, ηk−d)

+
1

2
FT

1 (ηk, ηk−d)V1ηη(ηαk
)F1(ηk, ηk−d)

+
1

2
θFT

w (ηk, ηk−d)V1ηη(ηαk
)Fw(ηk, ηk−d)

+
1

2
ηTk V1ηη(ηαk

)ηk + FT
2 (ηk, ηk−d)F2(ηk, ηk−d)

−FT
1 (ηk, ηk−d)V1ηη(ηαk

)ηk + V T
1η(ηk)F1(ηk, ηk−d)

− V T
1η(ηk)ηk + V2(ηk)− V2(ηk−d)

+
1

2

p∑

r=1

α2
rGrT

1 (ηk)V1ηη(ηαk
)Gr

1 (ηk)

+
1

2

m∑

r=1

β2
rGrT

2 (ηk)V1ηη(ηαk
)Gr

2 (ηk)

+

p∑

r=1

α2
rGrT

3 (ηk)Gr
3 (ηk)

}

=E {J (ηk, ηαk
, ηk−d)} ,

and then it can be seen from (18) that

E
{
V (ζk+1)− V (ζk) + ‖zk‖2 − γ2‖vk‖2

}
≤ 0. (23)

Under the zero-initial condition, summing up (23) from0 to∞
with respect tok and consideringE{V (ζ∞)} ≥ 0, we obtain

∞∑

k=0

E{‖zk‖2} ≤ γ2
∞∑

k=0

E{‖vk‖2}

which means that the desiredH∞ performance requirement is
achieved and therefore the proof of Theorem 1 is complete.

Remark 1: In Theorem 1, a very general condition de-
scribed by a second-order nonlinear inequality has been
derived to guarantee theH∞ performance as well as the
stochastic stability of the closed-loop system (11). Such a
nonlinear inequality, although it is difficult to solved, will play
a theoretically significant role in the analysis and synthesis of
H∞ control problems. Based on Theorem 1, the corresponding
H∞ control problems for some special classes of nonlinear
systems can be solved effectively. Take the polynomial non-
linear system as an example. One just needs to choose the
Lyapunov function as a positive homogeneous polynomial.
Then, by using the result in Theorem 1 together with the
technique of complete square matricial representation (SMR)
[3], the existence condition of the desiredH∞ controllers can
be formulated in terms of the feasibility problem for a linear
matrix inequality (LMI), which can be readily verified by the
available SOS (sum of squares) solvers [3].

In order to derive more tractable sufficient conditions, in the
sequel, we take the real-valued functions asV1(η) = ηTPη
and V2(η) = ηTQη where P and Q are positive definite
matrices. The following corollary is obtained directly from
Theorem 1.

Corollary 1: Let the disturbance attenuation levelγ > 0 be
given. If there exist two positive definite matricesP = PT > 0
andQ = QT > 0 satisfying the following conditions for all
nonzeroη, ηd ∈ R

2n:

A(η) = γ2I −HT
1 (η)PH1(η)−HT

2 (η)H2(η) > 0, (24)

H (η, ηd)

:= B(η, ηd)A
−1(η)BT (η, ηd) + FT

1 (η, ηd)PF1(η, ηd)

+θFT
w (η, ηd)PFw(η, ηd) + FT

2 (η, ηd)F2(η, ηd)

+

p∑

r=1

α2
rGrT

1 (η)PGr
1(η) +

m∑

r=1

β2
rGrT

2 (η)PGr
2 (η)

+

p∑

r=1

α2
rGrT

3 (η)Gr
3 (η) + ηT (Q − P )η − ηTd Qηd

≤ 0, (25)

where

B(η, ηd) = FT
1 (η, ηd)PH1(η) + FT

2 (η, ηd)H2(η) (26)

with αr andβr defined in Theorem 1, then the system (11)
with vk = 0 is stochastically stable and the controlled output
zk satisfies theH∞ criterion (13) for all nonzerovk under the
zero-initial condition.

Remark 2:From (24)-(26), it can be observed that the
inequalities of Corollary 1 are dependent on both the missing
probability and the quantization effects∆k and ∆̄k. If the
quantization effects are taken as∆k = 0 and ∆̄k = 0, one
can immediately obtain a sufficient condition to guarantee
that the system without quantization effect (whenvk = 0)
is stochastically stable while achieving theH∞ performance
constraint for all admissible missing observations and nonzero
exogenous disturbances under the zero-initial condition.Such
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an problem forlinear deterministicsystem has been investi-
gated in [24], [27], where the data missing phenomena have
been modeled by one stochastic variable only. Obviously,
Corollary 1 generalize the results in [24], [27].

Remark 3: If γ̄i = 1 (1 ≤ i ≤ m) andξ̄j = 1 (1 ≤ j ≤ p),
i.e., the data missing phenomena do not arise, then a sufficient
condition is easily obtained from Corollary 1 to make sure
that the system without data missing (whenvk = 0) is
stochastically stable with a guaranteedH∞ performance index
for nonzero exogenous disturbances under the zero-initial
condition. Similar results forlinear deterministicsystem can
be found in [9].

Corollary 1 provides a sufficient condition which guarantees
theH∞ performance as well as the stochastic stability of the
closed-loop system (11). However, it should be pointed out that
the condition in Corollary 1 is dependent on the quantization
effects∆k and ∆̄k, which results in significant difficulty in
checking such a sufficient condition in practice. Fortunately,
the quantization effects of the logarithmic type quantizers can
be transformed into sector bound uncertainties. In fact, by
defining Λ̄ = diag{δ̄1, · · · , δ̄p}, Λ = diag{δ1, · · · , δm} and
Fk = diag{∆̄kΛ̄

−1,∆kΛ
−1}, we can obtain an unknown real-

valued time-varying matrixFk satisfyingFkF
T
k = FT

k Fk ≤ I.
In what follows, we are devoted to eliminating the quantization
effects and establishing some conditions that can be solved
effectively. For this purpose, the coefficients of the system
(11) are rewritten as follows:

F1(ηk, ηk−d) = A1(ηk, ηk−d) + (S1(ηk) + S2(ηk))FkT1(ηk),
H1(ηk) = B1(ηk) + S2(ηk)FkT2(ηk),
F2(ηk, ηk−d) = A2(ηk, ηk−d) + S3(ηk)FkT3(ηk),
Gr
1(ηk) = Cr

1(ηk) + S1(ηk)FkT r
4 (ηk),

Gr
2(ηk) = Cr

2(ηk) + S2(ηk)FkT r
5 (ηk),

Gr
3(ηk) = Cr

3(ηk) + S3(ηk)FkT r
4 (ηk),

where

A1(ηk, ηk−d) =

[
f1(xk, xk−d) + g1(xk)Ξ̄uc(x̂k)

fc(x̂k) + gc(x̂k)Γ̄l(xk)

]
,

B1(ηk) =

[
h1(xk)

gc(x̂k)k(xk)

]
, T1(ηk) =

[
Λ̄Ξ̄uc(x̂k)
ΛΓ̄l(xk)

]
,

T2(ηk) =
[

0
Λk(xk)

]
, Cr

1(ηk) =

[
g1(xk)C

r
puc(x̂k)
0

]
,

T3(ηk) =
[
Λ̄Ξ̄uc(x̂k)

0

]
, Cr

2(ηk) =

[
0

gc(x̂k)C
r
ml(xk)

]
,

T r
4 (ηk) =

[
Λ̄Cr

puc(x̂k)
0

]
, T r

5 (ηk) =

[
0

ΛCr
ml(xk)

]
,

A2(ηk, ηk−d) = f2(xk, xk−d) + g2(xk)Ξ̄uc(x̂k),

Cr
3(ηk) = g2(xk)C

r
puc(x̂k), S1(ηk) = diag{g1(xk), 0},

S2(ηk) = diag{0, gc(x̂k)}, S3(ηk) =
[
g2(xk) 0

]
.

(27)

Before giving the next theorem, we firstly recall some well-
known lemmas.

Lemma 2: [26]:For any matricesA,H , E andU = UT of
appropriate dimensions, there exists a positive definite matrix
X such that(A + HFE)TX(A + HFE) + U < 0 holds
for all F satisfyingFTF ≤ I if and only if there exists a

positive constantα > 0 such thatα−1I − HTXH > 0 and
AT (X−1 − αHHT )−1A+ α−1ETE + U < 0.

Lemma 3: [25]: Assume that the matricesA, H , E and
F are given withFFT ≤ I. Let X be a symmetric positive
definite matrix andα > 0 be an arbitrary constant such that
α−1I − EXET > 0. Then, we have(A + HFE)X(A +
HFE)T ≤ A(X−1 − αETE)−1AT + α−1HHT .

Lemma 4:Let x ∈ R
n, y ∈ R

n and ε > 0. Then we have
2xT y ≤ εxTx+ ε−1yT y.

The following theorem provides a sufficient condition that
is independent of the quantization effects∆k and ∆̄k but
still guarantees theH∞ performance as well as the stochastic
stability of the closed-loop system (11) for the given two
quantizersq(·) and q̄(·).

Theorem 2:Consider the system (1). For a given distur-
bance attenuation levelγ > 0 and two quantizersq(·) and
q̄(·), if there exist two positive definite matricesPT = P > 0,
QT = Q > 0 and two positive scalarsε1 > 0, ε2 > 0
satisfying

γ2I − ε2T T
2 (η)T2(η)> 0, (28)

R−1 − Ω(η)− ε1S̃1(η)S̃T
1 (η)> 0 (29)

for all η ∈ R
2n, and

H̃ (η, ηd)

:= ÃT (η, ηd)
(
R−1 − Ω(η)− ε1S̃1(η)S̃T

1 (η)
)−1

Ã(η, ηd)

+CT
1c(η)

(
P−1
p − ε1S1p(η)ST

1p(η)
)−1 C1c(η)

+CT
2c(η)

(
P−1
m − ε1S2m(η)ST

2m(η)
)−1 C2c(η)

+CT
3c(η)

(
I − ε1S3p(η)ST

3p(η)
)−1 C3c(η)

+ε−1
1 T T

1 (η)T1(η) + ε−1
1 T T

3 (η)T3(η)
+2ε−1

1 T T
1c (η)T1c(η) + ε−1

1 T T
2c (η)T2c(η)

+U(η, ηd)
< 0 (30)

for all nonzeroη, ηd ∈ R
2n, where

Ã(η, ηd) =
[
AT

1 (η, ηd) AT
2 (η, ηd)

]T
, Pp = diagp{P},

S̃1(η) = diag{S1(η) + S2(η),S3(η)} , Pm = diagm{P},
S̃2(η) =

[
ST
2 (η) 0

]T
, B̃(η) =

[
BT
1 (η) HT

2 (η)
]T
,

S1p(η) = diagp{S1(η)}, S2m(η) = diagm{S2(η)},
S3p(η) = diagp{S3(η)}, R = diag{P, I},
C1c(η) =

[
α1C1T

1 (η) · · · αpCpT
1 (η)

]T
,

T1c(η) =
[
α1T 1T

4 (η) · · · αpT pT
4 (η)

]T
,

C2c(η) =
[
β1C1T

2 (η) · · · βmCmT
2 (η)

]T
,

T2c(η) =
[
β1T 1T

5 (η) · · · βmT mT
5 (η)

]T
,

C3c(η) =
[
α1C1T

3 (η) · · · αpCpT
3 (η)

]T
,

Ω(η) = B̃(η)
(
γ2I − ε2T T

2 (η)T2(η)
)−1 B̃T (η)

+ε−1
2 S̃2(η)S̃T

2 (η),

U(η, ηd) = θFT
w (η, ηd)PFw(η, ηd) + ηT (Q − P )η

−ηTd Qηd, (31)
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for some nonlinear parameter-functionsfc, gc and uc, then
the quantized nonlinear stochasticH∞ control problem for
the system (1) is solved by the controller (5).

Proof: For presentation convenience, we first define

F̃(η, ηd) =
[
FT

1 (η, ηd) FT
2 (η, ηd)

]T
,

H̃(η) =
[
HT

1 (η) HT
2 (η)

]T
.

After some manipulations, we have

F̃(η, ηd) = Ã(η, ηd) + S̃1(η)F̃ T̃ (η), (32)

H̃(η) = B̃(η) + S̃2(η)FT2(η) (33)

where T̃ (η) =
[
T T
1 (η) T T

3 (η)
]T

, F̃ = diag{F, F} and
Ã(η, ηd), B̃(η), S̃1(η), S̃2(η) are defined in (31).

By applying Schur complement, it is known that the condi-
tion (28) is equivalent to

ε−1
2 I − γ−2T2(η)T T

2 (η) > 0.

Hence, it follows from Lemma 3 that

γ−2H̃(η)H̃T (η) ≤ Ω(η) (34)

whereΩ(η) is defined in (31). In addition, it can be easily
seen from (29) that

R−1 − Ω(η) > 0. (35)

Consequently, from (34)-(35), we have

R−1 − γ−2H̃(η)H̃T (η) > 0

which is obviously equivalent to (24) in Corollary 1.
On the other hand, we rewriteH (η, ηd) as the following

compact form:

H (η, ηd)

=F̃T (η, ηd)RH̃(η)
(
γ2I − H̃T (η)RH̃(η)

)−1

H̃T (η)R

× F̃(η, ηd) + F̃T (η, ηd)RF̃(η, ηd) + GT
1c(η)PpG1c(η)

+ GT
2c(η)PmG2c(η) + GT

3c(η)G3c(η) + U(η, ηd)

where

G1c(η) = C1c(η) + S1p(η)FpT1c(η), (36)

G2c(η) = C2c(η) + S2m(η)FmT2c(η), (37)

G3c(η) = C3c(η) + S3p(η)FpT1c(η) (38)

with Fp = diagp{F}, Fm = diagm{F} andU(η, ηd), C1c(η),
C2c(η), C3c(η), S1p(η), S2m(η), S3p(η), T1c(η), T2c(η) are
defined in (31). Then, in virtue of the Matrix Inverse Lemma,
we obtain

H (η, ηd)

=F̃T (η, ηd)
(
R−1 − γ−2H̃(η)H̃T (η)

)−1

F̃(η, ηd)

+ GT
1c(η)PpG1c(η) + GT

2c(η)PmG2c(η)

+ GT
3c(η)G3c(η) + U(η, ηd).

(39)

Noting (34) and (35), it follows from (39) that

H (η, ηd)

:= F̃T (η, ηd)
(
R−1 − Ω(η)

)−1 F̃(η, ηd) + GT
1c(η)PpG1c(η)

+GT
2c(η)PmG2c(η) + GT

3c(η)G3c(η) + U(η, ηd)
≥ H (η, ηd). (40)

Next, let us “eliminate” the uncertainties in (40) by using
Lemma 2. From (29), we have

ε−1
1 I − S̃T

1 (η)
(
R−1 − Ω(η)

)−1 S̃1(η) > 0. (41)

ConsideringΩ(η) ≥ 0, it can also be obtained from (29) that
R−1 − ε1S̃1(η)S̃T

1 (η) > 0, which results in

I − ε1S3(η)ST
3 (η)> 0, (42)

P−1 − ε1 (S1(η) + S2(η)) (S1(η) + S2(η))
T > 0. (43)

Noting S1(η)ST
2 (η) = 0, we know that (43) implies

P−1 − ε1S1(η)ST
1 (η)> 0, (44)

P−1 − ε1S2(η)ST
2 (η)> 0. (45)

After using Schur complement again and conducting the
augmented manipulation, it can be seen that (42), (44) and
(45) are equivalent to

ε−1
1 I − ST

3p(η)S3p(η)> 0, (46)

ε−1
1 I − ST

1p(η)PpS1p(η)> 0, (47)

ε−1
1 I − ST

2m(η)PmS2m(η)> 0, (48)

respectively. Subsequently, by Lemma 2, we know that under
the conditions (41), (46)-(48) together with (30), the inequality
H (η, ηd) < 0 is true, which impliesH (η, ηd) < 0 from (40).
So far, (24) and (25) in Corollary 1 have been shown to hold.
Therefore, the rest of the proof can be directly obtained from
Corollary 1, which is omitted here.

Before giving further results, we make the following as-
sumption on the plant (1) for the purpose of simplicity.

Assumption 1:The system matricesh1(x), h2(x) andk(x)
are assumed to satisfy

h1(x)h
T
2 (x) = 0, (49)

h1(x)k
T (x) = 0, (50)

h2(x)k
T (x) = 0. (51)

Remark 4:Assumption 1 means that the measurement
noise, the output noise and the system noise are mutually
independent. Similar assumptions can be found in [1], [7].

Theorem 3:Let the disturbance attenuation levelγ > 0, the
two quantizersq(·), q̄(·) and the controller parameter-functions
fc, gc, uc be given. The quantized nonlinear stochasticH∞

control problem for the system (1) is solved by the controller
(5), if there exist positive definite matricesPT

1 = P1 > 0,
PT
2 = P2 > 0, QT

1 = Q1 > 0, QT
2 = Q2 > 0 and positive

scalarsε1 > 0, ε2 > 0, λ > 0 satisfying the following
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inequalities:

γ2I − ε2k
T (x)Λ2k(x) ≥ λI, (52)

Φ1(x) := P−1
1 − λ−1h1(x)h

T
1 (x) − ε1g1(x)g

T
1 (x) > 0, (53)

Φ2(x, x̂) := P−1
2 − λ−1gc(x̂)k(x)k

T (x)gTc (x̂)

−(ε1 + ε−1
2 )gc(x̂)g

T
c (x̂) > 0, (54)

Φ3(x) := I − λ−1h2(x)h
T
2 (x) − ε1g2(x)g

T
2 (x) > 0 (55)

for all x, x̂ ∈ R
n, and

Ĥ (x, xd, x̂, x̂d)

:=W1(x, xd, x̂) +W2(x, x̂) + 2W3(x, xd, x̂) + U(η, ηd)
<0

for all nonzerox, x̂, xd, x̂d ∈ R
n, where

W1(x, xd, x̂)

= fT
1 (x, xd)Φ

−1
1 (x)f1(x, xd) + fT

c (x̂)Φ−1
2 (x, x̂)fc(x̂)

+fT
2 (x, xd)Φ

−1
3 (x)f2(x, xd)

+uTc (x̂)Ξ̄g
T
1 (x)Φ

−1
1 (x)g1(x)Ξ̄uc(x̂)

+lT (x)Γ̄gTc (x̂)Φ
−1
2 (x, x̂)gc(x̂)Γ̄l(x)

+uTc (x̂)Ξ̄g
T
2 (x)Φ

−1
3 (x)g2(x)Ξ̄uc(x̂)

+2ε−1
1 ‖Λ̄Ξ̄uc(x̂)‖2 + ε−1

1 ‖ΛΓ̄l(x)‖2,
W2(x, x̂)

=

p∑

r=1

α2
ru

T
c (x̂)C

r
pg

T
1 (x)Ψ

−1
1 (x)g1(x)C

r
puc(x̂)

+
m∑

r=1

β2
r l

T (x)Cr
mg

T
c (x̂)Ψ

−1
2 (x̂)gc(x̂)C

r
ml(x)

+

p∑

r=1

α2
ru

T
c (x̂)C

r
pg

T
2 (x)Ψ

−1
3 (x)g2(x)C

r
puc(x̂)

+2ε−1
1

p∑

r=1

α2
r‖Λ̄Cr

puc(x̂)‖2 + ε−1
1

m∑

r=1

β2
r‖ΛCr

ml(x)‖2,

W3(x, xd, x̂)

= fT
1 (x, xd)Φ

−1
1 (x)g1(x)Ξ̄uc(x̂)

+fT
c (x̂)Φ−1

2 (x, x̂)gc(x̂)Γ̄l(x)

+fT
2 (x, xd)Φ

−1
3 (x)g2(x)Ξ̄uc(x̂),

U(η, ηd)
= θfT

w (x, xd)P1fw(x, xd) + xT (Q1 − P1)x

+x̂T (Q2 − P2)x̂ − xTdQ1xd − x̂TdQ2x̂d, (56)

with

Ψ1(x) = P−1
1 − ε1g1(x)g

T
1 (x),

Ψ2(x̂) = P−1
2 − ε1gc(x̂)g

T
c (x̂),

Ψ3(x) = I − ε1g2(x)g
T
2 (x).

Proof: Let P = diag{P1, P2} andQ = diag{Q1, Q2}. It
follows from (27) that (52) is equivalent to

γ2I − ε2T T
2 (η)T2(η) ≥ λI

which means (28) is guaranteed by (52).

Under Assumption 1 and by a series of computations, it can
be obtained from (52) that

R−1 − Ω(η)− ε1S̃1(η)S̃T
1 (η)

≥



Φ1(x) 0 0
0 Φ2(x, x̂) 0
0 0 Φ3(x)


 .

(57)

Hence, (29) is obtained from (53)-(55).
Now, it remains to show thatH̃ (η, ηd) < 0. Considering

(27) and (31), it follows from (57) that

ÃT (η, ηd)
(
R−1 − Ω(η)− ε1S̃1(η)S̃T

1 (η)
)−1

Ã(η, ηd)

≤ fT
1 (x, xd)Φ

−1
1 (x)f1(x, xd) + fT

c (x̂)Φ−1
2 (x, x̂)fc(x̂)

+fT
2 (x, xd)Φ

−1
3 (x)f2(x, xd) + uTc (x̂)Ξ̄g

T
1 (x)Φ

−1
1 (x)

×g1(x)Ξ̄uc(x̂) + lT (x)Γ̄gTc (x̂)Φ
−1
2 (x, x̂)gc(x̂)Γ̄l(x)

+uTc (x̂)Ξ̄g
T
2 (x)Φ

−1
3 (x)g2(x)Ξ̄uc(x̂) + 2

(
fT
1 (x, xd)

×Φ−1
1 (x)g1(x)Ξ̄uc(x̂) + fT

c (x̂)Φ−1
2 (x, x̂)gc(x̂)Γ̄l(x)

+fT
2 (x, xd)Φ

−1
3 (x)g2(x)Ξ̄uc(x̂)

)
. (58)

By some straightforward manipulations and noting that
Ψ1(x) > 0, Ψ2(x̂) > 0 andΨ3(x) > 0 from (53)-(55), one
can obtain

T T
1 (η)T1(η) = ‖Λ̄Ξ̄uc(x̂)‖2 + ‖ΛΓ̄l(x)‖2,

T T
3 (η)T3(η) = ‖Λ̄Ξ̄uc(x̂)‖2,

T T
1c (η)T1c(η) =

p∑

r=1

α2
r‖Λ̄Cr

puc(x̂)‖2,

T T
2c (η)T2c(η) =

m∑

r=1

β2
r‖ΛCr

ml(x)‖2,

CT
1c(η)

(
P−1
p − ε1S1p(η)ST

1p(η)
)−1 C1c(η)

=

p∑

r=1

α2
ru

T
c (x̂)C

r
pg

T
1 (x)Ψ

−1
1 (x)g1(x)C

r
puc(x̂),

CT
2c(η)

(
P−1
m − ε1S2m(η)ST

2m(η)
)−1 C2c(η)

=

m∑

r=1

β2
r l

T (x)Cr
mg

T
c (x̂)Ψ

−1
2 (x̂)gc(x̂)C

r
ml(x),

CT
3c(η)

(
I − ε1S3p(η)ST

3p(η)
)−1 C3c(η)

=

p∑

r=1

α2
ru

T
c (x̂)C

r
pg

T
2 (x)Ψ

−1
3 (x)g2(x)C

r
puc(x̂),

U(η, ηd)
= θfT

w (x, xd)P1fw(x, xd) + xT (Q1 − P1)x

+x̂T (Q2 − P2)x̂ − xTdQ1xd − x̂TdQ2x̂d. (59)

It can be obtained from (58) and (59) that̃H (η, ηd) ≤
Ĥ (x, xd, x̂, x̂d) < 0. Therefore, the proof of this theorem
follows immediately from that of Theorem 2.

In practice, the matrix functionsh1(x), h2(x), g1(x), g2(x)
andk(x) are usually taken as constant matrices as follows

h1(x) = H1, h2(x) = H2, g1(x) = G1,

G2(x) = G2, k(x) = K,
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and it is assumed that

H1H
T
2 = 0, H1K

T = 0, H2K
T = 0. (60)

Furthermore, considering the issue of easy implementation,
linear time-invariant controlleris often designed in practical
engineering. In view of this, we are going to show that the
main results obtained so far can be directly specialized to the
system with linear controller. We adopt the following linear
observer-based controller

{
x̂k+1 = Fcx̂k +Gcȳk,

ūk = Ucx̂k, x̂0 = 0
(61)

whereFc, Gc andUc are the parameter-matrices to be deter-
mined.

Corollary 2: Let the disturbance attenuation levelγ > 0,
two quantizersq(·), q̄(·) and the controller parameter-matrices
Fc, Gc, Uc be given. If there exist positive definite matrices
PT
1 = P1 > 0, PT

2 = P2 > 0, QT
1 = Q1 > 0, QT

2 = Q2 > 0
and positive scalarsε1 > 0, ε2 > 0, ε3 > 0, λ > 0, µ > 0
satisfying the following inequalities:

γ2I − ε2K
TΛ2K ≥ λI, (62)

Φ1 := P−1
1 − λ−1H1H

T
1 − ε1G1G

T
1 ≥ µI, (63)

Φ2 := P−1
2 − λ−1GcKK

TGT
c − (ε1 + ε−1

2 )GcG
T
c ≥ µI,(64)

Φ3 := I − λ−1H2H
T
2 − ε1G2G

T
2 ≥ µI, (65)

H1 := µ−1(1 + ε−1
3 )UT

c Ξ̄(GT
1 G1 +GT

2G2)Ξ̄Uc

+µ−1

p∑

r=1

α2
rU

T
c C

r
p(G

T
1G1 +GT

2 G2)C
r
pUc

+µ−1(1 + ε3)F
T
c Fc + 2ε−1

1

p∑

r=1

α2
rU

T
c C

r
p Λ̄

2Cr
pUc

+2ε−1
1 UT

c Ξ̄Λ̄2Ξ̄Uc +Q2 − P2 < 0, (66)

and

H2(x, xd)

:= µ−1
(
1 + ε3

)(
‖f1(x, xd)‖2 + ‖f2(x, xd)‖2

)

+µ−1
(
1 + ε−1

3

)
‖GcΓ̄l(x)‖2 + ε−1

1 ‖ΛΓ̄l(x)‖2

+µ−1
m∑

r=1

β2
r‖GcC

r
ml(x)‖2 + ε−1

1

m∑

r=1

β2
r‖ΛCr

ml(x)‖2

+θfT
w (x, xd)P1fw(x, xd) + xT (Q1 − P1)x − xTdQ1xd

< 0 (67)

for all nonzerox, xd ∈ R
n, then the quantized nonlinear

stochasticH∞ control problem for the system (1) is solved
by the controller (61).

Proof: Under the assumption (60), the inequalities (52)-
(55) follow from (62)-(65) by replacingH1, H2, G1, G2,
K andGc with h1(x), h2(x), g1(x), g2(x), k(x) andgc(x̂),
respectively. Also, it follows from (63)-(65) that

W1(x, xd, x̂)

≤µ−1
(
‖f1(x, xd)‖2 + ‖Fcx̂‖2 + ‖f2(x, xd)‖2

+ ‖G1Ξ̄Ucx̂‖2 + ‖GcΓ̄l(x)‖2 + ‖G2Ξ̄Ucx̂‖2
)

+ 2ε−1
1 ‖Λ̄Ξ̄Ucx̂‖2 + ε−1

1 ‖ΛΓ̄l(x)‖2.

(68)

Noting that (63)-(65) implyΨ1(x) ≥ µI, Ψ2(x̂) ≥ µI and
Ψ3(x) ≥ µI, respectively, one has

W2(x, x̂)

≤µ−1
( p∑

r=1

α2
r‖G1C

r
pUcx̂‖2 +

m∑

r=1

β2
r‖GcC

r
ml(x)‖2

+

p∑

r=1

α2
r‖G2C

r
pUcx̂‖2

)
+ 2ε−1

1

p∑

r=1

α2
r‖Λ̄Cr

pUcx̂‖2

+ ε−1
1

m∑

r=1

β2
r‖ΛCr

ml(x)‖2.

(69)

By Lemma 4, it follows from (63)-(65) that

W3(x, xd, x̂)

≤1

2
µ−1

(
ε3(‖f1(x, xd)‖2 + ‖Fcx̂‖2 + ‖f2(x, xd)‖2)

+ ε−1
3 (‖G1Ξ̄Ucx̂‖2 + ‖GcΓ̄l(x)‖2 + ‖G2Ξ̄Ucx̂‖2)

)
.

(70)

Consequently, it can be obtained from (68)-(70) together with
(56) that

Ĥ (x, xd, x̂, x̂d) ≤ x̂TH1x̂+ H2(x, xd)− x̂TdQ2x̂d.

In view of (66)-(67) and noticingQ2 > 0, we have
Ĥ (x, xd, x̂, x̂d) < 0 for all nonzerox, x̂, xd, x̂d ∈ R

n.
Therefore, the rest of the proof follows from that of Theorem
3 immediately.

Remark 5:Note that Theorem 3 is proved mainly by the
“completing the square” technique which results in very little
conservatism.

IV. SOME SPECIAL CASES

In this section, we aim to show that Theorem 3 can be
specialized to the following two kinds of stochastic systems
that have been extensively studied in the literature: 1) systems
with Lipschitz-type nonlinearities; and 2) systems with sector-
bounded nonlinearities.

Case 1. We first consider a special class of nonlinear
stochastic systems with nonlinearities described by Lipschitz
condition. For this purpose, we assume that

f1(x, xd) = A1x+A1dxd + Eψ(x) + Edψd(xd), (71)

f2(x, xd) = A2x+A2dxd, l(x) = Lx, (72)

fw(x, xd) = Awx+Awdxd, (73)

whereAi, Aid (i = 1, 2), E, Ed, Aw, Awd andL are known
real matrices. The nonlinear termsψ(x) and ψd(xd) satisfy
the Lipschitz conditions‖ψ(x)‖ ≤ ‖Mx‖ and ‖ψd(xd)‖ ≤
‖Mdxd‖, whereM andMd are given real matrices.

Corollary 3: Let the disturbance attenuation levelγ > 0 be
given. The quantized nonlinear stochasticH∞ control problem
for the system (1) with the nonlinearities bounded by Lipschitz
conditions‖ψ(x)‖ ≤ ‖Mx‖ and ‖ψd(xd)‖ ≤ ‖Mdxd‖ is
solved by the linear observer-based controller (61) if there
exist positive definite matricesPT

1 = P1 > 0, RT
2 = R2 > 0,

QT
1 = Q1 > 0, Q̃T

2 = Q̃2 > 0, real matricesX , Gc, Y , and
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positive scalarsκ1 > 0, κ2 > 0, ε2 > 0, λ > 0 such that the
following LMIs hold for given positive scalarsε1 > 0, ε3 > 0
andµ > 0:

γ2I − ε2K
TΛ2K ≥ λI, (74)




−P1 P1H1 P1G1 P1

∗ −λI 0 0
∗ ∗ −ε−1

1 I 0
∗ ∗ ∗ −µ−1I


 < 0, (75)




−R2 GcK Gc Gc I
∗ −λI 0 0 0
∗ ∗ −ε−1

1 I 0 0
∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ −µ−1I



< 0, (76)




−I H2 G2 I
∗ −λI 0 0
∗ ∗ −ε−1

1 I 0
∗ ∗ ∗ −µ−1I


 < 0, (77)

[
Q̃2 − R2 Θ12

∗ Θ22

]
< 0, (78)




Π11 Π12 Π13 θAT
wP1 Π15

∗ Π22 Π23 θAT
wdP1 0

∗ ∗ Π33 0 0
∗ ∗ ∗ −θP1 0
∗ ∗ ∗ ∗ Π55



< 0, (79)

where

Θ12 =
[
XT Ξ̄GT

1 XT Ξ̄GT
2 XTCT

pcG
T
1p

XTCT
pcG

T
2p Y T XTCT

pcΛ̄p XT Ξ̄Λ̄
]
,

Θ22 = diag

{
− µI

1 + ε−1
3

,− µI

1 + ε−1
3

,−µI,

−µI,− µI

1 + ε3
,−ε1

2
,−ε1

2

}
,

Π11 = µ−1
(
1 + ε3

)(
AT

1 A1 +AT
2 A2

)
+Q1 − P1

+ ε−1
1 LT Γ̄Λ2Γ̄L+ ε−1

1 LTCT
mcΛ

2
mCmcL

+ κ1M
TM,

Π12 = µ−1
(
1 + ε3

)(
AT

1 A1d +AT
2 A2d

)
,

Π13 = µ−1
(
1 + ε3

) [
AT

1 E AT
1 Ed

]
,

Π15 =
[
LT Γ̄GT

c LTCT
mcG

T
cm

]
,

Π22 = µ−1
(
1 + ε3

)(
AT

1dA1d +AT
2dA2d

)
−Q1

+ κ2M
T
d Md,

Π23 = µ−1
(
1 + ε3

) [
AT

1dE AT
1dEd

]
,

Π33 =

[
µ−1

(
1 + ε3

)
ETE − κ1I
∗

µ−1
(
1 + ε3

)
ETEd

µ−1
(
1 + ε3

)
ET

d Ed − κ2I

]
,

Π55 = diag{− µI

1 + ε−1
3

,−µI}, G1p = diagp{G1},

G2p = diagp{G2}, Gcm = diagm{Gc},
Λ̄p = diagp{Λ̄}, Λm = diagm{Λ},
Cpc =

[
α1C1

p α2C2
p · · · αpCp

p

]T
,

Cmc =
[
β1C

1
m β2C

2
m · · · βmC

m
m

]T
.

Moreover, if the LMIs (74)-(79) are feasible, the desired
controller parameters are given byFc = Y R−1

2 , Gc and
Uc = XR−1

2 .
Proof: SettingR2 = P−1

2 , Q̃2 = P−1
2 Q2P

−1
2 , X =

UcR2, Y = FcR2 and applying Schur complement together
with some algebraic manipulations, (63)-(66) follow directly
from (75)-(78), respectively.

Letting

ϑ =
[
x xd ψ(x) ψd(xd)

]T

and noting (71)-(73), (67) can be rewritten as

H2(x, xd) = ϑTΥ1ϑ

where

Υ1 =


Σ11 Σ12 µ−1
(
1 + ε3

)
AT

1 E µ−1
(
1 + ε3

)
AT

1 Ed

∗ Σ22 µ−1
(
1 + ε3

)
AT

1dE µ−1
(
1 + ε3

)
AT

1dEd

∗ ∗ µ−1
(
1 + ε3

)
ETE µ−1

(
1 + ε3

)
ETEd

∗ ∗ ∗ µ−1
(
1 + ε3

)
ET

d Ed


 ,

Σ11 =µ−1
(
1 + ε3

)(
AT

1 A1 +AT
2 A2

)
+ θAT

wP1Aw

+Q1 − P1 + µ−1
(
1 + ε−1

3

)
LT Γ̄GT

c GcΓ̄L

+ ε−1
1 LT Γ̄Λ2Γ̄L+ ε−1

1 LTCT
mcΛ

2
mCmcL

+ µ−1LTCT
mcG

T
cmGcmCmcL,

Σ12 =µ−1
(
1 + ε3

)(
AT

1 A1d +AT
2 A2d

)
+ θAT

wP1Awd,

Σ22 =µ−1
(
1 + ε3

)(
AT

1dA1d +AT
2dA2d

)

+ θAT
wdP1Awd −Q1.

From the conditions‖ψ(x)‖ ≤ ‖Mx‖ and ‖ψd(xd)‖ ≤
‖Mdxd‖, it can be easily seen that

H2(x, xd) ≤ϑTΥ1ϑ+ κ1

[
x

ψ(x)

]T [
MTM 0

0 −I

] [
x

ψ(x)

]

+ κ2

[
xd

ψd(xd)

]T [
MT

d Md 0
0 −I

] [
xd

ψd(xd)

]

=ϑTΥ2ϑ

where

Υ2 =




Σ11 + κ1M
TM Σ12

∗ Σ22 + κ2M
T
d Md

∗ ∗
∗ ∗

µ−1
(
1 + ε3

)
AT

1 E µ−1
(
1 + ε3

)
AT

1 Ed

µ−1
(
1 + ε3

)
AT

1dE µ−1
(
1 + ε3

)
AT

1dEd

µ−1
(
1 + ε3

)
ETE − κ1I µ−1

(
1 + ε3

)
ETEd

∗ µ−1
(
1 + ε3

)
ET

d Ed − κ2I


 .
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By Schur complement, (79) is equivalent toΥ2 < 0, which
implies H2(x, xd) < 0. Therefore, the proof of this corollary
is accomplished in virtue of Corollary 2.

Case 2. Let us now deal with the nonlinear termsψ(x) and
ψd(xd) described by the following sector-bounded conditions
that are more general than the Lipschitz-like ones:

(ψ(x) − Ux)T (ψ(x)− V x)≤ 0, (80)

(ψd(xd)− Udxd)
T (ψd(xd)− Vdxd)≤ 0, (81)

whereU , V , Ud, Vd are known real constant matrices, and
U − V , Ud − Vd are symmetric positive definite matrices.

In order to obtain the corresponding results for Case 2,
we decompose the sector-bounded nonlinear termψ(x) and
ψd(xd) into a linear part and a nonlinear part as follows:

ψ(x) =
1

2
(U + V )x + ψ̃(x),

ψd(xd) =
1

2
(Ud + Vd)xd + ψ̃d(xd),

where‖ψ̃(x)‖ ≤ ‖ 1
2 (U − V )x‖ and ‖ψ̃d(xd)‖ ≤ ‖ 1

2 (Ud −
Vd)xd‖.

Letting

Ã1 = A1 +
1

2
E(U + V ), M̃ =

1

2
(U − V ),

Ã1d = A1d +
1

2
Ed(Ud + Vd), M̃d =

1

2
(Ud − Vd),

(82)

the nonlinear functionsf1(x, xd) can be rewritten as

f1(x, xd) = Ã1x+ Ã1dxd + Eψ̃(x) + Edψ̃d(xd)

where ‖ψ̃(x)‖ ≤ ‖M̃x‖ and ‖ψ̃d(xd)‖ ≤ ‖M̃dxd‖. Subse-
quently, by replacingA1, A1d, M andMd with Ã1, Ã1d, M̃
andM̃d, respectively, the following corollary can be obtained
immediately from Corollary 3.

Corollary 4: Let the disturbance attenuation levelγ > 0 be
given. The quantized nonlinear stochasticH∞ control problem
for the system (1) with the nonlinearities bounded by sector-
bounded conditions (80) and (81) is solved by linear observer-
based controller (61) if there exist positive definite matrices
PT
1 = P1 > 0, RT

2 = R2 > 0, QT
1 = Q1 > 0, Q̃T

2 = Q̃2 > 0,
real matricesX , Gc, Y , and positive scalarsκ1 > 0, κ2 > 0,
ε2 > 0, λ > 0 satisfying the LMIs (74)-(79) with

Π11 = µ−1
(
1 + ε3

)(
ÃT

1 Ã1 +AT
2 A2

)
+ ε−1

1 LT Γ̄Λ2Γ̄L

+ε−1
1 LTCT

mcΛ
2
mCmcL+ κ1M̃

T M̃ +Q1 − P1,

Π12 = µ−1
(
1 + ε3

)(
ÃT

1 Ã1d +AT
2 A2d

)
,

Π13 = µ−1
(
1 + ε3

) [
ÃT

1 E ÃT
1 Ed

]
,

Π22 = µ−1
(
1 + ε3

)(
ÃT

1dÃ1d +AT
2dA2d

)
−Q1

+κ2M̃
T
d M̃d,

Π23 = µ−1
(
1 + ε3

) [
ÃT

1dE ÃT
1dEd

]
, (83)

for given positive scalarsε1 > 0, ε3 > 0 andµ > 0, where
Θ12, Θ22, Π15, Π33, Π55, Λ̄p, Λm, G1p, G2p, Gcm, Cpc and
Cmc are defined in Corollary 3, and̃A1, Ã1d, M̃ , M̃d are
defined in (82). Moreover, if the LMIs (74)-(79) with (83)

are feasible, the desired controller parameters are given by
Fc = Y R−1

2 , Gc andUc = XR−1
2 .

Remark 6: In this paper, we first consider a very general
stochastic system (1) whereall the system parameters and
controller parametersare nonlinear functions or functionals.
In this case, sufficient conditions are given in Theorem 1 which
make sure that the system (11) is stochastically stable and
H∞ criterion in (13) is satisfied. Note that, at this stage,
the nonlinear parameters are very general since there are
no assumptions posed on them. Therefore, as expected, the
sufficient conditions established in Theorem 1 serve as a
theoretical basis forgeneral nonlinear stochastic systems. It
is shown in subsequent analysis that the fundamental results
given in Theorem 1 can be specialized to numerically tractable
ones in practical cases when the nonlinear parameters take
certain commonly used forms. Based on Theorem 1, the aim of
Theorem 2 is to provide a particular condition that eliminates
the quantization effects∆k and ∆̄k but still guarantees the
H∞ performance as well as the stochastic stability. Next,
we take some practically justifiable forms, in a gradual way,
for the nonlinear parameters with hope to obtain easy-to-
verify conditions for the addressed design problem. Under the
assumption that the measurement noise, the output noise and
the system noise are mutually independent, Theorem 3 offersa
more specific condition that ensures both the stability and the
H∞ performance, and such a condition is further simplified
in Corollary 2.

V. A N ILLUSTRATIVE EXAMPLE

Consider the following nonlinear discrete-time stochastic
system





xk+1 =
1

3
xk +

1

6
xk−1 sinxk +

1

4
vk +

1

3
uk

+
1

50
xk cosxk−1wk,

zk =
1

3
xk sinxk − 1

6
xk−1 +

1√
2
uk

(84)

with the initial conditionsϕ−1 = ϕ0 = 0. The measurement
with sensors data missing is described asyk = 1

3γkxk cosxk.
We choose the dynamic observer-based controller parame-

ters asFc = 2
7 , Gc = 1, Uc = 1

5 , and obtain the following
dynamic observer-based controller:





x̂k+1 =
2

7
x̂k + ȳk,

~uk =
1

5
ξkx̂k.

(85)

Let the probabilityγ̄ = ξ̄ = 0.8, the varianceθ = 0.25, the
disturbance attenuation levelγ = 0.85, and the disturbance
input vk = exp(−k/35) × nk where nk is uniformly dis-
tributed over[0, 0.1]. The parameters of the two logarithmic
quantizersq(·) and q̄(·) are set asχ0 = χ̄0 = 0.003 and
ρ = ρ̄ = 0.9. According to Corollary 2, it can be seen that
the controller of form (85) is a desired controller for system
(84) with parametersε1 = ε2 = ε3 = 1, λ = 0.7155, µ = 0.5,
P1 = 1.4317, P2 = 0.4, Q1 = 0.2223 andQ2 = 0.002.

Simulation results are shown in Figs. 2-4. Specifically, the
control input after quantization by quantizersq̄(·) is given in
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Fig. 2. The control input with quantization bȳq(·)
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Fig. 3. The measurement with quantization byq(·)

Fig. 2 and the measurement after quantization by quantizers
q(·) is shown in Fig. 3, which correspond to the controlled
system and the dynamic controller, respectively. Fig. 4 depicts
the simulation result of the state response of the closed-
loop system. It can be calculated that theH∞ performance
constraint is0.0469 < γ = 0.85. Therefore, this example has
verified the theories obtained in this paper.

VI. CONCLUSIONS

In this paper, the quantizedH∞ control problem has
been addressed for a class of nonlinear stochastic time-delay
network-based systems with data missing. Two logarithmic
quantizers have been employed to quantize both the measured
output and the input signals in the NCSs and one diagonal ma-
trix whose leading diagonal elements are Bernoulli distributed
stochastic variables has been used to model the data missing
phenomena. Then, we have derived a sufficient condition under
which the closed-loop system is stochastically stable and the
controlled output satisfiesH∞ performance constraint for all

0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

Time(k)

x k

Fig. 4. The state response of the closed-loop system

nonzero exogenous disturbances under the zero-initial condi-
tion by applying the method of sector bound uncertainties. For
the purpose of easy checking, the sufficient condition has been
decoupled into some inequalities. Based on that, quantized
H∞ controllers have been designed successfully for some
special classes of nonlinear stochastic time-delay systems.
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