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QuantizedH ., Control for Nonlinear Stochastic
Time-delay Systems with Missing Measurements
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Abstract—In this paper, the quantized H., control prob- it is not surprising that, in the past few years, the contra a
lem is investigated for a class of nonlinear stochastic time filtering problems of networked systems with communication
delay network-based systems with probabilistic data missg. e|ays and/or missing measurements have been extensively

A nonlinear stochastic system with state delays is employed idered b h E | trol
to model the networked control systems where the measured CONSidered by many researchers. For examplelfthecontro

output and the input signals are quantized by two logarithmc ~ Problem has been studied in [11], [12], [28] for networked

quantizers, respectively. Moreover, the data missing phesmena  systems with random communication delays, and the same
are modeled by introducing a diagonal matrix composed of problem has been considered in [24], [27] for networked sys-
Bernoulli distributed stochastic variables taking values of 1 tems with random packet losses. With respect to the filtering

and 0, which describes that the data from different sensors
may be lost with different missing probabilities. Subsequetly, problem, we refer the reader to [10], [16] for the case of

a sufficient condition is first derived in virtue of the method of Communication delays, and [19]-[21] for the case of missing
sector-bounded uncertainties, which guarantees that thelesed- measurements.
loop system is stochastically stable and the controlled optit The signal quantization is considered as another sourte tha
saisfies I, performance constraint for all nonzero exogenous 145 significant impact on the achievable performance of the
disturbances under the zero-initial condition. Then, the sfficient .
condition is decoupled into some inequalities for the conveence networ_ked systems qnd, therefore, it is necessary to conduc
of practical verification. Based on that, quantizedH .. controllers ~analysis on the quantizers and understand how much effect th
are designed successfully for some special classes of noelir quantization makes on the overall networked systems. Iy fac
stochastic time-delay systems by using Matlab linear matk  the problem of quantized control for non-networked system
inequality toolbox. Finally, a numerical simulation exame iS a5 heen reported as early as in 1990 [4]. So far, a great
exploited to show the effectiveness and applicability of th results . . .
derived. number of results have been available in the literatureesge
) . , [2], [4], [5], [8], [9], [14]. In [2], the feedback stabilizéon
_ Index Terms—Nonlinear systems; stochastic systems; discrete roplems have been considered for linear time-invariant co
time-delay systems; networked control systems;H., control; . . .
quantized control; data Missing. trol systems with saturating quantlzed measurements.4p [1
some general types of quantizers have been developed ® solv
the problem of feedback stabilization for general nonlinea
|. INTRODUCTION systems. Recently, a new type of quantizer (called logaiith
In recent years, the study of networked control Systenqgant?zer) has attracted considerable research inteBesh
(NCSs) has gradually become an active area of reseafffintizer has proven to be the coarsest one in the problem
due to their advantages in many aspects such as low c&tquadratic stabilization for discrete-time single-iysingle-
reduced weight and power requirements, simple instaifati@UtPut linear time-invariant systems using quantized tieed
and maintenance, as well as high reliability [15], [30]sltiell _unde_r the assumption that the quantizer is st_atlc and time-
known that the devices in networks are mutually connectad \Jfvariant [8]. Base on that, a number of quantized feedback
communication cables which are of limited capacity. Ther&l€sign problems have been studied in [9] for linear system,
fore, some new challenging issues have inevitably emerg¥#ere the major contribution of [9] lies that many quantized
for example, network-induced time delay, data missingo(al§93dbaCk design problems have been foun_d to be equivalent to
called packet dropout or missing measurement), quamizatﬁhe well-known robust control problems with sector-bouhde
effect, which should all be taken into account in order tgncertainties. Later, the elegant results obtained in EBjeh

achieve the required performance of the NCSs. Consequerf§en generalized to the multiple-input-multiple-outpystems
and to control design with performance constraints.
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[23], where the packet losses and quantization effect &enta

into account simultaneously. It should be noticed thatfal t | pj,p¢ Data )iQuamiZerq(.)
literature mentioned above has been concerned liigar MIssing

NCSs within adeterministidramework, and the corresponding %

results fornonlinear stochasticase are relatively few, due Network ¥
primarily to the difficulty in nonlinear analysis and stostia — Daia Sensor |
analysis. However, it is well known that nonlinearity and %Quantizerqt)‘ missingK
stochasticity are arguably two of the main causes in reality i
that have resulted in considerable system complexity, and

it seems more reasonable to model the NCSs by takipg 1
into account both the nonlinearity and the stochasticify [6 =
[22]. Unfortunately, to the best of our knowledge, quardize

H, control problem forgeneral nonlinear stochastic time- o ] )
delay network-based systems with missing measurerhasts {0 denote term that is induced by symmetry. Matrices, if they

not been fully investigated despite its potential in preadti &€ not explicitly specified, are assumed to have compatible

applications, and the purpose of this paper is therefore d§nensions.

shorten such a gap by providing a rather general framework.
The main contributions of this paper can be summarized as

follows. 1) A new quantized!., control problem is introduced ~ Consider the networked nonlinear stochastic control syste

for a class of nonlinear stochastic time-delay networkebasWith two quantizers shown in Fig. 1. The plant under consid-

systems, where the data from different sensors may be miss@fation is assumed to be of the following form

v_vith different pro_babilities. 2) Sufficient condit?ons aeetab_— Trrr =f1 (s To—a) + b (zp) vk + g1 (20w

lished under which the closed-loop system is stochasyicall

Sensor 1

Controller

Sensor p

Structure of a networked control system with two dizans

Il. PROBLEM FORMULATION AND PRELIMINARIES

+ fu(Tr, To—d) Wk,

stable and the controlled output satisfies filg performance (1)
constraint for all nonzero exogenous disturbances under ze 2k =f2(k, Tr—a) + ha(zr)vk + ga(zr)ur,
initial condition, where the nonlinear parameters are very T =pr, k=—-d,—d+1,---,0

general since there are no assumptions posed on themwﬁérexk € R” is the state vectory, € R? is the control

The sufficient conditions are applied to some special Caﬁﬁﬁut 2 € Rl is the controlled output andv, is a one-

(e.g. systems with Lipschitz-type nonlinearities and &y& ;1yansional, zero-mean Gaussian white noise sequence on a
with sector-bounded nonlinearities) so that the simplified robability spaceQ, .7, Prob) with Ew? = 6

equalities can be numerically checked more easily. Finall[))/ Let (Q, F {yk’}ke’ﬁ Prob) be g filtered probability

a numerical simulation example is used to demonstrate tg‘ﬁace wherd.Z,} o1+ is the family of subo-algebras of%
effectiveness and applicability of the results obtained. generated by{wy, } i+ and assume tha?, is a set of some

Notation The notation used here is fairly standard exce@iven subo-algebras of%, which is independent of;, for
where otherwise state®™ and R"*™ denote, respectively, o) 1. > 0. For the exogenous disturbance inpyte RY, it is

the n dimensional Euclidean space and the set ofnall m  555umed thafto }pers € 12(]0, 00), RY), wherels([0, 00), RY)
real matrices| A| refers to the norm of a matrid defined g the space of nonanticipatory square-summable stochasti

by [|A]] = v/trace(AT A). The notationX > Y (respectively, process{v;},cp+ with respect to(.%y)scr+. The nonlinear
X > Y), where X and Y are real symmetric matrices,s,nctions fi i R" xR® = R*, fo : R* x R* — R,

means thatX — Y is positive semi-definite (respectively,fw . R™ x R" — R™, hy : R® — R" 4, hy : R" — RIX4
positive definite).A/” represents the transpose of the matri L+ R" — R andg, : R* — RX? are smooth
M. I denotes the identity matrix of compatible dimensionyagix-valued functions withf; (0,0) = 0, £,(0,0) = 0 and
diag{- - - } stands for a block-diagonal matrix and the notatio?w(o 0) = 0. ¢y is a real-valued initial function ofi-d, 0).

The measurement with probabilistic sensor data missing is

diag,{*} is employed to stand for did§g, - - - ,*}. Moreover, described as

let (Q2, %, Prob) be a complete probability space whePeob,
the probability measure, has total mas&{z} stands for the yi = Dil(an) + k(g )vn 2)
expectation of the stochastic variablewith respect to the wherey, € R™ is the measurement received at the node
given probability measur@®rob. The set of all nonnegative quantizerq(-). The nonlinear functiong : R* — R™ and
integers is denoted bl and the set of all nonnegative realk : R* — R™*4 are also smooth matrix-valued functions
numbers is represented . CK denotes the class of allwith 1(0) = 0. T, = diag{~},--- ,}*} is a diagonal matrix
continuous nondecreasing convex functipns R™ — R*  that accounts for the different missing rate of the indiadu
such thatu(0) = 0 and pi(r) > 0 for r > 0. C™(R™) denotes channel. For anyl < r < m, +7 is a Bernoulli distributed
the class of functiong/(z) that is m times continuously stochastic variable taking values of 1 and 0 with
differentiable with respect ta € R™. For a functionV (z) € r _r

PrOb{/yk = 1} =7,

T
2 (Mn oV(z) OV(z) = 9V(x) 3
C*(R™), Weaf,t( V)I(x) = ( ), I S ) and Prob{y] = 0} = 1 — 7" ®)

Vez(x) = (m)nm' The asterisk« in a matrix is used where3” € [0, 1] is a known constant.
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As shown in Fig. 1, before entering into the controller, the Similar to the signaly, € R™, the control signati;, € R?
signaly, € R™ is quantized by quantize(-) which is defined is also quantized by the quantizg(-) before entering the

as plant (1). Here, the quantizej(-) is also assumed to be of
) ) T the logarithmic type and has the same form as the quantizer
Uk = q(yr) = [Ch W) e qm(y;(gm))} ; q(-). Specifically, the quantizej(-) is defined as

where g, € R™ is the signal transmitted into the controller . @) T

after the quantization. In this paper, the quantizér) is up = q(tx) = [ql(uk ) (@) e gp( )}

assumed to be of the logarithmic type. That is, for each i i i

g;(-) (1 < j < m), the set of quantization levels is describedhereuy. € Rfj is the coptrol input actually entgrlng the plant

by (1). For eachg;(-) (1 < j < p), the set of quantization levels
is described by

Uy = {=x o = o i =0, £1, 2, - fuo),

J

Uy = {7 1 =i i=0, #1, 2, - fuo),

()

0<p <1, x§ >o0.
0<p; <1, )ZOJ

o >0,
Each of the quantization level corresponds to a segment such

that the quantizer maps the whole segment to this quardizathng the quantizeq;(-) is defined as
level. The logarithmic quantizey; () is defined as

=) 1 -0) _ o -
j j j j Xi' X < U = 15X
X, o <u <2 o) L Tt D T
(Y ’ ) ; q;(dy") = 0, i =0
q(vy") = 0, yy =0 D 20)
() () —q; (=", uy’ <0
_Qj(_yk )7 Yy <0
with 6, = (1 — p;)/(1+ p;). with 6; = (1 —p;)/(1+ p;). To the end, the control inputy,
By the results derived in [9], it follows thagj(y,gj)) — can be expressed as
(G, (4) ) i — _
(1_ + A(’f) NS S(lif)h that|A;’| < ¢;. Defining Ay = wr = (I + Ag)in )
diag{A,’,---, A"}, the measurements after quantization
can be expressed as whereA,, = diag{A}", -, AP} andAY satisfiesAY)| <
e = (I + Ag)ys. @) 9, for eachl < j <p.

For the sake of easy manipulation, we introduce two
Therefore, the quantizing effects have been transformed in rl

sector bound uncertainties described above. matrices C; := diag{0,---,0,1,0,---,0} and Cy, :=
The dynamic observer-based control scheme for the plant M
(1) is described by r—1
Brsr = fo(@1) + go(@0) Tk, diag{0,---,0,1,0,---,0}, and then rewrite the signalg €
ug = uc(®x), fe(0)=0, uc(0)=0, ®) R™ anduy, € ﬁl’ as
k=0, k=-d,—d+1,---,0 .
wherez;, € R™ is the state estimate of the plant (&), € R? is U=+ Ayg) Z YCml(zr) + (I + Ap)k(zk)vr  (9)
the control input without transmission missing, and therirat r=1

valued nonlinear functiong. : R™ — R", g, : R — R"*™, nd
andu, : R™ — RP are controller parameters to be determine(?. »

When the control signali;, is transmitted on the network up = (I + Ay) Zg;c;uc(j;k)’ (10)
from the controller to the quantizej(-), the data missing
phenomenon will probably occur again owing to the limited ]
bandwidth of the communication channel. Therefore, tha dd€SPectively. . .
missing model is applied ta; again. Here, we introduce BY settingn;, = [Jff Iﬂ v Mk—d = [I;;F_d i?;f_d] and
another diagonal matrig, = diag{¢},--- ,£0} whereg], is substituting (9)-(10) into (1) and (5), we obtain the foliogy
also assumed to be a Bernoulli distributed stochastic biaria closed-loop system:

r=1

satisfying
_ M1 =F1 (ks Me—a) + H1 (k) vk + Fuo (M, Mhe—a) Wi
Prob{ef =1} = ¢, © v m
Prob{¢} =0} =1-¢". +D (=G ) + D> (v —A7)Gs (),
r=1 r=1
Then, the control input with data missing, € R? can be P -
described as 2 =Fo (ks h—a) + Ha(me)vr + > (& — €)G5 (mi)
r=1

U = ZpUg. @) (12)
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where Proof: First of all, it is noted thatV’(0) = 0 and
fi(@r, r—a) + g1 (@) (I + Ap)Zuc(dy) V(¢) is continuous. Therefore, for any > 0, there exists

Fi (s Me—a) = [ Fol@n) + ge(@n) (I + Ap)Tl(xy) v a scalard > 0 such thatV(¢y) < a(e) when ||{| < d.
I () We aim to prove thaﬁ%{||nk||} <€ wheneyerk. € JI;“ and

Hi(me) = {gc(ik)(I+Ak)k(xk)} s Ha(nw) = ha(zk), maXge(—d,—d+1,- 04 {[|@k[|} < d. By considering||gx|| <

I¢o]| for all k = —d,—d + 1,---,0, we only need to prove

GT () = {91(56@04‘?’6)0;%(@)] : that every solutiom; with [|ol| < & implies E{|[n[|} < e
for all k € I™. Let us now prove the latter by contradiction.
() = Suppose that, for a solution,, satisfying ||(o|| < 4, there
2l ge(& )(I+Ak)CT l(xg)|’ exists ak; € IT such thatE{||n ||} > . Noting the
Ful, Th—) fact of n|| < [IGill, one hasE{fm, |} < E{|GI}. In
Fuo(Mks Me—a) = addition, by using the Jensen inequality and considerieg th
A NE ty of functiona(r), it follows from (14b) and (14c)
) ) + I—"_A = C b proper
pme) - fisn &)+ 92+ BuZe®): thata(e) < a({n 1) < a(E{IG ) < Ela(lde ) <
3( k) = g2(zk) (1 + Di)Cpuc(@ k),_ i E{V ()} < E{V((o)} < a(e), which is a contradiction.
=diag{3',---,y™}, Z=diag{¢', - -, &P} (12) Therefore, it follows easily from Definition 1 that the zero-
Throughout this paper, we assume that all the stochas?omnon of the augmented system (11) with = 0 is

variables € (im1, p)andyl (i=1, - m)are {ochasncally stable. The proof is complete. ]
uncorrelatke’dwekacﬁ ozth_er P %= 17 The following theorem provides a sufficient condition under
L i . which the closed-loop system (11) is stochastically stabie
Definition 1: The zero-solution of the closed-loop systemh
(12) with v, = 0 is said to be stochastically stable if, for any e controlled output;; satisfies thefl, criterion (13) under
250, ther]; exists @ > 0 such that Yero-initial condition for the given quantizegs-) and g(-).
Theorem 1:Let the disturbance attenuation level > 0
E{||nk||} < e, be given. If there exist two real-valued functionid(n) €
C?(R?") and Vs (n) € C'(R*") satisfying
wheneverk € IT and maxyc(_q,—gt1,...,03{[|@kll} < O

whereg, = [¢f  0]" for k= —d,—d+1,--- ,0. Vi(0) =0, V2(0) =0, (15)
In Definition 1, the notion of stochastic stability is propds
for the stochastic discrete time-delayed system (11). Othe a([nll) < Vi(n), a(llnl) < Va(n), (16)

definitions of stability for different kinds of stochastigstems \ynere a(r) € CK, and the following inequalities for any

can be found in [13], [17]. 1 Nes Na € R2™:
The purpose of the problem addressed in this paper is
to design the parameters.(ix), g.(Zx) and u.(Zx) of the A (1, Ma)
nonlinear controller such that the following requiremeaits 42 1 T
I—= Vion (Na — 0,(17
satisfied simultaneously for the given system (1) as well as 2H () Vi (e ) H (1) = Ha () H2(n) > 0.(17)
the quantizers(-) andg(-): F (0 MasNa)
a) The zero-solution of the closed-loop system (11) with := Z(1, Na,14) (17, 10) B (1, e, M)
v, = 0 is stochastically stable. 1_p
b) Under the zero-initial condition, the controlled outpyt +§]:1 (1,14)Vinn () F1 (1, na)
satisfies 1 1
- - +§9f7§f(n, Na)Vign (Na)Fuw (1, na) + 577TV17W(77Q)77
D E{lzl?Y <7D E{jloxl?} (13) +F3 (1, na) F2(n,1a) — Fi (10,02) Vign (na)n
- o +Vf;< JF1(1,ma) = Vi () + Va(n) = Va(na)
for all nonzerov;, wherey > 0 is a given disturbance
attenuation level. 4= Z 21T () Vi (1)GE (1)
r=1

IIl. M AIN RESULTS

1 2rT r
To state our main results, we need the following lemma. +§ Zﬁ Gy (mMVingn (12)G3 (0)
Lemma 1:If there exist a Lyapunov functio/({) € r=1

m

C'(R(4+1n) and a functiona(r) € CK satisfying the N Ty
<
following conditions: +;arg3 (m@gs(n) <0 (18)
V(0) =0, (14a) where
a(ll<])) <V (©), (14b) BN, Moy Nd)
E{V <E{V(G)}, kelt, 14c 1 1
VG = EViG)} GO0 Ly man) + 5L 0010 Va0 P (1)
T T T 1T . 2 2
where¢, = [nf nl_, -+ nl_,] . thenthe zero-solution

1
of closed-loop system (11) with, = 0 is stochastically stable. - 577TV1nn (na)H1(n) + F5 (1, na)Ha2(n)
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with o, = /&"(1—¢7) and B, = /37(1 —4"), then the  Next, let us show that the closed-loop system (11) satisfies
system (11) withv, = 0 is stochastically stable and thethe H., performance constraint for all nonzero exogenous

controlled outputz, satisfies theH, criterion (13) for all disturbances under the zero-initial condition. From (1i1),

nonzerovy, under the zero-initial condition. follows that
Proof: Choose the Lyapunov function®l(¢;) as
k—1
V(G) =Vilm)+ > Valn (19) E{V(Cer1) = V(C) + ll26l” = *Iloxl”}
i=k—d =E{Vi(Mkt1) — Vi(nk) + Va(nk) — Va(nk—a)

where (. is defined in Lemma 1. Note that the first term in
(19) corresponds to the stability conditions for the ditere
time nonlinear stochastic systemgthout delays, and the
second term in (19) corresponds to delay-independentistabi
conditions that account for the delay effects.

Obviously, the Lyapunov functiondl’(¢;) constructed as
(19) satisfies (14a) and (14b). By using Taylor’s formularéh
exists a scalafy, € (0,1) such that

Vi(mks) = Vilme) = Vi (n) (k1 — me)
1
+ 5(77“1 - Wk)Tvlnn(nak)(ﬁkH — k)

wheren,, = nk + ak(Mk+1 — Mk)-
Now, we first prove the stochastic stability of the closed-
loop system (11) withy, = 0. By noting Ew? = 6,

o s ma . €A=&, i=g

E{@k—m(éi—sﬂ)}—{oj i
fori1<i<p,1<j<p, and

] . . . 7i1—7i, C

B0 - 7)1 — 7)) = {g} I

for 1 <i < m,1 < j < m, it can be calculated along the
closed-loop system (11) withy, = 0 that

E{V(Ck+1)} — E{V(Ck)}

=E{Vi(m+1) — Vi) + Va(ne) — Va(mk—a) }
= E{Vi% (k) (k1 — i) + Vo (i) — Va(mi—a)
+%(77k+1 — 1) Vigy (Mo, ) (i1 — mi) }

1
= E{ 5-7:;11(77/67 nk—d)‘/lvm (nak)]:l (’I]k, nk—d)

1
+§9]'—£(77k, Mre—a) Vinn (Mo, ) Fw (ks Mk —d)

1 p
+3 2 036" () Vi (10, )G (1)

r=1
+5 ZBQQ

+%77k Vign (g )k = F1 (ks =) Vign (N )k
+V1€,(77k)]'—1 (> Me—a) —
Vo) — VaOa)}

< (ks N> Mk—a) < 0

which, from Lemma 1, confirms that the system (11) with
v, = 0 is stochastically stable.

(. Vlnn (May, ) G5 (11k)

Vi (i) i

(20)

Hlzel? = 22 lloe 1}

= ]E{ng(ﬁk)(nkﬂ — k) + Vo) — Va(nk—a)
1

+§(77k+1 =) Vigy (e ) (M1 — nk)

a2 = 2o
E{Vﬁ] (k) F1 (s Me—a) + Vi (i) Ha () 0

1
—fo;(??k)??k + —-7:?(77/@, M=) Vign (e, ) F1 (M, Mie—d)
s 5V EHT (k) Vi (1, )M (1 o
+§9‘Fw (ks Mhe—a) Vinn (e, ) Fo (M M —a)

1
+§77kTV1nn(77ak)77k + L (e M- ) Vi (e, ) Hot (11 )0

=18 Vinn (Mo )H1 ()0 — F (s Me—a) Vi (T )i

1 p
3 D7 0201 () Vi (70, )91 ()
r=1
1 m
+5 > B2G5" () Vi (M, ) G5 (i)
r=1

p
+> 265" () G5 (k) + Fa (ks ) Fo (7 M)
r=1
+2F3 (M, Mio—a) Mo (i )vr + v H (i) Ha (ne)vr

+Va(nk) — Va(nk—a) — 72||Uk|2}

E{ - vaﬂf(m, N, )Vk + 2B (ks Ny, Me—d ) Vi

1
+§]:1T(77kank—d)Vlnn(nak)]:l(nkank—d)
1
+§9-7:£(77k7 Mie—d ) Viny (Mo ) Fwo (M s Mie—d)

1
+§ngvl7777(7706k)77k + T3 (s Mi—a) F2 (1, Mhe—a)
—FL (ke M) Vigm (e, )k + Vit (1) F1 (M, Tke—a)
=V (e)nk + Va (k) — Va(k—q)

1 p
3 D7 Q261 (1) Vi (7 )65 )

r=1

1 m
EZ 2g2 ’I]k th(nak)QQ(nk)

Z ()3 nk)}

(21)
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Applying the “completing the square” rule, it can be easilwhich means that the desirdd,, performance requirement is

seen that (21) is equal to achieved and therefore the proof of Theorem 1 is complete.
[ |
(T ok Remark 1:In Theorem 1, a very general condition de-
]E{ (U = 01)" 7 (1 M ) UK) scribed by a second-order nonlinear inequality has been

derived to guarantee thél,, performance as well as the

—1 T
+ B (s N M) 7 (k> Mo ) B (s Mo Mk —a) stochastic stability of the closed-loop system (11). Such a

+ %]—"{(nk’ M—a)Vigy (Mo, ) F1 Mk Me—d) nonlinear inequality, although it is difficult to solved, liplay
1 a theoretically significant role in the analysis and syngheé
+ iefg(nk, M—d ) Vinn (Me, ) Foo (Mies Mh—a) H control problems. Based on Theorem 1, the corresponding
1 H,, control problems for some special classes of nonlinear
+ EngVIUU(nak)nk + FL ey mie—a) Fo (e, Mie—a) systems can be solved effectively. Take the polynomial non-

linear system as an example. One just needs to choose the

_FT T 22
FL (e 1) Vi (e )b+ Vi (06) F1 (e 1—a) - (22) Lyapunov function as a positive homogeneous polynomial.

- V177;(77k)77k + Va(me) — Va(k—a) Then, by using the result in Theorem 1 together with the
1 technique of complete square matricial representationRBEM
+3 Z a2 G (M) Vann (110, )51 (k) [3], the existence condition of the desirétl,, controllers can
r=1 be formulated in terms of the feasibility problem for a linea
1 - matrix inequality (LMI), which can be readily verified by the
) Z () Vi (1) G2 () available SOS (sum of squares) solvers [3].
h In order to derive more tractable sufficient conditionshe t
i T
4 2657 () Gy sequel, we take the real-valued functionslasn) = n* Pn
; s () 3(nk)} and V2(n) = nTQn where P and Q are positive definite

matrices. The following corollary is obtained directly ffino
wherev; = &~ (i, Ny, ) B (1, Moy » Mk—a). Noticing (17), Theorem 1.

it follows from (22) that Corollary 1: Let the disturbance attenuation level> 0 be
5 o 5 given. If there exist two positive definite matricBs= P” > 0
E{V(Ges1) = V(G + llznl® = 7 llowll*} andQ = QT > 0 satisfying the following conditions for all

nonzeron, ng € R?":

| A(n) =721 = H] (n)PHa(n) — H3 (n)Ha(n) >0, (24)

+ 5}‘{(%, M—d) Vingn (Nay, ) F1 (M, Mk—d) H(n,m4)

= B(n,na) A~ (0)B” (n,na) + F{ (n,na) PF1(1,14)
+9FT(77 1d)PFu(n,1a) +sz(77 1a) Fa (1, 14)

SE{«%’(% Nos M)~ (Mks oy ) B (Mkes vy Me—at)

1
+ 59}—5(771@, Me—d) Vinn (Ma, ) Fw (Mies M—d)

1
+ 577kTV1nn(77ak)77k + F (s Me—a) F2 (ks Mk —a) " Z 2617 () PGT(n) + Zﬁz P35 ()
— F1 (ks =) Viny (e )ik + VA (1) Fr (i, 11— )
T
= Vi () + Vo) = Va(ie—a) £ 26T (G0 + (@ — Py — i Qn
1 p r=1
5 D 07G (1) Vany (1, )97 () <0, (25)
r_l
1 i , where
Py gz (1) Viny (e ) G5 (1)
T4 B(n,ma) = F{ (n,1a) PH1(n) + F5 (n,ma)H2(n) ~ (26)
+ Za2g ()G (i) with «,. and g, defined in Theorem 1, then the system (11)
with v, = 0 is stochastically stable and the controlled output
—E{f(nkanakank—d)} ’ 2, satisfies thed, criterion (13) for all nonzera; under the
zero-initial condition.
and then it can be seen from (18) that Remark 2:From (24)-(26), it can be observed that the

inequalities of Corollary 1 are dependent on both the missin
E{V(Cr1) = V() + llzxll> = ¥*[loxl|*} <0.  (23) probability and the quantization effects;, and Ay. If the
quantization effects are taken ds, = 0 and A, = 0, one
Under the zero-initial condition, summing up (23) frémo co  can immediately obtain a sufficient condition to guarantee
with respect tok and considering{V ((-)} > 0, we obtain that the system without quantization effect (when = 0)
o . is stochastically stable while achieving tii&,, performance
ZE{H%HQ} <42 Z E{||vx ||} constraint for all admissible missing observations andzeon
o o exogenous disturbances under the zero-initial condiuth
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an problem forlinear deterministicsystem has been investi-positive constanty > 0 such thata='7 — HT'XH > 0 and

gated in [24], [27], where the data missing phenomena havé (X ' —aHH")'A+ o 'ETE + U < 0.

been modeled by one stochastic variable only. Obviously,Lemma 3: [25]: Assume that the matriced, H, E and

Corollary 1 generalize the results in [24], [27]. F are given withFFT < I. Let X be a symmetric positive
Remark 3:If ¥ =1 (1 <i<m)andé’ =1 (1 <j <p), definite matrix andx > 0 be an arbitrary constant such that

i.e., the data missing phenomena do not arise, then a sofficie~'7 — EXET > 0. Then, we have A + HFE)X (A +

condition is easily obtained from Corollary 1 to make suré/ FE)" < A(X~! — aETE)"'AT + o 'HHT.

that the system without data missing (whep = 0) is Lemma 4:Let x € R", y € R™ ande > 0. Then we have

stochastically stable with a guaranteéd, performance index 227y < exTx + e~ 1yTy.

for nonzero exogenous disturbances under the zero-initialThe following theorem provides a sufficient condition that

condition. Similar results folinear deterministicsystem can is independent of the quantization effeats, and A, but

be found in [9]. still guarantees théi, performance as well as the stochastic
Corollary 1 provides a sufficient condition which guarasteestability of the closed-loop system (11) for the given two

the H, performance as well as the stochastic stability of thguantizers;(-) and g(-).

closed-loop system (11). However, it should be pointedimaitt Theorem 2:Consider the system (1). For a given distur-

the condition in Corollary 1 is dependent on the quantiratidbbance attenuation level > 0 and two quantizerg(-) and

effects Ay and Ay, which results in significant difficulty in g(.), if there exist two positive definite matricé®’ = P > 0,

checking such a sufficient condition in practice. Fortulyate Q” = @ > 0 and two positive scalars; > 0, e; > 0

the guantization effects of the logarithmic type quanszean satisfying

be transformed into sector bound uncertainties. In fact, by ) -

defining A = diag{3y,--- ,5,}, A = diag{é1,--- ,8,,} and 7L = 2Ty () T2(n) >0, (28)

Fy, = diag{ArA~', AxA~1}, we can obtain an unknown real- R —Q(n) —a1Si(n)SF(n) >0 (29)

valued time-varying matri¥’, satisfyinngFk = FkT F, <.

2n
In what follows, we are devoted to eliminating the quantaat for all € R*", and

effects and establishing some conditions that can be solved ( n4)
effectively. For this purpose, the coefficients of the syste 1
(11) are rewritten as follows: ( Nd) (R L —Qn) - 1) (77) L0 )) A(n,na)
F1 (s Me—a) = A1(ks M—a) + (St (k) + S2(ne)) FrTh (1) n) (B —e1S, (S, () 1Clc( )
Ha () = Bi(nk) + Sa(ne) i T2 (1), +c2c ) (Pt = 218am()SE () ™ Cac(n)
]:f(nkv fcr) A2(;kﬂ7k;);Ss(nk)Fk%(nk)a +CL () (I = e183p(M)SE (1)) ™ Cael)
GEm) = CElo)+ ST o VT T )+ <5 T () )

i(nk - i(nk) 2(77k) k ST(nk)’ +2€1 7— (n)ﬂc( )+81 7— ( )7-20(,,7)
G (i) = C5 (k) + Ss(me) Fi T4 (), U, )
where ) <0 (30)
A1 (M Me—a) = [f (xfc’(?;)‘:)_;C(g;ixlﬁg(:f(xk)} ) for all nonzeron, 4 € R?", where

[ ha(ak) _ [AZuc(ix) A(n,na) = [AT (n,na) AL (,n4)]" , P, = diag,{ P},

B = . , T = ,

) [gc"”k)’“(“’k)} ) [A”Wj) ] 31(n) = diag{S:(n) + S2(n), Sa(n)} , P = diag, {P},
Ta(ne) = [Ak?xk)] | Cim) = {91(9””%“0(“) , S0 = [STm) 07, B =[BIe) HEm)",

AZuc(@r) 0 7 27) Sip(n) = diag,{S1(n)}, Sam(n) = diag,, {S2(n)},
T3 (k) = { 0 ] ,Ca (k) = [gc(m)c;l(:ck) ; Ssp(n) = diag,{S5(n)}, R = diag{P, I},
o - - v T
o = [FFE] = (o) Cuen) = [enCiT(m) -+ o€ T( 0
0 _Acml(xk)_ Tieln) = [ TP () -+ ]T

As(ks Mk—a) = fo(Tr, Tr—a) + g2(zr)Zuc(dy), c B CTT C’”T T

C ) = 92(a1) Chuc(in), i) = diagga (1), 0}, 2c() = [5G () )]
So(mi) = diag{0, ge(@)}, Ss(m) = [ga(ar) 0] Tac(n) = [B1 T3 () BmT mT(nT}

Before giving the next theorem, we firstly recall some well- C3e(1) = [anC3"(n) - a,C5 ()],
known lemmas. Q) = Bln) (1 — =T () Tam) B (1)

Lemma 2: [26]:For any matrices!, H, E andU = U7 of e S m)ST ()
appropriate dimensions, there exists a positive definitiixna €2 T2 M2 A1) r
X such that(A + HFE)TX(A+ HFE) + U < 0 holds  U(1:ma) = 0F,, (0, 1a)PFu (n,1a) + 17 (Q = P)n
for all F satisfying F'F < I if and only if there exists a —nFQna, (31)
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for some nonlinear parameter-functioris g. and u., then Noting (34) and (35), it follows from (39) that
the quantized nonlinear stochastit,, control problem for

the system (1) is solved by the controller (5). A (n,na)
Proof: For presentation convenience, we first define = FT(n,n4) (Rfl _ Q(n))_l F(n,n4) + GL. (1) P,G1e(n)
~ T T
Fln,na) = [FL Grna) - FEna)]” G261 PG () + Ge(n)se(n) + U ma)

A = [HT(m) HEm)]" . = A1, a)- (40)

After some manipulations, we have

(m.12) = Aln

Next, let us “eliminate” the uncertainties in (40) by using
Lemma 2. From (29), we have

W) +SImFT (),  (32)

F ) o L
- 5 5 H=-STm) (R -0 Si(n) > 0. 41
H(n) = B(n) + S2(n)FTa(n) (33) €1 1 (m) ( (77)) 1(n) (41)
wnere 7o) — [77() T7)])", F ~ disgiF.} ang OS9G 2 0. it can aleo be obtained fom (2) tha
A(n,m4), B( ), S1(n), Sa(n) are defined in (31). ! ’
By applying Schur complement, it is known that the condi- I—e183(n)ST(n) >0, (42)

tion (28) is equivalent to Pl — &1 (S1(n) + Sa2(n) (Si(n) + 52(77))T >0. (43)

e T — v 273 (n) >0
2 T=7"Ta()Ty (n) Noting Sy (1) (n) = 0, we know that (43) implies

Hence, it follows from Lemma 3 that . .
P™ —&181(n)S; (n) >0, (44)

Y EHmMHT () < Qn) (34) Pt 18 (n)ST () > 0. (45)

where()(n) is defined in (31). In addition, it can be easilyAfter using Schur complement again and conducting the
seen from (29) that augmented manipulation, it can be seen that (42), (44) and
(45) are equivalent to

R~ —Q(n) > 0. (35)
-17 _ T
Consequently, from (34)-(35), we have _fl 1 TS3P(77)S3P(77) >0, (46)
. o &1 1 =S, EBpSip(n) >0, (47)
R = s () > 0 &M = S5, (1) P () >0, (48)

which is obviously equivalent t(_) (24) in Corollary 1. i respectively. Subsequently, by Lemma 2, we know that under
On the other hand, we rewritg?’(1, 74) as the following e conditions (41), (46)-(48) together with (30), the inality

compact form: € (n,ma) < 0is true, which implies# (1, 14) < 0 from (40).
(0, Ma) So far, (24) and (25) in Corollary 1 have been shown to hold.
1 Therefore, the rest of the proof can be directly obtainedhfro
=F"(n,na)RH(n) (721 - ﬁT(n)Rﬂ(n)) HT ()R Corollary 1, which is omitted here. n

~ ~ ~ Before giving further results, we make the following as-
T T
X F(nna) +F7 (0, ma) BRF (:1a) + G (1) Pp Gre(n) sumption on the plant (1) for the purpose of simplicity.

+ Gae(n) PuGae(n) + G3.(0)Gse(n) + U, 1a) Assumption 1:The system matricels; (z), ho(z) andk(z)
are assumed to satisfy

where
Gie(n) =Cic(n) + S1p() FpTic(n), (36) hy(2)h3 (z) =0, (49)
g2c(77) = (77) + SZm (n)Fm%c(n)7 (37) hl(x)k: (‘T) = 0’ (50)
Gse(n) = Cae(n) + S3p(n) Fy Tie(n) (38) ha(x)k™ () = 0. (51)

with F,, = diag,{F'}, F, = diag,,{F'} andU(n,1a), C1.(n), Remark 4:Assumption 1 means that the measurement
Cac(n)y C3c(n)y S1p(n)y S2m(n), Ssp(n), Tic(n), Tac(n) are noise, the output noise and the system noise are mutually
defined in (31). Then, in virtue of the Matrix Inverse Lemmandependent. Similar assumptions can be found in [1], [7].
we obtain Theorem 3:Let the disturbance attenuation levet- 0, the

two quantizerg(-), g(-) and the controller parameter-functions

H (0, ) fer ge, ue be given. The quantized nonlinear stochagtic,
=FT (0, 14) (R—l _ 7_27:1(17)3‘?(77))71 Fn,na) control problem for the system (1) is solved by the controlle

. . (39) (5), if there exist positive definite matricel8” = P; > 0,

+ G1c(MPpG1c(n) + G2 () PrGac(n) P =P, >0,QT =Q1 >0, QY = Q, > 0 and positive

+ GE.(0)G3e(n) + U(n,1a)- scalarse; > 0, e2 > 0, A > 0 satisfying the following
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inequalities:

V2T — g3k (2) A%k (x) > M, (52)

®1(z) == Pt = A ha(2)hi () — ergi(2)g] () > 0, (53)
Dy(2, &) = Py ' = N lge(@)k(x)k" ( ) . (2)
—(e1 + &5 1)ge(@)g, (2) > (54)
D3(z) := 1 — A" ha(x)h3 (2) — e192( )92( )>0  (55)
for all z,z € R", and
j/f?(x xd,fc id)
=Wh(z, 24, ) + Walz, &) + 2Ws(x, 24, &) + U1, na)
<0

for all nonzeroz, &, x4, T4 € R™, where
) ) )

Wi (x,24,%)
= fi (z,22) @7 (2) fi (z, 2a) + [T (2)®5 " (2, ) fe(E)
+f2( ,2a) 03 ( )fz(iE q)
ul (2)Eg] (2)@7 " (2)g1()Zuc (@
+lT(fC)f ¢ (2)®5 " (2, &)ge(&)TU(
+ug (2)Eg3 ()5 ()2 (2)Zuc(
+267 [ AZu(2)|? + &7 H|AT
Wa(z, &)

)
)
)

)

8

—_
—
ZU

[(z)]

=Y ajul (#)Cpgi (2)¥7 ()91 (x)Cpuc(d)
+Y B (@)l (8)05 ! (2)g.(2)Crl ()
r=1
+Yatul (#)Chas ()5 ()92 () Cpuc(@)
r=1

p m
+2e11 Y aFAC uc(@)? + et Y BEIAC (),

Ws(x, 24, )

= f1 (z,22)®7 " (2) g1 (2)Zuc(E)
+17(@)®5 " (2, 2)g(2)T1(x)
+f3 (2,22)®5 " (2)g2(2)Euc (),
ey

=0fL(x,24) Py fu(z,24) + 27 (Q1 — P1)x

#7(Q2 — P2)3 — 2l Qrzg — 31 Qota, (56)

with

Us(z) = I — e1g2(x)g; (x).

Proof: Let P = diag{ P1, P>} and@Q = diag{Q1, Q2}. It
follows from (27) that (52) is equivalent to

VI — &7 () Ta(n) = A

which means (28) is guaranteed by (52).

Under Assumption 1 and by a series of computations, it can
be obtained from (52) that

R = Q(n) — 2181 (n)ST (n)
o () 0 0
> 10 (o2 (,T, i) 0 . (57)
0 0 P3()

Hence, (29) is obtained from (53)-(55).
Now, it remains to show that?’(n,n4) < 0. Considering
(27) and (31), it follows from (57) that

AT (1,m4) (R*l — Q) — eSS M) Awn)
< (@27 @) fi(w,0a) + 17 (@)07 (2,8)1.(2)
+f2 (z, xd)q)3 )f2(z, xd)"’“ (@ )~91( )@fl(ac)
xg1(@)Zuc(@) + 17 (0)0 g7 (2)03 (@, 2)g.(2)TU(x)
+ul (2)297 ()5 ()92 () Eu <:c>+2( (z,a)
X @7 (@)1 (2) 2 (56)+fT(:%)<1> (@,2)g:(a)T1(x)
1] (@,20) 05 (@)g2 ()Z0e(@)) (58)

By some straightforward manipulations and noting that

Uy(z) > 0, ¥a(2) > 0 and ¥3(x) > 0 from (53)-(55), one
can obtain

)f
(
+

T T = 1@ + IAF@)
T () Ts(n) = ||A:uc(if?)||2
7-10( )Tic(n ZO‘QHACTUC )H27

W Tacl ZﬂQIIAC’” 2,

Clc( ) (P! —515117(77)5@(77))
—Za )‘1’1 ()9

C2c( ) (Pt — 5132m(77)32Tm(77))
— Zﬁ2lT

cLin (I - slsspm)s?p(n))‘l
=y et )yt

=1

u(nand)
=0f5(x,2a) Py fuw(®,2a) + 27 (Q1 — P)

+27(Q2 — Po)& — 2 Qi — 25 Qag.

It can be obtained from (58) and (59) thﬁ?(n,nd) <
ﬁ(z,xd,i,id) < 0. Therefore, the proof of this theorem
follows immediately from that of Theorem 2. [ ]

In practice, the matrix functions; (z), ha(x), g1(x), g2(x)
andk(zx) are usually taken as constant matrices as follows

hi(z) = Hy, hao(z) = Hy, gi(x) =
Gg(x) = GQ, k(I) = K,

"Cie(n)
1(2)Cpuc (),
! Cael)
¢ (2)05 1 (2)g:(2)Cp (=),
Cse(n)

()5 (2)g2(2) Cpuc(),

(59)

le
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and it is assumed that

HHI =0, H,KT =0, H,KT =0. (60)

Furthermore, considering the issue of easy implementation
linear time-invariant controlleris often designed in practical
engineering. In view of this, we are going to show that the
main results obtained so far can be directly specializedh¢o t
system with linear controller. We adopt the following linea

observer-based controller

{ Tpy1 = Felr + Gy,

61
uy = Ucly, (61)

To=0

10

Noting that (63)-(65) imply¥q(x) > ul, Uo(2) > pl and
Ws(x) > ul, respectively, one has

WQ(.’L‘,CE‘)
p m
<u (D edleiCpUa|? + 3 BRIGCrl(@)])?
r=1 r=1
p

P
+ Y @GaCyUE|?) + 2571 Y aZIAC UL

r=1

2 (69)

r=1
+ert Y BIIACT ()]
r=1

By Lemma 4, it follows from (63)-(65) that

whereF,, G. and U, are the parameter-matrices to be deter-

mined.
Corollary 2: Let the disturbance attenuation level> 0,

two quantizersg(-), ¢(-) and the controller parameter-matrices =gk
F., G., U. be given. If there exist positive definite matrices

Pl=P>0,P =P>0,Q{ =Q1>0,Q5 =Q2>0
and positive scalars; > 0, e2 > 0,e3 >0, A >0, 4 >0
satisfying the following inequalities:

VI — o KTAPK > M, (62)
O =Pt~ N'H HF —,G\GT > ul, (63)
Dy =Py - NG KKTGT — (61 + 5 1)G.GT > 1l (64)

B3 =1 - N"'HyH] — 1GoGE > pl, (65)
A= p L+ e HUTE(GT Gh + G G2)=U,
p
+umt Y 02U CH(GT Gy + G Ga)Cy UL
r=1
p —
+u (1 +es)FIF 42671 Y atUL CpAPCU,
r=1
+2e7'UTEAN?EU, 4+ Qo — Py < 0, (66)
and
I (x,xq)
="t (L+es) (@ za)|® + || fa(2, 20) %)
(1 + e ) |GeDl(2)[|? + &7 AT () |12
Y BRIGC @) P 4 et Y BRIIACT ()|
r=1 r=1
0y (2, 24)P1fu(@,2a) + 27 (Q1 — Pr)x — 27 Qizg
<0 (67)

for all nonzeroz, x4y € R™, then the quantized nonlinear

Wg(x,xd,i)
(sl 2l + 1 Fdl + | ol a) )

+ &5 (IGIZUAI + |G L U@)| + 1G2E02]2) ).
(70)

Consequently, it can be obtained from (68)-(70) togethdin wi
(56) that

<%?('rvxdaj?v:&d) < jjT%:E + %(Iaxd) - ngQZEd

In_view of (66)-(67) and noticingQ2 > 0, we have
H(x,xq,2,2q4) < 0 for all nonzerox, &, xq,3q € R™.
Therefore, the rest of the proof follows from that of Theorem
3 immediately. [ ]

Remark 5:Note that Theorem 3 is proved mainly by the
“completing the square” technique which results in verdlit
conservatism.

IV. SOME SPECIAL CASES
In this section, we aim to show that Theorem 3 can be
specialized to the following two kinds of stochastic system
that have been extensively studied in the literature: 1)esys
with Lipschitz-type nonlinearities; and 2) systems witletee-
bounded nonlinearities.

Case 1 We first consider a special class of nonlinear
stochastic systems with nonlinearities described by lhjisc
condition. For this purpose, we assume that

Nz, 2q) = Avx + Argeg + EY(x) + Eqpa(xq), (71)
folx,zq) = Agx + Asgrq, [(z) = Lx, (72)
fw(xa xd) =A,z+ Awdxda (73)

stochasticH,, control problem for the system (1) is 5°|Veq/vhereAi A (i =1,2), E, Eg, Ay, Apq and L are known

by the controller (61).

real matrices. The nonlinear termgxz) and ¢4(z,) satisfy

Proof: Under the assumption (60), the inequalities (52} Lipschitz conditions|(z)|| < [|Mz| and |[¢a(zq)|| <

(55) follow from (62)-(65) by replacingd:, Hs2, G1, Ga,
K and G, with hy(x), ha(z), g1(z), g2(z), k(z) and g.(z),
respectively. Also, it follows from (63)-(65) that
Wl(x,xd,i)
<u~ (e za)lIP + | Fel|® + 1| fo (2, za) 12
+ | G1EUE? + (|G Tl() || + |GoEU2?)
+ 267 | AZU |2 + 7 H|ATI(2)] 2.

(68)

[[Mgz4], whereM and M, are given real matrices.

Corollary 3: Let the disturbance attenuation levet> 0 be
given. The quantized nonlinear stochagfig, control problem
for the system (1) with the nonlinearities bounded by Lipigch
conditions [[¢(x)|| < |[Mz| and [[¢a(za)l| < [[Maza] is
solved by the linear observer-based controller (61) if eéher
exist positive definite matriceB! = P, > 0, Rl = R, > 0,

T =@, >0, QF = Q, > 0, real matricesX, G., Y, and
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positive scalarg:; > 0, ko > 0, €2 > 0, A > 0 such that the

following LMIs hold for given positive scalars, > 0, e5 > 0

andp > 0:
VI — o KTA2K > M,

-P P H, PG Py

* - 0 0 0
* * —e7 M 0 <
* * * —u
-Ry G.K G Ge I

* - 0 0 0

* * N 0 <0,

* * * —eol 0

* * * * —p I
-I H Ga 1
x =Ml 0 0 <0
* x  —ep 0 ’
* * * —p

Q2— Ry Oz
|: * @22 < O,

Oy Lo Iz 0AT P Il

* H22 H23 HAdel 0

* * 1I33 0 0 <0,
* * * —0P; 0

* * * * 1I55

where

01, = [XTEGT XTEGY XTCLGT,

XTCTGE YT XTCLA, XTEA],

T+e50 1+4¢e;!
,LLI €1 51}

922 = dlag{ NI NI ’ ,u'Iu

l+es’ 27 2

II;; = ,ufl(l + 53) (A?Al + ATAQ) + Q1 — P
+ e "LTTATL + 7' LTCT A% O, L
+ i MTM,

Mo = p ' (14 e3) (AT A1q + A Azq),

iz =p ' (14e3) [ATE ATE,],

5 = [LTFGT rrel .GLL,

Moo = p~ ' (14 €3) (AT gA1a + AT4A2q) — Qu
+ HQMdTM(h

Uz = ' (1 +e3) [AT,E AT, Ed],

14 e3)ETE — k1l

*

, —

s = |

b1+ ) ETE,
_1(1 + 83)E§Ed — kol |’

(74)

(75)

(76)

(77)

(78)

(79)

11

,17_,LLI}5 Glp = dlaq:{Gl}v
3

Gop = diag,{Gz2}, Gem = diag, {G.},
A, =diag,{A}, A, = diag,{A},

Cpe = [alcé aCy - a,,CﬂT

Crme = [BiCL, BC2 - BuCm]”

Moreover, if the LMIs (74)-(79) are feasible, the desired
controller parameters are given by, = YR, 1 @, and
U.=XRy".

Proof: Setting Ry = Py ', Q2 = Py QP ', X =
U.R>, Y = F.Ry; and applying Schur complement together
with some algebraic manipulations, (63)-(66) follow diigc
from (75)-(78), respectively.

Letting

. 1
II55 = dlag{— 1 fa

)

V= 24 (@) valza)]
and noting (71)-(73), (67) can be rewritten as
M (x,2q) =0T Y0

where
T, =
Y11 219 ,LL71(1+63)A{E 7 1(1+€3)A Ey
% U pt(l+e)ALE pm1(1+e3) AL E,
* x  p ' (1+e)ETE p'(1+e3)ETEy |
* * * p (1 +e3)ES Eq

S o=p (1 +e3) (AT Ay + AT As) + 0AT P A,
+Q1—Pi+p(1+e3")L"TGIG.IL
+ el "LITATL + 7' LT CL A2 O L
+p'LTCh GT G ConeL,
Sio =p~ (1 +e3) (AT Ara + AJ Azg) + 0ALPLAya,
Do =~ (1 +e3) (AT, Arg + AL, Aog)
+0AL P Awa — Q1.
From the conditiond|y(x)|| < ||Mz| and ||vq(zq)| <
| Mgz4|, it can be easily seen that

Hs(w,wa) <OTL10 + Mx)] T [MZM —Of] Vx)]

T B B A |

=970
where
S+ MTM Y12
T * 222 + HQMgMd

2= * *

* *
w- (1 +€3)ATE /L_l (1 +€3)A{Ed
u- (1+€3) ldE ,LL_1(1+63)A?dEd
pt(1+e3)ETE — ksl p (1 +e3)ETEy

* ,Lfl (1 + 53)EdTEd — kol



FINAL VERSION 12

By Schur complement, (79) is equivalent 1, < 0, which are feasible, the desired controller parameters are giyen b
implies 5% (xz, zq4) < 0. Therefore, the proof of this corollary F,. = YR;I, G. andU, = XR;l.
is accomplished in virtue of Corollary 2. ] Remark 6:1In this paper, we first consider a very general
stochastic system (1) whei@l the system parameters and
Case 2 Let us now deal with the nonlinear termigz) and controller parametersare nonlinear functions or functionals.
ta(zq) described by the following sector-bounded conditiori® this case, sufficient conditions are given in Theorem Icihi

that are more general than the Lipschitz-like ones: make sure that the system (11) is stochastically stable and
H,, criterion in (13) is satisfied. Note that, at this stage,

(W(x) = Ux)" (¢(z) — V) <0, (80) the nonlinear parameters are very general since there are

(Ya(zq) — Ugza)T (Wa(zq) — Vazg) <0, (81) no assumptions posed on them. Therefore, as expected, the

] sufficient conditions established in Theorem 1 serve as a
whereU, V, Uy, Vq are known real constant matrices, angheoretical basis fogeneralnonlinear stochastic systems. It
U —V, Ug— Vy are symmetric positive definite matrices. s shown in subsequent analysis that the fundamental sesult
In order to obtain the corresponding results for Case gien in Theorem 1 can be specialized to numerically trdetab
we decompose the sector-bounded nonlinear tgfm) and ones in practical cases when the nonlinear parameters take
a(xa) into a linear part and a nonlinear part as follows:  ¢ertain commonly used forms. Based on Theorem 1, the aim of

1 - Theorem 2 is to provide a particular condition that elimasat
Y(x) = §(U +V)z + ¥(x), the quantization effects\, and A, but still guarantees the
1 ~ H,, performance as well as the stochastic stability. Next,
ba(wa) = Q(Ud +Va)za + Ya(za), we take some practically justifiable forms, in a gradual way,
- L ~ L for the nonlinear parameters with hope to obtain easy-to-
where[|¢(z)[| < [[3(U — V)z| and|[va(za)ll < [I3(Ua = \erify conditions for the addressed design problem. Unider t
Vd)xd”' assumption that the measurement noise, the output noise and
Letting the system noise are mutually independent, Theorem 3 affers
~ 1 -1 more specific condition that ensures both the stability &ed t
A=A+ §E(U +V), M= §(U -V, H, performance, and such a condition is further simplified
~ 1 ~ 1 (82) in Corollary 2
Avd =A1d+§Ed(Ud+Vd), Mg = §(Ud_Vd)a '

V. AN ILLUSTRATIVE EXAMPLE

the nonlinear functiong; (z, zq) can be rewritten as _ _ _ _ _ _
Consider the following nonlinear discrete-time stoclasti

fi(z,2q) = Az + Avaxq + Ed(x) + Eqa(zq) system
where [y (z)|| < [[Mz| and [[¢q(zq)|] < ||Mazql|. Subse- Tht1 :%xk + %kal sin g, + ivk + %uk
quently, by replacingds, Aiq4, M and My with Ay, Ayq, M 1
and My, respectively, the following corollary can be obtained + 50 COS L1 Wk, (84)
immediately from Corollary 3. 1 1 1
Corollary 4: Let the disturbance attenuation lewel> 0 be Zk =3k SMTL — L Th—1 + ﬁuk

given. The quantized nonlinear stochadifig, control problem o .
d/l)llth the initial conditionsp_; = ¢ = 0. The measurement

for the system (1) with the nonlinearities bounded by sector L _ 1
bounded conditions (80) and (81) is solved by linear obgerv&ith sensors data missing is describedyas= g7y, cos .
based controller (61) if there exist positive definite ngsi We choose the dynamic observer-based controller parame-

~ ~ _ 2 _ _ 1 H H
Pl=P >0, Rl =Ry>0 Q7 =Q1 >0, Q% =Q. >0, :jers as_FC B . Gcb_ l,dUC = 5|'| a.nd obtain the following
real matricesX, G., Y, and positive scalars; > 0, k2 > 0, ynamic observer-based controller:

g2 > 0, A > 0 satisfying the LMIs (74)-(79) with Brst = =8k + Tn,

o L 7
Iy = p (14 e3) (AT Ay + AT A5) + 7 'LTTATL 1 (85)
—17T AT A2 YRy Uy = Z&pT-
+e; L Ch AL Cel + 51 M* M+ Q1 — P, 5
Mo =p (1 +¢3) (/Illeld + AQTAM), _ Let the probabilityj = ¢ = 0.8, the variance) = 0.25, the
M3 = u—l(l +€3) [fllTE /IlTEd] ’ _dlsturbance attenuation level = 0.85, an_d the_ dlsturbgnce
. o T input v, = exp(—k/35) x ni whereny is uniformly dis-
oo = pu~ (1 + €3) (AlgA1a + A2qA24) — Q1 tributed over[0,0.1]. The parameters of the two logarithmic
+roMT My, quantizersq(-) and g(-) are set asyp = Yo = 0.003 and
Moy = H71(1 +€3) [A,{dE flded} 7 83) P = p = 0.9. According to Corollary 2, it can be seen that

the controller of form (85) is a desired controller for syste
for given positive scalars; > 0, e3 > 0 andu > 0, where (84) with parameters; = es =e3 = 1, A = 0.7155, u = 0.5,
@12, @22, 115, II33, 155, /_Xp, Am, Glp, Ggp, Gcm, Cpc and P, =1.4317, P, =04, Ql =0.2223 and Qg = 0.002.
Cne are defined in Corollary 3, and,, A4, M, M, are  Simulation results are shown in Figs. 2-4. Specifically, the
defined in (82). Moreover, if the LMIs (74)-(79) with (83)control input after quantization by quantizers) is given in
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x 10

25 0.025

2r q 0.02 q
15F q 0.015 q

X~ ~
=] x

1F q 0.01r q
0.5 b 0.005 1

0 NVWM/\/VV\WM 0 I |

0 50 100 150 200 0 50 100 150 200

Time(k) Time(k)

Fig. 2. The control input with quantization k(-) Fig. 4. The state response of the closed-loop system

x 10

nonzero exogenous disturbances under the zero-initialicon
tion by applying the method of sector bound uncertainties. F
the purpose of easy checking, the sufficient condition has be
decoupled into some inequalities. Based on that, quantized
H., controllers have been designed successfully for some

(1]

(2]

10 L A

0 50 100 150 200
Time(k)

(3]

Fig. 3. The measurement with quantization day) [4]

(5]
Fig. 2 and the measurement after quantization by quantizers
q(+) is shown in Fig. 3, which correspond to the controlled[G]
system and the dynamic controller, respectively. Fig. diasp
the simulation result of the state response of the closed-
loop system. It can be calculated that thie, performance
constraint is0.0469 < v = 0.85. Therefore, this example has
verified the theories obtained in this paper. (8]

VI. CONCLUSIONS [

In this paper, the quantizedi,, control problem has
been addressed for a class of nonlinear stochastic tinsg-d £o
network-based systems with data missing. Two logarithmic

special classes of nonlinear stochastic time-delay system

REFERENCES

J. A. Ball, J. W. Helton and M. L. WalkerH., control for nonlinear
systems with output feedbaclcEE Trans. Automatic Contrphol. 38,
No. 4, pp. 546-559, Apr. 1993.

R. W. Brockett and D. Liberzon, Quantized feedback dizdiion of
linear systemdEEE Trans. Automatic ControVol. 45, No. 7, pp. 1279-
1289, Jul. 2000.

G. Chesi, A. Garulli, A. Tesi and A. VicinoHomogeneous polynomial
forms for robustness analysis of uncertain syste8ginger, 2009.

D. F. Delchumps, Stabilizing a linear system with quaeti state
feedback,IEEE Trans. Automatic ContrpMol. 35, No. 8, pp. 916-924,
Aug. 1990.

J. C. Delvenne, An optimal quantized feedback strategys€alar linear
systems|EEE Trans. Automatic ContrpMol. 51, No. 2, pp. 298-303,
Feb. 2006.

C. De Persis and D. Nesic, Practical encoders for cdirtgophonlinear
systems under communication constrairBgstems & Control Letters
Vol. 57, No. 8, pp. 654-662, Aug. 2008.

7] J. C. Doyle, K. Glover P. P. Khargonekar and B. A. Fran@sate-

space solutions to standaféh, and H, control problems|EEE Trans.
Automatic Contrgl Vol. 34, No. 8, pp. 831-847, Aug. 1989.

N. Elia and K. Mitter, Stabilization of linear systems thvilimited
information, IEEE Trans. Automatic ContrpMol. 46, No. 9, pp. 1384-
1400, Sep. 2001.

M. Fu and L. Xie, The sector bound approach to quantizestiifack
control, IEEE Trans. Automatic ContrpMol. 50, No. 11, pp. 1689-1711,
Nov. 2005.

] H. Gao and T. ChenH, estimation for uncertain systems with lim-

ited communication capacityeEE Trans. Automatic ControMol. 52,
No. 11, pp. 2070-2084, Nov. 2007.

quantizers have been employed to quantize both the measu#&dH. Gao and T. Chen, Network-baséfls output tracking controllEEE

output and the input signals in the NCSs and one diagonal
trix whose leading diagonal elements are Bernoulli distehl

jiel

Trans. Automatic ControlVol. 53, No. 3, pp. 655-667, Apr. 2008.
X. F.Jiang, Q. L. Han, S. R. Liu and A. K. Xue, A neli, stabilization
criterion for networked control system&EE Trans. Automatic Contrpl

stochastic variables has been used to model the data missing Vol. 53, No. 4, pp. 1025-1032, May 2008.

phenomena. Then, we have derived a sufficient conditionrundé!
which the closed-loop system is stochastically stable &ed f14)
controlled output satisfiesl,, performance constraint for all

R. Z. Khasminskii,Stochastic stability of differential equatign&lphen
aan den Rijn, Sijthoffand Noor, Khasminskiidhoff, 1980.
D. Liberzon, Hybrid feedback stabilization of systemith quantized
signals,Automatica Vol. 39, pp. 1543-1554, Sep. 2003.



FINAL VERSION

[15] G. P. Liu, Y. Q. Xia, J. Chen, D. Rees and W. S. Hu, Netwdrke

predictive control of systems with random network delays bioth

forward and feedback channelfiEE Trans. Industrial Electronics

Vol. 54, No. 3, pp. 1282-1297, Jun. 2007.

X. Lu, L. Xie, H. Zhang and W. Wang, Robust Kalman filtegirior

discrete-time systems with measurement del&EE Trans. Circuits

and Systems -Il:Express Brigfgol. 54, No. 6, pp. 522-526, Jun. 2007.

X. Mao, Stochastic differential equations and applicatipriéorwood,

Chichester, UK, 1997.

C. Peng and Y. C. Tian, Networke#ll, control of linear systems

with state quantizationinformation Sciencesvol. 177, pp. 5763-5774,

Dce. 2007.

M. Sahebsara, T. Chen and S. L. Shah, Optinial, filtering in

networked control systems with multiple packet dropoSgstems and

Control Letters Vol. 57, No. 9, pp. 696-702, Sep. 2008.

B. Sinopoli, L. Schenato, M. Franceschetti, K. PooN&). Jordan and

S.S. Sastry, Kalman filtering with intermittent observadEEE Trans.

Automatic Contrgl Vol. 49, pp. 1453-1464, Sep. 2004.

S. Sun, L. Xie, W. Xiao and Y. C. Soh, Optimal linear esdifon for

systems with multiple packet dropout8utomatica Vol. 44, No. 5,

pp. 1333-1342, May. 2008.

M. Tabbara and D. Nesic, Input-output stability of netked control

systems with stochastic protocols and chann@gE Trans. Automatic

Control, Vol. 53, No. 5, pp. 1160-1175, Jun. 2008.

E. Tian, D. Yue and C. Peng, Quantized output feedbaakreb for

networked control systemdénformation SciencesVol. 178, pp. 2734-

2749, Jun. 2008.

Z. Wang, F. Yang, D. W. C. Ho and X. Liu, Robugif., control for

networked systems with random packet losd&&£E Trans. Systems,

Man and Cybernetics-Part ,B/ol. 37, No. 4, pp. 916-924, Aug. 2007.

L. Xie, Y. C. Soh and C. E. de Souza, Robust Kalman filgrfor

uncertain discrete-time systenilEEE Trans. Automatic ContrpVol. 39,

No. 6, pp. 1310-1314, Jun. 1994.

L. Xie, Output feedbackd ., control of systems with parameter uncer-

tainty, Int. J. Contro| Vol. 63, No. 4, pp. 741-750, Mar. 1996.

[27] F. Yang, Z. Wang, D. W. C. Ho and M. Gani, Robugt,, control with
missing measurements and time deldfZ&EE Trans. Automatic Contrpl
Vol. 52, No. 9, pp. 1666-1672, Sep. 2007.

[28] F. Yang, Z. Wang, Y.S. Hung and M. Garfif», control for networked
systems with random communication delaySEE Trans. Automatic
Control, Vol. 51, No. 3, pp. 511-518, Mar. 2006.

[29] D. Yue, C. Peng and G. Y. Tang, Guaranteed cost contréheér sys-
tems over networks with state and input quantisatidBg, Proceeding:
Control Theory and Applicatignvol. 153, pp. 658-664, Nov. 2006.

[30] W. Zhang, M. S. Branicky and S. M. Phillips, Stability aktworked
control systems|JEEE Control Syst. Mag.Vol. 21, No. 1, pp. 84-99,
Sep. 2001.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Zidong Wang was born in Jiangsu, China, in 1966.

He received the B.Sc. degree in mathematics in 1986
from Suzhou University, Suzhou, China, and the
M.Sc. degree in applied mathematics in 1990 and the
Ph.D. degree in electrical engineering in 1994, both

from Nanjing University of Science and Technology,
Nanjing, China.

14

Bo Shenreceived his B.Sc. degree in Mathematics
from Northwestern Polytechnical University, Xi'an,
China, in 2003 and the Ph.D. degree in Control
Theory and Control Engineering from Donghua Uni-
versity, Shanghai, China, in 2011.

He is currently a Lecturer with the School of
Information Science and Technology, Donghua Uni-
versity, Shanghai, China. From 2009 to 2010, he was
a Research Assistant in the Department of Electrical
and Electronic Engineering, the University of Hong
Kong, Hong Kong. From 2010 to 2011, he was

a Visiting PhD Student in the Department of Information 8ys$ and
Computing, Brunel University, U.K. His research interest grimarily in
nonlinear stochastic control and filtering.

Dr. Shen is a very active reviewer for many internationalrjals.

Huisheng Shureceived his B.Sc. degree in math-
ematics in 1984 from Anhui Normal University,
Wuhu, China, and the M.Sc. degree in applied math-
ematics in 1990 and the PhD degree in control theory
in 2005, both from Donghua University, Shanghai,
China.

He is currently a Professor at Donghua University,
Shanghai, China. He has published 16 papers in
refereed international journals. His research interests
include mathematical theory of stochastic systems,
robust control and robust filtering.

Guoliang Wei received his B.Sc. degree in Math-
ematics in 1997 from Henan Normal University,
Xinxiang, China, and the M.Sc. degree in Applied
Mathematics in 2005 and the Ph.D. degree in Con-
trol Engineering in 2008, both from Donghua Uni-
versity, Shanghai, China.

He is currently a Professor with the Electrical
Engineering Faculty, University of Shanghai for
Science and Technology, Shanghai, China. From
March 2010 to May 2011, he was an Alexander
von Humboldt research fellow in the Institute for

He is currently a Professor of Dynamical SystemsAutomatic Control and Complex Systems, University of DuighEssen,
and Computing in the Department of InformationGermany. From March 2009 to February 2010, he was a postabcasearch
Systems and Computing, Brunel University, U.K.fellow in the Department of Information Systems and CompmtiBrunel

From 1990 to 2002, he held teaching and researdiniversity, UK, sponsored by the Leverhulme Trust of the UWiom June

appointments in universities in China, Germany and the Uidf.RVang’s re-
search interests include dynamical systems, signal pggshioinformatics,
control theory and applications. He has published more &@h papers in
refereed international journals. He is a holder of the Afelex von Humboldt
Research Fellowship of Germany, the JSPS Research Feifpw§hlapan,
William Mong Visiting Research Fellowship of Hong Kong.

Prof. Wang serves as an Associate Editor for 11 interndtigmarnals,
including IEEE Transactions on Automatic Control, IEEE figactions on
Control Systems Technology, IEEE Transactions on Neuraibdi&s, IEEE
Transactions on Signal Processing, and IEEE Transactior&ystems, Man,
and Cybernetics - Part C. He is a Senior Member of the IEEE,llaviFef
the Royal Statistical Society and a member of program cotaeniior many
international conferences.

to August 2007, he was a research assistant at the Univerfsityng Kong.
From March to May 2008, he was a research assistant at theUitiersity
of Hong Kong.

Dr. Wei's research interests include nonlinear systenughsistic systems

and bioinformatics. He has published more than 20 paperseferaed
international journals. He is a very active reviewer for santernational
journals.



