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Distances and Riemannian metrics
for multivariate spectral densities

Xianhua Jiang, Lipeng Ning, and Tryphon T. Georgiou,Fellow, IEEE

Abstract

We first introduce a class of divergence measures between power spectral density matrices. These are derived by
comparing the suitability of different models in the context of optimal prediction. Distances between “infinitesimally
close” power spectra are quadratic, and hence, they induce adifferential-geometric structure. We study the corre-
sponding Riemannian metrics and, for a particular case, provide explicit formulae for the corresponding geodesics
and geodesic distances. The close connection between the geometry of power spectra and the geometry of the
Fisher-Rao metric is noted.

I. INTRODUCTION

Distance measures between statistical models and between signals constitute some of the basic tools of Signal
Processing, System Identification, and Control [1], [2]. Indeed, quantifying dissimilarities is the essence of detection,
tracking, pattern recognition, model validation, signal classification, etc. Naturally, a variety of choices are readily
available for comparing deterministic signals and systems. These include variousLp and Sobolev norms on signal
spaces, and induced norms in spaces of systems. Statisticalmodels on the other hand are not elements of a linear
space. Their geometry is dictated by positivity constraints and hence, they lie on suitable cones or simplices. This
is the case for covariances, histograms, probability distributions, or power spectra, as these need to be positive in
a suitable sense. A classical theory for statistical models, having roots in the work of C.R. Rao and R.A. Fisher,
is now known as “information geometry” [3], [4], [5], [6]. The present work aims at a geometric theory suitable
for time-series modeled by power spectra. To this end, we follow a largely parallel route to that of information
geometry (see [7]) in that a metric is now dictated by the dissimilarity of models in the context of prediction theory
for second-order stochastic processes. The present work builds on [7], which focused on scalar time-series, and is
devoted to power spectral densities of multivariable stochastic processes.

The need to compare two power spectra densitiesf1, f2 directly has led to a number of divergence measures
which have been suggested at various times [1], [2]. Key among those are the Itakura-Saito distance

DIS(f1, f2) :=

∫ π

−π

(

f1(θ)

f2(θ)
− log

f1(θ)

f2(θ)
− 1

)

dθ

2π

and the logarithmic spectral deviation

Dlog(f1, f2) :=

√

∫ π

−π

∣

∣

∣

∣

log
f1(θ)

f2(θ)

∣

∣

∣

∣

2 dθ

2π
,

see e.g., [2, page 370]. The distance measures developed in [7] are closely related to both of these, and the
development herein provides a multivariable counterpart.Indeed, the divergences that we list between matrix-
valued power spectra are similar to the Itakura-Saito divergence and geodesics on the corresponding Riemannian
manifolds of power spectra take the form of logarithmic integrals.

Distances between multivariable power spectra have only recently received any attention. In this direction we
mention generalizations of the Hellinger and Itakura-Saito distances by Ferranteet al. [8], [9] and the use of the
Umegaki-von Neumann relative entropy [10]. The goal of thispaper is to generalize the geometric framework in
[7] to the matrix-valued power spectra. We compare two powerspectra in the context of linear prediction: a choice
between the two is used to design an optimal filter which is then applied to a process corresponding to the second
power spectrum. The “flatness” of the innovations process, as well as the degradation of the prediction error variance,
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when compared to the best possible, are used to quantify the mismatch between the two. This rationale provides us
with natural divergence measures. We then identify corresponding Riemannian metrics that dictate the underlying
geometry. For a certain case we compute closed-form expressions for the induced geodesics and geodesic distances.
These provide a multivariable counterpart to the logarithmic intervals in [7] and the logarithmic spectral deviation
[2, page 370]. It is noted that the geodesic distance has certain natural desirable properties; it is inverse-invariant
and congruence-invariant. Moreover, the manifold of the multivariate spectral density functions endowed with this
geodesic distance is a complete metric space. A discrete counter part of certain of these Riemannian metrics, on
the manifold of positive definite matrices (equivalent to power spectra which are constant across frequencies), has
been studied extensively in connection to the geometry of positive operators [11] and relates to the Rao-Fisher
geometry on probability models restricted to the case of Gaussian random vectors.

Indeed, there is a deep connection between the Itakura-Saito distance and the Kullback-Leibler divergence
between the corresponding probability models [2, page 371], [12] which provides a link to information geometry.
Hence, the Riemannian geometry on power spectral densitiesin [7] as well as the multivariable structure presented
herein is expected to have a strong connection also to the Fisher-Rao metric and the geometry of information.
An interesting study in this direction which taps on an interpretation of the geometry of power spectra via the
underlying probability structure and its connection to theKullback-Leibler divergence is given in Yu and Mehta
[13]. However, a transparent differential geometric explanation which highlights points of contact is still to be
developed. Further key developments which parallel the framework reported herein and are focused on moment
problems are presented in [8], [9].

The paper is organized as follows. In Section II we establishnotation and overview the theory of the multivariate
quadratic optimal prediction problem. In Section III we introduce alternative distance measures between multivari-
able power spectra which reflect mismatch in the context of one-step-ahead prediction. In Section IV we discuss
Riemannian metrics that are induced by the divergence measures of the previous section. In Section V we discuss
the geometry of positive matrices. In Section VI the geometric structure is analyzed and geodesics are identified. In
Section VII we provide examples to highlight the nature of geodesics between power spectra and how these may
compare to alternatives.

II. PRELIMINARIES ON MULTIVARIATE PREDICTION

Consider a multivariate discrete-time, zero mean, weakly stationary stochastic process{u(k), k ∈ Z} with u(k)
taking values inCm×1. Throughout, boldface denotes random variables/vectors,E denotes expectation,j =

√
−1

the imaginary unit, and∗ the complex conjugate transpose. Let

Rk = E {u(ℓ)u∗(ℓ− k)} for l, k ∈ Z

denote the sequence of matrix covariances anddµ(θ) be the corresponding matricial power spectral measure for
which

Rk =

∫ π

−π
e−jkθ dµ(θ)

2π
.

For the most part, we will be concerned with the case of non-deterministic processes with an absolutely continuous
power spectrum. Hence, unless we specifically indicate otherwise,dµ(θ) = f(θ)dθ with f(θ) being a matrix-valued
power spectral density (PSD) function. Further, for a non-deterministic processlog(f(θ)) needs to be integrable,
and this will be assumed throughout as well.

Our interest is in comparing PSD’s and in studying possible metrics between such. The evident goal is to
provide a means to quantify deviations and uncertainty in the spectral domain in a way that is consistent with
particular applications. More specifically, we present metrizations of the space of PSD’s which are dictated by
optimal prediction and reflect dissimilarities that have animpact on the quality of prediction.

A. Geometry of multivariable processes

We will be considering least-variance linear prediction problems. To this end, we defineL2,u to be the closure
of m× 1-vector-valued finite linear combinations of{u(k)} with respect to covergence in the mean [14, pg. 135]:

L2,u :=

{

∑

finite

Pku(−k) : Pk ∈ Cm×m, k ∈ Z

}

.
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Here, “bar” denotes closure. The indices inPk andu(−k) run in opposite directions so as to simplify the notation
later on where prediction is based on past observations. This space is endowed with both, a matricial inner product

[[
∑

k

Pku(−k),
∑

k

Qku(−k)]] :=

E
{(

∑

k

Pku(−k)

)(

∑

k

Qku(−k)

)∗}

,

as well as a scalar inner product

〈
∑

k

Pku(−k),
∑

k

Qku(−k)〉 :=

tr [[
∑

k

Pku(−k),
∑

k

Qku(−k)]] .

Throughout, “tr” denotes the trace of a matrix. It is standard to establish the correspondence between

p := p(u) :=
∑

k

Pku(−k) and

p(z) :=
∑

k

Pkz
k

with z = ejθ for θ ∈ [−π, π]. This is the Kolmogorov isomorphism between the “temporal”spaceL2(u) and
“spectral” spaceL2,dµ,

ϕ : L2(u) → L2,dµ :
∑

k

Pku(−k) 7→
∑

k

Pkz
k.

It is convenient to endow the latter spaceL2,dµ with the matricial inner product

[[p, q]]dµ :=

∫ π

−π

(

p(ejθ)
dµ(θ)

2π
q(ejθ)∗

)

as well as the scalar inner product
〈p, q〉dµ := tr [[p, q]]dµ.

The additional structure due to the matricial inner productis often referred to asHilbertian (as opposed toHilbert)
[15].

Throughout,p(ejθ) =
∑

k Pke
jkθ, q(ejθ) =

∑

k Qke
jkθ, where we use lower casep, q for matrix functions and

upper casePk, Qk for their matrix coefficients. For non-deterministic processes with absolutely continuous spectral
measuredµ(θ) = f(θ)dθ, we simplify the notation into

[[p, q]] f := [[p, q]] fdθ, and

〈p, q〉f := 〈p, q〉fdθ .

Least-variance linear prediction

min

{

tr E{pp∗} : p = u(0) −
∑

k>0

Pku(−k), Pk ∈ C
m×m

}

(1)

can be expressed equivalently in the spectral domain

min

{

[[p, p]]f : p(z) = I −
∑

k>0

Pkz
k, Pk ∈ C

m×m

}

(2)

where the minimum is sought in the positive-definite sense, see [15, pg. 354], [14, pg. 143]. We use “I” to denote
the identity matrix of suitable size. It holds that, although non-negative definiteness defines only a partial order on
the cone of non-negative definite Hermitian matrices, a minimizer for (1) always exists. Of course this corresponds
to a minimizer for (2). The existence of a minimizer is due to the fact thattr E{pp∗} is matrix-convex. Here
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dµ = fdθ is an absolutely continuous measure and the quadratic form is not degenerate; see [16, Proposition 1]
for a detailed analysis and a treatment of the singular case whereµ is a discrete matrix-valued measure. Further,
the minimizer of (1) coincides with the minimizer of

min

{

〈p, p〉f : p(z) = I −
∑

k>0

Pkz
k, Pk ∈ C

m×m

}

. (3)

From here on, to keep notation simple,p(z) will denote the minimizer of such a problem, withf specified
accordingly, and the minimal matrix of (1) will be denoted byΩ. That is,

Ω := [[p, p]] f

while the minimal value of (3) istr Ω. The minimizerp is precisely the image under the Kolmogorov isomorphism
of the optimalprediction errorp andΩ the prediction-error variance.

B. Spectral factors and optimal prediction

For a non-deterministic process the error varianceΩ has full rank. Equivalently, the product of its eigenvalues
is non-zero. The well-known Szegö-Kolmogorov formula [15, pg. 369]

detΩ = exp{
∫ π

−π
log det f(θ)

dθ

2π
} (4)

relates the product of the eigenvalues of the optimal one-step-ahead prediction error variance with the corresponding
PSD. No expression is available in general that would relatef to Ω directly in the matricial case.

We consider only non-deterministic processes and hence we assume that

log det f(θ) ∈ L1[−π, π].

In this case,f(θ) admits a unique factorization

f(θ) = f+(e
jθ)f+(e

jθ)∗, (5)

with f+(e
jθ) ∈ Hm×m

2 (D),

det(f+(z)) 6= 0 in D := {z : |z| < 1},

and normalized so thatf+(0) = Ω
1

2 . Throughout,M
1

2 denotes the Hermitian square root of a Hermitian matrixM .
The factorf+ is known as thecanonical (left) spectral factor. In the case wheref is a scalar function (m = 1)
the canonical spectral factor is explicitly given by

f+(z) = exp

{

1

2

∫ π

−π

(

1 + ze−jθ

1− ze−jθ

)

log f(θ)
dθ

2π

}

, |z| < 1,

As usual,H2(D) denotes the Hardy space of functions which are analytic in the unit diskD with square-integrable
radial limits. Spectral factorization presents an “explicit” expression of the optimal prediction error in the form

p(z) = f+(0)f
−1
+ (z). (6)

Thus,p(z)−1 is a “normalized” (left)outer factor off . The terminology “outer” refers to a (matrix-valued) function
g(ejθ) for θ ∈ [−π, π] that can be extended into an analytic function in the open interior of the unit discD which
is also invertible inD. It is often standard not to differentiate between such a function in D and the function on
the boundary of radial-limits since these are uniquely defined from one another. In the engineering literature outer
functions are also referred to as “minimum phase.” Right-outer factors, wheref(θ) = f+,right(e

jθ)∗f+,right(e
jθ)

instead of (5) relate to apost-dictionoptimal estimation problem; in this, the present value of the process is
estimated via linear combination of future values (see e.g., [16]). Only left factorizations will be used in the present
paper.
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III. C OMPARISON OFPSD’S

We present two complementing viewpoints on how to compare two PSD’s,f1 and f2. In both, the optimal
one-step-ahead predictor for one of the two stochastic processes, is applied to the other and compared to the
corresponding optimal. The first is to consider how “white” the power spectrum of the innovations’ process is.
The second viewpoint is to compare how the error variance degrades with respect to the optimal predictor. Either
principle provides a family of divergence measures and a suitable generalization of the Riemannian geometry of
scalar PSD’s given in [7]. There is a close relationship between the two.

A. Prediction errors and innovations processes

Consider two matrix-valued spectral density functionsf1 andf2. Since an optimal filter will be designed based
on one of the two and then evaluated with respect to the other,some notation is in order.

First, let us use a subscript to distinguish between two processesui(k), i ∈ {1, 2}, having thefi’s as the
corresponding PSD’s. They are assumed purely nondeterministic, vector-valued, and of compatible size. The optimal
filters in the spectral domain are

pi := argmin{[[p, p]] fi p(0) = I,

andp ∈ Hm×m
2 (D)},

and their respective error covariances

Ωi := [[pi, pi]] fi .

Now define

Ωi,j := [[pj, pj]] fi .

Clearly,Ωi,j is the variance of the prediction error when the filterpj is used on a process having power spectrum
fi. Indeed, if we set

pi,j := ui(0)− Pj,1ui(−1)− Pj,2ui(−2)− . . . (7)

the prediction-error covariance is
[[pi,j,pi,j ]] = [[pj , pj]] fi .

The prediction errorpi,j can also be thought of as a time-process, indexed at time-instant k ∈ Z,

pij(k) := ui(k)− Pj,1ui(k − 1)− Pj,2ui(k − 2)− . . .

for i, j ∈ {1, 2}. This is aninnovations process. Clearly, from stationarity,

[[pi,i,pi,i]] = Ωi,

whereas
[[pi,j ,pi,j]] ≥ Ωi,

since in this casepj is suboptimal forui, in general.

B. The color of innovations and PSD mismatch

We choose to normalize the innovations processes as follows:

hi,j(k) = Ω
− 1

2

j pi,j(k), for k ∈ Z.

The Kolmogorov isomorphism takes
ϕ : hi,j(k) 7→ f−1

j+ ,

with the expectation/inner-product being that induced byfi, and hence, the power spectral density of the process
hi,j(k) is

fhij
= f−1

j+ fif
−∗
j+ ,
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where(·)−∗ is a shorthand for((·)∗)−1. Whenfi = fj, evidently{hi,i
k } is a white noise process with covariance

matrix equals to the identity.
Naturally, in an absolute sense, the mismatch between the two power spectrafi, fj can be quantified by the

distance offhij
to the identity. To this end we may consider any symmetrized expression:

∫ π

−π
d(f−1

j+ fif
−∗
j+ , I)

dθ

2π
+

∫ π

−π
d(f−1

i+ fjf
−∗
i+ , I)

dθ

2π
(8)

for a suitable distanced(·, ·) between positive definite matrices. In general, it is deemeddesirable that distances
between power spectra are invariant to scaling (as is the case when distances depend on ratios of spectra, [2]).
Researchers and practitioners alike have insisted on such aproperty, especially for speech and image systems, due
to an apparent agreement with subjective qualities of soundand images. It is thus interesting to seek a multivariable
analogues inherent in the above comparison.

Due to the non-negative definiteness of power spectra, a convenient option is to take “d” as the trace:
∫ π

−π
tr
(

f−1
j+ fif

−∗
j+ − I

)

+ tr
(

f−1
i+ fjf

−∗
i+ − I

) dθ

2π
.

This indeed defines a distance measure since(x+x−1 − 2) is a non-negative function for0 < x ∈ R that vanishes
only whenx = 1. Thus, we define

D1(f1, f2) :=

∫ π

−π
tr
(

f−1
2 f1 + f−1

1 f2 − 2I
) dθ

2π
. (9a)

Interestingly,D1(f1, f2) can be re-written as follows:

D1(f1, f2) =

∫ π

−π
‖f−1/2

1 f
1/2
2 − f

1/2
1 f

−1/2
2 ‖2Fr

dθ

2π
(9b)

where‖M‖2Fr := trMM∗ denotes the square of the Frobenius norm1. It can be readily verified starting from the
right hand side of (9b) and simplifying this to match (9a). Itis now be easily seen thatD1(fi, fj) has a number of
desirable properties listed in the following proposition.

Proposition 1: Considerfi, fj being PSD’s of non-deterministic processes andg(ejθ) an arbitrary outer matrix-
valued function inHm×m

2 (D). The following hold:
(i) D1(fi, fj) ≥ 0.
(ii) D1(fi, fj) = 0 iff fi = fj (a.e.).
(iii) D1(fi, fj) = D1(fj , fi).
(iv) D1(fi, fj) = D1(f

−1
i , f−1

j ).
(v) D1(fi, fj) = D1(gfig

∗, gfjg
∗).

Proof: Properties (i-iv) follow immediately from (9b) while the invariance property (v) is most easily seen by
employing (9a).

C. Suboptimal prediction and PSD mismatch

We now attempt to quantify how suboptimal the performance ofa filter is when this is based on the incorrect
choice between the two alternative PSD’s. To this end, we consider the error covariance and compare it to that of the
optimal predictor. A basic inequality between these error covariances is summarized in the following proposition.

Proposition 2: Under our earlier standard assumptions, fori, j ∈ {1, 2} andΩi,Ωj > 0, it holds that

Ωi,j ≥ Ωi. (10a)

Further, the above holds as an equality iffpi = pj.

Proof: It follows from the optimality ofpi since

[[pj, pj ]]fi ≥ [[pi, pi]]fi = Ωi.

1
√
trMM∗ is also referred to also as the Hilbert-Schmidt norm.
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Corollary 3: The following hold:

Ω
− 1

2

i Ωi,jΩ
− 1

2

i ≥ I (10b)

det(Ωi,j) ≥ det(Ωi) (10c)

tr(Ωi,j) ≥ tr(Ωi) (10d)

Ω
− 1

2

j Ωi,jΩ
− 1

2

j ≥ Ω
− 1

2

j ΩiΩ
− 1

2

j . (10e)

Further, each “≥” holds as equality iffpi = pj.
Thus, a mismatch between the two spectral densities can be quantified by the strength of the above inequalities.

To this end, we may consider a number of alternative “divergence measures”. First we consider:

D2(fi, fj) := log det
(

Ω
− 1

2

i Ωi,jΩ
− 1

2

i

)

. (11)

Equivalent options leading to the same Riemannian structure are:

1

m
tr(Ω

− 1

2

i Ωi,jΩ
− 1

2

i )− 1, and (12a)

det(Ω
− 1

2

i Ωi,jΩ
− 1

2

i )− 1. (12b)

Using the generalized Szegö-Kolmogorov expression (4) wereadily obtain that

D2(fi, fj) = log det

(
∫ π

−π
f−1
j+ fif

−∗
j+

dθ

2π

)

−
∫ π

−π
log det

(

f−1
j+ fif

−∗
j+

) dθ

2π
(13)

= tr

(

log

∫ π

−π
f−1
j+ fif

−∗
j+

dθ

2π
−
∫ π

−π
log f−1

j+ fif
−∗
j+

dθ

2π

)

.

This expression takes values in[0,∞], and is zero if and only if the normalized spectral factorsp−1 = Ω−1/2f+
are identical for the two spectra. Further, it provides a natural generalization of the divergence measures in [7] and
of the Itakura distance to the case of multivariable spectra. It satisfies “congruence invariance.” This is stated next.

Proposition 4: Consider two PSD’sfi, fj of non-deterministic processes andg(ejθ) an outer matrix-valued
function inHm×m

2 (D). The following hold:
(i) D2(fi, fj) ≥ 0.
(ii) D2(fi, fj) = 0 iff pi = pj.
(iii) D2(fi, fj) = D2(gfig

∗, gfjg
∗).

Proof: Properties (i-ii) follow immediately from (11) while the invariance property (iii) is most easily seen be
employing (13). To this end, first note thatgf+ obviously constitutes the spectral factor ofgfg∗. Substituting the
corresponding expressions in (13) establishes the invariance.

D. Alternative divergence measures

Obviously, a large family of divergence measures between two matrix-valued power spectra can be obtained
based on (8). For completeness, we suggest representative possibilities some of which have been independently
considered in recent literature.

1) Frobenius distance:If we use the Frobenius norm in (8) we obtain

DF(f1, f2) :=
1

2

∑

i,j

∫ π

−π
‖f−1

j+ fif
−∗
j+ − I‖2Fr

dθ

2π
(14a)

where
∑

i,j designates the “symmetrized sum” taking(i, j) ∈ {(1, 2), (2, 1)}. It’s straightforward to see that all of

f−1
j+ fif

−∗
j+ , f

− 1

2

j fif
− 1

2

j andf−1
j fi

share the same eigenvalues for anyθ ∈ [−π, π]. Thus,

‖f−1
j+ fif

−∗
j+ − I‖2Fr = ‖f− 1

2

j fif
− 1

2

j − I‖2Fr,
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and
DF(f1, f2) =

1

2

∑

i,j

∫ π

−π
‖f− 1

2

j fif
− 1

2

j − I‖2Fr
dθ

2π
. (14b)

Obviously (14b) is preferable over (14a) since no spectral factorization is involved.
2) Hellinger distance: A generalization of the Hellinger distance has been proposed in [9] for comparing

multivariable spectra. Briefly, given two positive definitematricesf1 and f2 one seeks factorizationsfi = gig
∗
i

so that the integral over frequencies of the Frobenius distance ‖g1 − g2‖2Fr between the factors is minimal. The
factorization does not need to correspond to analytic factors. When one of the two spectra is the identity, the
optimization is trivial and the Hellinger distance becomes

∫ π

−π
‖f 1

2 − I‖2Fr
dθ

2π
.

A variation of this idea is to compare the normalized innovation spectra(f−1
j+ fif

−∗
j+ )

1

2 , for i, j ∈ {1, 2}, to the
identity. We do this in a symmetrized fashion so that together with symmetry the metric inherits the inverse-
invariance property. Thus, we define

DH(f1, f2) :=
∑

i,j

∫ π

−π
‖(f−1

j+ fif
−∗
j+ )

1

2 − I‖2Fr
dθ

2π
(15)

=
∑

i,j

∫ π

−π
‖(f− 1

2

j fif
− 1

2

j )
1

2 − I‖2Fr
dθ

2π
.

The second equality follows by the fact thatfj+f
− 1

2

j is a frequency-dependent unitary matrix.
3) Multivariable Itakura-Saito distance:The classical Itakura-Saito distance can be readily generalized by taking

d(f, I) = tr(f − log f − I).

The values are always positive forI 6= f > 0 and equal to zero whenf = I. Thus, we may define

DIS(f1, f2) =

∫ π

−π
d(f−1

2+ f1f
−∗
2+ , I)

dθ

2π
(16)

=

∫ π

−π

(

tr(f−1
2 f1)− log det(f−1

2 f1)−m
) dθ

2π
.

The Itakura-Saito distance has its origins in maximum likelihood estimation for speech processing and is related to
the Kullback-Leibler divergence between the probability laws of two Gaussian random processes [2], [12]. More
recently, [8] introduced the matrix-version of the Itakura-Saito distance for solving the state-covariance matching
problem in a multivariable setting.

4) Log-spectral deviation:It has been argued that a logarithmic measure of spectral deviations is in agreement
with perceptive qualities of sound and for this reason it hasformed the basis for the oldest distortion measures
considered [2]. In particular, theL2 distance between the logarithms of power spectra is referred to as “Log-spectral
deviation” or the “logarithmic energy.” A natural multivariable version is to consider

d(f, I) = ‖ log(f)‖2Fr.
This expression is already symmetrized, sinced(f, I) = d(f−1, I) by virtue of the fact that the eigenvalues of
log(f) and those oflog(f−1) differ only in their sign. Thereby,

‖ log(f−1
j+ fif

−∗
j+ )‖2Fr = ‖ log(f−1

i+ fjf
−∗
i+ )‖2Fr.

Thus we define

DLog(f1, f2) :=

∫ π

−π
‖ log(f−1

1+ f2f
−∗
1+ )‖2Fr

dθ

2π
(17)

=

∫ π

−π
‖ log(f− 1

2

1 f2f
− 1

2

1 )‖2Fr
dθ

2π
.

This represents a multivariable version of the log-spectral deviation (see [2, page 370]). Interestingly, as we will
see later on,DLog(f1, f2) possesses several useful properties and, in fact, its square root turns out to be precisely
a geodesic distance in a suitable Riemannian geometry.
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IV. R IEMANNIAN STRUCTURE ON MULTIVARIATE SPECTRA

Consider a “small” perturbationf +∆ away from a nominal power spectral densityf . All divergence measures
that we have seen so far are continuous in their arguments and, in-the-small, can be approximated by a quadratic
form in ∆ which depends continuously onf . This is what is referred to as aRiemannian metric. The availability of
a metric gives the space of power spectral densities its properties. It dictates how perturbations in various directions
compare to each other. It also provides additional important concepts: geodesics, geodesic distances, and curvature.
Geodesics are paths of smallest length connecting the startto the finish; this length is the geodesic distance. Thus,
geodesics in the space of power spectral densities represent deformations from a starting power spectral density
f0 to an end “point”f1. Curvature on the other hand is intimately connected with approximation and convexity of
sets.

In contrast to a general divergence measure, the geodesic distance obeys the triangular inequality and thus, it is a
metric (or, a pseudo-metric when by design it is unaffected by scaling or other group of transformations). Geodesics
are also natural structures for modeling changes and deformations. In fact, a key motivation behind the present
work is to model time-varying spectra via geodesic paths in asuitable metric space. This viewpoint provides a
non-parametric model for non-stationary spectra, analogous to a spectrogram, but one which takes into account the
inherent geometry of power spectral densities.

Thus, in the sequel we consider infinitesimal perturbationsabout a given power spectral density function. We
explain how these give rise to nonnegative definite quadratic forms. Throughout, we assume that all functions are
smooth enough so that the indicated integrals exist. This can be ensured if all spectral density functions are bounded
with bounded derivatives and inverses. Thus, we will restrict our attention to the following class of PDF’s:

F := {f | m×m positive definite, differentiable

on [−π, π], with continuous derivative}.
In the above, we identify the end points of[−π, π] sincef is thought of as a function on the unit circle. Since the
functionsf are strictly positive definite and bounded, tangent directions ofF consists of admissible perturbations
∆. These need only be restricted to be differentiable with square integrable derivative, hence the tangent space at
any f ∈ F can be identified with

D := {∆ | differentiable on[−π, π]

with continuous derivative}.

A. Geometry based on the “flatness” of innovations spectra

We first consider the divergenceD1 in (9a-9b) which quantifies how far the PSD of the normalized innovations
process is from being constant and equal to the identity. Theinduced Riemannian metric takes the form

g1,f (∆) :=

∫ π

−π
‖f−1/2∆f−1/2‖2Fr

dθ

2π
. (18a)

Proposition 5: Let (f,∆) ∈ F ×D andǫ > 0. Then, forǫ sufficiently small,

D1(f, f + ǫ∆) = g1,f (ǫ∆) +O(ǫ3).

Proof: First note that

tr
(

f(f + ǫ∆)−1
)

= tr
(

f1/2(I + f−1/2ǫ∆f−1/2)−1f−1/2
)

= tr
(

I + f−1/2ǫ∆f−1/2
)−1

tr
(

f(f + ǫ∆)−1
)

= m− tr(f−1/2ǫ∆f−1/2)

+ ‖f−1/2ǫ∆f−1/2‖2Fr +O(ǫ3).

Likewise,

tr(f + ǫ∆)f−1 = m+ tr(ǫ∆f−1)

= m+ tr(f−1/2ǫ∆f−1/2).
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Therefore,

D1(f, f+ǫ∆) = tr

∫ π

−π

(

f(f + ǫ∆)−1+(f + ǫ∆)f−1−2I
) dθ

2π

=

∫ π

−π
‖f−1/2ǫ∆f−1/2‖2Fr

dθ

2π
+O(ǫ3).

Obviously, an alternative expression forg1,f that requires neither spectral factorization nor the computation of
the Hermitian square root off , is the following:

g1,f (∆) :=

∫ π

−π
tr
(

f−1∆f−1∆
) dθ

2π
. (18b)

It is interesting to also note that any of (14), (15), (16), and (17) leads to the same Riemannian metric.

B. Geometry based on suboptimality of prediction

The paradigm in [7] for a Riemannian structure of scalar power spectral densities was originally built on the
degradation of predictive error variance, as this is reflected in the strength of the inequalities of Proposition 2. In this
section we explore the direct generalization of that route.Thus, we consider the quadratic form whichF inherits
from the relevant divergenceD2, defined in (11). The next proposition shows that this definesthe corresponding
metric:

g2,f (∆) := tr

∫ π

−π
(f−1

+ ∆f−∗
+ )2

dθ

2π
− tr

(

∫ π

−π
f−1
+ ∆f−∗

+

dθ

2π

)2

= g1,f (∆)− tr
(

∫ π

−π
f−1
+ ∆f−∗

+

dθ

2π

)2
. (19)

Proposition 6: Let (f,∆) ∈ F ×D andǫ > 0. Then, forǫ sufficiently small,

D2(f, f + ǫ∆) =
1

2
g2,f (ǫ∆) +O(ǫ3).

Proof: In order to simplify the notation let

∆ǫ := f−1
+ ǫ∆f−∗

+ .

Since∆, f are both bounded,| tr(∆k
ǫ )| = O(ǫk) as well as| tr(

∫ π
−π∆ǫ

dθ
2π )

k| = O(ǫk). Using a Taylor series
expansion,

tr log

(
∫ π

−π
f−1
+ (f + ǫ∆)f−∗

+

dθ

2π

)

= tr log

(

I +

∫ π

−π
∆ǫ

dθ

2π

)

= tr

(
∫ π

−π
∆ǫ

dθ

2π

)

− 1

2
tr

(
∫ π

−π
∆ǫ

dθ

2π

)2

+O(ǫ3),

while

tr

(
∫ π

−π
log(f−1

+ (f + ǫ∆)f−∗
+ )

dθ

2π

)

=

∫ π

−π
tr log(I +∆ǫ)

dθ

2π

=

∫ π

−π
tr(∆ǫ −

1

2
∆2

ǫ )
dθ

2π
+O(ǫ3).

Thus

D2(f, f + ǫ∆) =
1

2
tr

(
∫ π

−π
∆2

ǫdθ −
(

∫ π

−π
∆ǫ

dθ

2π

)2
)

+O(ǫ3).
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Evidently, g2,f andg1,f are closely related. The other choices ofD similarly yield eitherg1,f , as noted earlier,
or g2,f . In fact, g2,f can be derived based on (12).

We remark a substantial difference betweeng1,f andg2,f . In contrast tog2,f , evaluation ofg1,f does not require
computingf+. However, on the other hand, bothg1,f , andg2,f are similarly unaffected by consistent scaling off
and∆.

V. GEOMETRY ON POSITIVE MATRICES

As indicated earlier, a Riemannian metricg(∆) on the space of Hermitianm × m matrices is a family of
quadratic forms originating from inner products that depend smoothly on the Hermitian “foot point”M —the
standard Hilbert-Schmidt metricgHS(∆) = 〈∆,∆〉 := tr(∆2) being one such. Of particular interest are metrics
on the space of positive definite matrices that ensure the space is complete and geodesically complete2. For our
purposes, matrices typically represent covariances. To this end a standard recipe for constructing a Riemannian
metric is to begin with an information potential, such as theBoltzmann entropy of a Gaussian distribution with
zero mean and covarianceM ,

S(M) := −1

2
log(det(M)) + constant,

and define an inner product via its Hessian

〈X,Y 〉M :=
∂2

∂x∂y
S(M + xX + yY )|x=0,y=0

= tr(M−1XM−1Y ).

The Riemannian metric so defined,

gM (∆) : = tr(M−1∆M−1∆)

= ‖M− 1

2∆M− 1

2 ‖2Fr,
is none other than the Fisher-Rao metric on Gaussian distributions expressed in the space of the corresponding
covariance matrices.

The relationship of the Fisher-Rao metric on Gaussian distributions with the metricg1,f in (18b) is rather evident.
Indeed,gM coincides withg1,f for power spectra which are constant across frequencies, i.e., takingf = M to be
a constant Hermitian positive definite matrix.

It is noted thatgM (∆) remains invariant under congruence, that is,

gM (∆) = gTMT ∗(T∆T ∗)

for any square invertible matrix-functionT . This is a natural property to demand since it implies that the distance
between covariance matrices does not change under coordinate transformations. The same is inherited byg1,f for
power spectra. It is for this reason thatgM has in fact been extensively studied in the context of general C∗-algebras
and their positive elements; we refer to [11, pg. 201-235] for a nice exposition of relevant material and for further
references. Below we highlight certain key facts that are relevant to this paper. But first, and for future reference,
we recall a standard result in differential geometry.

Proposition 7: Let M be a Riemannian manifold with‖∆‖2M denoting the Riemannian metric atM ∈ M and
∆ a tangent direction atM . For each pair of pointsM0, M1 ∈ M consider the path space

ΘM0,M1
:= {Mτ : [0, 1] → M : Mτ is a piecewise smooth

path connecting the two given points}.

Denote byṀτ := dMτ/dτ . The arc-length
∫ 1

0
‖Ṁτ‖Mdτ,

2A space is complete when Cauchy sequences converge to pointsin the space. It is geodesically complete when the definitiondomain of
geodesics extends to the complete real lineR; i.e., extrapolating the path beyond the end points remainsalways in the space.
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as well as the “action/energy” functional
∫ 1

0
‖Ṁτ‖2Mdτ

attain a minimum at a common path inΘf0,f1 . Further, the minimal value of the arclength is the square root of
the minimal value of the energy functional, and on a minimizing path the “speed”‖Ṁτ‖M remains constant for
τ ∈ [0, 1].

Proof: See [17, pg. 137].

The insight behind the statement of the proposition is as follows. The arclength is evidently unaffected by a re-
parametrization of a geodesic connecting the two points. The “energy” functional on the other hand, is minimized
for a specific parametrization of geodesic where the velocity stays constant. Thus, the two are intimately related.
The proposition will be applied first to paths between matrices, but in the next section it will also be invoked for
geodesics between power spectra.

Herein we are interested in geodesic pathsMτ , τ ∈ [0, 1], connecting positive definite matricesM0 to M1 and
in computing the corresponding geodesic distances

dg(M0,M1) =

∫ 1

0
‖M−1/2

τ

dMτ

dτ
M−1/2

τ ‖Frdτ.

Recall that a geodesicMτ is the shortest path on the manifold connecting the beginning to the end.
Theorem 8:Given Hermitian positive matricesM0,M1 the geodesic between them with respect togM is unique

(modulo re-parametrization) and given by

Mτ = M
1/2
0 (M

−1/2
0 M1M

−1/2
0 )τM

1/2
0 , (20)

for 0 ≤ τ ≤ 1. Further, it holds that

dg(M0,Mτ ) = τ dg(M0,M1), for τ ∈ [0, 1],

and the geodesic distance is
dg(M0,M1) = ‖ log(M−1/2

0 M1M
−1/2
0 )‖Fr.

Proof: A proof is given in [11, Theorem 6.1.6, pg. 205]. However, since this is an important result for our
purposes and for completeness, we provide an independent short proof relying on Pontryagin’s minimum principle.

We first note that, sincegM is congruence invariant, the pathTMτT
∗ is a geodesic betweenTM0T

∗ andTM1T
∗,

for any invertible matrixT . Further, the geodesic length is independent ofT . Thus, we set

T = M
− 1

2

0 ,

and seek a geodesic path between

X0 = I andX1 = M
− 1

2

0 M1M
− 1

2

0 . (21)

Appealing to Proposition 7 we seek

min{
∫ 1

0
tr(X−1

τ UτX
−1
τ Uτ )dτ, (22)

subject toẊτ = Uτ , andX0,X1 specified}.

Now, (22) is a standard optimal control problem. The value ofthe optimal control must annihilate the variation of
the Hamiltonian with respect to the “control”Uτ

tr(X−1
τ UτX

−1
τ Uτ ) + tr(ΛτUτ ).

Here,Λτ represents the co-state (i.e., Lagrange multiplier functions). The variation is

tr(2X−1
τ UτX

−1
τ δU + ΛτδU )
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and this being identically zero for allδU implies that

Uτ = −1

2
XτΛτXτ . (23)

Similarly, the co-state equation is obtained by considering the variation with respect toX. This gives

Λ̇τ = 2X−1
τ UτX

−1
τ UτX

−1
τ .

Substitute the expression forUτ into the state and the co-state equations to obtain

Ẋτ = −1

2
XτΛτXτ

Λ̇τ =
1

2
ΛτXτΛτ .

Note that
ẊτΛτ +Xτ Λ̇τ = 0,

identically, for all τ . Hence, the productXτΛτ is constant. Set

XτΛτ = −2C. (24)

The state equation becomes
Ẋτ = CXτ .

The solution with initial conditionX0 = I is

Xτ = exp(Cτ).

Matching (21) requires thatexp(C) = X1 = M
− 1

2

0 M1M
− 1

2

0 . Thus,Xτ = (M
− 1

2

0 M1M
− 1

2

0 )τ and the geodesic is as
claimed. Further,

C = log(M
− 1

2

0 M1M
− 1

2

0 )

while Uτ = CXτ from (24) and (23). So finally, for the minimizing choice ofUτ we get that the cost
∫ τ

0
tr(X−1

τ UτX
−1
τ Uτ )dτ =

∫ τ

0
tr(C2)dτ

= τ‖ log(M−1/2
0 M1M

−1/2
0 )‖2Fr

as claimed.
Remark 9: It’s important to point out the lower bound

dg(M0,M1) ≥ ‖ logM0 − logM1‖Fr (25)

on the geodesic distance which holds with equality whenM0 andM1 commute. This is known as the exponential
metric increasing property [11, page 203] and will be used later on.2

The mid point of the geodesic path in (20) is what is known as the geometric mean of the two matricesM0 and
M1. This is commonly denoted by

M 1

2

:= M0♯M1.

Similar notation, with the addition of a subscriptτ , will be used to designate the complete geodesic path

Mτ = M0♯τM1 := M
1/2
0 (M

−1/2
0 M1M

−1/2
0 )τM

1/2
0

(see [11]). A number of useful properties can be easily verified:
i) Congruence invariance: for any invertible matrixT ,

dg(M0,M1) = dg(TM0T
∗, TM1T

∗).

ii) Inverse invariance:
dg(M0,M1) = dg(M

−1
0 ,M−1

1 ).
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iii) The metric satisfies the semiparallelogram law.
iv) The space of positive definite matrices metrized bydg is complete; that is, any Cauchy sequence of positive
definite matrices converges to a positive definite matrix.
v) Given any three “points”M0, M1, M2,

dg(M0♯τM1,M0♯τM2) ≤ τ dg(M1,M2),

which implies that geodesics diverge at least as fast as “Euclidean geodesics”.
Remark 10:Property v) implies that the Riemannian manifold of positive definite matrices with metricdg has

nonpositive sectional curvature [18, pg. 39–40]. The nonpositive sectional curvature of a simply connected complete
Riemannian manifold has several important geometric consequences. It implies the existence and uniqueness of a
geodesic connecting any two points on the manifold [18, pg. 3–4]. Convex sets on such a manifold are defined by the
requirement that geodesics between any two points in the setlie entirely in the set [18, pg. 67]. Then, “projections”
onto the set exist in that there is always a closest point within convex set to any given point. Evidently, such a
property should be valuable in applications, such as speaker identification or speech recognition based on a database
of speech segments; e.g., models may be taken as the “convex hull” of prior sample spectra and the metric distance
of a new sample compared to how far it resides from a given suchconvex set. Another property of such a manifold
is that the center of mass of a set of points is contained in theclosure of its convex hull [18, pg. 68]; this property
has been used to define the geometric means of symmetric positive matrices in [19].2

VI. GEODESICS AND GEODESIC DISTANCES

Power spectral densities are families of Hermitian matrices parametrized by the frequencyθ, and as such, can be
thought of as positive operators on a Hilbert space. Geometries for positive operators have been extensively studied
for some time now, and power spectral densities may in principle be studied with similar tools. However, what it
may be somewhat surprising is that the geometries obtained earlier, based on the innovations flatness and optimal
prediction, have points of contact with this literature. This was seen in the correspondence between the metrics that
we derived.

In the earlier sections we introduced two metrics,g1 andg2. Although there is a close connection between the
two, as suggested by (19), it is only for the former that we areable to identify geodesics and compute the geodesic
lengths, based on the material in Section V. We do this next.

Theorem 11:There exists a unique geodesic pathfτ with respect tog1,f , connecting any two spectraf0, f1 ∈ F .
The geodesic path is

fτ = f
1/2
0 (f

−1/2
0 f1f

−1/2
0 )τf

1/2
0 , (26)

for 0 ≤ τ ≤ 1. The geodesic distance is

dg1
(f0, f1) =

√

∫ π

−π
‖ log f−1/2

0 f1f
−1/2
0 ‖2Fr

dθ

2π
.

Proof: As before, in view of Proposition 7, instead of the geodesic length we may equivalently consider
minimizing the energy/action functional

E =

∫ 1

0

∫ π

−π
‖f−1/2

τ ḟτf
−1/2
τ ‖2Fr

dθ

2π
dτ

=

∫ π

−π

∫ 1

0
‖f−1/2

τ ḟτf
−1/2
τ ‖2Frdτ

dθ

2π
.

Clearly, this can be minimized point-wise inθ invoking Theorem 8. Now, inversion as well as the fractionalpower
of symmetric (strictly) positive matrices represent continuous and differentiable maps. Hence, it can be easily seen
that, becausef0, f1 are inF so is

fτ = f
1/2
0 (f

−1/2
0 f1f

−1/2
0 )τf

1/2
0 .
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Therefore, this path is the sought minimizer of
∫ 1

0
‖f−1/2

τ ḟτf
−1/2
τ ‖2Frdτ

and the geodesic length is as claimed.
Corollary 12: Given anyf0, f1, f2 ∈ F , the functiondg1

(f0♯τf1, f0♯τf2) is convex onτ .

Proof: The proof is a direct consequence of the convexity of the metric dg(·, ·).
The importance of the statement in the corollary is that the metric space has nonpositive curvature. Other properties

are similarly inherited. For instance,dg1
satisfies the semi-parallelogram law.

Next we explain that the closure of the space of positive differentiable power spectra, underg1, is simply power
spectra that are squarely log integrable. This is not much ofa surprise in view of the metric and the form of the
geodesic distance. Thus, the next proposition shows that the completion, denoted by “bar,” is in fact

F̄ := {f | m×m positive definite a.e.,

on [−π, π], log f ∈ L2[−π, π]}. (27)

It should be noted that the metricdg1
is not equivalent to anL2-based metric‖ log(f1)− log(f2)‖2 for the space.

Here,

‖h‖2 :=

√

∫ π

−π
‖h‖2Fr

dθ

2π
.

In fact, using the latter̄F has zero curvature while, usingdg1 , F̄ becomes a space with non-positive (non-trivial)
curvature.

Proposition 13: The completion ofF underdg1
is as indicated in (27).

Proof: Clearly, forf ∈ F , log f ∈ L2[−π, π] sincef is continuous on the closed interval and positive definite.
Further, the logarithm maps positive differentiable matrix-functions to positive differentiable ones, bijectively. Our
proof of F̄ being the completion ofF is carried out in three steps. First we will show that the limit of every
Cauchy sequence inF belongs toF̄ . Next we argue that every point in̄F is the limit of a sequence inF , which
together with the first step shows thatF is dense inF̄ . Finally, we need to show that̄F is complete withdg1

.
First, consider a Cauchy sequence{fn} in F which converges tof . Hence, there exists anN , such that for any

k ≥ N , dg1
(fk, f) < 1. Using the triangular inequality fordg1

, we have that

dg1
(I, f) ≤ dg1

(I, fN ) + dg1
(fN , f),

or, equivalently,
‖ log f‖2 < ‖ log fN‖2 + 1.

Since‖ log fN‖2 is finite, f ∈ F̄ .
Next, for any pointf in F̄ which is not continuous, we show that it is the limit of a sequence in F . Let

h = log f , thenh ∈ L2[−π, π]. Since the set of differentiable functionsC1[−π, π] is dense inL2[−π, π], there
exits a sequence{hn ∈ C1[−π, π]} which converges toh in theL2 norm. Using Theorem 3 in [20, pg. 86], there
exists a subsequence{hnk

} which converges toh almost everywhere in[−π, π], i.e.,

‖hnk
(θ)− h(θ)||Fr → 0 a.e., asnk → ∞.

Since the exponential map is continuous [21, pg. 430],‖ehnk
(θ) − eh(θ)||Fr converges to0 almost everywhere as

well. Using the sub-multiplicative property of the Frobenius norm, we have that

‖I − e−h(θ)ehnk
(θ)‖Fr ≤ ‖e−h(θ)‖Fr‖ehnk

(θ) − eh(θ)‖Fr,

where the right side of the above inequality goes to zero. Thus the spectral radius of(I − e−h(θ)ehnk
(θ)) goes to

zero [22, pg. 297]. Hence, all the eigenvaluesλi(e
−h(θ)ehnk

(θ)), 1 ≤ i ≤ m, converge to1 as k → ∞. Then,
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fnk
= ehnk ∈ F and

dg1
(fnk

, f) =

√

∫ π

−π
‖ log f−1/2fnk

f−1/2‖2Fr
dθ

2π

=

√

√

√

√

∫ π

−π

m
∑

i=1

log2 λi(f−1fnk
)
dθ

2π

=

√

√

√

√

∫ π

−π

m
∑

i=1

log2 λi(e−hehnk )
dθ

2π
.

Sincelog λi(e
−hehnk ) → 0 a.e., for1 ≤ i ≤ m, dg1

(fnk
, f) → 0 as well. Therefore,f is the limit of {fnk

}.
Finally we show thatF̄ is complete underdg1

. Let {fn} be a Cauchy sequence in(F̄ ,dg1
), and lethn = log fn.

Using the inequality (25), we have

dg1
(fk, fl) ≥

√

∫ π

−π
‖hk − hl‖2Fr

dθ

2π
.

Thus{hn} is also a Cauchy sequence inL2[−π, π], which is a complete metric space. As a result,{hn} converges
to a pointh in L2[−π, π]. Following the similar procedure as in the previous step, there exists a subsequence{fnk

}
which converges tof = eh ∈ F̄ . This completes our proof.

Remark 14:Geodesics ofg2,f for scalar power spectra were constructed in [7]. At the present time, a multivari-
able generalization appears to be a daunting task. The main obstacle is of course non-commutativity of matricial
density functions and the absence of an integral representation of analytic spectral factors in terms of matrix-valued
power spectral densities. In this direction we point out that some of the needed tools are in place. For instance, a
square matrix-valued function which is analytic and non-singular in the unit discD, admits a logarithm which is
also analytic inD. To see this, consider such a matrix-function, sayf+(z). The matrix logarithm is well defined
locally in a neighborhood of anyz0 ∈ D via the Cauchy integral

g(z) =
1

2πi

∫

Lz0

ln(ζ)(ζI − f+(z))
−1dζ.

Here,Lz0 is a closed path in the complex plane that encompasses all of the eigenvalues off+(z0) and does not
separate the origin from the point at∞. The Cauchy integral gives a matrix-functiong(z) which is analytic in
a sufficiently small neighborhood ofz0 in the unit discD —the size of the neighborhood being dictated by the
requirement that the eigenvalues stay withinLz0 , andexp(g(z)) = f+(z). To define the logarithm consistently over
D we need to ensure that we always take the same principle value. This is indeed the case if we extendg(z) via
analytic continuation: sincef+(z) is not singular anywhere inD and the unit disc is simply connected, the values
for g(z) will be consistent, i.e., any path fromz0 to an arbitraryz ∈ D will lead to the same value forg(z). Thus,
one can setlog(f+) = g and understand this to be a particular version of the logarithm. Similarly, powers off+
can also be defined using Cauchy integrals,

1

2πi

∫

Lz0

ζτ (ζI − f+(z))
−1dζ

for τ ∈ [0, 1], first in a neighborhood of a givenz0 ∈ D, and then by analytic continuation to the whole ofD. As
with the logarithm, there may be several versions. Geodesics for g2,f appear to be require paths in the space of
cannonical spectral factors for the corresponding matricial densities, such asfτ+ = f0+(f

−1
0+ f1+)

τ
+. However, the

correct expression remains elusive at present.2

VII. E XAMPLES

We first demonstrate geodesics connecting two power spectral densities that correspond to all-pole models, i.e.,
two autoregressive (AR) spectra. The geodesic path betweenthem does not consist of AR-spectra, and it can be
considered as a non-parametric model for the transition. The choice of AR-spectra for the end points is only for
convenience. As discussed earlier, the aim of the theory is to serve as a tool in non-parametric estimation, path
following, morphing, etc., in the spectral domain.
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A scalar example:

Consider the two power spectral denisities

fi(θ) =
1

|ai(ejθ)|2
, i ∈ {0, 1},

where

a0 =(z2 − 1.96 cos(
π

5
) + 0.982)(z2 − 1.7 cos(

π

3
) + 0.852)

(z2 − 1.8 cos(
2π

3
) + 0.92),

a1 =(z2 − 1.96 cos(
2π

15
) + 0.982)(z2 − 1.5 cos(

7π

30
) + 0.752)

(z2 − 1.8 cos(
5π

8
) + 0.92).

Their roots are marked by×’s and ◦’s respectively, in Figure 2, and shown with respect to the unit circle in the
complex plane. We consider and compare the following three ways of interpolating power spectra betweenf0 and
f1.

0 0.5 1 1.5 2 2.5 3
−5

0

5

10

0 0.5 1 1.5 2 2.5 3
−5

0

5

10

Fig. 1. Plots oflog f0(θ) (upper) andlog f1(θ) (lower) for θ ∈ [0, π].
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Fig. 2. Locus of the roots ofaτ (z) for τ ∈ [0, 1].

First, a parametric approach where the AR-coefficient are interpolated:

fτ,AR(θ) =
1

|aτ (ejθ)|2
, (28a)

with aτ (z) = (1 − τ)a0(z) + τa1(z). Clearly, there is a variety of alternative options (e.g., to interpolate partial
reflection coefficients, etc.). However, our choice is intended to highlight the fact that in a parameter space,
admissible models may not always form a convex set. This is evidently the case here as the path includes factors
that become “unstable.” The locus of the roots ofaτ (z) = 0 for τ ∈ [0, 1] is shown in Figure 2.



18 JULY 8, 2011

Then we consider a linear segment connecting the two spectra:

fτ,linear = (1− τ)f0 + τf1. (28b)

Again, this is to highlight the fact that the space of power spectra is not linear, and in this case, extrapolation
beyond the convex linear combination of the two spectra leads to inadmissible function (as the path leads outside
of the cone of positive functions). Finally, we provide theg1-geodesic between the two

fτ,geodesic = f0(
f1
f0

)τ . (28c)

We comparefτ,AR, fτ,linear andfτ,geodesic for τ ∈ {1
3 ,

2
3 ,

4
3}. We first note that in plottinglog fτ,AR in Figure 3,

that f 2

3
,AR is not shown since it is not admissible. Likewiselog fτ,linear in Figure 4 breaks up forτ = 4

3 , since

0
1

2
3 0

0.5
1

1.5

−5

0

5

10

Fig. 3. log fτ,AR(θ) for τ = 1
3
, 2
3
, 4
3

(blue), τ = 0, 1 (red).

f 4

3
,linear becomes negative for a range of frequencies –dashed curve indicates the absolute value of the logarithm

when this takes complex values. The plot oflog fτ,geodesic is defined for all theτ and shown in Figure 5. It is worth
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1.5
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Fig. 4. log fτ,linear(θ) for τ = 1
3
, 2
3
, 4
3

(blue), τ = 0, 1 (red).
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Fig. 5. log fτ,geodesic(θ) for τ = 1
3
, 2
3
, 4
3

(blue), τ = 0, 1 (red).

pointing out how two apparent “modes” infτ,linear andfτ,geodesic are swapping their dominance, which does not
occur when followingfτ,AR.
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A multivariable example:

Consider the two matrix-valued power spectral densities

f0 =

[

1 0
0.1ejθ 1

] [ 1
|a0(ejθ)|2

0

0 1

] [

1 0.1e−jθ

0 1

]

f1 =

[

1 0.1ejθ

0 1

] [

1 0
0 1

|a1(ejθ)|2

] [

1 0
0.1e−jθ 1

]

.

Typically, these reflect the dynamic relationship between two time series; in turn these may represent noise
input/output of dynamical systems or measurements across independent array of sensors, etc. The particular example
reflects the typical effect of an energy source shifting its signature from one of two sensors to the other as, for
instance, a possible scatterer moves with respect to the twosensors.

Below f0 andf1 are shown in Fig. 6 and Fig. 7, respectively. Since the value of a power spectral densityf , at
each point in frequency, is a Hermitian matrix, our convention is to show in the (1,1), (1,2) and (2,2) subplots the
log-magnitude of the entriesf(1, 1), f(1, 2) (which is the same asf(2, 1)) and f(2, 2), respectively. Then, since
only f(1, 2) is complex (and the complex conjugate off(2, 1)), we plot its phase in the (2,1) subplot.
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Fig. 6. Subplots (1,1), (1,2) and (2,2) showlog f0(1, 1), log |f0(1, 2)| (same aslog |f0(2, 1)|) and log f0(2, 2). Subplot (2,1) shows
arg(f0(2, 1)).
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Fig. 7. Subplots (1,1), (1,2) and (2,2) showlog f1(1, 1), log |f1(1, 2)| (same aslog |f1(2, 1)|) and log f0(2, 2). Subplot (2,1) shows
arg(f1(2, 1)).
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Fig. 8. Subplots (1,1), (1,2) and (2,2) showlog fτ (1, 1), log |fτ (1, 2)| (same aslog |fτ (2, 1)|) and log fτ (2, 2). Subplot (2,1) shows
arg(fτ (2, 1)), for τ ∈ [0, 1].

Three dimensional surface show the geodesic connectingf0 to f1 in Figure 8. Here,fτ,geodesic is drawn using

fτ,geodesic = f
1

2

0 (f
− 1

2

0 f1f
− 1

2

0 )τf
1

2

0 .

It is interesting to observe the smooth shift of the energy across frequency and directionality.

VIII. C ONCLUSIONS

The aim of this study has been to develop multivariable divergence measures and metrics for matrix-valued power
spectral densities. These are expected to be useful in quantifying uncertainty in the spectral domain, detecting events
in non-stationary time series, smoothing and spectral estimation in the context of vector valued stochastic processes.
The spirit of the work follows closely classical accounts going back to [1], [2] and proceeds along the lines of
[7]. Early work in signal analysis and system identificationhas apparently focused only on divergence measures
between scalar spectral densities, and only recently have such issues on multivariable power spectra attracted
attention [8], [9]. Further, this early work on scalar powerspectra was shown to have deep roots in statistical
inference, the Fisher-Rao metric, and Kullback-Leibler divergence [6], [2, page 371], [7], [13]. Thus, it is expected
that interesting connections between the geometry of multivariable power spectra and information geometry will
be established as well.
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