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Convergence of Nonlinear Observers on R”

with a Riemannian Metric (Part )

Ricardo G. Sanfelice and Laurent Praly

Abstract

We study how convergence of an observer whose state livesdopg of the given system’s space can be
established using a Riemannian metric. We show that théeexie of an observer guaranteeing the property that a
Riemannian distance between system and observer solusammincreasing implies that the Lie derivative of the
Riemannian metric along the system vector field is condiligmegative. Moreover, we establish that the existence
of this metric is related to the observability of the systefiriearization along its solutions. Moreover, if the olveer
has an infinite gain margin then the level sets of the outputtfan are geodesically convex. Conversely, we establish
that, if a complete Riemannian metric has a Lie derivatiemglthe system vector field that is conditionally negative
and is such that the output function has a monotonicity ptgpthen there exists an observer with an infinite gain

margin.

I. INTRODUCTION

For a nonlinear system of the form

i = f@), y= h) (1)

with x € R™ being the system’s state apd= R the measured system’s output, we study the problem of abtain

an estimatet of the statex by means of the dynamical system, calldaservey

X = F(x,y), &= H(x,y) )

with x € R? being the observer’s state ardc R™ the observer’s output, used as the system’s state estiivate.
focus on the case where the stgtef the observer evolves in a copy of the space of the systemts:s i.e., they
both belong toR™, with, moreover, an output functiofl such thatz = x. We consider the following observer

design problem:

(x) Given functionsf and h, design a functiort” such that for the system
i = flx), 2 = F(@h(@), ®3)
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the zero estimation error set
A= {(z,2) eR" xR" : x =3} 4)

is globally asymptotically stable (see the text below (8)).

Many contributions from different viewpoints have been madd address problemx). While a summary of
the very rich literature on the topic is out of the scope oftpaper, it is important to point out the interest of
exploiting a possible contraction property of the flow gexted by the observer. Study of contracting flows has
a very long history and has been proposed independently \mradeauthors; see, e.g., [18], [10], [7], [20], [19]
(see [14] for a historical discussion). In the context oferers, Riemannian metrics have been used in [1], [3],
[4], for instance, with the objective of guaranteeing threg Riemannian distance between the system and observer
solutions decreases to zero. In these papers, the authwsgleo systems whose dynamics follow from a principle
of least action involving a Riemannian metric, such as Lagian systems with a Lagrangian that is quadratic in
the generalized velocities. The observer design thergifo#g some properties of this metric and local convergence
is established via some ad-hoc modification of this metrictarice of coordinates.

This paper advocates that, since the observability of tiséesy linearized along each of its solutions may vary
significantly from one solution to another, the native Ededin geometry of the state space may not be appropriate
to study convergence properties of an observer. Insteadsidting in using a Riemannian metric associated to the
system’s dynamics, we propose to study Riemannian metr@sporating information on the system’s dynamics
and observability. In Section 11-B, we show that if for a givRiemannian metric an observer whose staté/es
in a copy of the given system’s state space and makes the Rigamadistance along system and observer solutions
nonincreasing then, necessarily, the Lie derivative ofrttedric along the system solutions satisfies an inequality
involving the output function. Section II-C shows that ieteame conditions hold and the observer has an infinite
gain margin then, necessarily, the level sets of the outpnttion are geodesically convex. In Section 1I-D we
establish that if a Riemannian metric with a Lie derivatiagisfying the inequality mentioned above is, in some
coordinates, uniformly bounded away from zero and uppented then the system’s linearization along each of
its solution must be detectable. With the insight providgdhese necessary conditions, Section Il proposes a set
of sufficient conditions guaranteeing the existence of asepker whose flow leads to a decreasing Riemannian
distance between system’s state and estimated state.

For the sake of simplicity, we assume throughout the pamdrttie functions are differentiable sufficiently many
times. Moreover, we work under restrictions that can behrrtelaxed, such as time independence of the right-hand
sides and forward completeness of the systems

This paper is devoted to analysis. In a companion paper, aesfon observer design, namely, on the construction
of a Riemannian metric satisfying the desired inequalityteih.ie derivative and making the level sets of the output

function possibly totally geodesic.

1A system is said to béorward completdf each of its solutions exists off), +o0).
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Example 1.1 (Motivational example)Afe illustrate our results in the following academic system

. . xr
&y = wo /1423, xz=—ﬁw§, y = 1. 5)

1

For this system (5), by following [16], we get the observer

&1 o= & — (&1 — ), _572 = —(&1 ),

~ = ~ 5&2 (6)
Vity?

This observer is in the form (2), but cannot be written in therf of (3) with the (&1, 2) coordinates since this

would involve z5. Nevertheless, with the Lyapunov function

V(fi‘,,@) = (fl —1‘1)2 — (i‘l—$1)(j2_$2) \/1+$C%

+ (22 — x2)* (1 + 27) @
we obtain for the system-observer interconnection (5)-(6)
Tom) = V(i) .
SinceV satisfies, for all(z, 2) € R? x R?,
(@1 =) ;’ (F2=22)* _ s 0
< g (&1 — 21)* + (B2 — 22)%] (1 4+ 27),
this implies that, for alt > 0 and all (z, #) € R? x R?,
X (2,) = X((&,2),1)]* < Bexp(—t)(1 + )| — 2]* , ®)

where(X (z,t), X((z,z),t)) is the solution issued from points;, ) for the system-observer interconnection (5)-
(6). This establishes that the sdtis globally asymptotically stable (nonuniformly in but uniformly inz — z).

As it will be shown in Section II-A, the key point here is thidtis the square of a Riemannian distance between
2 andx that is associated to anrdependent Riemannian metric. Moreover, as justified irti@edl-B, no matter
what the observer is, it is impossible to find a standard catadform expressed in the given coordinates (i.e., a
Riemannian distance associated with a constant Riemamnmédric) that is nonincreasing along solutions. This is

a motivation for the analysis of observers usinglependent Riemannian metrics. O

II. NECESSARY CONDITIONS FOR HAVING ARIEMANNIAN DISTANCE BETWEEN SYSTEM AND OBSERVER

SOLUTIONS TO DECREASE
A. Riemannian Distance

As discussed in Section I, the notions of nonexpandingfaectihg flow and geodesically monotone vector fields

are suitable for studying asymptotic stability of the zermeset.A in (4). We start by recalling some basic facts
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on Riemannian distance.

Let P: R™ — R™*" pe aC?® symmetric covariant two-tensor (see, e.g., [24, Page 1f7})).andz are two sets
of coordinates related by = ¢(x) with ¢ being a diffeomorphism, the® expressed in: coordinates as(x)
and inz coordinates ag(z) are related by (see, e.g., [24, Example 11.2])

9¢ ¢

Pla) = S2@) P@) 5o (@) ©)

If P takes positive definite values then the length af‘apath~ between points:; andx, is defined as

L(v)

= J B (5T P T (5) s, (10)

where

Y(s1) = @1, A(s2) = w2 .

With such a definitionP is also called a Riemannian metric. The Riemannian distd(eg, z2) is the minimum
of L(v) 82 among all possible piecewigg' pathsy betweenz; andz,. To relate the Riemannian distance with
geodesicS;, we invoke the Hopf-Rinow Theorem (see, e.g,, TB&orem I1.1.1]), which asserts the following: if
every geodesic can be maximally extendedtéhen the minimum ofL(~y) 52 is actually given by the length of
a (maybe nonunique) geodesic, which is callechiaimal geodesicfor more31details, see, e.g., [5] and [8]. In the
appendix we show that, in our context, this maximal extemgimperty holds ofR™ if there exist globally defined
coordinates in whichP satisfies

0 < P(z) VYzreR™, lim r’p(r) = +oo, (11)

T—00 -

where, for any positive real numbey

p(r) = min Ay (P(2))

z:|x|<r

with Apmin (P(2)) denoting the minimum eigenvalue &f(z). In this case, the Riemannian metric given Byis
said to be complete and, denoting by a minimal (normalizet) geodesic between = ~v*(0) and & = v*(3),

with § > 0, the Riemannian distanc&z, x) is

= 3. (12)

Example 2.1:As an illustration, consider the symmetric covariant twosor expressed im coordinates as
1 — —Zaz2 S R 1;96% + 2129

- \/1+m2 1+I% . . . 1 .
P(z) = ! . Since condition (11) holds witlp(r) = 35 for all » > 0, it
— ok
_$ + Tr1T2 1 + I%

is a complete Riemannian metric. Moreover, using (9), itasyeto check that in the coordinateés= ¢(z) =

2A normalized geodesie/* satisfies d;’: ()T P(v*(s)) dg; (s) =1 for all sin its domain of definition. In the following, the adjective
“normalized” is omitted.
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1
x _ I -3 _
[ ! } , Its expression i (z) = 1 2| . Since P(z) is constant, any minimal geodesj¢ takes

Toy/1+ a3 —— 1

2 _
the form~*(s) = z + sv with o € R? satisfyingo ' P(z)v = 1. Then, a minimal geodesic in coordinates is given

by v*(s) = ¢~ 1(z + sv). Accordingly, the Riemannian distance betweeand z is

i B @ TP ) B (s ds = d(dx) = d(E)
= Ji /()T PG () B () ds
- \/(5: —7)TP(z)(i — 7)
=V (6(&) — ¢(2)) T P(z)(4(%) — 6())
V(& ),
whereV is given in (7) andi = ¢(&). O

Having a Riemannian distance, we say that a systemf(x), with solutionsX (z, ¢), generates a nonexpanding
(respectively, contracting) flow if, for any paiwr,,z2) in R™ x R”, the functiont — d(X (z1,t), X (z2,t)) is
nonincreasing (respectively, strictly decreasing); seg., [13]. Also, the vector field is said to be geodesically

monotonic (respectively, strictly monotonic) if we have
LyP(x) <0 (respectively < 0) Vo e R" (13)

whereL; P is the Lie derivative of the symmetric covariant two-tenggrwhose expression im coordinates is

v LyP(x)v
[ B @0l Pl @)+ 2 @]
r—0 r

v P(x)v (14)

r

- % (UTP(x) v) F(z) + 20" P() <%(a¢) v)
for all v € R™; see [5, Exercise V.2.8], [24, Page 17], or [17]. We have tiling result (see, for instance, [13]
or [1] for a proof).

Lemma 2.2: A geodesically monotonic (respectively, $frictonotonic) vector field generates a nonexpanding
(respectively, contracting) flow.
If inequality (13) holds for the observer vector field thent — d(X ((&1,z),t), X ((#2,),t)) is (respectively,
strictly) decreasing; however, this property is more thamatvis needed for the zero estimation error geto
be (respectively, asymptotically) stable. Actually, itsisfficient to have an observer giving rise to a (respectively
strictly) decreasing function — d(X ((&,z),t), X (z,t)) for all pairs (&,z) in R" x R". That is, we do not insist
on having a Riemannian distance between any two arbitrasgrebr solutions to decrease, but only to have a
decreasing Riemannian distance between any observeiosoarid its corresponding system solution (which is a

particular observer solution).
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B. Necessity of geodesic monotonicity in the directiongéahto the level sets of the output function

Since the Riemannian distance betwdeandz is locally Lipschitz, its upper right-hand Dini derivative given

by N

Dtd(2,2) = limsup d(X((#,2),t), X(z,t) —d(@,z)

t—04 t

(15)

for each(#,z) € R™ x R™. It is nonpositive when the functioh— d(X ((,z),t), X (z,t)) is nonincreasing.

Theorem 2.3: Assume there exists a compléteRiemannian metrid® such that, for eacti#, z) € R" x R",
Dtd(#,2) <0 (16)
holds along any solution of3), then

v LyP(x)v < 0 V(z,v) € R" x R"
h that on =0 .
such tha %(:c)v =0.
Furthermore, if there exists a functian: R” x R™ — [0, +00) such that(#, z) — d(#, z)w (&, r) is a C? function
on a neighborhoodV 4 of A with the property that, for some > 0,
0?(dw)

02

(x,x) > eP(x) Vo e R" (18)
and, for each(z,r) € Nu,

Dtd(#,z) < —w(2, ) (19)

holds along any solution of3), then there exists a continuous functipn R™ — R satisfying

£rP@) < pla) @) o) - P() Ve R (20)

Proof: To simplify the notation, lef” : R™ x R™ — [0,+00) be the function defined as the square of the

Riemannian distance, i.eV;(#,z) = d(&, x)?, and notice that
DV (2,2) = DTd*(#,2) < 2d(2,2) DT d(Z, ). (21)

Pick an arbitrary point: in R™. From [15, Theorem 3.6], there exists a (normal coordinagyhborhoodV,,
such thatV is C? on NV, x N,. From (21) and (16) (respectively, from (21) and (19), (@, x N;) NAN4), we

have
DtV(#,2) <0  (respectively < —2d(#,z)w(,z)).

3Sincelimsup(a b) < limsupa - lim sup b.
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Let r, be a strictly real number such that, for anyn S”, the unit sphere, and for all € [0,r.), (& + rv,z) are

the coordinates of a point i\, x A,) N N4. We have?

9%V 9%V
W(m,m) = W(x,gc) = 2P(x) (22)
ancd
V(ZC,CC) = 78‘/( ) ) = a_‘f(xax) =0
(9 (91‘ (23)
a2 P T pgar Y T 92 0 T Brag 0T T

and, for allr € [0,7*) andv € S,

ov
DTV (z +rv,x) = %(a:—i—rv,:z:)f(:c)

+

5% (x 4+ rv,z) F(x + rv, h(x))

IN

0

( respectively < —2d(z+rv,x)w(x+rv,2) ).

With the definition ofd, this implies thatA is forward invariant, i.e., the solutions to (3) with= & as initial

condition remain inA4 for all ¢t > 0. This implies

Bz, h(x)) = f(z) . (24)

By differentiating this identity with respect to, we get

oF oF oh of
%(%h(iﬂ)) + Fy(xah(x))%(ff) = %(3@)' (25)

Forr in (0,r.), we obtain

i 8_‘/( + )+8V
72 | gg T 0%

(x +rv,2)| flz)+

oV
55 D) P(a 4 rv b)) — f(x)

r T

<0 (26)
. 2
(respectively< —T—Qd(:v +rv,x)w(z + v, x)).

To compute the limit for- approachingd) note that we have the following Taylor expansion aro@adr)

oV
V(iz+rv,z) = V(z,ax)+r ?(:v, x)v
T
2 2
re 0%V 3
—I—?’U 557 (x,2) v+ Og (1),
4This follows from the fact that a first order approximationtbé geodesic isy(s) = = + sv + Oz »(s2) with vT P(z)v = 1, which

yields V(&,z) = d(z,2)? = 82 = (2 —x)" P(z) (& —z) + O (53), where the subindex i®,. ., indicates dependence ¢, v).

5This follows fromz = & being a minimizer oft” for all .
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ov

ov 0*V
0z

- oV 2
5% (x,z)+7r 552 (x,2) v+ Oy (r7)

(x+rv,x) =

F(z+rv,h(z)) — f(z)

F(z,h(z)) — f(x)

r

r

—i—(:)?—i(x, h(z))v 4+ Ogo(r).

DefineW (z) = V(x + rv,z) and note that

8—W(:c) = av(:z:—i—rv a:)—i—a—v(:c—l—rv x)
ox 7 0% ’ oz T

With (22) and (23), we get

Wi(z) = r? UTP(,T) v+ Ow7v(r3) ,
10V

r 0%

(04 r0,0) = 207P() + Oplr)

and with (24)

F(z +rv,h(z)) — f(z) OF

" %(x,h(x))v + Ogo(r).
This yields

: ov A%

}%T—Q %(:v +rv,x) + %(:v +rv,x)| f(x)

1 oW d (v Pu)
Tl_I}}J T_QW('r)f(I) = T(fc)f(fﬂ)-

(27)
Also, with (24), we get

ov

o D2 F(a 4 ro,h(e) — f(a)

r—0 r

R (28)
=20 P(z) 2—1::(:6, h(z))v.

Similarly, we can obtain

0% (dw)
v’ 52 (x,z)v . (29)
Then, combining (27), (28), and (29), we have that inequ#l6) gives
0 (UTPU)

@@+ 20 P @b < 0

2
(respectively < —vTaa(;le)( , )V

.2
}1_% r—2d(:17 +rv,z)w(z +rv,x) =

Yo e S"),
or, equivalently, using (25) and (14),

v L;P(x)v — 2UTP(x)(Z—§(:17, h(a:))% (x)v <0 (30)

2
(respectively < —uTaa(g;j) (z,z)v Vv €S™).

(31)
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It follows that (30) already implies (17). Also, when (19)lt® by completing squares and using Cauchy-Schwarz
inequality, we get successively, for any functipn R™ — (0, +o00) and all (z,v) in R™ x S™,

2

207 P(a) (o ) (@l < plo) |GG
2
+$ UTP(x)%(x,h(x))
—Oh, +Oh

pla)” S @) S (@)
95 (@, h(2)) T P(x) 35 (2, h())|
p(x)

+

v P(x)v

Equation (20) follows from (18) by picking as any continuous function satisfying

< p(z)

2 |0OF oF
€

= |3y (o ha) T P@) G (b))

for all z € R™. ]

When compared with (13), which saysds (respectively, strictly) geodesically monotonic, trecassary condition
(17) (respectively, (20)) says only that the vector figlds geodesically (respectively, strictly) monotonic in the
directionsw satisfying%(x)v =0, i.e., in the directions tangent to the level sets of the oufpnction .

Remark 2.4:Theorem 2.3 can be interpreted as an extension of [21, Ptmpo$8]. In this reference, &'
function V' depending only ori: — z, called astate-independent error Lyapunov functidgs obtained from stability
properties ofA. In such a case, the conditions in (23) yield a constant m&riThen, Theorem 2.3 implies that,
for all x € R™, P is a semidefinite positive matrix that satisfies, forak R",

of < Oh, .+ 0Oh €

i
PL@ + L@)TP < o) @) @) - S P

It follows that, for allz € R™ andc € [0, 5], we have the implication

oh _ pdf

81:( x)v=0 —~(z)v < —cv'Pv. (32)

Whenc¢ = 0, this property corresponds to the one established in [2dpd&ition 3]. It is worth pointing out that a
limitation of the work in [21] is that the results are extiims.e., they depend on the coordinates since a quadratic
form may not be quadratic after a nonlinear change of coatds1 On the other hand, the necessary conditions in

Theorem 2.3 are intrinsic. In fact, létbe a diffeomorphism ofR™ leading to the new coordinates

z=¢() , T=¢). (33)
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10

Leth, d,@, p, f, andP beh, d, w, p, f, and P, respectively, in the new coordinates. We have (9) and

@) =h) . D) = L),
(@) = 22() fa)

13,8) = d@,2), o6 7) =w(E o)
9*(dw) 5¢ TaQ( ) 5¢

Substituting these expressions in (20), we get

- T
LWL PO < o) [ @]
oh 06 100, - 0%dw),_ 90
{%(x)%(x)} 29 “am @75, ()

and sinceg—f(;v) is invertible it gives

_ oh, -+ oh

£;P(z) 10%(dw),_ _

< @) 5o @) o (@) - 5 (@),

which is inequality (20) inz coordinates.

Furthermore, from the definition of P and with completion of squares as in the proof of Theoremi2@&n
be checked that condition (20) is preserved, but with a medlifinctionp, after an output-dependent time scaling
of the system, i.e., wheyi is replaced byf(z) = 6(h(z)) f(x) with 6 taking strictly positive values. O

The necessary conditions in Theorem 2.3 can be used to ¢bazacthe family of Riemannian metrics possibly
leading to a Riemannian distance that is nonincreasing(vi@) or strictly decreasing (via (20)) along solutions.
For instance, condition (17) can be used to justify that,sigstem (5), there is no such a Riemannian metric that
is constant.

Example 2.5 (Motivational example — continuedpr the family of constant Riemannian metrics of the form

p= |1 ,p,7 >0 ,pr > ¢* for (5), for eachv € R? such that

q T
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11

we obtain

v'P g(x)v + vTﬁ(I)TPU

T ox
2
9 T1To 14 27
= 71 > ’UTP I% v

VvVit+x — -2
1 1+CC% T1T2

B v3(2q(1+22) —4rax x9)

V1+a? ’

which cannot be nonpositive for eaeh On the other hand, it can be shown that the family of Riensamnietrics
satisfying (17) can be described as

1 0
] [\/—mfii% m] >

With (1, 22) = (1,22 /T4 %) andi(z) = a(@)?, 4(z) = —b(&)? — 12 (222, p(@) = (@) + L2, where

a,b,c : R? — R are sufficiently smooth functions witlh and ¢ not vanishing. A particular choice is(z) = 1,

2
) — 1 =\2 T2 T1 H
b(z) = PEY ande(z)* =1+ <—1+z§ + —1+m§> , which leads to
24+ 13  wae—1
P(z) = S (35)
XT1To — 1 1 + :Z?%

C. Necessity of geodesic convexity of the level sets of ttpaiofwnction

In Theorem 2.3, we studied the implications of the existesfcen observer making— d(X ((z, z),t), X (z,t))
nonincreasing, in particular, whei converges ta: (in the proof,(z + rv,z) approachesz, z:)). Now we study
the implications of the existence of such an observer forctse wheri: is far away fromz. To this end, for each

sin [0, 8], lett — I'(s,t) be aC! function satisfying

90X

A W(‘Tat) = [(X(z,t), X(z,0) =z,
%—)t((:ﬁ,t) = F(X(&,t), (X (x,1))) , X(2,0) = &,
D) = (60, h(X(1) . Tls,0) = 7°(5)

with 4* a minimal geodesic between and . Then, we haveX((#,z),t) = I'(3,t) and hence, at time,

s+ T'(s,t) is a path betwee (z,t) and X ((#, z),t). Also, we have

d(@,x) = d(T(3,0),0(0,0)) = L(F(.,O))i .
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12

Also, we know from the first order variation formula (see, fiastance, [25, Theorem 6.14] or [13, Theorem 5.7])

that we have

d
a HTEO )
= % OS \/‘;_E(s,t)Tp(r(s,t))g_g(s,t) ds g

~D )P (0) Py (0),).

On the other hand, in general, for eacin the domain of definition, we have only

d(I'(5,1),1(0,1)) < L(I'(+,t)) .

d(X (#,t), X (z,1)) =
Then, the upper right-hand Dini derivative of the distaneéneenz andx in (15) satisfies
Dtd(z,2) < < L(T'(.,1)) é
dt 04—g
< T PO FO )Y
~O )P 0) F(0)) (36)

Even though (36) is an inequality condition, we proceed aswere an equality. In such a case, if the observer
makes the distancé(z, ) nonincreasing along solutions then necessarily the tigimd side of (36) has to be

nonpositive. To get a better understanding of what this meeonsider the case whHen
~ D) TP 0) 70 (0) 2 0 37)
ds v Y 2
Then, for the right-hand side of (36) to be nonpositive, with- v*(3), we must have
<0. (38)

YT
AT P2 F(i
——(3)P(&)F(,y)
At this point, it is important to note thaff%(é) is the direction in which the state estimaté‘'sees” the system
statex along a minimal geodesic. Such a direction is unknown to th&eover. The only known information is

that, for giveny, = belongs to the following,-level sef of the output function:

Hy) = {z:h(z) =y} .
d;’: (0) belongs to the closed half spa¢ey € R™ :

SFor a givenz € R™, this condition holds for every minimal geodesj¢ such that

w' P(z) f(z) < 0}.
"By y-level set ofh we mean the intersection, for each=1,2,...,m, of the sets{z € R™ : h;(z) = y;}.

DRAFT
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13

Hence, (38) implies the following property: giveénandy, the level set of the output functigh(y) is “seen” from
2 along a minimal geodesic, within a cone whose aperture & tlean=. As stated in Lemma 2.7 below, this
property implies thaty(y) is geodesically convex; see [23, Definition 6.1.1] and [14ct®n 9.4].

Definition 2.6 (geodesic convexity): A subsedf R™ is said to be geodesically convex if, for any pair of points

(x1,22) € S x S, there exists a minimal geodesj¢ betweenr; = v*(s1) andzs = v*(s2) satisfying
Y (s)eS  Vse[s1,s2].

Lemma 2.7: LetP : R™ — R"*" be a complete Riemannian metric. Assufhis a subset oR™ such that, for
any & in R™\ S, there exists a unit vectos; such that, for any: in S and any minimal geodesi¢g* between

x =~*(0) and & = v*(§), with § > 0, we have

Then, S is geodesically convex.

Proof: Assume thafS is not geodesically convex. Then, there is a gair, z2) € S such that, for any minimal
geodesicy; betweenz; = 45(0) andzy = 7 (s2), there existss; in (0, s2) for which 45 (51) is not in S. Let
& = ~7(81) € S. Note thatyi(s) = ~7(s2 — s) defines a minimal geodesic between = ~;(0) € S and
T =5(82) ¢ S, with 32 = s — §; > 0. With our assumption, since; andz, are in S, there exists a unit vector

v; satisfying

AV 2 \T s dY3 (o \T ps
I (51) P(z)vy < O I (2) P(@)vz < 0.
But this impossible since we ha\i’gsi(él) = —dd—f(,§2). [ |

For Example 1.1, we shall see in the following section thatt whe help of item 2a of Proposition A.3, for any
y, the level sety(y) = {(z1,22) : 21 =y} is geodesically convex for the Riemannian metric given i5)(3
As announced above, we conclude from Lemma 2.7 that geottasiexity of the levels sets of the output function
is a necessary property in the “general situation” wherg (®1ds (and when (36) is an equality). Actually, it is
necessary, without any extra condition, when the obserasram infinite gain margin.
Definition 2.8 (infinite gain margin): The observer= F(&,y) for & = f(z) is said to have an infinite gain
margin with respect ta” if (24) holds for everyr € R™ and, for any geodesi¢* minimal on|0, §), we have
dy*
ds

(s)P(v*(s)) [F (7" (), h(y7(0)) = F(v"(s))] < O (39)

for all s € (0, 3).
The terminfinite gain margirfollows from the fact that, if the observer= F(z, y) makes — d(X ((&,z),t), X (z,t))
nonincreasing (for each solution) and (39) holds, thenaneesholds for the observer= f(z) + ¢ [F(i,y) — f(2)]

for any real numbef > 1.
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D. Necessity of Uniform Detectability

The necessary condition in (20) is linked to an observahjlibperty of the family of linear time-varying systems
obtained from linearizing (1) along its solutions. Assugithe system (1) is forward complete, for eachthe
corresponding solution to (¥)— X (xz,t) is defined on0, +o00). For eache, the linearization off andh evaluated

along a solutionX (z, t) gives the following functions defined df, +o0)

af Oh

Ao(t) = - (X(@,0), Calt) = 5-(X(2,1)).

These functions define the following family of linear timarying systems with state € R™ and output; € R™:
£=AM)¢, n=Cut)é (40)

Systems (40) are parameterized by the initial conditionf the chosen solutioX (z, ¢).
The following theorem establishes a relationship betwedetactability property of (40) and the existence of a
bounded away from zero, upper bounded symmetric covanemteénsor whose Lie derivative satisfies (20).
Theorem 2.9: Assume systéh) is forward complete and that there existt8 symmetric covariant two-tensor

P:R"™ — R™™ and strictly positive real numbers and p satisfying(20) and
0 <pl < P(x)<pl, VreR" (41)

Then, for each: € R”, there exists a continuotifunctiont € [0, +00) — K,.(¢) such that the origin of the linear
time-varying system

is uniformly exponentially stable.
Proof: To any x € R", we associate the functiords, : [0,4+00) — R™*", K, : [0,+00) — R”, and

V1 R x [0,400) — R defined as

X (x,t)) | (43)

We have

plE? < Vu(&t) < BIEP V(z,t,€) (44)

8We do not ask the functiotk, to be bounded.
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and, with (20), (18), (14), and the definitions in (43), we get

d, - _ 9T
@ (V) = Fo (T P00Y) F) .
< —%UTHz (t) v
— 20 T, (t) (Ap(t) — Ko (t)Cu(t)) v
Then, with (42), we havel V, (£, 1) < —£V,(&,t). The conclusion follows with (44). [

It follows from this proof that, if we do not have the upper bd in (41), we still have exponential stability,
but we loose the uniformity property. This would be the cdsejnstance, for the system (5) of Example 1.1 with
P given by (35) whose eigenvalues satisfy

@4+~ (rrs— 1)
3+ 23 + a2

)‘min(P(I)) >

L+l + (1 +22)” 1 (45)
3+ 23 +a? -3
Amax(P(z)) < 3423 +af. (46)

Exponential stability of the origin of (42) is a detectatyilproperty for (40). The necessity of this property for

the existence o’ can be exploited to actually construct it, as it will be shawrthe companion paper.

I1l. A SUFFICIENT CONDITION

In the previous section, we assumed the existence of anv@sseeking the function — d(X ((#, x),t), X (x,t))
nonincreasing (respectively, strictly decreasing) witheing the distance associated with a Riemannian métric
We showed thaf” has to satisfy a (respectively, strict) inequality involyithe output function. In this section, we
start from the data of such a metric and investigate the pitigsiof designing an observer making the corresponding
Riemannian distancé(z, x) strictly decreasing along solutions.

In view of Theorem 2.3, we assume thatsatisfies

oh, 1 Oh

LiP@) < pl@) (@) 52 (2) —qP(x) VR

with ¢ a strictly positive real number. But, also, willing to be in“‘general situation” in which (37) holds and
motivated by Lemma 2.7, we restrict our attention to the cmkere the level set of the output functigi(y) is
geodesically convex for any in R™. Actually, we ask for the stronger (see Proposition A.3)pgrty that the sets
$H(y) are totally geodesic (see [6, Section V.I1]).

Definition 3.1 (totally geodesic set): Given@ functiony : R” — R™ and a closed subsét of R”, the set

S ={zeR": p(x)=0}NnC
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is said to be totally geodesic if, for any pdit,v) in S x R™ such that

dp _ T _
%(x)v =0 , v' Plz)v = 1,
any geodesiey with
_ 0y —
7(0) =z, E(O) =v

satisfies

p(y(s)) = 0 Vsed,,

where J,, is the maximal interval containing so thaty(J,) is contained inC.
In the appendix, we establish a necessary and sufficienkabkrcondition for the set§(y) to be totally geodesic.
Example 3.2 (Motivational example — continued)r the system in Example 1.1, it is sufficient to check that

the Christoffel symbol'}, (see (67)) associated with the particular choicePoh (35) for the family (34) is zero.

0
Infact,wehav@%zzm(1+x§ 1_x1$2)<0>_0, O

The following theorem gives a sufficient condition for thastence of an observer for the single output case.
Theorem 3.3: Assume there exist a compteteRiemannian metrid® and a setC ¢ R” such that
H1 : C is geodesically convex, closed, and with nonempty interior

H2 : there exist aC! functionp: R® — [0, +o0) and a strictly positive real numbey such that

Oh, 1 Oh

LiP() < p(o) (@) 5

o (x) — qP(x) Vo eC, 47

H3 : The number of outputs i&t = 1 and, for eachy in ih(C), the setH(y) N C is totally geodesic.

Then, for any positive real numbéf there exists a continuous functidsn; : R™ — R such that, with the observer

given by
0 06
Flaw) = £(&) = k(@) P& 520) 5= (1)) (48)
where
S(y1,y2) = [y —u2l?, (49)
the following holds (see (15)):
Dtd(z,z) < _% (&, z) o)

V(x,2) € {(x,2) : d(&,2) < E} [ (int(C) x int(C)) .

Moreover, expression (48) is intrinsic (i.e., coordinateépendent) and gives an observer with infinite gain margin.
Example 3.4 (Motivational example — continuedfye have already checked that, for the system (5) and Rith

given in (35) all the conditions of Theorem 3.3 hold globailg., withC = R%. Hence, the observer given by (48)
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becomes

. - ~2
1 T Al —1—2:101
B - __ ity
2 1+ 22
2kp(&) 1+ ]

S LTI B —y) .
L+ 27 4 (81 +22)° \ 1 14, o

Remark 3.5:

o Theorem 3.3 gives a (nonglobal) solution to problen When the assumptions of Theorem 3.3 hold globally,
i.e., they hold forC = R™, the observer given by (48) guarantees convergence of tiraatsd state to the
system state, semiglobally with respect to the zero estmarror setA.

The fact that we do not get global asymptotic stability ishkdue to the elementary form of the observer
(48) and its infinite gain margin. We expect that other cheiwe this observer are possible to obtain a global
asymptotic stability result.

o As discussed in II-B, we do not claim in Theorem 3.3 that they fii@nerated by the observer has a contraction
property but simply that the Riemannian distance betweémated state and system state decays along the
solutions. In other words, this result establishes thafftinetion (&, 2) — d(&, z) can be used as a Lyapunov
function for the zero error setl and guarantees this function has an exponential decay #fengolutions.

But it does no say that(i;, Z2) decays along two arbitrary solutions of the flow generatethleyobserver

Theorem 3.3 is a direct consequence of the following lemmawhich there is no restriction on the number of
outputs) and the fact that, when the number of outputs is- 1, assumption H3 implies the assumption H3’ of
the lemma; see Proposition A.3.

Lemma 3.6: Assume there exist a comptéteRiemannian metric®, a setC c R", a C* functionp : R® —
[0,+00), and a strictly positive real number satisfying H1 and H2 of Theorem 3.3. Assume also there exists
C3 function§ : R™ x R™ — [0, +00) satisfying

S hE) =0 Do) >0 1)
b1 y1=y2=h(z)
for all = € C, and, such that
H3’: for any pair (z1,22) in C x C satisfying
h(z1) # h(x2)

and for any minimal geodesig* betweenz; = ~v*(s1) and zo = ~*(s2) satisfying~*(s) € C for all
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s € [s1,82], with s1 < s2, we have

d
007 (5)), h(7"(51))) > 0 Vs € (s1,59] - (52)
Then, the claim of Theorem 3.3 holds true with a functicsatisfying H3’ (instead o6 as in (49)).

Remark 3.7:

« Property H3’ says that we can find a “distance-like” functiom the output space allowing us to express that
the output functiorh preserves some kind of monotonicity. Namely, as the digtémereases along a geodesic
in the state space, the same holds in the output space meédsufeThis property has some relationship with
the notions of metric-monotone function introduced in [22]d of geodesically monotone function defined
in [23, Definition 6.2.3]. In the appendix, we establish a mection with totally geodesic sets and geodesic
convexity.

With such a property, by following a descent direction fae tdistance” in the output space, we are guaranteed
to decrease the distance in the state space. This featwpl@ted in the observer given by (48) via a high-gain
term which enforces that such a descent direction is domimat

« Property H3’ withd(y1, 32) = |y1 —y2|? has been invoked already in [26] but for the case wReis constant.

O

Proof: Note that since we have

the result already holds wheiiz, &) is zero. Therefore, the remainder of the proof only consigetirs(z, =) that
arein(C xC) \ A.

The Riemannian metri@ being complete, any geodesic is defined(emo, +o0) and the Riemannian distance
d(x1,x2) is given by the length of a minimal geodesj¢ betweenz; andz.. SinceC is geodesically convex by
H1, for any pair(z1, z2) in (C x C) \ A, there exists a minimal geodesj¢ betweenr; = v*(s1) andzy = v*(s2)
satisfyingy*(s) € C for all s € [s1, s2].

Let (2, z) be any pair in(C x C) \ A and~* denote a minimal geodesic between= v*(0) andz = v*(3)
satisfying~y*(s) € C for all s € [0, §]. With y = h(x), take F’ as in (48). It gives

D (&) P (3) [FG(5),) — £ (5))]

~D )T PG ) PG (0).9) ~ £ (0)]
= k(@) SO S @) (69
On the other hand, we have
T ()7 P@) 1)~ 07 P f(a) (54)
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= [ (ST Pl 1676 s

Also the Euler-Lagrange form of the geodesic equation refadghe i-th coordinate,

2—<Zak () )) —

_k
d
oP drr
T M * Vi
Ekj S (07 (5) G (5)

Then, with the definition of the Lie derivativé;P and (47), we get

& (S eTPer e o)

_ldr T (e

P () |Oh L

IN

<

where, in the last inequality, we have used

dy* dy*
O ()T PO ) D (5) =1

since~* is normalized. Withd(#,2) = § as given in (12), replacing (55) into (54) yields

T TPO @) £ (5) — D07 P (0)) £ (0)

* p(v*(s))
< /0 .

Then, from (36), using (53) and (56), we obtain

dho~vy*
ds

2
(s)‘ ds — gd(:ﬁ,x) . (56)

Dtd(#, z)
< |20 ) (PO @)~ F676)
OO O) (P (0)9) = £7(0)
- {dcz:( PO ") ~ T 0 P *<0>>f<~y*<o>>]
< k@) 2GS 0 6.0 -

n Sp(v’;(S)) dhdc;v* ()

2

ds — gd(:ﬁ, z).
0
To proceed it is appropriate to associate two functierdb to any triple(&, z,v*) with (z,z) in (C xC) \ A
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and v*, a minimal geodesic between = +*(0) and & = ~*(§) satisfying~*(s) € C for all s € [0, 5]. These

functions are defined oft), §] as follows?

1 dho~* a6 N *
Aseq)(T) = ;T(T)Ta—yl(hﬁ (r), h(v*(0))) "
if 0<r <3, and
a(i,m,v*)(o) =
dho~*  +0% . . tdhoy™ o
S0 S5 (" 0). " (0) T 0
and
1 [T p(y*(s) |[dhoyt
b(x_’z_’,y*)(r) = 7’/0 5 T (s)| ds
if 0<r <3, and
“(0)) |[dho~*, |?
bisuoe)(0) = p(”y?( ))‘ dsv (0)} _

We remark with (51) thad reaches its global minimum at = y» = h(x). This implies

%(hw*(r)),hw*(om -

[ (Zneomar o eon) i)

S

for all » € [0, §]. As a consequence, the functiom&n b are continuous ofD, §]. Moreover the property H3' gives

readily the implication
h(z) # h(z) = A(aeqy(r) > 0 ¥re (0,5 .

In the case wheh(x) = h(Z), we are only left with the following two possibilities:

1) ho~* is constant on0, §]. Then we have‘%(s) = 0 for all s € [0,35] and thereforen; , «(r)
bis,ey+(r) = 0forallre[0,3].

2) ho~* is not constant o0, §]. Then, there exists somg in (0, §] such thath(y(s1)) # h(y*(0)) = h(x).
With H3’, this implies that the functios — J§(h(y*(s)), h(y*(0))) is not constant ono, §]. But since we
haved(h(~v*(8)), h(y*(0))) = 6(h(~*(0)), h(v*(0))) = 0, this function must reach a maximum at some point
$m in (0, 8) where we have

5(h(y"(s5m)), h(77(0))) > 0,

LA (5m)), 2 () =0,

SWhen s = 0 the functionsa s, +) andbz .. ) are only defined at zero.
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and thereforév(v*(sn,)) # h(y*(0)). But this contradicts H3’. So this case is impossible.

In any case, we have established that, .-)(5) is non negative and if it is zero then; , ,-)(r) = 0 for all
r €0, 3].

Now, let Z be an arbitrary point ir€. Call it origin. For each integet, we introduce the set
Ki = {(z,2) eCxC : d@,2)<E,i<dz) <i+1}.

From the Hopf-Rinow Theorem [24, Theorem II.1X] is compact.
To conclude it is sufficient to prove the existence of a reahberk; such that, for any pai(Z,«) in £; \ A
and any minimal geodesig* betweenz = *(0) andz = v*(8) satisfyingy*(s) € C for all s € [0, 5], we have

q . R
Z + k; a(i,rﬁ*)(s) > b(i,rﬁ*)(s).

Indeed, with this inequality, the definitions afandb and (57) wherei(z, ) = §, we obtain (50) provided the
function kg satisfies
kp(z) > ki VieC:i1<d(Z,z)<i+1.
Proceeding by contradiction, suppose that skicboes not exist. Then, there exists a sequéiger,,, &, 7, ),
with 8, > 0, (z,,2,) in K; \ A, and~} a minimal geodesic betweer, = ~*(0) and &, = ~;(s,) satisfying
vi(s)eC forall s €]0,3,] and

q A A
Z + na(inwznﬁ:)(sn) < b(fmrns'ﬁz,)(sn) : (58)

Moreover, the functiong; , ,~) andb; . ,+) are C' on [0, 3]. Indeed, they can be written as

Ja(r) fo(r) .
Uawnys) = = 0 Wby = TVT €]0, §]

where the functiory,, respectivelyf,, is C? sinceh, v* andé§ are C3, respectivelyp is C' andh and~* are C2.

We have the following technical property.

Claim 1: Let f be a(C? function defined on a neighborhood @fin R, where it is0. The functiony defined as
o(r) = L9 if r £ 0 and (0) = f/(0) is C".

T

Proof : Clearly,¢ is C? everywhere except may bectlts first derivative iy’ (r) = W. Itis also continuous

at 0 sincelim, o ¢(r) = f/(0) = ©(0). Its first derivative ab) exists if lim, o 2720 — Jim, w

exists, which is the case since, dueftdeing C?, we have

MO0 2 e - o

7'2 7'2 0
1 T S "
- & /O /O ' ()dtds
1 s
_ 72/0 £ - dt
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which leads top’(0) = 5 f”(0). We have also
f( ) _2Tfl / f//
This implies
and thereforey’ is continuous.

We also have the following claim.

Claim 2: There exists a subsequen@ég, , =, , n,,v;,) Of (8n, Zn, n,7;;) Such that

lim (§n1,Inl,j?n1) - (éwvxwaj:w)a (59)
ni—00
lim ~, (s) = 7Yw(s) uniformly ins € [0, E] , (60)
n1—o00

where~,, : [0, §,] — C is a minimal geodesic betwean, and ,,.
To prove the claim, not that sinde;,,, Z,,) is in the compact sef’; and~;: is a minimal geodesic taking values in

C when restricted tq0, $,,], from

\/_|381—9€2| < d(z1,29) < /Plor — o

V(z1,22) €C X C

we get
\/IEW;;(S) — x| < d(vp(s),zn) < 8 < E Vs €[0,3,]
and
d A’n.v n .
@al < Jon— @] + 1] < T 4oy
/P

< £ uv.
/P

This implies thaty : [0, E] — C takes its values in a compact set independent of the indétoreover,y being
a solution of the geodesic equation, there exists a subeequeth indexn; and a quadrupl€s,,, x,,, ., 7.) such
that (59)-(60) hold (see, for instance, [9, Theorentd]), where~,, is a solution of the geodesic equation and,

sinceC is closed, it satisfies

Y (0) = 2y, Yw(8w) = Z0w, Yw(s)€C Vse0,8,] .

Finally, according to [24, Lemma 1l—.4.2], it is minimizingetweenz,, and z,.

d6h

Now, the functionsh, p and 7 restricted to the compact set where the functiofjstake their values, are

continuous and bounded. Also, from the geodesic equatidrcampleteness, the same holds fgjr — d”" and % 7"
restricted t00, 5,,]. With the definition ofb; , .., =), this implies that the right-hand side of (58) is upper bcmhd
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say by B. Consequently, we have

q
4 + na(fmrnxy;)(sn) < B vn.

Sinceas,, ., .~x)(8n) is nonnegative, this implies that; .., ~.)(3,) = 0.
If 2, # 2, SiNCa(s, 4, ..)(5w) IS zero, we have seen that the same holdsbfer .., - (r), for all for all

r € [0, 5,]. On the other hand, (58) yields

S b(i:w,zw,'y:;) (Sw)

LS

wheregq is strictly positive. So we have a contradiction.
If &, = x,, also by compactness, there exists a subsequence with indek the subsequence with index

in Claim 1 such that we have

v, = lim Zne " Tne o Fne T Tng
w A - ~
1200 d(&ny, Tny ) n2TO0 Sny

Note that sincet,, = z,,, we haves,,, (and alsos,,) converging to zero. But, with the identity

Sn2 dny,
T = e — d
Lny Tp, + /0 ds (s)ds

this gives also

* A'n, _ ;; O d *
v, = lim s (8 2} 12 (0) = i(0)
n2—00 Sng ds

On the other hand, since the functiomng , ., 1) andb, .. .- areC* on [0, E], and the way they depend on

n is only via~;; (which takes its values in a compact set independent)pthere exist real numberd; and B,

such that we have

Y%

a(in,mn,’yz)(én) a(in,xn,'y;j)(o) - Al '§n 3
b(£n7wn77;)(§n) S b(inywny'yﬁ) (O) + Bl §n .

Since we are in the case whe¥g, goes to0, this implies

0 = nlgnoo a(i"?I"?"ﬁlz)(o) ’
oh 0% oh
T T T
= Uy %(Iw) a_y%(xwvxw) %(xw)vw

With (51), we obtain

and therefore :

nlgnoo b(jnz s5Tng 77;;2 ) (Sn2 )
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oh

p(15(0)) | Oh
Ox

< lim b(inQ,an,fy,’;z)(O) = (24) v,

ng—00
This contradicts (58).

So we have stablished the existencekpf

Finally, in (53), we have, with (52),

dho~*

95
~ T_
G

oy

(h(v*(8)),v)

_ %6(h(7*(§))7h(7*(5))) > 0

and F(v*(0),y) = f(v*(0)). So (39) holds and the observer has an infinite gain margin.

To prove the last point of Theorem 3.3, lgtdefine a diffeomorphism as in (33). Lét kg, f, F' and P
be the expressions df, kg, f, F' and P respectively in the new coordinates. We have (9), (34), antlr) =
kp(z), F(z,y) = %2(x) F(x,y). This implies

’1%(£)Tx

Py = L@ [f(:&) = keld) P(@)

Therefore, the expression of the observer remains the sétaretlze change of coordinates. |

IV. CONCLUSION

If for a Riemannian metrid® and an observer such that the distance between estimatedasth system state
decreases along the solutions, then the Lie derivativ® @long the systems solutions satisfies the inequality in
Theorem 2.3 involving the output function. Also, the saisfon of such an inequality together with the existence
of upper and lower bounds faP (see (41)) imply detectability of the linear time-varyingseems obtained from
linearizing the given system (1) along its solutions. Mmep we have seen how the geodesic convexity of the
output function level sets is necessary if the observer hagfaite gain margin and, in a general situation, when
the Riemannian distance between estimated state and sgs&ndecreases along the solutions of (3).

Conversely, from the data of a Riemannian metric satisfyirggnecessary conditions in Theorem 2.3 and (41),
and when the level sets of the output function are totallydgsa, we showed how to construct, for the single
output case, an observer guaranteeing convergence of tineatesl state to the system state, semiglobally with

respect to zero estimation error sét
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Also, although in Section Il we have given an expression obbserver, at this time, we consider this only as
an existence result and not as an observer design inteydetirapplication. Actually we have investigated mainly
only the possibility and interest of studying observer @gence via a Riemannian metric, crystallizing the idea of
using a contraction property. In a companion paper, we focugbserver design, where we study several scenarios
in which it is possible to construct a Riemannian metricségitng the desired inequality on its Lie derivative and
making the level sets of the output function possibly tgtgikodesic.

As a final remark, we observe that extensions of the resultsottautonomous systems, in particular those
with inputs, seem possible using the proof techniques mepdere. Also time scaling exploiting the concept of

unbounded observability, as in [2], is expected to be usefuélaxing the system completeness assumption.

APPENDIX
A. A necessary condition for completeness

The following lemma provides conditions dp that guarantee that geodesics can be maximally extend&d to

Lemma A.1l: Suppose that a symmetric covariant two-tei’soR"™ — R"*" satisfies

0 < P(z) VYeeR", lim r’p(r) = +oo, (61)
=00 -
where, for any positive real number p(r) = min,.|sj<, Amin (P(7)) . Then, withP as Riemannian metric on

R™, any geodesic can be maximally extendedRto
Proof: Let 2; andzs be any point in the balB,. in R™ centered at the origin and with radiusThe Euclidean

distance|z; — x| satisfies fssf

%(s)‘ ds > |x1 — x2|, wherey is any piecewiseC'! path betweenr; and .

Using (10), this implies that, for any positive number

Dz o) [ ds 2 o) e -l (62)

Let v be any normalized geodesic maximally defined(en, o). By definition, it satisfies

L(y) D)

DTPOE) () =1 Vse (000 (63)

Let [s1, s2] be any closed interval contained {&_, o). The functionv : [s1,s2] — R™ is bounded (with the
Euclidean norm). We denote,, ,,; = max.c[,, s, |7(s)|. By continuity, there exists, in [si, so] satisfying
Tls1,5s] = |7(s12)]. Then, from (62) and (63), we obtain

s2

p([v(s12)]) [v(s12) =v(s2)| < L(v)| = [s12 — s2] . (64)

S12

Becausgo_, o) is the maximal interval of definition of, if o_ is finite, we must have
limg, 5 ‘(7(51), %(sl))‘ = +o0. Now in the case where we halien,, ,,_ |y(s1)|] = oo the definition of

s12 implieslim,, o maxscs, 5,1 |7(s)| = limg, 5o [y(s12)] = +oo. Then, with assumption (61) and (64), we
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get

— =8| > lim 4 /p(ly(s12)]) [v(s12) = v(s2)] >

81 —0—

lim — /p([7(s12) ) ([7(s12)] = 7 (s2)[) = +o0 .

S1—0_—

This is a contradiction. Then, we are left with the céise,, ., _

el (31)‘ = +oo. But this contradicts (63) since
we just established that is bounded or(c_, s2), which, with (61), implies thaf oy is bounded away from.

The same arguments apply to show that= +oo. |

B. On totally geodesic sets and property H3’

Proposition A.2: LetP be a complete Riemannian metric &% and C be a geodesically convex subsetif.
1) If there existszy in C satisfying%(xo) = 0 and all the sets(y) N C for y in h(C) are totally geodesic
thenh is constant orC.

2) Let O be the following open subset Bf*:

0 = {:z:e int(C) : Rank(?ﬁ( )> —m} . (65)

If all the sets(y) NC for y in h(C) are totally geodesic then we have, for fl k, 1) and all z € O,

27 .
aik’;;l<x>— e Ti) =
Z(gﬁk(x)g—};j( )+ (o) G @)

i=1

(66)

whereg;;, : O — R are continuous arbitrary functions anid;, are the Christoffel symbols

o) = 33 (P07, (G

0P, 0Py
) - S @)

m=1

(67)
_|_

Conversely, if (66) holds for any in C, then all the set$)(y) N C for y in h(C) are totally geodesic.
Proof of item 1:The setC being geodesically convex, for anythere exists a minimal geodesi¢ between
0o = 7*(0) andx = ~*(s) satisfying~v*(c) € C Vo € [0,s]. Since we havea—(:zzo)dj (0) = 0 and the set
H(h(xo)) NC is totally geodesic, we gét(z) = h(xo), « being arbitrary inC, h must be constant o@.
Proof of item 2 (necessity)f O is empty, the statement holds vacuouslydlfis nonempty, letz be in O. It is

in the totally geodesic seb(h(x)) NC. Then, for anyv in R™ satisfying

_ T _
8x( x)v =0 v Plx)v = 1, (68)
consider a geodesig satisfying
_ Y 0y —
1) =z, ZH0) = (69)
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with values inC on an interval(o_, o). We haveh(v(s)) = 0 for all s € (¢—,04). This implies that we have

2 o
0 =0 = 0. (70)

dh o~y
ds

But, with the geodesic equation, if we 1€k () = %(z) - > g—;lj(a:) I, (z), we have

2 o n n
L2 = Y Q) D (9T (s) (71)

ds
k=11=1

Then, using (69) and (70), we have

ZZijl(x)UkUl =0 Vj e {1,2,...,m}, (72)
k=1 1=1
wherevy, is the kth component ofv. Hence, we have establish@Z:1 Zle Qjri(x)vgy, = 0 for all (j,v =

(vg),x) = j€{1,2,...,m}, %(w)v =0, z € O . The result follows from the S-Lemma (see [12] for instance).

In particular, we can pick the functions;.(z) satisfying (66) as, for each the entries of the matrix

oh . Oh ~1on
@@ S
<1_ %m [2—@)2—’;(@?%@))
2 .

Proof of item 2 (sufficiency)ror anyy in h(C), let (xz,v) be any pair in($(y) N C) x R™ satisfyingh(z) = y,
Ghz)v = 0,v"P(z)v = 1 and lety be any geodesic satisfying(0) = z, %(0) = wv. Let J, be the
maximal interval containing so thaty(.J,) is contained irC. If J, is reduced to a point, there is nothing to prove.
If not J, is an interval with a non empty interior. Then, with (71) aeé), for any interior poink of .J,, we have,

for eachj in {1,...,m},

d%dhzlsoy(s) = 2D Qiuly(s ))ddlk( )(Zl( )

[Zgﬁm NI (s )] Peo(s)

Let M be the matrix with entried/;; defined as);;(s) = 2 [2221 gjik('y(s))d(]:( )} for eachs € int(.J,). The
linear time varying systenﬂg = M (s)z has unigue solutions. The only one satisfyir{§) = 0 is identically0. So
with the uniqueness of the solution of the geodesic equatiermust also haveM( ) =0Vs eint(J,) and
thereforeh;((s)) = y; for eachs € int(.J,) and eachj. Also, by continuity, if the upper boundl, (respectively
lower bounds_) of J, is in J,, then we have alsé;(c;) = y; (respectively hj(cy) = y; ).

Proposition A.3: LetP be a complete Riemannian metric &% and C be a geodesically convex subsetif.

1) If property H3' holds then all the set§(y) N C for y in h(C) are

a) totally geodesic,

b) and geodesically convex.

June 19, 2018 DRAFT



28

2) If m =1 and all the set$3(y) NC for y in h(C) are totally geodesic then

a) they are all geodesically convex,

b) and property H3' holds with
0(y1,92) = |n —y2|2-

Proof of item la:Let (z,v) be an arbitrary pair i€ x R™ satisfying

oh

—_— = T =
o (x)v 0, v P(z)v 1. (73)
Consider the geodesig, satisfying
_ ¥ 0y
% (0) =z I 0) =wv. (74)

Since P is completey, is defined on(—oo, +0). Let J,, be the maximal interval containing so that~,(J,, )
is contained inC.

If J,, is reduced to a point, there is nothing to prove. In the otleecfor the sake of getting a contradiction,
assume that is not constant along this geodesic dn,, i.e., there exists;y in J,, , say positive, satisfying
h(vv(s0)) # h(z), v (o) € C for all o € [0, so]. Let s; be the infimum of the real numbessin [0, sq] satisfying
h(v,(s)) # h(x). By continuity s; is in [0, s9) and we haveéi(v,(s1)) = h(z). Also, the definition ofs; implies
that, for anye in (0, so — s1], there exitss. in [s1, s1 + ¢] such thath(,(s:)) # h(7.(s1)). Also, whens; # 0,

the functions — h(v,(s)) being constant o0, s;|, we have

o () T2 s1) = 0. (75)
Note that, with (73) and (74), the same holds when= 0.

Now let B.(v,(s1)) be a geodesic ball centeredat(s1) with geodesic radius sufficiently small to ensure that
each geodesic between(s;) and any point in this ball is minimal. See [5, Theorem V1.7 Rjith s. associated
with £ as shown above, we define a functigh asy*(s) = ~,(s. — s) for all s € [0,s. — s1]. It is @ minimal
geodesic betweeti*(0) = v, (sc) andy*(s. —s1) = vy (s1) satisfyingy*(s) € CNB:(y,(s1)) forall s € [0, s. —s1]
andh(v*(0)) # h(y*(se — s1)). So, according to H3’, we have

d

750(h(7*(5)), h(v*(0))) > 0

for all s € (0,s. — s1]. In particular, we have

00

gy (M0 (52 = 50)), (" () %
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But (75) leads to a contradiction since

Do o) Do —s) = Do) oo

= 0.

Proof of item 1b:Let (z1,22) € C x C be any arbitrary pair of points satisfyingz1) = h(z2) = y. Since
C is geodesically convex, there exists a minimal geodegsibetweenz; = v*(s1) and zo = v*(s2) satisfying
7*(s) € C for all s € [sy,s52]. We haved(h(v*(s2)). h(v(s1)) = [ 25 (h(v*(s)), h(y* (1)) L2 (s) ds.
But (52) implies the left-hand side of this equation is zdrand only if we haveh(y*(s)) = h(y*(s1)) for all
s € [s1, s2], that is, the geodesig* remains in the sef(h(x1)) NC for all s in [s1, s2].

Proof of item 2a:Let (z1,22) € C x C be any arbitrary pair of points satisfyirgxz1) = h(x2) = y. SinceC is
geodesically convex, there exists a minimal geodgsibetweenz; = v*(s1) andxzy = v*(s2) satisfyingy*(s) € C
for all s € [s1, s2]. For the sake of getting a contradiction, assume @t N C is not geodesically convex. Then,
there existss € [s1, s2] such thaty*(s) ¢ $H(y) N C. But v*(3) being inC, this implies|h(v*(3)) — h(z1)]* # 0.
By continuity and compactness, the functior [sy, sa] — |h(v*(s)) — h(z1)|> admits a maximum at SOMe,ax

in (s1,s2) and, hence

h(’y*(smax)) #h(xl)a (76)
(3 () = 102)) T P2 () =
(h('Y*(SmaX)) - h(Il))T %(7*(SmaX))%(5maX) =0.

When the dimensiom of outputs is one, this implie: (v* (smax)) 2 (Smax) = 0. Since the seH (A (7" ($maz)))N
C is totally geodesic and* takes its values i@ on the intervalsi, so] containings,,.., we conclude that* takes
actually its values i) (h(v*(smax))) N C 0N [s1, s2]. This contradicts (76), and s9(y) N C must be geodesically
convex.

Proof of item 2biet (%, z) be an arbitrary pair of points iixC satisfyingh(z) # h(zx) . SinceC is geodesically
convex, there exists a minimal geodesicbetween: = 4*(0) andz = v*(§) satisfyingy*(s) € C for all s € [0, §].
Assume there exists in [0, 3] satisfying 2222 (s) = 2 (y*(s)) L (s) = 0, L (5)T P(y*(s)) L (s) = 1. Then,

sincen (h(v*(s))NC is totally geodesic, ang* takes its values ig on [0, §], we haveho~v*(s) = hoy*(0) = h(z)

for all s € [0, §] which contradictsh o v*(5) = h(Z) # h(z). Then,dfi% has a constant sign. But, since we
~ * S

haveh(z) — h(z) = [, ‘“‘—d"g—(s) ds, this sign must be the same as the oné.@f) — h(x). We conclude that we

have

d dhon”

2110 (9) = Ry (O)* = [A(¥(5)) = h(¥(0))] —7— () > 0

for all s € (0, 5].
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