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Abstract—This paper studies the Lagrange stabilization of a pendulum-like system eventually converges to an equilibri
class of nonlinear systems whose linear part has a singulaystem  Thijs is analogous to the asymptotic stability of a systen &it
matrix and which have multiple periodic (in state) nonlineaities. single equilibrium. This observation highlights the imfaorce

Both state and output feedback Lagrange stabilization protems - ; . .
are considered. The paper develops a pseuds, control theory of Lagrange stability as a tool to establish the gradiei-li

to solve these stabilization problems. In a similar fashionto Property of pendulum-like systems. It also motivates thelyt
the Strict Bounded Real Lemma in classicH. control theory, of pendulum-like systems within the framework of Lagrange
a.PSGUC.lO Strict Bounded Real ITgmma is ggtablished for systam stability which is considered in this paper.

with a single unstable pole. Sufficient conditions for the sythesls In the authors’ previous work [6], the state feedback con-
of state feedback and output feedback controllers are given - . - -

to ensure that the closed-loop system is pseudo strict bouad troller syntheS|s problem IS COpSldered for a restrictedislof
real. The pseudoH. control approach is applied to solve state Pendulum-like systems in which the way that the controlled
feedback and output feedback Lagrange stabilization prol@ms outputs enter into the nonlinearities must have a special
for nonlinear systems with multiple nonlinearities. An exanple  structure. In contrast to the results [l [6], this paper fiyain
is given to illustrate the proposed method. focuses on solving the output feedback Lagrange stabidizat

Index Terms—PseudoH., control, Pseudo Strict Bounded Real problem for pendulum-like systems with nonlinearities ethi

Lemma, Pendulum-like systems, Lagrange stability. have a general structure. Unlike the special casglin [6hi t
more general case, a significantly different method utifizi
l. INTRODUCTION sign-indefinite solutions to game-type Riccati equatienssic-

essary. This has led us to develop a pseddaceontrol theory

The clas_s of pe_nd_ulu_m-hke systems IS a class of no_nll_net%r address the Lagrange stabilization problem of pendulum-
systems with periodic (in state) nonlinearities and an itgin like systems. This pseudds control theory allows a pole

num_ber of equ|I|br|a_[_1]. They COVer an |mport§1nt class q f the closed-loop transfer function to be located in thétrig
nonlinear systems arising in electronics, mechanics amgpo half of the complex plane and ensures that the closed-loop

syst_ems. These systems can b_e used to _model mterco_nne{:r%fer function satisfies a frequency domain conditioictvh
oscillators, synchronous electrical machines and eIEm;trois similar to the bounded real propertyl [7]. An important
phase-locked loop devicas [AL1[3]. An important controjezs contribution of this paper is the pseudé strict bounded real

tive in relation to controlling such systems is to ensuré tha results in Theorem§ 3.1 arid B.2, which are analogous to
closed-loop _syste_m ret_ains the properties of a pendulken—lithe standard strict bounded real Iémma [8]. Our pseddo-
system and its _t_rajectones are t_)ound_ed, at least, in _tr&'esﬁn control theory can be regarded as a theory which is analogous
La_lgrange stability. In combm{mon W|th_other analyticabls, 0 the standarcH. control theory (see[]9],[110]) but with
this enables global asymptotic properties of the systerretoh non-standard closed-loop stability condition. Furthenen
estabhsht_ad. For example, the monogreph [1] makes exensly, paper applies the proposed psettiotheory to solve the
use .Of this approach_ to stL_de_ globa! asymptoﬂc behqwqr P grange stabilization problem for pendulum-like systems
nonlinear systems with periodic nonlinearities and an itin The usefulness of the Lagrange stability property of
number of equilibria. . endulum-like systems motivates research on Lagrange sta-
The cpncept Of. Lagrange stability can be traced back to E'iﬁzation of pendulum-like systems; e.g., séé [3].I[1AR]
Pomc_are’s work in the 1890s][4]. I[5], Lagra_mge Stay"“tHowever, in these papers it was assumed that the nonlinear
|§:je:cf|?ed as a property (if.a Stat@é(;f a ﬁl_yrrl]amma_l systtr?n: system contains a single nonlinearity only and has a special
;(h_ ( ’tX) g|¥en otn a Te r:cctspac o W ;_C retqltjr;r_es ¢ ? matched structure on its nonlinearity. This special maiche
€ Si;s em ra_Jecdo_ry( N l))(( ’ ;jxog or|g|r|1a_ mgha IS sla eh structure enables the Lagrange stabilization problem toalse
Xo to be contained in a bounded set. It Is shownLin [t a5 a standart., problem. In order to consider general system
it a pendulum-like system possesses both Lagrange syabi tructures which do no satisfy matching conditions, a difé

and dich(_)tomy, then it has a so-called gradient-l@ke Iorleperapproach is required which motivates our psetitipcontrol
The gradient-like property guarantees that any trajectbtiie problem. Also, the results of [3]/ . [11]-[13] are establidhe

The authors are with the University of New South Wales at thes-A US'”Q a Lagrange stability criterion g“_/e_n i [1] Wh|Ch reGs
tralian Defence Force Academy, Campbell, ACT 2600, Austratmails: the linear part of the system to be minimal. This means that a

h.ouyang@adfa.edu.au, i.r.petersen@gmail.com, vagski@gmail.com.  nost-check is required on the linear part of the resultioged-
Preliminary versions of the results of this paper were priegkat the Joint

48th CDC and 28th CCC and the 2010 ACC. loop system to determine if it is minimal. In contrast, thappr
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minimal realization requirement but uses a strict freqyenc Il. PROBLEM FORMULATION OF LAGRANGE
domain condition. This Lagrange stability theory enablés t STABILIZATION FOR PENDULUM-LIKE SYSTEM
paper to consider a Lagrange stabilization problem withiogit pendulum-like Systems
requirement of a post-check on the minimality of the linear
part of the closed-loop system. Also, this Lagrange stgbili
criterion allows us to solve the Lagrange stabilizationgbem X = Ax+Bw
for nonlinear systems with multiple nonlinearities. Indea ;7 — C

o - . : : = Cx Q)
condition of the stability analysis techniques used in thpgy
is that the closed-loop system matrix has a single zero wherex € #" is the statezc #™ is the nonlinearity output
eigenvalue, even though multiple nonlinearities are adldw vector andw € Z™ is the nonlinearity input vector. Alsé €
The corresponding condition on the open-loop system in o@#"™", B€ #™™M, C=[CI,... ,Cl|T € ™", Ci € #VMi =
control synthesis results is that this system must haveglesinl,---,m. The components of the vectar= [wy,--- ,wy|T are
unobservable (or uncontrollable) mode at the origin. determined from the corresponding components of the vector

z=[z,---,zm|" via nonlinear functions

To illustrate the efficacy of the proposed method, we give Wi =q(t.z) )
an example. It is concerned with Lagrange stabilization @fhereq : Z, x # — % is a continuous, locally Lipschitz in
a network of three interconnected nonlinear pendulumso,Alshe second argument and periodic function with pedipg 0;
this system has some of the features of many practical sgstdra.,
such as power systems, large-scale interconnected network
and hence it suggests some application areas for the theory @ (Lz+28)=@(t.z), WeZy, z€Z. ®3)

developed in this paper. These features are an intercaonectThig type of nonlinearity appears frequently in the pragdtic
of nonlinear but not identical elements, and the eXiSten%ﬁgineering systems mentioned in Section 1. Phase-locked
of multiple equilibria points due to the periodicity of the|0OIOS [14] and a pendulum system with a vibrating point
nonlinear elements. of suspension 1] are typical examples of such systems. We
also refer to the example given in SectionVIl. The transfer
) ) ) ) function of the linear part of the systefd (1) is given®gs) =
This paper is organized as follows: Section I formulatqg(sl — A)~1B. The nonlinear functions (t,z),i = 1,---,m

the Lagrange stabilization problem for pendulum-like eyss;  gre assumed to satisfy the sector conditions,
Section 1l presents a pseudd, control theory, which is

motivated by the problem formulated in Section 2; Section — i < o(t.z) <u, WER,, 7 +0, (4)
IV presents our main results on output feedback Lagrange Z

stabilization of unobservable pendulum-like systemsitiBec wherey; € Z.,i=1,---,m.

V presents our results on the output feedback Lagrangewe defineA € #™™M as A = diagAy,---,Am]. Given a
stabilization of uncontrollable pendulum-like systemec®n \actord ¢ 2", let N(d) 4 {kdke 2.

VI gives results on the state feedback Lagrange stabii@ati pefinition 2.1: (Pendulum-like Systerfil [1}he nonlinear
of uncontrollable pendulum-like systems. Section VIl grés system (1), [[),[13) is pendulum-like with respectrigd) if

an example to illustrate the efficacy of the proposed methgdl any solutionx(t,to, xo) of @), @), [3) with X(to) = Xo
and Section VIII concludes this paper. All of the proofs of th, o havex(t, to, Xo) +7d_7= X(t,to, X0 +d), for all t > to, and all
theorems in the Sections II-VI are contained in the Appendiy ¢ ry q) e e ' -

We consider a class of nonlinear systems defined as follows:

Remark 2.1:This definition reflects the fact that the phase
. i portrait of a pendulum-like system is periodic. For example
Notation: 2” denotes the set of integer™ ™ and €™ ™ i e case of a simple pendulum, this means that its position
denote the space ofx mreal matrices and the spacerok m o iaple can be represented by an angle between 0 and 2
complex matrices, respectively? denotes the set of rational  pefinition 2.2: (Lagrange Stability [1]The nonlinear sys-

m i . . . . .
numbers and2™ denotes the set of vectors af rational em [7), [2) is said to be Lagrange stable if all its solutions
numberso(A) denotes the set of the eigenvalues of a marix 5re phounded.

Omax-] denotes the maximum singular value of a mat#z,

denotes the space of all proper and real rational stablefean _ ,

function matricesZ, denotes the set of positive real number8- Lagrange Stabilization Problem for Pendulum-like Syste
and 2" = (%#:)". p(X) denotes the spectral radius of the The pendulum-like system to be stabilized will be a con-
matrix X. diagay, --- ,an] is a diagonal matrix wittay,--- ,a, trolled version of the nonlinear systef (I}, (2}, (), (4haTis,

as its diagonal element$(a,e) denotes a neighborhoodthe linear part of the system is described by the state eansati
arounda € #", defined as{d e #": ||d—a|| < €}. Given a
vector T = 1y, - - ,rm]T e #7, M; denotes the diagonal ma-
trix My = diag[ty,---,Tm]. Similarly, M, = diag[tia, - - -, Um)-
Given a vectow € 2™, LCMD(v) denotes the least common z = Cix+Dga, (Sb)
multiple (LCM) of the denominators of all the elements\of y = Cox+Daw, (5¢)

X = Ax+Byu+Biw, (5a)
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wherex € ", w e #™, ze #™ are defined as i (1) € %9 i GT (—jw—A)MG(jw—A) < MMM, 2, for all

is the control input, angt € P is the measured output. Here, w>0.

all the matrices are assumed to have compatible dimensiopgen, the nonlinear systei (1] (4)] (3], (4) is Lagrangklsta
Also, the components of the nonlinearity inputare related  The proofs of these two results appear in the journal version
to the components of the system outputas in [2) and of [6] but are included in the Appendix for completeness.
the nonlinearitiesp have the property({3). Furthermore, the LemmalZ2 is the key result to establish Lagrange stability
nonlinearities are assumed to satisfy the sector cond@®n of the closed-loop systems under consideration. It iloke
The system block diagram is shown in Figlie 1. frequency domain condition, which is similar to the bounded
real property in({[7], and a system state mathix- Al which

o has one unstable eigenvalue. However, it does not requére th
Wy ; z minimality of the linear part of the syster] (1). To establish
: these conditions in the Lagrange stabilization problemad. a
2, we develop a pseudds control theory in the next section,
which is analogous to the standatd, control theory.

A

A

@

5
5

'y

Linear System

Ill. PSEUDO-H, CONTROL

u K(s) y A. The Pseudo Strict Bounded Real Property and the Corre-
sponding Strict Bounded Real Lemma (SBRL)
Fig. 1. Nonlinear control system with periodic nonlineast The bounded real property is an important concept fre-

quently used in the standakl, control theory. We begin our

development of pseudd., control with the definition of the
seudo strict bounded real property, which is analogoulseo t
tandard bounded real property.

Definition 3.1: A matrix A € ™" which hasn—1 eigen-
values with negative real parts and one eigenvalue with-posi
¥ = AcXe+tBoy tive real pgrt is.said to bpseudo-Hu_ryvitzA s_ymmetric matrix

P e 2™" is said to bepseudo-positive definiiéit hasn—1
u = G ©6) positive eigenvalues and one negative eigenvalue.
such that the resulting closed-loop system is pendulum-lik Definition 3.2: A linear time-invariant (LTI) systemi{1) is
and Lagrange stable. called pseudo strict bounded redl the following conditions

Problem 2: (State Feedback Lagrange Stabilizatidije hold:
state feedback Lagrange stabilization problem is to deaign ()  Ais pseudo Hurwitz,
state feedback control law = Kx for the system[(3a)[ (Bb), (i)

@), @), [3) to ensure that the resulting closed-loop sysie max{ oma{G(—jw)"G(jw)]} < 1. (7)
pendulum-like and Lagrange stable. we

Note that in some cases, it may be possible to design aTheorem 3.1:Consider the LTI systeni1). If the Riccati
controller in the form of [(B) to asymptotically stabilizeeth equation
system [(b), [(R),[(4). Such cases are trivial from the point ATP+PA+PBB'P+C'C=0 (8)

of view of Lagrange stabilization. In order to rule out thesg Luti T h thatP i d itive defini
trivial cases and to guarantee that the closed-loop systean i az a so u'%lorP;]: P’ suc It _alP IS psed _o-p03||t|ve T]'mteh
pendulum-like system, we will assume that the linear part 8f' A+ BB P has no purely imaginary eigenvalues, then the

the systems{5) has uncontrollable or unobservable modesSYStem[(L) is pseudo strict bounded real.

To solve the above two problems, the following two tech- Theorem 3.2:If the LTI system[(1) is pseudo strict bounded

nical results of[[6] will be used: real, then ] . . X T
Lemma 2.1:( [6]) Consider the nonlinear systefi (1] (2), 1) There exists a pseudo-positive definite maffix= P

Problem 1: (Output Feedback Lagrange Stabilizatidime
output feedback Lagrange stabilization problem for the-no
linear system[{5),[{2)[13)[4) is to design a linear corrol
with the transfer functioriK(s) and state-space realization:

(@3). Suppose dét=0 and there exists a vectdr# 0 such such that

thatAd =0, Gid # 0. = 1.---,m. and () *Cd € 2™ Also, ATP+PA+PBEP+C'C < 0. 9)

let o5= @ foralli=1,---,m, wherep;, g # 0 are integers.

Let p be the LCM ofp;, i =1,---,m. Then, the systeni{1), 2) Furthermore, if in addition the pai,B) is stabilizable

@), () is pendulum-like with respect fd(d) whered = pd. and the paifA,C) is observable, then the Riccati equation
Lemma 2.2:( [6]) (Lagrange Stability Criterion)Suppose (8) has a stabilizing solutioR which is pseudo-positive

the system [{1), [{2),[13),[14) is a pendulum-like system. definite.
Also, suppose therg exist a constaht> 0 and a vector  Theoreni31l is analogous to the sufficiency part of the strict
T=[11,,Tm] € ZY satisfying the following conditions:  pounded real lemma for systems with non-minimal realizetio
i. A+ Al hasn—1 eigenvalues with negative real part§8]. Also, Theoren{ 3P is analogous to the necessity part of
and one with positive real part; the strict bounded real lemma for systems with non-minimal
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realizations. Theorems_3.1 and13.2 are together called thdi)
pseudo strict bounded real lemma

The pseudo strict bounded real lemma gives a relationship
between state-space conditions, such as solvabiliti]o&ii#)
pseudo-Hurwitzness &, and the frequency-domain inequal-
ity (). This will allow us to replace the frequency domain
condition for the closed-loop system that will appear in the
application of Lemm&2]2, with a condition in the state-gpac ..
form. This is a key step in the derivation of a solution to (i
Problems 1 and 2.

B. State Feedback Pseudqsiontrol

The state feedback pseuétas control problem for the LTI
system [(Bl), [(Bb) involves designing a state feedback law

The Riccati equation
(A—BoE; 'D],C1) "X 4+ X(A—BE; 'D1,C1)
+X(B1B] — B2E; 'B})X
+C{ (I =D12E; 'D],)C1 =0 (13)

has a stabilizing solutioxX = XT which is pseudo-

positive definite;

The Riccati equation
(A—B1DJE, 'C)Y + Y(A—BiDLE, 'Cy)T
+Y(C{C, - CJE, 'C)Y
+By(I —DLE, 'D21)B] =0 (14)

has a stabilizing solutiolY = YT which is positive
definite;

u = Kx which ensures that the corresponding closed-loop jiy The matrix XY has a spectral radius strictly less than
system is pseudo strict bounded real. In an analogous way one,p(XY) < 1.

t He, cont_rol theory [9_]' [10], the ma_in result (?f _this s_ecti_on Then, there exists a dynamic output feedback compensator

presenteq in the following theorem, gives a sufficient coomli ¢ e form [6) such that the resulting closed-loop system is

for the emstgnce of a So!““‘?“ to the problem. pseudo strict bounded real. Furthermore, the matricesidgfin
The following assumption is made on the system (3a), (like required dynamic feedback controlléd (6) can be con-

structed as follows:

Assumption 3.1: E=DJ,D1, > 0. :

Theorem 3.3:Suppose Assumptidn 3.1 holds for the system Ac =
(53), [Gb) and the Riccati equation Be = (I-YX)Yvd +B:D])E;?,

(A— BoE; ID1,Cy) TP+ P(A— ByE; 1DL,Cy) Cc = —E;(B}X+DILy).
+P(B1B] — B2E; 1B} )P+C[ (I —D12E; 'D],)C1 =0 Theorem 3.5:Suppose the systeff (5) satisfies Assumptions
(10) B3 and_3.2 and the following conditions are satisfied:
0] The Riccati equation[(13) has a positive definite

stabilizing solutionX = XT;
the Riccati equation{14) has a pseudo-positive defi-
nite stabilizing solutiorY =YT ;
(i)  The matrix XY has a spectral radius strictly less than
has no purely imaginary eigenvalues. Then, the state fe&dba one,p(XY) <1.
control law Then, there exists a dynamic output feedback compensator
(12) of the form [6) such that the resulting closed-loop system is

pseudo strict bounded real. Furthermore, the matricesan th

solves the state feedback pseudi-control problem. That is, required dynamic feedback controll€d (6) can be constdicte
the resulting closed-loop system is pseudo strict boundal r 35 follows:

Remark 3.1:In practice, it is usually convenient to use the
stabilizing solution to the Riccati equationh {10) in order t
construct the required state feedback control (12).

(15)

has a solutiorP = PT such thatP is pseudo-positive definite
and the matrix (ii)

A—BE; 'D],C1 + (B1B] — B,E; 1B))P (11)

u=—E; *(BP+DiL1)x

= A+BCy—ByCe+ Y (Cp — D1Ce),
B. = —(YG+B{Dy)E;",
Cc = EYBIX+DLC)(1-YX) L (16)

Remark 3.2:According to [15], the stabilizing solutions to
the Riccati equation$ (13) and {14) are unique, if they exist

C. Output Feedback PseudasHControl

Analogous to the standard output feedbddk control
problem, the output feedback pseudg-control problem for
the system[{5) involves designing a compensator of the form V. OUTPUT FEEDBACK LAGRANGE STABILIZING
() to make the corresponding closed-loop system pseud;pNTROLLER SYNTHESIS FORUNOBSERVABLE SYSTEMS
strict bounded real. The following two theorems each give aln this section, the output feedback pseuda control
sufficient condition for the existence of a solution to thépoti  theory developed in the previous section is used to solve
feedback pseudbk, control problem for a system of the formProblem[1 for nonlinear systems satisfying the following
(B). Besides Assumptidn 3.1, the following assumption $®al assumptions, which will be used to ensure that the closed-
made on the systerf](5): loop system is pendulum-like and to rule out trivial cases in

Assumption 3.2: = D21D;l > 0. which the nonlinear system can be asymptotically staluilize

Theorem 3.4:Suppose the systein (5) satisfies AssumptionsAssumption 4.1There exists a non-zero vectoisuch that
B and—3:R and the following conditions are satisfied: Ax=0 andCyx = 0.
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Assumptiori 4]l implies thdtA, Cy) is unobservable and the
origin is an unobservable mode. Using the Kalman decomp
sition in the unobservable form [16], it follows that thesests
a non-singular state-space transformation matrisuch that

1.
O-
M.

The Riccati equation[{19) has a pseudo-positive
definite stabilizing solutioy =YT;

The matrix XY has a spectral radius strictly less than
one,p(XY) < 1.

the system matrices of the systelh (5) are transformed to thgen, the resulting closed-loop system corresponding ¢o th

form
i i | A O] 5 oan B2a
A =T AT—[A2 0 , Bo=T""By= By |
. . B
B, = T !B = [ e
G = GT=[Cua Cp } , D12=D1y,
C CoT=[Ca 0], Da1=Dg, (17)

where Ay € 2("Dx(-1) B, e (-Dxm B, e gh-1xa
C~1a, éZa S %mx(nfl).

Also, leten=[ O1,n-1) 1 ]T. We define two vectorg =
CiTe, andd = [0, € TT|T € 22"

Assumption 4.2There exists a constang > 0 such that all

controller [6), [2D) is a pendulum-like system with respiect
M(topd) and is Lagrange stable. Hepe=LCMD (V).

V. OUTPUT FEEDBACK LAGRANGE STABILIZING
CONTROLLER SYNTHESIS FORUNCONTROLLABLE
SYSTEMS

In this section, the state feedback and output feedback

pseudoH, control theories in Sectioh ]Il are applied to
Lagrange stabilization for nonlinear systems satisfyihg t
following assumption which is dual to Assumptibnl4.1:

Assumption 5.1There exists a non-zero vectoisuch that

x'A=0 andx"B, =0.

In a similar way to Assumptiofi 4.1, this assumption is

the elements of the vectar= oA 1x are non-zero rational also used to ensure that the closed-loop system is pendulum-

numbers.

like and to rule out trivial cases in which the system can be

Remark 4.1:In the case where the coefficients in the systeﬁﬁymptf)tica||y stabilized. A|Sf), this assumption impltha_t.
@) are all rational numbers, Assumptibnl4.2 amounts to &A, le) is not controllable. Using the Kalman Decomposition
assumption that the periods of the nonlinearities are camméL6], it follows from Assumptiori 511 that there exists a non-

surate.

The main result of this section involves the following Ritica
equations dependent on parametars- 0 andt; > 0, i =
1’ S, M

(Al +A—BoE; 'D],MCy)TX + X(Al +A—BoE; DI,M:Cy)
+X(B1MyM; *M,B] — BoE; 1B])X
+CI(MT - MTDIZE]_ DlZMr)Cl - 07 (18)

(Al +A—BiMuM; M, DI, E, 1Co)Y

+Y (Al +A— BlM“M;lMuoglE_;lcz)T

MyM; M, B]
+Bl( MM IM,D},E; 1D M, M; 1M,
+Y(CIMC; —CJE, 1Cp)Y =0,

whereE; = D],M;D;, and E; = DM, M; M, D},. If these
Riccati equations have suitable solutions, we will defing t
parameter matrices of the controllEt (6) as follows:

)

(19)

Ac A+BCs— ByCc + YT (M{Cy — MD1,Ce),
BC = (YCZ +B]_MNM 1MND21)E2 5
Ce Ey {(BIX+ DM Cy)(1-YX) ! (20)

The following theorem, which is the main result of this

paper, gives a sufficient condition for the existence of
Lagrange stabilizing controller for the nonlinear systéhiy, (

@. @) &):

Theorem 4.1:Suppose Assumptiords 3.1, B[2,14.1 and 4.2

hold for the nonlinear systerhl(5L1 (2] (3 (4). Also, sugppo
there exist constants > 0 andt; >0, i =0,---,m such that
the following conditions are satisfied:

I The Riccati equation (18) has a stabilizing solutio

X = XT which is positive definite;

singular state-space transformation matfixsuch that the

matrices of the systenh](5) are transformed to the form

i s [A A 5 =i1n [ Bea
A =T AT_[O 0:|,BZ—T Bz—|:0},
5 _ T-1lp, _ @la

B = T 'B= { By, ] ,

D12 D12,C=CT=[ Cia Cu |,

Co = CT=|Ca Cxn |, D2r=Do, (21)

WhereAle@n Dx(n-1) &, e gp(n-Dx1 B, € (-1xd B
(- |)Xm’ C1a7C2a€%mx n—1).

A. Output Feedback Lagrange Stabilization for Uncontrol-
lable Systems

The main result of this section involves the Riccati equeio

HlE) and [(IB) which are dependent on paramelersO and

>0, i=1,---,m. Using solutionsX andY to the equations
-) and [(T3 -) , We can construct the following matrices:

Ac = A+BXCc—-BCo
+(BiMyM; My, — BcD21MyM; M, )BT X,
Be = (I-YX) XY +BMyM;M,DL)E, 2,
Ce —E; Y(BIX 4 D],M(Cy). (22)
a
Also, we define two vectors of constants:
d = - [ A B }1 { BCab ]
BoaCc A1 A |7
X = [ —DuE;Y(BIX+D[ M) Cy ]d, (23)
= 1 0[do] oy = ¢ .
Mvhered =lo T 1 with T defined in the Kalman

decomposition[(21). Using this notation, a sufficient ctindi
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for the solution to the output feedback Lagrange stabibrat 7; >0, i=1,--- ,m—1 as independent constants combined into

Problem 1 can now be presented: the vectort = [11,- -+, Tm_1], thenty, is given by
Theorem 5.1:Suppose Assumptiors 3[1, B.2 5.1 hold —
for the system[{5),[{2),[13),[14). Also, suppose there exist m=/1— S T2 (26)
constantsA > 0 andr, i =0,---,m such that the following i; !
conditions are satisfied for the nonlinear systéin (3), @), ( Defi
@) efine

I The Riccati equation (18) has a stabilizing pseudo-T =

positive definite solution — X nonsingular stabilizing solution

{ Te#™1: Equations[(T8) and(19) have }

IL. The Riccati equation[(19) has a stabilizing solutionet 7 = [rg,---, Ty_1]" [To, T']T and define a function
Y = YT which is positive definite; f(7) = | fy(T) o fn(T) } — 1A 1x on the setF =
. The matrix XY has a spectral radius strictly less thaqr To>0,TeT}. Let J(To,T1, -, Tm-1) be the Jacobian
one,p(XY) < 1; 5 & matrix of f (%),
IV.  The matrix e c2a } is non-singular and f,  ofy afy
BZaCC Al 0_1'0 d_'[l e ﬂ‘[’m71
all the elements of the vectar= 10A~1x are non- I, Te, -, Tm1) = : - : 27)
zero rational numbers, whew.,, B, C; and x are 0> 1,y fmed ot ot B '
m m m

defined in [[2R) and(23) using, Y in I, Il and III. % 9n | 9tma
Then, the closed-loop system consisting of the sysiém[@), (Then we havel(f) = A-13(f) and the elements of(f) are
(3), (@) and the controllef]6)[{22) is a pendulum-like syst

with respect toll, = {ptod} and is Lagrange stable. Here Ji = w, i=1--.m

p=LCMD(v). P To (ri*ZWiJrri*l‘;—"r"ii) Ci=ji=1,---,m-1;
1, - s .. . .
! TOTiilg_\-:-\?: |,J:1,"',m—1,|7éj;

B. Satisfaction of the rationality condition.

Theorem[ Gl gives sufficient conditions for the existencknj = To (TmsTJWmJFTml%Wm) j=1--.m (28)
of a solution to the Lagrange stabilizing controller syisibe
problem for a nonlinear system satisfying Assumption 5.1. The following theorem gives a sufficient condition for
However, the question arises as to whether, given0, there the existence of the constants,---,Tn satisfying all the
will exist positive constantgj, 0= 1,---,m, such that the conditions of Theorer 5.1:
stabilizing solutions to the Riccati equat|0ri§](18) apd) (19 Theorem 5.2:Suppose Assumptioris B[1. B.2 dndl5.1 hold
satisfy the rationality condition IV of this theorem. for the system(5)[(2)[{3).{4). Also, suppose there excira
First, we demonstrate that sugh= [Ty, --- T, if exists, StantA >0and a vector of positive constarits: 1o, -, Tm-1]
can be constrained to be a unit vector. Given gny 0, let such that the following conditions are satisfied for the exyst
f=yr, X =yX, ¥ =y, M; = yM;, E; = D,M;Dy, and ). @), [3), (3):
E, = D,1M:'DJ,. Multiplying the Riccati equatior{(18) by ()  Conditions I, Il and lll of Theorem 5]1 hold;

and multiplying [I9) byy ! gives that (1) det(T) # 0 where the elements df(T) are defined
as [28).
= 10T TG ¢ TN
(A+A1—BoE, DlZMfE:l) X+ X(A+Al—BoE; "D1,M:C1) Then, given any sufficiently smakt > 0, there existsT =
+CJ (M; — M;D12E; 'DI,Mz)Cy [fo, %1, , Tm1] € F such that||T — ¥|| < £ and the constants
+X(BiMyM; M, B] — BoE; !B )X =0, (24) To=To, Ti=T,i=1---,m-1 and 1y (defined as in[(26))

satisfy all the conditions of Theordm b.1 and hence the eorre

1
(Al +A=BIMM; M“D21E2 )Y sponding closed-loop system is pendulum-like and Lagrange

+Y (Al + A—BiMuM; *MDJ B, 1Co)T stable.

+Y(C{M:C, —CJES )Y

+Bl(MuM;1M“ _ M“MngglﬁngﬂM;lMu)BT —0. VI. STATE FEEDBACK LAGRANGE STABILIZATION FOR
(25) UNCONTROLLABLE SYSTEMS

_ _ In this section, we give a sufficient condition for the exis-
Itis obvious that[(24) has the same form[as (18) but Bo#md  tence of a solution to the state feedback Lagrange statiiliza
M; are scaled by/ Also, (28) has the same form &s(19) But problem (Probleni]2) of Section II.

is scaled byy ! andM; is scaled byy. Hence, Conditions I-II Using a solution to the Riccati equatioh [18), we de-
in the statement of Theorem .1 are not affected if weXise fine two vectorsd — T dT 1lT and x = [x1 -+ Xxm|" =

Y, Mz, E; andE; to replaceX, Y, My, E1 andE; respectively. ((I —Dy,E; 'D],M, )Cl—Dle 1BIX)d, whereT is defined
In addition, it is straightforward to verify that ConditidW of  py (27) and

Theoreni 5.1l is not affected by scaling the vector of constant  _ O s — T
1. Thus, without loss of generality, we assume thas a unit o = —(A- B2aEy "D1oM:Cra — BaaE,y '?2a>£11)
vector throughout the remainder of this section, and if vke ta X (Ag — BpaE; *D],M;Cyp — BoaE; 1B X12)
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with Xy € Z20-Dxm-1) X, ¢ #-Dx1 defined by the system can be described by the state equations of the form

STyt | X1 X2 (8) with the following matrices and nonlinearities
T'XT = .
X12 Xo2 . -0 1 0 0 0 0
Theorem 6.1:Consider the nonlinear system5a).1(5b), (2), ki+ks —a1 —k 0 ks 0
(3), (4) and suppose Assumptioris_13.1 5.1 are satisfieg. - 0 0 0 1 0 0
If there exist constantd >0 andt >0, i =0,---,m such - —kg 0 kitke —-a2 k o |
that the Riccati equatiod (I118) has a pseudo-positive definit —(I)< 8 _Ok (()) K fk _(}
solutionX = XT such that 0 5’ 0 2 00 0 2T 3
. The matrix A + Al — BE 'D,MC; + 100 100
(BiMuM; *M,B] — BoE; 1B])X is Hurwitz; B = |92 3.8=839 9]
1. All elements of the vectow = oA~ 1y are non-zero 00 O 00O
rational numbers. L0 0 1 0 0 1
Then, the closed-loop system corresponding to the statk fee [ (1) 8 (1) 8 8 8 5 I
= ) :g )
back control 1 (000010 12= é&l3
u= (—D12E; 'D],M;C; — D12E; 'BIP) x 29 10 -10 0 0
(7Pi2, DM 1212)_()C2:yl0010—1 o],
is a pendulum-like system with respect ffb(ptod) and is 00 0 0 0 -1

Lagrange stable, wheng=LCMD (v). _ 0 e ; ; T

In a similar way to Theoreri 5.2, a sufficient condition for Do =&, and ¢(z) = sinzy sinz sinz ] (30)
the existence of constants, - - - , T, satisfying Condition Il of
Theoren{ 611 is now given. The proof of this result is similar
to that of Theoreni 5]2 and is omitted.

Theorem 6.2:Consider the systeni_(baj, (5b)] (2 (3) (4)
and suppose Assumptiofis [4.1.15.1 are satisfied. Also, sappos
there exists a constaiAt> 0 and a vector of positive constants
T =10, ,rm,l]T satisfying the following conditions:

l. The Riccati equation[(18) has a pseudo-positive

definite stabilizing solutiorX;

. J(T)#0 whereJ () is defined in[(ZB).

Then, given any sufficiently smalE > 0, there exists a

T = [To,T1,"*,Im-1) € F such that||T — || < € and the
constantstg = Tp, Tj = 1j,i = 1,--- ,m—1 and 1, (defined as

in (28)) satisfy all the conditions of Theordm 6.1 and hence
the corresponding closed-loop system is pendulum-like ap%. "
Lagrange stable.

A system of three pendulums connected on a ring bjotebsprings.

Note that this system has multiple nonlinearities and thus
the results of [[B], [[11]+[13] cannot be applied. Also, the
To illustrate the theory developed in this paper, we consideonlinearities do not have the special structure requing@]i
a system consisting of three connected pendulums, as showtoi apply the result of that paper.
Figure[2, where the pendulums are connected using torsionalhe damping coefficients are; = 0.1, a, = 0.05, a3z =
springs and both pendulums and springs are supported b.@8. The torque constants ae= 0.02,k, = 0.03, k3 = 0.05.
rigid ring. The pendulums oscillate in planes perpendicul&lso, we specify the constan=0.2, y=0.5, & =& =0.1.
to the ring and the torsional torque of the springs obeys theis easy to verify that the systernl (5], {30) satisfies Assump
angular form of the Hooke's law = —kAB, whereA®B is the tion[4.1. Also, all of the coefficients of the systefd (£).1(30)
angular displacemer¥, is the spring torque arklis the torque are rational. We choosg = 2t to ensure that Assumption
constant. This system can be considered as a prototypdddt is satisfied T will have rational elements in this case).
many applications such as power systems, mechanical systefinerefore, Theorein 4.1 is applicable to the system. Chgosin
network systems, etc. Therefore, the Lagrange stabiimatity = 0.4, 7, = 0.6, 13 = 0.5 and A = 0.5 and solving the
of this system suggests many potential applications of tRéccati equations (18) an@ (|19) gives solutions which Batis
proposed method. Suppose that the measurements consistllodf the conditions of Theoreimn 4.1. Therefore, the solutio
the angular velocity of a pendulum and the angular diffeeento Problem 1 for the systerhl(5). (30) can be constructed using
between any two neighboring pendulums. As a result, all-abghis theorem. To illustrate the fact that the resulting colfer
lute positions of the pendulums are unobservable. AlsoAouris such that the closed-loop system is Lagrange stablejesser
matrix has a single zero eigenvalue which is an unobservablesimulations has been carried out with different initialues.
mode of the system. Hence, Assumption| 4.1 is satisfied. L Btese simulations have confirmed that the trajectories ®f th
X1 = 61, Xo =01, X3 =61, X4 = 61, X5 = 63 andxg = B3. Then, closed-loop system are bounded. This can be seen in Figure

VII. | LLUSTRATIVE EXAMPLE
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X N ';'_'X for future research is to extend the approach of this paper to
enable the consideration of nonlinear systems with coupled
nonlinearities. This would involve allowing the nonlinear

blocks in Figure[ll to have vector inputs and outputs and
to replace the sector bounds by more general local quadratic

10 20 30 40 50 60 constraints.
time (sec)

State Responses
o

2 4 Xs APPENDIX
| A. Proof of Lemm&2]1

First note thap; # 0 sinceA; # 0. From the conditions of the
lemma, we havéid = 4 % From [3) and the fact th%p is

20 30 40 50 6C an integer, it follows tham(t Cid+Gx) = q(t, Ik % -p+Cix) =

time (sec)
2 @(t,Gix). As Ad =0, it follows that,
§ """" Xog ' c3 X5 — m — m
g1 A(x+d)+ZBim(t,Qd+QX):Ax+ qu(t,Qx), (31)
g, i= i=
g : for all x andt.
a1 0 0 v 20 = % Consider an arbitrary solutiox(t,to,Xp) of the system[{|1),
2 time (sec) @). Letx(t) = x(t,tp,%0) +d for t > to. Then,x(to) = X0+ d.
5 , , , Also, it readily follows from [31) that(t) = x(t,to, %o + d).
S |l.m Xep 1 *ea s Furthermore, the local Lipschitz condition implies thequre-
ness of this solution. Then, we hax&) = x(t,to, X0 +d) =
X(t,to,%o) + d. Hence, the lemma follows]
0 10 R R 50 60 B. An Outline of the Proof of Lemnia™®.2:

; A em o 1z~ (-lz _
Fig. 3. System state responses and controller state respofishe closed- Define ¢ (r:](’ §) = z|:1nT| ( Hi E.' C'X) (“i §i C'X)
loop system for initial values (0), - ,x(0)]T = [~ %,4,— %, 3, ,~5] and where £ € ¥™ and x € ¥" are arbitrary complex vectors.

Xi=0i=1;-6. Clearly, there exist constanfs> 0 and 0< v < 1 such that

B, which shows the state responses of the system and th%g } (é)

controller state responses for one set of initial condgjon 2

when the output feedback controller is applied. In addition x ((—] AT) CTMTC((jw—)\)I ~A?
our simulations reveal that the trajectories of the closeg-

system converge. Using Theorem 1 [n|[17] and the results 5 ] MMM LE 777
in [1], it can be verified that the closed-loop system has the Z | p VT 6
property of dichotomy and the gradient-like property, whic
explains the observed convergence.

IN

—= EM lMM ),

VIIl. CONCLUSIONS AND FUTURE RESEARCH Vooe%, VIET T e g™, (32)

This paper has studied the Lagrange stabilization problemGiven w € 2, we define
for nonlinear systems with multiple nonlinearities. In erdo 1
facilitate the controller synthesis for these systems, euge- G=((jo-M1-A"B <£> 2 |]Z_
H. control theory is developed. Sufficient conditions for the 2v
solution to state feedback and output feedback pseiido- g
contrp_l problems are given. Hovyever, corresponding necgss %(57 ) — 5*CTM{CG — {*MaZ,
conditions are yet to be obtained. The psettio-control
theory is applied to solve output feedback and state feédba ereZ_: & gnd My — M, 1|\/|rMul 0 } Therefore,
Lagrange stabilization problems for nonlinear systemsh wit' 0 I
multiple nonlinearities. The efficacy of the method is illusit follows from
trated by an example involving coupled nonlinear pendulums o 5— - _
on a ring g (U Z) < ——Z*Maz VOJE%’ Z S Cgmn. (33)
This paper has considered the case where the nonllnEurthermore sincéVl, is a positive definite_matrix, the in-
system contains decoupled nonlinearities. That is, astifited lity (33 lies thay. ( Z) 0. for all Z € €™ such
in Figure1, we consider independent scalar nonlineardyghs equaity ) implies ald,6) <>, < u

each subject to a sector bound constraint. One possible &t ||{]| # 0. Also, the pair(A, [B \/ £ lnxn]) is controllable.

) that
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Using Theorem 1.11.1 ir_[1], it follows that there exists a Using the equatio®" P+ PA+CTC =0, it follows that
Hermitian matrixP = P* satisfying X*P((A+ Al)x+ B¢ + AT D DA
fying (( ) § A-{l Pu1+PiiA

o) ety —~ AN — — * — = L
V) +o C:MTTCTU— EMIMM,TE - 27 < 0, for all A12p11+A;2F:1T21L pszpgl_ o
Lettlng { =0, this implies that there exists anx n matrix PLA12+ ALPLo+ PosPgo+ ALPr+ CIC, |~
P =P"' such that (36)
2X'P[Ax+BE] < —2AX"Px— ¥ (x,&) (34) Hence, L
Al1P11+PriA = 0. (37)

n m i — —
for all x € %, ¢ € ™ such that|x| + [|¢]| # 0. Letting Claim 1: If the pair (C,A) is such that there exists a matrix

gx:PO[AI:-()\Bﬁ)x ;Ne r?(?;a? (;[hat there existsra> 0 such that K satisfying 6(A+ KC) = 0, then Ra (A11) # 0 for VA €
R ' (A11).

Note that the pai(A+Al,rl) is observable. Since the matrixa A ) . . Ky
A+l is pseudo-Hurwitz, then using Theorem 3[in[18] gives T0 establish Claini]1, we rewritl asK = { Ky ] Then
that P i; p;eudo-positive definite. _ — = As 5124_ Kilczz
In a similar way to the proof of Theorem 2.6.1in [1], we caft tKC= 0 Ap+KC
prove that the sefx € %" : x"Px < 0} is positively invariant of Aj; such that R& (A1) = 0, thenA+ KC obviously has
for the nonlinear systenj(11(21.1(3) and further prove that purely imaginary eigenvalues. This contradicts the faat kh
solutionx(t, to,%o) of the system[{1)[{2)[{3) is bounded. s chosen so thab(A+ KC) = 0. Therefore, R&(A;1) # O.
This completes the proof of the claim.
Combining Claimdl and(37) gives th& = 0. Also, the

. If there exists an eigenvalue

C. Proof of Theoreri 3l1: (1,2) block of (36) implies that
In order to prove Theoref 3.1, some preliminary results are P12A22+ A11P12 = 0. (38)
required. As P is nonsingular, this implies tha,P{, > 0. Apply-

Lemma A.1:Suppose the paifC,A) has no ur;observableing Lemma[A2 toP gives that InP = In(Pxy/kerPrp) +
modes on thgw axis. If the Lyapunov equatioA’ P+ PA+ (rankPl,, rankP,,n; — rankPl,). It is known that 1P =

CTC =0 has a pseudo-positive definite solut®r-PT , then (n_ 11 0). This implies that

the matrixA is pseudo-Hurwitz. . . 1) 0= 8(P) = & (Poy/KelPy,) + (g — rankPy,). For PJ, €
In order to prove Lemmia Al1, we require the following results  * gpnoxny " jt always holds_that rar¥, < ny. Then,

3 (Pap/kerPr,) < 0. So, & (Py/kePrp) = 0 holds. This

Lemma A.2 ([[19]):Let P be a symmetric matrix of the further implies thatn; = rankP),. Also, the condition

form P= | 51 22 |, where Py, = FJ, and P are n; x 5 (Paa/ketPr) = 0 implies that the matriyy/kerP, is
12 F22 N _ nonsingular and has no purely imaginary eigenvalues.

np andny x n; matrices, respectively. Also, &= rankPl,).  2) 1=V(P) = v (Px/kelP,)+rankP],. Hence, ranR], <1

Then andPy P, > 0 imply rankP[, = 1 andv (Paz/kerP;2) = 0.
IN(P) = In(Pay/ker(PL2)) + (k.k, ny — k), (35) Hence, Poy/kerPo = S'Po,S is symmetric and positive

definite, where the columns &form a basis for kd?p.
3) Finally, the identity m(P) = n— 1 = mr(Pxy/kerPy2) +

where kefPro) = {{ € R™: P;o{ = 0} and Py/ker(Py2) rep- rankPy, implies 77(Pay/KetPya) — n— 2
12 - .

resents the restriction dh; to ker(Pry). _ _ _
Lemma A.3 ([[20]):If A€ %™ and if A, € o(A) are Therefore, it follqws thgnl =1 HenEeAn is a scalarPy; is
eigenvalues o whereA # i, then any left eigenvector g§ @ roW vector of d'm?”S'O“T__l' andPyz is a(n—1) x (n—1)
corresponding tqu is orthogonal to any right eigenvector ofMatrix. The dlmenislon_os P»Sis equalton—2.
A corresponding to. As Ppoe R (n- >,_P1? # 0, (38) implies that-Ayy is an
Proof of LemmalAl1:The Kalman decompositior [L6] eigenvalue of\y; and_Plz is the corresponding left eigenvector.
establishes the existence of a maffixwhich fransforms the WO letA be any eigenvalue ohp; such thait 7 —Aq; and
) ) , — 1 A1 A let g be a corresponding right eigenvector; thatAs,q = Aq.
matrix pair(A,C) into the formA=TAT "= | * Ay | Then LemmdAB implies tha.q= 0. Henceq € Ker Py,.
C=CT ! =[0G, where the pair(Az,C,) is observable. Pre- and post-multiplying th¢2,2) block of (38) byq'
The dimensions of the blocks in the above decompositi@md q respectively implies that” P22Agoq + qT AlPoq +
are as follows:Ayy € ZM*M, Apy € BMXT2, Ay, € <M, qTCJCaq = 0. ThereforeAq’ Pooq+AqT Paag + [|Cog|2 = O.
and the column dimension &, is n,. Correspondingly, let ~ Using the fact thatr = qTszq is positive on KeP;2, we
B_T-TpT-1_ P P2 have 21Re(A) + ||Coq||2 = 0. Sinceq# 0 is an eigenvector of
| P Po B Az, Coq # 0. Therefore, R@\) < 0. B
ability of (A,Cy) that there exists a matriK such that  The above derivation shows that all eigenvaluesAgf,
0(A+KC)=0. possibly with the exception ofA11, have negative real part.

. It follows from the observ-
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Therefore, if—Aq1 is negative, therd\y; is Hurwitz; if —Aq; is
positive, thenAy; has all the eigenvalues # —A;1 negative
except—Aj;. _ _

Now, we can conclude that the spectrum/fs o(A)

10

Since A has no eigenvalue on thgw-axis and the pair
(A,B) is stabilizable (since it is controllable), it follows
from Theorem 13.34 in[[10] and_(#1) that there exists a

right coprime factorizationG(s) = N(s)M~1(s) such that

{—A11,A11 and A : A # —Aq1,Red < 0}. Also, since the pair I\7I(s) €E RN w is an inner transfer function matrix where

(C,A) has no unobservable modes on the imaginary axMs) = F(sl—A—BF) 'B+1 € #.#, N(s) =C(sl —A—
it follows that A3 # 0. Hence,A is pseudo-Hurwitz. This BF)™1B € #.#. with F = —BTX, and the Riccati equation

completes the proof of Lemnia A.I

Proof of Theoreni_31By ass%mption,P is such that
3(A+BBTP) = 0. Letting C = [ 5 ] K=[B 0], it
follows that A+ KC is such thatd(A+KC) = 0. Therefore,

ATX + XA— XBBTX = 0 has a solutionX > 0 such that
A—BBTX is stable. Sinc#/(s) is an inner transfer function, it
follows that N(jw)NT (—jw) = G(jw)GT (—jw) < I. Apply-
ing the bounded real lemma (e.g., se€e [7]), the above conditi
is equivalent to the existence of a stabilizing solutionhe t

(A+KC,C) has no unobservable mode on the imaginary axccati equation
and hencdA,C) has no unobservable mode on the imaginary T, o
axis, either. Applying Lemm&Al1 to the Lyapunov equation (A— BB'X)"P+P(A-BB"X) +PBBTP+C'C=0. (42)

ATP4+PA4CTC =0, it follows that A is pseudo-Hurwitz.
Hence, ddtjwl —A) # 0 for all w € Z.

Now, we show that[{7) holds. Sinck is pseudo-Hurwitz,
then detjoo— A) #0, Yw € Z. Hence, [(B) implies that

G(-jw) G(jw) =
| —[I —B"P(—jwl —A) 18]]I
<

—B"P(jwl —A)~1B]
(39)
for all w > 0. It follows that m%XGmaX[G(jw)G(—jw)T]} <
WEY

1. Furthermore, note thaté(jw) — 0 as w — oo.
Now suppose that there exists aw > 0 such that
maz);\x{omaX[G(—jw)TG(jw)]} = 1. It follows from (39) that

there exists a vector such that[l — BTP(jw —A)~1Bjz=

Let P=P— X. Then substituting this intd {#2) gives that
(ATX + RA—XTBETX)
+(ATP+PA+PBBTP+CTC) =0. (43)

Therefore, [4B) implies tha"P + PA+ PBB'P + CTC +
ZLHZPZJr 3721 = 0. This implies thalP = P satisfies [(B). This
proves the first claim of the theorem. Now we prove the second
claim.

From [7), it follows thatG(jw)G" (—jw) <. As the pair
(A, B) is stabilizable, Theorem 13.34 in_[10] implies that there
exists a right coprime factorizatioB(s) = N(s)M~%(s) such
thatM(s) € Z.7#« is an inner transfer function matrix where
M(s) = F(sl —=A—BF) 1B+1 € Z#«, N(S) = C(s| —A—

0. Hence, dét —BTP(jw—A)~'B] = 0. However, using a BF)~1B € #.#. with F = —BTX, and the Riccati equation

standard result on determinants, it follows that[pet —

ATX + XA— XBB'X = 0 has a solutionX > 0 such that

A__B_BTP] = defjwl — A]det[l_ - BTP(]‘*_)_l —A)'8l. Thus A _BBTX is stable. SinceVi(s) is an inner transfer function,
defjowl —A—BB'TP] = 0. This conclusion contradicts thejt follows that N(jw)NT (= jw) = G(jw)GT (—jw) < I. Ap-

assumption thab(A+ BB'P) = 0. Hence, [(7) holds]

D. Proof of Theorerh 312:

Let u = gma}({amax[(_jwl —AN)ICTC(jwl —A) 1}
WEX

It follows from (@) that there exist are > 0 such that
G(jw)G(jw)" < (1—¢)l. Hence, 5%, C(jwl —A) Y (—jowl —

AT~ICT < £l for all w > 0. Then, given anyw > 0,

C(jwl —A) BBT (—jwl —AT)"ICT < (1—T%) I, whereB is

a non-singular matrix defined B§B" = BB" + ¢/2u?l. This

further implies that

BT (—jwl —AT) ICTC(jol —A) B < (1- f) |

_)1 (40)

2

for all w > 0. Let n

A")-1ICTC(jwl — A)'Bl.  Hence, ﬁzéT(—jwl _
AT)"Y(jwl — A)7'B < &I, holds for all @ > 0. From
(4Q), it follows that given anyw > 0,

A o
= MaxOmadB' (—jwl —
WEXR

G(—jw)"G(jw) <1 (41)

whereG(s) = C(sl—A) 1B with C being a non-singular matrix

plying the bounded real lemmal[7], the above condition is
equivalent to the condition that the following Riccati etjoa
has a stabilizing solution

(A—BB"X)TP+P(A—BB'X)+PBB'P+C'C=0. (44)

Let P = P— X. Then substituting this intd {#5) gives that
(ATX +XA—XTBB"X) + (ATP+PA+PBB'P+C'C) = 0. (45)

Therefore, the Riccati equatioh] (8) has a stabilizing sotut
Furthermore, as the pafi\,C) is observable, it follows from
the Inertia theorem in[[21] that the solutidh= P' of the
Riccati equation[({8) is a pseudo-positive definite matrixisT
completes the proof]

Proof of Theoreni_3]3: The Riccati equation (10) can be
written as

(A—B2E; 'D],C1) TP+ P(A—BoE; 'D],C1)
+PB1B{P+C] (I — D12E; 'D,)C1
—PBoE; *D],(I — D12E; 'D],)C1 — PB-E; ‘BIP

—CJ (I — D12E; 'D],)D12E; BIP = 0. (46)

defined so thaC'C = CTC + (¢/2n?)l. Furthermore,[{41) As the Riccati equation {10) has a solutiéh= PT which

implies G(jw)G(—jw)T <.

is pseudo-positive definite, the equatidn](46) also has this
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property. Substitutingk = —E; (DI,C; +BJP) into (@8) where Ay £ A— B,DJ,E;C, + By(1 — DJ,E;*Dgp)BIX —

implies that Z(C, + DuBIX)TE;YC, + DuBIX), By 2
(A+ByK)TP+P(A+ByK) + PB,B] P Bl('A n DLE, 'D21) — Z(C; + DauBIX)TE;'Da,
+(C1+D12K) T (C1+D12K) =0 (47) Co=Ef (B}X+D1,Cy).

Let W =Z"1 >0, then the Riccati equatioh (51) leads to
has a solutionP = PT which is pseudo-positive definite.

Also, the fact that the matri{{11) has no purely imaginary AGW +W A + W BBy W + Cj Co = 0. (52)
.elger!values. implies  that + BoK + E’lBIP has no purely Now, we prove thaw =WT is an anti-stabilizing solution of
imaginary eigenvalues. Therefore, it follows from Theorer@) Using the Riccati equatiof(52), it follows thatAo +
[31 that the resulting closed-loop system Gl Co) = Z(AL +Z 1BoB])Z L. Hence the matrix—(A] +
x = (A—BE;'DI,Ci—BE;'BIP)x+Bw, ZC[Cy) is similar to the matrix(Ag + BoB{W)T. SinceZ is
i DuE ! (DLCL+BIP)x a stabilizing solution to[{31), the matri&] + ZCJCo must
I T - e be Hurwitz and hence the matri -+ BoBW must be anti-
is pseudo strict bounded real. This completes the proof Birwitz; i.e.,W is an anti-stabilizing solution td_(52).

Theoren{ 3.B0J Now, we definez £ é V?/ . As X is pseudo-positive
definite andW > 0, it follows thatX is also pseudo-positive
E. Proof of Theorerh 314 definite. Using equation§ (13}, (15). {49).(52), it is gtai
In order to prove Theorern 3.4, the following lemma i$orward to verify thats satisfies the Riccati equatioh’= +
introduced. $A+5BB'=+C'C=0. Furthermore, it is straightforward to
Lemma A.4:Suppose the conditions of Theorém]3.4 holq,erify that A+ BBTS — A1 A1 . ] whereAy; —
Then, the matrixZ 2 (1 —YX) 1Y =Y (I —=XY) 1 >0 is a 0 Ao+ BoByW

A— BE; 'D],C1 — (B2E; 1B} — B1B])X, A1p = BoE; 'B] +
; BoE; 'D],C1 + Bi(l — D}, E, Dp1)BIW — BiDY E, H(Co +
AZ+ZA —ZM.Z+N,=0 (48) DJ,)ZW. Using the fact thatX is a stabilizing solution to
whereA, — A— ByD},E, C, + By (1 — DL,E; D21)BIX, N, — a3 a_ndvy_|Ts an ant|—stab|llzmg_squ_tlon td:_GBZ), it follows
T o1 -l T Te-1 that A+ BB'X has no purely imaginary eigenvalues. We
Bu(l — D218 D218y ), M. = (Cp + D21y X) B, (G + have noted previously that the matrk is pseudo-positive
D21B] X) — (BT X +DJ,C1)TE; 1(BI X + DI,.C1).

The proof of this lemma is similar to that of Lemma 3.2 indef|n|te. Therefore, using Theordm 3.1, we conclude that the

stabilizing solution to the Riccati equation

[8] and is omitted. systemIIZE%) is siudo strict bounded real. Using the fat¢t tha
Proof of Theorenh_3}4We will prove that the compensator] = - X } it follows that the closed-loop system

of the form [6), [I5) makes the closed-loop system pseudo
strict bounded real. In order to establish this fact, notat th [ X ]

A B x 1| Bt |y
Lemma[A.4 implies that matriZ = (1 —YX)"Y >0 is a Xc B.Co  Ac Xc BcD21 |

stabilizing solution to the Riccati equatiopn {48). Sulsiitg X

(I—YX) Y =Z and (1 - YX)"L = (I + ZX) into (@B), it z = [Cy Duf | [ %6 }

follows that the compensator input matf can be written ) ]

as is also pseudo strict bounded real. This completes the proof

Bc = BiDL,E, *+Z(C] +XBiD},)E, . (49) Of Theorenf3KD)

We now form the closed-loop system associated with SYSt@M o0 of of Theoreri 35:

(8 and compensatdrl(6). This system is described by the stat ) ) )
Consider the system described by the state equations

equation
; N =N £ = A)?—i— I§20 + I§1W
= A B ~ £ ’
’7 1+ B Z = CiX+D1, (53)
z = Cn, (50) y = CoX+DaW,
where n - x—xxc } , A 2 where
A+BZCC _BZCC :| B_é |: Bl :| A = AT7 EJ.ZCI? éZZC\QTa é].:BIv 512:D51a
A—Ac+BCc—BCy Ac—BCe |’ B1—BcD21 ¢, = B}, Da=D], (54)
<A
andC = [ Ci1+D1oCc —D1,Ce ] Let

In order to verify that this system is pseudo strict bounded o 3 o 3 3
real, we first recall thaZ > 0 is a stabilizing solution to the E; = DIlez =B, Ex= D;1D21: E1, X=Y, Y=X. (55)

Riccati equation[(48). This implies that> 0 will also be a - . . . .
stabilizing solution to the Riccati equation Substituting the matrices ih_(b4) and [55) into Conditions
(i), (ii), (iii) of the theorem gives that the systein {53)isties
AoZ+ZA) +2C Coz+BoB] =0 (51) the following conditions of Theorefn 3.4:
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(") The Riccati, as shown below, has a pseudo-positiv§ince (') _? is non-singular, it follows that
definite stabilizing solution A BC
T L2 | 7 ; ; ;
(A—BzE{lDIZCﬂTX-l-X(A—BzE{lDIZCl) ILBZ.CC A d = 0. Using this fact ano-l Assumption
, it follows from Lemma_2Z]1 that the resulting closedgdoo

+X(B1B] - B.E[ 'B])X : . .
(Br 2, B2) system [(BP) is pendulum-like system with respect to the set

+C (I - D12E; *D1p)Ci = 0. (56)  M(1pa).
(i) The following Riccati equation has a positive definite From the output feedback pseuddd, control
stabilizing solution theory in Section |IIl, Conditions I, 1l, 1l of the
v s XT o 1RGO R 8 AT B theorem imply that the matrix Al+A - B
(A—B,DJ,E;'C)Y +Y(A—BiDLE, 'C)T BCo Al+A
+\?((§IC~:1—(32TE2’1C~22)\? is pseudo-Hurwitz and the frequency-domain condition
~ aT o gx aT maxomaG' (—jw)G(jw)] < 1 holds, where G(-) is
+B]_(| — D21E2 D21)B = O (57) w _ A 1 1 A
e _ _ defined as G(s) = M?G¢(s)M; 2 and here G¢(s) =
(i)  The matrix XY has a spectral radius strictly less than -1
one,p(XY) <1 [C1 D1Ce | (s— AMAA - BG By
. ’ - ) ] 1 1 BCo Al +Ac BcDo1 |-
Using Theoreni_3]4, it follows that there exists a dynamighen it follows thatG{ (— jw)MrGe(jw) < M MM, T for

output feedback compensator of the forimh (6) such that tg ¢, c 2. Now, all the conditions of Lemnia 2.2 are satisfied

closed-loop system consisting of the systdml (53) and thifg hence the closed-loop nonlinear system (59), [(2), @), (
compensator is pseudo strict bounded real. The parametgrgagrange stable

of this compensator are as follows:

A = A+BCc—BLCo+ (Br—BiD21)BI X,
B = (I _\?)”()*l(\?(“;ZT + Elﬁll)ﬁgl, H. Proof of Theoreri 5l1:
C = —E(BIX+DLCy). (58) We first prove that the closed-loop systeim](59), obtained

éoy applying the compensatdrl (6], {22) to the systEm (5), is a

Substituting the matrix in[(54) and_(b5) intg_(58), th Sendulum-like system.

transfer function of this closed-loop system becorg¢s) =

T TRl 1\~ T : 1 01" Ac BC: |-
el okl (s | fer Sr |) | cror, L smee o 7] ek W]T -
Consider the systeni](5) with compensafdr (6) whose pa- { Ac  BcCaa } [ BcCop } dn
rameters are determined by [16). It is readily seen that the| B2a As A [ f } =0 and
transfer function of this closed-loop systeé(s) satisfies | 01><(n71) 0

G(s) = G'(s). Therefore, from the fact that the system](53); | O
(G4), (55), [58) is pseudo strict bounded real, it followatth | O T

~ ~ o~ T —
maxomalG' (—jw)G(jw)] < 1. AIso,[ A B%CC] = Ao BC g Using this fact and Condition
w
I

is a non-singular matrix, it follows that

BG BCo A
L2 Ao V of the theorem, it follows from Lemmd& 2.1 that the

A . .
Bicclcﬁl and is pseudo-Hurwitz. Hence, the closedaugmented closed-loop systeri J(59L] (21 (3 (4) is a

Bccz . . s
loop system((5),[(6),(16) is pseudo strict bounded Eeal.  Pendulum-like system with respect t(ptod).
Using the output feedback pseulig control theory given
_ in Section Ill, it follows from Conditions I, Il and Il of
G. Proof of Theorer 4.1: the theorem that the closed-loop systéml| (59) is pseudd stric
We first prove that the closed-loop system bounded real. In a similar way to the proof of Theofeni 4.1, we
. haveG{ (—jw—A)MGe(jow—A) < MMM, 1. Now, using
{ X ] = [ BAC sz ] { X ] + { BCLEZl ]W, Lemmal2.2, it follows that the closed-loop systdml (58), (2),
X 2Ce X 1 @), @) is Lagrange stablé]
z = [ DG Ci | { ):(C ]7 (59)

obtained by substituting the controllét (6),120) into tlystem |. Proof of Theoreni 5]2
@), is pendulum-like. Letd = [ 0., € TT ]T. Note the

identity The stabilizing solutions to the Riccati equatiohs](18) and
. (I9) are functions of the vector of constantsTo highlight
{ I 0 } [ Ac B ]d_ this, we use the notatioX(T) and Y (7). In the proof of
0T BCe A Theoren{ 5.2, we use the following lemma:

Y(1) to Riccati equations[{18) and_(19) are real analytic

Ac BCoa O Lemma A.5:The nonsingular stabilizing solutioq1) and
X { O2n-1)x1 ] —0
functions on the sef.
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Proof: As X(T) is nonsingular, we can rewrite the RiccatE.d implies that the corresponding closed-loop system is

equation[(IB) as
(Al +A—BoE; IDI,MCy) + BiM, M 1M, BT X(T)

—BE, "BIX(T)
45 (Al+A- BzEllDTZM C)T+
B cT (M — M{D12E; *D],M{)C1X~(T)

x X(T). (60)
As X(t) is a pseudo-positive definite stablllzmgS
solution to the Riccati equation[:(]18) it follows thatA
the matrix —(Al + A — BoE; 'DLM(Cy)T — Cf My — (A
M D12E1 D12M C1X (r) is Hurwitz and hence(

the palr (—(Al + A — BE;/'DI,MC))T,~C] (M; —
M:D12E; D12M )C1) is stabilizable.
The Riccati equatior (18) can be written as

“HT)(A +A—-BE; DM, C))T
+(Al +A—BE; IDTMCy)X(T)
+(BiMyM; M, B] — BoE; 'B))
+X"HD)C] (M¢ — M{D12E; 1DL,M;)Cy X 71

fH=0. O

(61)

Substituting the matrices (AI + A —
BoE; DIZMrcl) Cl (My — M{D1,E;'D],M;)C;  and
—BiMuM; 'MB] + B:E;'B] into A R and Q of
Theorem 2 in [[2P], respectwely, it follows thaX—(T)

is the maximal solution for all solutions of the Riccati
equation [ZEII) Slnce’;TiMr M;D1,E; 'D],M;)C; > 0 and ”
—B1MuM;*M,B] + B,E; 'B] is Hermitian, Theorem 4.1 in
[23] is appllcable Using Theorem 4.1 in [23] by substltgtln [6]

—(Al+A-BE; 1DIZMTC1) CJ (M; —M;D1,E; *D],M;)Cy 6]
and —B;M,M; MuBl + BoE; 1BT into A, R and Q,
respectively, giveX (1) is a real analytlc function of € T.
This further implies thatX(1) is a real analytic function
of T € T. Similarly, we can verify thaty(7) is also a real
analytic function oft € T.OJ

Proof of Theorerh 5l2:et € > 0 be chosen to be sufficiently
small so that the seB(f,e) = {TeZT:|T-T||<e} C
{T € F: Condition I, Il and Ill of Theoreni 5]1 holds The I[9]
existence of such aa > 0 follows from Lemmd_A.b. [10]

SinceX (1) andY(T) are analytic function on the sék, it
straightforward to verify thaf (7) is an analytic function on [11]
the setF. SinceA! is a diagonal positive definite matrix,
it follows that Condition Il of the theorem implies that
detd(T) #0. Letc= f (T). It follows from the Inverse Function
Theorem (e.g., see Theorem 7.8[inl[24]) that there is an o
ball B(c,1) and a unique continuously differentiable function
g from B(c,1) into B(T, &) such thatf = g(c) andf(g(c)) =c [14]
for all ce B(c,1).

Since the set of rational vecto8™ is dense inZ™, we can
choosece B(c,1) such that all the elements ofafe rational
and non-zero. Also, it follows from the above discussiort thi®!
there exists a point € B(7,¢) such thatf(7) = ¢ whereT = [17]
g(¢). Therefore, Condition IV of Theorem 5.1 is satisfied.

It follows from the definition of B(7,¢) that T satisfies (44
Conditions I, Il and Il of Theoreni_5l1. Hence, Theorem

(1]
(2]
(3]

(7]
(8]

[15]

2] X. Li and J. Zhong,

pendulum-like and Lagrange stablg.

J. Proof of Theorerh 611:

Substituting the controller lanw (29) into the systeimn](5a),
(50) gives the closed-loop system

(A—B2E; 'DI,M;C; — BoE; 'BIX) x+ B,
((I — D12E; 'DI,M;) C1 — D1oE; 'BI X) x.
THA — B Dchl — BE;*BIX)d
BzEl 1D12M Ci - BZEJ1 BTX)d =0, it follows that
BE; 'D],M;C;1 — B2E| BTX)d 0. Using this fact and

(62)

condition II, it follows from Lemmd_Z2J1 that the closed-loop
system [(6R) is a pendulum-like system with respect to
M(ptod).

Using the fact that the Riccati equatidn(18) has a pseudo-
positive definite solution and Condition | holds, Theorem
3.3 implies that the closed-loop system]1(62) is pseudotstric
bounded real. Then, using Lemrha]2.2, it follows that the

closed-loop systeni (62), (bb).] (2] (3)] (4) is Lagrangélsta
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