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Abstract—This paper studies the Lagrange stabilization of a
class of nonlinear systems whose linear part has a singular system
matrix and which have multiple periodic (in state) nonlinearities.
Both state and output feedback Lagrange stabilization problems
are considered. The paper develops a pseudoH∞ control theory
to solve these stabilization problems. In a similar fashionto
the Strict Bounded Real Lemma in classicH∞ control theory,
a Pseudo Strict Bounded Real Lemma is established for systems
with a single unstable pole. Sufficient conditions for the synthesis
of state feedback and output feedback controllers are given
to ensure that the closed-loop system is pseudo strict bounded
real. The pseudo-H∞ control approach is applied to solve state
feedback and output feedback Lagrange stabilization problems
for nonlinear systems with multiple nonlinearities. An example
is given to illustrate the proposed method.

Index Terms—Pseudo-H∞ control, Pseudo Strict Bounded Real
Lemma, Pendulum-like systems, Lagrange stability.

I. I NTRODUCTION

The class of pendulum-like systems is a class of nonlinear
systems with periodic (in state) nonlinearities and an infinite
number of equilibria [1]. They cover an important class of
nonlinear systems arising in electronics, mechanics and power
systems. These systems can be used to model interconnected
oscillators, synchronous electrical machines and electronic
phase-locked loop devices [2], [3]. An important control objec-
tive in relation to controlling such systems is to ensure that the
closed-loop system retains the properties of a pendulum-like
system and its trajectories are bounded, at least, in the sense of
Lagrange stability. In combination with other analytical tools,
this enables global asymptotic properties of the system to be
established. For example, the monograph [1] makes extensive
use of this approach to study global asymptotic behavior of
nonlinear systems with periodic nonlinearities and an infinite
number of equilibria.

The concept of Lagrange stability can be traced back to H.
Poincaré’s work in the 1890s [4]. In [5], Lagrange stability
is defined as a property of a statex0 of a dynamical system
ẋ = f (t,x) given on a metric spaceS , which requires that
the system trajectoryx = x( f , t,x0) originating at this state
x0 to be contained in a bounded set. It is shown in [1] that
if a pendulum-like system possesses both Lagrange stability
and dichotomy, then it has a so-called gradient-like property.
The gradient-like property guarantees that any trajectoryof the
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pendulum-like system eventually converges to an equilibrium.
This is analogous to the asymptotic stability of a system with a
single equilibrium. This observation highlights the importance
of Lagrange stability as a tool to establish the gradient-like
property of pendulum-like systems. It also motivates the study
of pendulum-like systems within the framework of Lagrange
stability which is considered in this paper.

In the authors’ previous work [6], the state feedback con-
troller synthesis problem is considered for a restricted class of
pendulum-like systems in which the way that the controlled
outputs enter into the nonlinearities must have a special
structure. In contrast to the results in [6], this paper mainly
focuses on solving the output feedback Lagrange stabilization
problem for pendulum-like systems with nonlinearities which
have a general structure. Unlike the special case in [6], in this
more general case, a significantly different method utilizing
sign-indefinite solutions to game-type Riccati equations is nec-
essary. This has led us to develop a pseudo-H∞ control theory
to address the Lagrange stabilization problem of pendulum-
like systems. This pseudo-H∞ control theory allows a pole
of the closed-loop transfer function to be located in the right
half of the complex plane and ensures that the closed-loop
transfer function satisfies a frequency domain condition which
is similar to the bounded real property [7]. An important
contribution of this paper is the pseudo strict bounded real
results in Theorems 3.1 and 3.2, which are analogous to
the standard strict bounded real lemma [8]. Our pseudo-H∞
control theory can be regarded as a theory which is analogous
to the standardH∞ control theory (see [9], [10]) but with
a non-standard closed-loop stability condition. Furthermore,
the paper applies the proposed pseudo-H∞ theory to solve the
Lagrange stabilization problem for pendulum-like systems.

The usefulness of the Lagrange stability property of
pendulum-like systems motivates research on Lagrange sta-
bilization of pendulum-like systems; e.g., see [3], [11]–[13].
However, in these papers it was assumed that the nonlinear
system contains a single nonlinearity only and has a special
matched structure on its nonlinearity. This special matched
structure enables the Lagrange stabilization problem to becast
as a standardH∞ problem. In order to consider general system
structures which do no satisfy matching conditions, a different
approach is required which motivates our pseudoH∞ control
problem. Also, the results of [3], [11]–[13] are established
using a Lagrange stability criterion given in [1] which requires
the linear part of the system to be minimal. This means that a
post-check is required on the linear part of the resulting closed-
loop system to determine if it is minimal. In contrast, this paper
uses a Lagrange stability criterion which does not have the
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minimal realization requirement but uses a strict frequency-
domain condition. This Lagrange stability theory enables this
paper to consider a Lagrange stabilization problem withoutthe
requirement of a post-check on the minimality of the linear
part of the closed-loop system. Also, this Lagrange stability
criterion allows us to solve the Lagrange stabilization problem
for nonlinear systems with multiple nonlinearities. Indeed, a
condition of the stability analysis techniques used in the paper
is that the closed-loop system matrixA has a single zero
eigenvalue, even though multiple nonlinearities are allowed.
The corresponding condition on the open-loop system in our
control synthesis results is that this system must have a single
unobservable (or uncontrollable) mode at the origin.

To illustrate the efficacy of the proposed method, we give
an example. It is concerned with Lagrange stabilization of
a network of three interconnected nonlinear pendulums. Also,
this system has some of the features of many practical systems
such as power systems, large-scale interconnected networks
and hence it suggests some application areas for the theory
developed in this paper. These features are an interconnection
of nonlinear but not identical elements, and the existence
of multiple equilibria points due to the periodicity of the
nonlinear elements.

This paper is organized as follows: Section II formulates
the Lagrange stabilization problem for pendulum-like systems;
Section III presents a pseudoH∞ control theory, which is
motivated by the problem formulated in Section 2; Section
IV presents our main results on output feedback Lagrange
stabilization of unobservable pendulum-like systems; Section
V presents our results on the output feedback Lagrange
stabilization of uncontrollable pendulum-like systems; Section
VI gives results on the state feedback Lagrange stabilization
of uncontrollable pendulum-like systems. Section VII presents
an example to illustrate the efficacy of the proposed method
and Section VIII concludes this paper. All of the proofs of the
theorems in the Sections II-VI are contained in the Appendix.

Notation: Z denotes the set of integers.Rn×m and C n×m

denote the space ofn×m real matrices and the space ofn×m
complex matrices, respectively.Q denotes the set of rational
numbers andQm denotes the set of vectors ofm rational
numbers.σ(A) denotes the set of the eigenvalues of a matrixA.
σmax[·] denotes the maximum singular value of a matrix.RH∞
denotes the space of all proper and real rational stable transfer
function matrices.R+ denotes the set of positive real numbers
and Rn

+ = (R+)
n. ρ(X) denotes the spectral radius of the

matrix X. diag[a1, · · · ,an] is a diagonal matrix witha1, · · · ,an

as its diagonal elements.B(a,ε) denotes a neighborhood
arounda ∈ Rn, defined as{ã ∈ Rn : ‖ã− a‖ < ε}. Given a
vector τ = [τ1, · · · ,τm]

T ∈ Rm
+, Mτ denotes the diagonal ma-

trix Mτ = diag[τ1, · · · ,τm]. Similarly, Mµ = diag[µ1, · · · ,µm].
Given a vectorν ∈Q

m, LCMD(ν) denotes the least common
multiple (LCM) of the denominators of all the elements ofν.

II. PROBLEM FORMULATION OF LAGRANGE

STABILIZATION FOR PENDULUM-LIKE SYSTEM

A. Pendulum-like Systems

We consider a class of nonlinear systems defined as follows:

ẋ = Ax+Bw,

z = Cx, (1)

wherex ∈ Rn is the state,z∈ Rm is the nonlinearity output
vector andw∈ R

m is the nonlinearity input vector. Also,A∈
Rn×n, B∈ Rn×m, C= [CT

1 , · · · ,C
T
m]

T ∈ Rm×n, Ci ∈ R1×m, i =
1, · · · ,m. The components of the vectorw= [w1, · · · ,wm]

T are
determined from the corresponding components of the vector
z= [z1, · · · ,zm]

T via nonlinear functions

wi = φi (t,zi) (2)

whereφi : R+×R → R is a continuous, locally Lipschitz in
the second argument and periodic function with period∆i > 0;
i.e.,

φi (t,zi +∆i) = φi (t,zi) , ∀t ∈ R+, zi ∈ R. (3)

This type of nonlinearity appears frequently in the practical
engineering systems mentioned in Section I. Phase-locked
loops [14] and a pendulum system with a vibrating point
of suspension [1] are typical examples of such systems. We
also refer to the example given in Section VII. The transfer
function of the linear part of the system (1) is given byG(s) =
C(sI−A)−1B. The nonlinear functionsφi (t,zi) , i = 1, · · · ,m,
are assumed to satisfy the sector conditions,

− µi ≤
φ (t,zi)

zi
≤ µi , ∀t ∈ R+, zi 6= 0, (4)

whereµi ∈ R+, i = 1, · · · ,m.
We define ∆ ∈ Rm×m as ∆ = diag[∆1, · · · ,∆m]. Given a

vectord ∈ Rn, let Π(d)
△
= {kd|k∈ Z }.

Definition 2.1: (Pendulum-like System [1])The nonlinear
system (1), (2), (3) is pendulum-like with respect toΠ(d) if
for any solutionx(t, t0,x0) of (1), (2), (3) with x(t0) = x0 ,
we havex(t, t0,x0)+ d̄ = x(t, t0,x0+ d̄), for all t ≥ t0, and all
d̄ ∈ Π(d).

Remark 2.1:This definition reflects the fact that the phase
portrait of a pendulum-like system is periodic. For example,
in the case of a simple pendulum, this means that its position
variable can be represented by an angle between 0 and 2π .

Definition 2.2: (Lagrange Stability [1])The nonlinear sys-
tem (1), (2) is said to be Lagrange stable if all its solutions
are bounded.

B. Lagrange Stabilization Problem for Pendulum-like Systems

The pendulum-like system to be stabilized will be a con-
trolled version of the nonlinear system (1), (2), (3), (4). That is,
the linear part of the system is described by the state equations

ẋ = Ax+B2u+B1w, (5a)

z = C1x+D12u, (5b)

y = C2x+D21w, (5c)
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wherex∈ Rn, w∈ Rm, z∈ Rm are defined as in (1),u∈ Rq

is the control input, andy∈R p is the measured output. Here,
all the matrices are assumed to have compatible dimensions.
Also, the components of the nonlinearity inputw are related
to the components of the system outputz as in (2) and
the nonlinearitiesφi have the property (3). Furthermore, the
nonlinearities are assumed to satisfy the sector condition(4).
The system block diagram is shown in Figure 1.

Linear System

PSfrag replacements

φm

φ1
...

u y

w1

wm

z1

zm

K(s)

Fig. 1. Nonlinear control system with periodic nonlinearities.

Problem 1: (Output Feedback Lagrange Stabilization)The
output feedback Lagrange stabilization problem for the non-
linear system (5), (2), (3), (4) is to design a linear controller
with the transfer functionK(s) and state-space realization:

ẋc = Acxc+Bcy

u = Ccxc (6)

such that the resulting closed-loop system is pendulum-like
and Lagrange stable.

Problem 2: (State Feedback Lagrange Stabilization)The
state feedback Lagrange stabilization problem is to designa
state feedback control lawu= Kx for the system (5a), (5b),
(2), (3), (4) to ensure that the resulting closed-loop system is
pendulum-like and Lagrange stable.

Note that in some cases, it may be possible to design a
controller in the form of (6) to asymptotically stabilize the
system (5), (2), (4). Such cases are trivial from the point
of view of Lagrange stabilization. In order to rule out these
trivial cases and to guarantee that the closed-loop system is a
pendulum-like system, we will assume that the linear part of
the systems (5) has uncontrollable or unobservable modes.

To solve the above two problems, the following two tech-
nical results of [6] will be used:

Lemma 2.1:( [6]) Consider the nonlinear system (1), (2),
(3). Suppose detA = 0 and there exists a vector̄d 6= 0 such
that Ad̄ = 0, Ci d̄ 6= 0, i = 1, · · · ,m, and (∆)−1Cd̄ ∈ Qm. Also,
let ∆i

Ci d̄
= pi

qi
for all i = 1, · · · ,m, wherepi , qi 6= 0 are integers.

Let p̄ be the LCM of pi, i = 1, · · · ,m. Then, the system (1),
(2), (3) is pendulum-like with respect toΠ(d) whered = p̄d̄.

Lemma 2.2:( [6]) (Lagrange Stability Criterion)Suppose
the system (1), (2), (3), (4) is a pendulum-like system.
Also, suppose there exist a constantλ > 0 and a vector
τ = [τ1, · · · ,τm]

T ∈ Rm
+ satisfying the following conditions:

i. A+λ I hasn−1 eigenvalues with negative real parts
and one with positive real part;

ii. GT (− jω −λ)Mτ G( jω −λ) < M−1
µ MτM−1

µ , for all
ω ≥ 0.

Then, the nonlinear system (1), (2), (3), (4) is Lagrange stable.
The proofs of these two results appear in the journal version

of [6] but are included in the Appendix for completeness.
Lemma 2.2 is the key result to establish Lagrange stability

of the closed-loop systems under consideration. It involves a
frequency domain condition, which is similar to the bounded
real property in [7], and a system state matrixA+λ I which
has one unstable eigenvalue. However, it does not require the
minimality of the linear part of the system (1). To establish
these conditions in the Lagrange stabilization problems 1 and
2, we develop a pseudo-H∞ control theory in the next section,
which is analogous to the standardH∞ control theory.

III. PSEUDO-H∞ CONTROL

A. The Pseudo Strict Bounded Real Property and the Corre-
sponding Strict Bounded Real Lemma (SBRL)

The bounded real property is an important concept fre-
quently used in the standardH∞ control theory. We begin our
development of pseudoH∞ control with the definition of the
pseudo strict bounded real property, which is analogous to the
standard bounded real property.

Definition 3.1: A matrix A∈ Rn×n which hasn−1 eigen-
values with negative real parts and one eigenvalue with posi-
tive real part is said to bepseudo-Hurwitz. A symmetric matrix
P∈ Rn×n is said to bepseudo-positive definiteif it has n−1
positive eigenvalues and one negative eigenvalue.

Definition 3.2: A linear time-invariant (LTI) system (1) is
called pseudo strict bounded realif the following conditions
hold:

(i) A is pseudo Hurwitz;
(ii)

max
ω∈R

{σmax[G(− jω)TG( jω)]} < 1. (7)

Theorem 3.1:Consider the LTI system (1). If the Riccati
equation

ATP+PA+PBBTP+CTC= 0 (8)

has a solutionP= PT such thatP is pseudo-positive definite
andA+BBTP has no purely imaginary eigenvalues, then the
system (1) is pseudo strict bounded real.

Theorem 3.2:If the LTI system (1) is pseudo strict bounded
real, then

1) There exists a pseudo-positive definite matrixP = PT

such that

ATP+PA+PBBTP+CTC< 0. (9)

2) Furthermore, if in addition the pair(A,B) is stabilizable
and the pair(A,C) is observable, then the Riccati equation
(8) has a stabilizing solutionP which is pseudo-positive
definite.

Theorem 3.1 is analogous to the sufficiency part of the strict
bounded real lemma for systems with non-minimal realizations
[8]. Also, Theorem 3.2 is analogous to the necessity part of
the strict bounded real lemma for systems with non-minimal
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realizations. Theorems 3.1 and 3.2 are together called the
pseudo strict bounded real lemma.

The pseudo strict bounded real lemma gives a relationship
between state-space conditions, such as solvability of (8)and
pseudo-Hurwitzness ofA, and the frequency-domain inequal-
ity (7). This will allow us to replace the frequency domain
condition for the closed-loop system that will appear in the
application of Lemma 2.2, with a condition in the state-space
form. This is a key step in the derivation of a solution to
Problems 1 and 2.

B. State Feedback Pseudo-H∞ Control

The state feedback pseudo-H∞ control problem for the LTI
system (5a), (5b) involves designing a state feedback law
u = Kx which ensures that the corresponding closed-loop
system is pseudo strict bounded real. In an analogous way
to H∞ control theory [9], [10], the main result of this section
presented in the following theorem, gives a sufficient condition
for the existence of a solution to the problem.

The following assumption is made on the system (5a), (5b):

Assumption 3.1: E1 = DT
12D12 > 0.

Theorem 3.3:Suppose Assumption 3.1 holds for the system
(5a), (5b) and the Riccati equation

(A−B2E
−1
1 DT

12C1)
TP+P(A−B2E

−1
1 DT

12C1)

+P(B1BT
1 −B2E−1

1 BT
2 )P+CT

1 (I −D12E
−1
1 DT

12)C1 = 0

(10)

has a solutionP= PT such thatP is pseudo-positive definite
and the matrix

A−B2E
−1
1 DT

12C1+(B1BT
1 −B2E−1

1 BT
2 )P (11)

has no purely imaginary eigenvalues. Then, the state feedback
control law

u=−E−1
1 (BT

2 P+DT
12C1)x (12)

solves the state feedback pseudo-H∞ control problem. That is,
the resulting closed-loop system is pseudo strict bounded real.

Remark 3.1:In practice, it is usually convenient to use the
stabilizing solution to the Riccati equation (10) in order to
construct the required state feedback control law (12).

C. Output Feedback Pseudo-H∞ Control

Analogous to the standard output feedbackH∞ control
problem, the output feedback pseudo-H∞ control problem for
the system (5) involves designing a compensator of the form
(6) to make the corresponding closed-loop system pseudo
strict bounded real. The following two theorems each give a
sufficient condition for the existence of a solution to the output
feedback pseudo-H∞ control problem for a system of the form
(5). Besides Assumption 3.1, the following assumption is also
made on the system (5):

Assumption 3.2: E2 = D21DT
21 > 0.

Theorem 3.4:Suppose the system (5) satisfies Assumptions
3.1 and 3.2 and the following conditions are satisfied:

(i) The Riccati equation

(A−B2E
−1
1 DT

12C1)
TX+X(A−B2E

−1
1 DT

12C1)

+X(B1BT
1 −B2E−1

1 BT
2 )X

+CT
1 (I −D12E

−1
1 DT

12)C1 = 0 (13)

has a stabilizing solutionX = XT which is pseudo-
positive definite;

(ii) The Riccati equation

(A−B1D
T
21E

−1
2 C2)Y+Y(A−B1D

T
21E

−1
2 C2)

T

+Y(CT
1 C1−CT

2 E−1
2 C2)Y

+B1(I −DT
21E

−1
2 D21)B

T
1 = 0 (14)

has a stabilizing solutionY = YT which is positive
definite;

(iii) The matrix XY has a spectral radius strictly less than
one,ρ(XY)< 1.

Then, there exists a dynamic output feedback compensator
of the form (6) such that the resulting closed-loop system is
pseudo strict bounded real. Furthermore, the matrices defining
the required dynamic feedback controller (6) can be con-
structed as follows:

Ac = A+B2Cc−BcC2+(B1−BcD21)B
T
1 X,

Bc = (I −YX)−1(YCT
2 +B1DT

21)E
−1
2 ,

Cc = −E−1
1 (BT

2 X+DT
12C1). (15)

Theorem 3.5:Suppose the system (5) satisfies Assumptions
3.1 and 3.2 and the following conditions are satisfied:

(i) The Riccati equation (13) has a positive definite
stabilizing solutionX = XT ;

(ii) the Riccati equation (14) has a pseudo-positive defi-
nite stabilizing solutionY =YT ;

(iii) The matrix XY has a spectral radius strictly less than
one,ρ(XY)< 1.

Then, there exists a dynamic output feedback compensator
of the form (6) such that the resulting closed-loop system is
pseudo strict bounded real. Furthermore, the matrices in the
required dynamic feedback controller (6) can be constructed
as follows:

Ac = A+BcC2−B2Cc+YCT
1 (C1−D12Cc),

Bc = −(YCT
2 +BT

1 DT
21)E

−1
2 ,

Cc = E−1
1 (BT

2 X+DT
12C1)(I −YX)−1. (16)

Remark 3.2:According to [15], the stabilizing solutions to
the Riccati equations (13) and (14) are unique, if they exist.

IV. OUTPUT FEEDBACK LAGRANGE STABILIZING

CONTROLLER SYNTHESIS FORUNOBSERVABLE SYSTEMS

In this section, the output feedback pseudoH∞ control
theory developed in the previous section is used to solve
Problem 1 for nonlinear systems satisfying the following
assumptions, which will be used to ensure that the closed-
loop system is pendulum-like and to rule out trivial cases in
which the nonlinear system can be asymptotically stabilized:

Assumption 4.1:There exists a non-zero vectorx such that
Ax= 0 andC2x= 0.
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Assumption 4.1 implies that(A,C2) is unobservable and the
origin is an unobservable mode. Using the Kalman decompo-
sition in the unobservable form [16], it follows that there exists
a non-singular state-space transformation matrixT such that
the system matrices of the system (5) are transformed to the
form

Ã = T−1AT =

[

Ã1 0
Ã2 0

]

, B̃2 = T−1B2 =

[

B̃2a

B̃2b

]

,

B̃1 = T−1B1 =

[

B̃1a

B̃1b

]

,

C̃1 = C1T =
[

C̃1a C̃1b
]

, D̃12 = D12,

C̃2 = C2T =
[

C̃2a 0
]

, D̃21 = D21, (17)

where Ã1 ∈ R(n−l)×(n−l), B̃1a ∈ R(n−l)×m, B̃2a ∈ R(n−l)×q,
C̃1a, C̃2a ∈ Rm×(n−l).

Also, let en = [ 01×(n−1) 1 ]T . We define two vectorsχ =
C1Ten and d̄ = [01×n eT

n TT ]T ∈ R2n.
Assumption 4.2:There exists a constantτ0 > 0 such that all

the elements of the vectorν = τ0∆−1χ are non-zero rational
numbers.

Remark 4.1:In the case where the coefficients in the system
(5) are all rational numbers, Assumption 4.2 amounts to an
assumption that the periods of the nonlinearities are commen-
surate.

The main result of this section involves the following Riccati
equations dependent on parametersλ > 0 and τi > 0, i =
1, · · · ,m:

(λ I +A−B2Ē
−1
1 DT

12MτC1)
TX+X(λ I +A−B2Ē

−1
1 DT

12MτC1)

+X(B1MµM−1
τ MµBT

1 −B2Ē
−1
1 BT

2 )X

+CT
1 (Mτ −MτD12Ē

−1
1 DT

12Mτ )C1 = 0, (18)

(λ I +A−B1MµM−1
τ Mµ DT

21Ē
−1
2 C2)Y

+Y(λ I +A−B1MµM−1
τ Mµ DT

21Ē
−1
2 C2)

T

+B1

(

MµM−1
τ MµBT

1
−MµM−1

τ MµDT
21Ē

−1
2 D21MµM−1

τ Mµ

)

BT
1

+Y(CT
1 MτC1−CT

2 Ē−1
2 C2)Y = 0, (19)

whereĒ1 = DT
12Mτ D12 and Ē2 = D21MµM−1

τ MµDT
21. If these

Riccati equations have suitable solutions, we will define the
parameter matrices of the controller (6) as follows:

Ac = A+BcC2−B2Cc+YCT
1 (MτC1−MτD12Cc),

Bc = −(YCT
2 +B1MµM−1

τ MµDT
21)Ē

−1
2 ,

Cc = Ē−1
1 (BT

2 X+DT
12MτC1)(I −YX)−1. (20)

The following theorem, which is the main result of this
paper, gives a sufficient condition for the existence of a
Lagrange stabilizing controller for the nonlinear system (5),
(2), (3), (4) :

Theorem 4.1:Suppose Assumptions 3.1, 3.2, 4.1 and 4.2
hold for the nonlinear system (5), (2), (3), (4). Also, suppose
there exist constantsλ > 0 andτi > 0, i = 0, · · · ,m such that
the following conditions are satisfied:

I. The Riccati equation (18) has a stabilizing solution
X = XT which is positive definite;

II. The Riccati equation (19) has a pseudo-positive
definite stabilizing solutionY =YT ;

III. The matrixXY has a spectral radius strictly less than
one,ρ(XY)< 1.

Then, the resulting closed-loop system corresponding to the
controller (6), (20) is a pendulum-like system with respectto
Π(τ0p̄d̄) and is Lagrange stable. Here ¯p= LCMD(ν).

V. OUTPUT FEEDBACK LAGRANGE STABILIZING

CONTROLLER SYNTHESIS FORUNCONTROLLABLE

SYSTEMS

In this section, the state feedback and output feedback
pseudoH∞ control theories in Section III are applied to
Lagrange stabilization for nonlinear systems satisfying the
following assumption which is dual to Assumption 4.1:

Assumption 5.1:There exists a non-zero vectorx such that
xTA= 0 andxTB2 = 0.

In a similar way to Assumption 4.1, this assumption is
also used to ensure that the closed-loop system is pendulum-
like and to rule out trivial cases in which the system can be
asymptotically stabilized. Also, this assumption impliesthat
(A,B2) is not controllable. Using the Kalman Decomposition
[16], it follows from Assumption 5.1 that there exists a non-
singular state-space transformation matrix̄T such that the
matrices of the system (5) are transformed to the form

Ã = T̄−1AT =

[

Ã1 Ã2

0 0

]

, B̃2 = T̄−1B2 =

[

B̃2a

0

]

,

B̃1 = T̄−1B1 =

[

B̃1a

B̃1b

]

,

D̃12 = D12,C̃1 =C1T̄ =
[

C̃1a C̃1b
]

,

C̃2 = C2T̄ =
[

C̃2a C̃2b
]

, D̃21 = D21, (21)

whereÃ1 ∈R(n−l)×(n−l), Ã2 ∈R(n−l)×l , B̃2a ∈R(n−l)×q, B̃1a ∈
R

(n−l)×m, C̃1a,C̃2a ∈ R
m×(n−l).

A. Output Feedback Lagrange Stabilization for Uncontrol-
lable Systems

The main result of this section involves the Riccati equations
(18) and (19) which are dependent on parametersλ > 0 and
τi > 0, i = 1, · · · ,m. Using solutionsX andY to the equations
(18) and (19) , we can construct the following matrices:

Ac = A+B2Cc−BcC2

+(B1Mµ M−1
τ Mµ −BcD21MµM−1

τ Mµ)B
T
1 X,

Bc = (I −YX)−1(YCT
2 +B1MµM−1

τ MµDT
21)Ē

−1
2 ,

Cc = −Ē−1
1 (BT

2 X+DT
12MτC1). (22)

Also, we define two vectors of constants:

d̄0 = −

[

Ac BcC̃2a

B̃2aCc Ã1

]−1[
BcC̃2b

Ã2

]

,

χ =
[

−D12Ē
−1
1 (BT

2 X+DT
12MτC1) C1

]

d̄, (23)

where d̄ =

[

I 0
0 T̄

][

d̄0

1

]

with T̄ defined in the Kalman

decomposition (21). Using this notation, a sufficient condition
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for the solution to the output feedback Lagrange stabilization
Problem 1 can now be presented:

Theorem 5.1:Suppose Assumptions 3.1, 3.2 and 5.1 hold
for the system (5), (2), (3), (4). Also, suppose there exist
constantsλ > 0 andτi , i = 0, · · · ,m such that the following
conditions are satisfied for the nonlinear system (5), (2), (3),
(4):

I. The Riccati equation (18) has a stabilizing pseudo-
positive definite solutionX = XT ;

II. The Riccati equation (19) has a stabilizing solution
Y =YT which is positive definite;

III. The matrixXY has a spectral radius strictly less than
one,ρ(XY)< 1;

IV. The matrix

[

Ac BcC̃2a

B̃2aCc Ã1

]

is non-singular and

all the elements of the vectorν = τ0∆−1χ are non-
zero rational numbers, whereAc, Bc, Cc and χ are
defined in (22) and (23) usingX, Y in I, II and III.

Then, the closed-loop system consisting of the system (5), (2),
(3), (4) and the controller (6), (22) is a pendulum-like system
with respect toΠλ = {p̄τ0d̄} and is Lagrange stable. Here
p̄= LCMD(ν).

B. Satisfaction of the rationality condition.

Theorem 5.1 gives sufficient conditions for the existence
of a solution to the Lagrange stabilizing controller synthesis
problem for a nonlinear system satisfying Assumption 5.1.
However, the question arises as to whether, givenλ > 0, there
will exist positive constantsτi , 0 = 1, · · · ,m, such that the
stabilizing solutions to the Riccati equations (18) and (19)
satisfy the rationality condition IV of this theorem.

First, we demonstrate that suchτ = [τ1, · · · ,τm]
T , if exists,

can be constrained to be a unit vector. Given anyγ > 0, let
τ̂ = γτ, X̃ = γX, Ỹ = γ−1Y, Mτ̂ = γMτ , Ẽ1 = DT

12Mτ̂D12 and
Ẽ2 = D21M

−1
τ̂ DT

21. Multiplying the Riccati equation (18) byγ
and multiplying (19) byγ−1 gives that

(A+λ I −B2Ẽ−1
1 DT

12Mτ̂C1)
T X̃+ X̃(A+λ I −B2Ẽ

−1
1 DT

12Mτ̂C1)

+CT
1 (Mτ̂ −Mτ̂D12Ẽ

−1
1 DT

12Mτ̂)C1

+X̃(B1MµM−1
τ̂ Mµ BT

1 −B2Ẽ−1
1 BT

2 )X̃ = 0, (24)

(λ I +A−B1MµM−1
τ̂ MµDT

21Ẽ
−1
2 C2)Ỹ

+Ỹ(λ I +A−B1MµM−1
τ̂ MµDT

21Ẽ
−1
2 C2)

T

+Ỹ(CT
1 Mτ̂C1−CT

2 Ẽ−1
2 C2)Ỹ

+B1(Mµ M−1
τ̂ Mµ −MµM−1

τ̂ DT
21Ẽ

−1
2 D21M

−1
τ̂ Mµ)B

T
1 = 0.

(25)

It is obvious that (24) has the same form as (18) but bothX and
Mτ are scaled byγ. Also, (25) has the same form as (19) butY
is scaled byγ−1 andMτ is scaled byγ. Hence, Conditions I-III
in the statement of Theorem 5.1 are not affected if we useX̃,
Ỹ, Mτ̂ , Ẽ1 andẼ2 to replaceX, Y, Mτ , Ē1 andĒ2 respectively.
In addition, it is straightforward to verify that ConditionIV of
Theorem 5.1 is not affected by scaling the vector of constants
τ. Thus, without loss of generality, we assume thatτ is a unit
vector throughout the remainder of this section, and if we take

τi >0, i = 1, · · · ,m−1 as independent constants combined into
the vectorτ̄ = [τ1, · · · ,τm−1], thenτm is given by

τm =

√

1−
m−1

∑
i=1

τ2
i . (26)

Define

T=

{

τ̄ ∈ Rm−1 : Equations (18) and (19) have
nonsingular stabilizing solutions

}

.

Let τ̃ = [τ0, · · · ,τm−1]
T = [τ0, τ̄T ]T and define a function

f (τ̃) =
[

f1(τ̃) · · · fm(τ̃)
]T

= τ0∆−1χ on the setF =
{τ̃ : τ0 > 0, τ̄ ∈ T} . Let J(τ0,τ1, · · · ,τm−1) be the Jacobian
matrix of f (τ̃),

J(τ0,τ1, · · · ,τm−1) =









∂ f1
∂τ0

∂ f1
∂τ1

· · · ∂ f1
∂τm−1

...
...

. . .
...

∂ fm
∂τ0

∂ fm
∂τ1

· · · ∂ fm
∂τm−1









. (27)

Then, we haveJ(τ̃) = ∆−1J̃(τ̃) and the elements of̃J(τ̃) are

J̃i,1 = wi , i = 1, · · · ,m;

J̃i, j =







τ0

(

τ−2
i wi + τ−1

i
∂wi
∂τi

)

: i = j, i = 1, · · · ,m−1;

τ0τ−1
i

∂wi
∂τ j

: i, j = 1, · · · ,m−1, i 6= j;

J̃m, j = τ0

(

τ−3
m τ jwm+ τ−1

m
∂wm

∂τ j

)

, j = 1, · · · ,m. (28)

The following theorem gives a sufficient condition for
the existence of the constantsτ0, · · · ,τm satisfying all the
conditions of Theorem 5.1:

Theorem 5.2:Suppose Assumptions 3.1, 3.2 and 5.1 hold
for the system (5), (2), (3), (4). Also, suppose there exist acon-
stantλ > 0 and a vector of positive constantsτ̃ = [τ0, · · · ,τm−1]
such that the following conditions are satisfied for the system
(5), (2), (3), (4):

(I) Conditions I, II and III of Theorem 5.1 hold;
(II) detJ̃(τ̃) 6= 0 where the elements of̃J(τ̃) are defined

as (28).

Then, given any sufficiently smallε > 0, there existsτ̌ =
[τ̌0, τ̌1, · · · , τ̌m−1] ∈ F such that‖τ̌ − τ̃‖ < ε and the constants
τ0 = τ̌0, τi = τ̌i , i = 1, · · · ,m− 1 and τm (defined as in (26))
satisfy all the conditions of Theorem 5.1 and hence the corre-
sponding closed-loop system is pendulum-like and Lagrange
stable.

VI. STATE FEEDBACK LAGRANGE STABILIZATION FOR

UNCONTROLLABLE SYSTEMS

In this section, we give a sufficient condition for the exis-
tence of a solution to the state feedback Lagrange stabilization
problem (Problem 2) of Section II.

Using a solution to the Riccati equation (18), we de-
fine two vectorsd̄ = T̄[d̄T

0 1]T and χ = [χ1 · · · χm]
T =

((

I −D12Ē
−1
1 DT

12Mτ
)

C1−D12Ē
−1
1 BT

2 X
)

d̄, whereT̄ is defined
by (21) and

d̄0 = −(Ã1− B̃2aĒ−1
1 D̃T

12MτC1a− B̃2aĒ
−1
1 B̃T

2aX̄11)
−1

×(Ã2− B̃2aĒ−1
1 D̃T

12MτC1b− B̃2aĒ
−1
1 B̃T

2aX̄12)
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with X̄11 ∈ R(n−1)×(m−1), X̄12 ∈ R(n−1)×1 defined by

T̄TXT̄ =

[

X̄11 X̄12

X̄12 X̄22

]

.

Theorem 6.1:Consider the nonlinear system (5a), (5b), (2),
(3), (4) and suppose Assumptions 3.1 and 5.1 are satisfied.
If there exist constantsλ > 0 and τi > 0, i = 0, · · · ,m such
that the Riccati equation (18) has a pseudo-positive definite
solutionX = XT such that

I. The matrix A + λ I − B2Ē−1
1 DT

12MτC1 +
(B1MµM−1

τ Mµ BT
1 −B2Ē−1

1 BT
2 )X is Hurwitz;

II. All elements of the vectorν = τ0∆−1χ are non-zero
rational numbers.

Then, the closed-loop system corresponding to the state feed-
back control

u=
(

−D12Ē
−1
1 DT

12MτC1−D12Ē
−1
1 BT

2 P
)

x (29)

is a pendulum-like system with respect toΠ
(

p̄τ0d̄
)

and is
Lagrange stable, where ¯p= LCMD(ν).

In a similar way to Theorem 5.2, a sufficient condition for
the existence of constantsτ0, · · · ,τm satisfying Condition II of
Theorem 6.1 is now given. The proof of this result is similar
to that of Theorem 5.2 and is omitted.

Theorem 6.2:Consider the system (5a), (5b), (2), (3), (4)
and suppose Assumptions 3.1, 5.1 are satisfied. Also, suppose
there exists a constantλ > 0 and a vector of positive constants
τ̃ = [τ0, · · · ,τm−1]

T satisfying the following conditions:

I. The Riccati equation (18) has a pseudo-positive
definite stabilizing solutionX;

II. J̃(τ̃) 6= 0 whereJ̃(τ̃) is defined in (28).

Then, given any sufficiently smallε > 0, there exists a
τ̌ = [τ̌0, τ̌1, · · · , τ̌m−1] ∈ F such that ‖τ̌ − τ̃‖ < ε and the
constantsτ0 = τ̌0, τi = τ̌i , i = 1, · · · ,m−1 andτm (defined as
in (26)) satisfy all the conditions of Theorem 6.1 and hence
the corresponding closed-loop system is pendulum-like and
Lagrange stable.

VII. I LLUSTRATIVE EXAMPLE

To illustrate the theory developed in this paper, we consider
a system consisting of three connected pendulums, as shown in
Figure 2, where the pendulums are connected using torsional
springs and both pendulums and springs are supported by a
rigid ring. The pendulums oscillate in planes perpendicular
to the ring and the torsional torque of the springs obeys the
angular form of the Hooke’s lawF =−k∆θ , where∆θ is the
angular displacement,F is the spring torque andk is the torque
constant. This system can be considered as a prototype of
many applications such as power systems, mechanical systems,
network systems, etc. Therefore, the Lagrange stabilization
of this system suggests many potential applications of the
proposed method. Suppose that the measurements consist of
the angular velocity of a pendulum and the angular difference
between any two neighboring pendulums. As a result, all abso-
lute positions of the pendulums are unobservable. Also, ourA
matrix has a single zero eigenvalue which is an unobservable
mode of the system. Hence, Assumption 4.1 is satisfied. Let
x1 = θ1, x2 = θ̇1, x3 = θ2, x4 = θ̇2, x5 = θ3 andx6 = θ̇3. Then,

the system can be described by the state equations of the form
(5) with the following matrices and nonlinearities

A =











0 1 0 0 0 0
k1+ k3 −α1 −k1 0 −k3 0

0 0 0 1 0 0
−k1 0 k1+ k2 −α2 k2 0

0 0 0 0 0 1
−k3 0 −k2 0 k2+ k3 −α3











,

B2 =











0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1











, B1 = β











0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1











,

C1 =

[

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

]

, D12 = ε1I3,

C2 = γ

[

1 0 −1 0 0 0
0 0 1 0 −1 0
0 0 0 0 0 −1

]

,

D21 = ε2I3, and φ(z) = [ sinz1 sinz2 sinz3 ]T . (30)

θ1

θ2

θ3

k3

k2 k1

PSfrag replacements

k1k2

k3

θ1

θ2

θ3

Fig. 2. A system of three pendulums connected on a ring by torsional springs.

Note that this system has multiple nonlinearities and thus
the results of [3], [11]–[13] cannot be applied. Also, the
nonlinearities do not have the special structure required in [6]
to apply the result of that paper.

The damping coefficients areα1 = 0.1, α2 = 0.05, α3 =
0.08. The torque constants arek1 = 0.02,k2 = 0.03,k3 = 0.05.
Also, we specify the constantsβ = 0.2, γ = 0.5, ε1 = ε2 = 0.1.
It is easy to verify that the system (5), (30) satisfies Assump-
tion 4.1. Also, all of the coefficients of the system (5), (30)
are rational. We chooseτ0 = 2π to ensure that Assumption
4.2 is satisfied (T will have rational elements in this case).
Therefore, Theorem 4.1 is applicable to the system. Choosing
τ1 = 0.4, τ2 = 0.6, τ3 = 0.5 and λ = 0.5 and solving the
Riccati equations (18) and (19) gives solutions which satisfy
all of the conditions of Theorem 4.1. Therefore, the solution
to Problem 1 for the system (5), (30) can be constructed using
this theorem. To illustrate the fact that the resulting controller
is such that the closed-loop system is Lagrange stable, a series
of simulations has been carried out with different initial values.
These simulations have confirmed that the trajectories of the
closed-loop system are bounded. This can be seen in Figure
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Fig. 3. System state responses and controller state responses of the closed-
loop system for initial values[x1(0), · · · ,x6(0)]T = [− π

4 ,4,−
π
2 ,−3, π

3 ,−5] and
xci = 0, i = 1, · · · ,6.

3, which shows the state responses of the system and the
controller state responses for one set of initial conditions,
when the output feedback controller is applied. In addition,
our simulations reveal that the trajectories of the closed-loop
system converge. Using Theorem 1 in [17] and the results
in [1], it can be verified that the closed-loop system has the
property of dichotomy and the gradient-like property, which
explains the observed convergence.

VIII. C ONCLUSIONS ANDFUTURE RESEARCH

This paper has studied the Lagrange stabilization problem
for nonlinear systems with multiple nonlinearities. In order to
facilitate the controller synthesis for these systems, a pseudo-
H∞ control theory is developed. Sufficient conditions for the
solution to state feedback and output feedback pseudo-H∞
control problems are given. However, corresponding necessary
conditions are yet to be obtained. The pseudo-H∞ control
theory is applied to solve output feedback and state feedback
Lagrange stabilization problems for nonlinear systems with
multiple nonlinearities. The efficacy of the method is illus-
trated by an example involving coupled nonlinear pendulums
on a ring.

This paper has considered the case where the nonlinear
system contains decoupled nonlinearities. That is, as illustrated
in Figure 1, we consider independent scalar nonlinearity blocks
each subject to a sector bound constraint. One possible area

for future research is to extend the approach of this paper to
enable the consideration of nonlinear systems with coupled
nonlinearities. This would involve allowing the nonlinear
blocks in Figure 1 to have vector inputs and outputs and
to replace the sector bounds by more general local quadratic
constraints.

APPENDIX

A. Proof of Lemma 2.1

First note thatpi 6=0 since∆i 6=0. From the conditions of the
lemma, we haveEi d̄ = ∆i

qi
pi

. From (3) and the fact thatqi
pi

p̄ is
an integer, it follows thatφi(t,Ci d̄+Cix) = φi(t,∆i

qi
pi

p̄+Cix) =
φi(t,Cix). As Ad̄ = 0, it follows that,

A(x+ d̄)+
m

∑
i=1

Biφi(t,Ci d̄+Cix) = Ax+
m

∑
i=1

φi(t,Cix), (31)

for all x and t.
Consider an arbitrary solutionx(t, t0,x0) of the system (1),

(2). Let x̄(t) = x(t, t0,x0)+ d̄ for t ≥ t0. Then, x̄(t0) = x0+ d̄.
Also, it readily follows from (31) that ¯x(t) = x(t, t0,x0 + d̄).
Furthermore, the local Lipschitz condition implies the unique-
ness of this solution. Then, we have ¯x(t) = x(t, t0,x0 + d̄) =
x(t, t0,x0)+ d̄. Hence, the lemma follows.�

B. An Outline of the Proof of Lemma 2.2:

Define G (x,ξ ) △
= ∑m

i=1 τi
(

−µ−1
i ξi −Cix

)∗ (µ−1
i ξi −Cix

)

where ξ ∈ C m and x ∈ C n are arbitrary complex vectors.
Clearly, there exist constantsδ > 0 and 0< υ < 1 such that

[

ξ
ζ

]∗




BT

(

δ
2υ

)
1
2

I





×
(

(− jω −λ )I −AT)−1
CTMτC(( jω −λ )I −A)−1

×





BT

(

δ
2υ

)
1
2

I





T
[

ξ
ζ

]

− ξ ∗M−1
µ MτM−1

µ ξ − ζ ∗ζ

≤ −
δ
2

(

ξ ∗M−1
µ Mτ M−1

µ ξ + ζ ∗ζ
)

,

∀ω ∈ R, ∀[ξ T ζ T ]T ∈ C
m+n. (32)

Given ω ∈ R, we define

σ̄ = (( jω −λ ) I −A)−1 [B

(

δ
2υ

)
1
2

I ]ζ̄

and
Ga

(

σ̄ , ζ̄
)

= σ̄∗CTMτCσ̄ − ζ̄ ∗Maζ̄ ,

whereζ̄ =

[

ξ
ζ

]

andMa =

[

M−1
µ Mτ M−1

µ 0
0 I

]

. Therefore,

it follows from (32) that

Ga
(

σ̄ , ζ̄
)

≤−
δ
2

ζ̄ ∗Maζ̄ , ∀ω ∈ R, ζ̄ ∈ C
m+n. (33)

Furthermore, sinceMa is a positive definite matrix, the in-
equality (33) implies thatGa

(

σ̄ , ζ̄
)

< 0, for all ζ̄ ∈C m+n such

that ‖ζ̄‖ 6= 0. Also, the pair(A, [B
√

δ
2υ In×n]) is controllable.
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Using Theorem 1.11.1 in [1], it follows that there exists a
Hermitian matrixP = P∗ satisfying 2x∗P((A+ λ I)x+Bξ +
√

δ
2υ ζ ) + σ̄∗CTMτCσ̄ − ξ ∗M−1

µ Mτ M−1
µ ξ − ζ ∗ζ < 0, for all

x∈ C n, ζ̄ = [ξ T ζ T ]T ∈ C m+n such that‖x‖+‖ξ‖+‖ζ‖ 6= 0.
Letting ζ = 0, this implies that there exists ann× n matrix
P= PT such that

2x∗P[Ax+Bξ ]<−2λx∗Px−G (x,ξ ) (34)

for all x ∈ C n, ξ ∈ C m such that‖x‖+ ‖ξ‖ 6= 0. Letting
ξ = 0 in (34), we obtain that there exists ar > 0 such that
2xTP[A+λ I ]x<−rxTx< 0.

Note that the pair(A+λ I , rI ) is observable. Since the matrix
A+λ I is pseudo-Hurwitz, then using Theorem 3 in [18] gives
that P is pseudo-positive definite.

In a similar way to the proof of Theorem 2.6.1 in [1], we can
prove that the set{x∈ Rn : xTPx< 0} is positively invariant
for the nonlinear system (1), (2), (3) and further prove thatthe
solutionx(t, t0,x0) of the system (1), (2), (3) is bounded.�

C. Proof of Theorem 3.1:

In order to prove Theorem 3.1, some preliminary results are
required.

Lemma A.1:Suppose the pair(C,A) has no unobservable
modes on thejω axis. If the Lyapunov equationATP+PA+
CTC= 0 has a pseudo-positive definite solutionP= PT , then
the matrixA is pseudo-Hurwitz.
In order to prove Lemma A.1, we require the following results:

Lemma A.2 ( [19]):Let P̄ be a symmetric matrix of the

form P̄ =

[

0 P̄12

P̄T
12 P̄22

]

, where P̄22 = P̄T
22 and P̄T

12 are n2 ×

n2 andn2×n1 matrices, respectively. Also, letk
△
= rank(P̄T

12).
Then

In(P̄) = In(P̄22/ker(P̄12))+ (k,k,n1− k), (35)

where ker(P̄12) = {ζ ∈ R
m : P̄12ζ = 0} and P̄22/ker(P̄12) rep-

resents the restriction of̄P22 to ker(P̄12).
Lemma A.3 ( [20]): If A ∈ Rn×n and if λ ,µ ∈ σ(A) are

eigenvalues ofA whereλ 6= µ , then any left eigenvector ofA
corresponding toµ is orthogonal to any right eigenvector of
A corresponding toλ .

Proof of Lemma A.1:The Kalman decomposition [16]
establishes the existence of a matrixT which transforms the

matrix pair(A,C) into the formĀ= TAT−1 =

[

Ā11 Ā12

0 Ā22

]

,

C̄ = CT−1 = [0 C̄2] where the pair(Ā22,C̄2) is observable.
The dimensions of the blocks in the above decomposition
are as follows:Ā11 ∈ Rn1×n1, Ā11 ∈ Rn1×n2, Ā22 ∈ Rn2×n2,
and the column dimension of̄C2 is n2. Correspondingly, let

P̄ = T−TPT−1 =

[

P̄11 P̄12

P̄T
12 P̄22

]

. It follows from the observ-

ability of (Ā22,C̄2) that there exists a matrix̄K such that
δ (Ā+ K̄C̄) = 0.

Using the equationATP+PA+CTC= 0, it follows that
[

ĀT
11P̄11+ P̄11Ā11

ĀT
12P̄11+ ĀT

22P̄
T
12+ P̄T

12Ā
T
11

P̄11Ā12+ P̄12Ā22+ Ā11P̄12

P̄T
12Ā12+ ĀT

12P̄12+ P̄22Ā22+ ĀT
22P̄22+C̄T

2 C̄2

]

= 0.

(36)

Hence,
ĀT

11P̄11+ P̄11Ā11= 0. (37)

Claim 1: If the pair (C̄, Ā) is such that there exists a matrix
K̄ satisfying δ (Ā+ K̄C̄) = 0, then Reλ (Ā11) 6= 0 for ∀λ ∈
σ(Ā11).

To establish Claim 1, we rewritēK as K̄ =

[

K̄1

K̄2

]

. Then

Ā+ K̄C̄=

[

Ā11 Ā12+ K̄1C̄2

0 Ā22+ K̄2C̄2

]

. If there exists an eigenvalue

of Ā11 such that Reλ (Ā11) = 0, then Ā+ K̄C̄ obviously has
purely imaginary eigenvalues. This contradicts the fact that K̄
is chosen so thatδ (Ā+ K̄C̄) = 0. Therefore, Reλ (Ā11) 6= 0.
This completes the proof of the claim.

Combining Claim 1 and (37) gives that̄P11 = 0. Also, the
(1,2) block of (36) implies that

P̄12Ā22+ Ā11P̄12= 0. (38)

As P̄ is nonsingular, this implies that̄P12P̄T
12 > 0. Apply-

ing Lemma A.2 to P̄ gives that In P̄ = In(P̄22/kerP̄12) +
(rankP̄T

12, rankP̄T
12,n1 − rankP̄T

12). It is known that In̄P =
(n−1,1,0). This implies that

1) 0 = δ (P̄) = δ (P̄22/kerP̄12) + (n1 − rankP̄T
12). For P̄T

12 ∈
Rn2×n1, it always holds that rank̄PT

12 ≤ n1. Then,
δ (P̄22/kerP̄12) ≤ 0. So, δ (P̄22/kerP̄12) = 0 holds. This
further implies thatn1 = rankP̄T

12. Also, the condition
δ (P̄22/kerP̄12) = 0 implies that the matrixP̄22/kerP̄12 is
nonsingular and has no purely imaginary eigenvalues.

2) 1= ν(P̄) = ν (P̄22/kerP̄12)+ rankP̄T
12. Hence, rank̄PT

12≤ 1
andP̄12P̄T

12> 0 imply rankP̄T
12= 1 andν (P̄22/kerP̄12) = 0.

Hence, P̄22/kerP̄12
△
= STP̄22S is symmetric and positive

definite, where the columns ofS form a basis for ker̄P12.
3) Finally, the identity π(P̄) = n− 1 = π (P̄22/kerP̄12) +

rankP̄T
12 implies π (P̄22/kerP̄12) = n−2.

Therefore, it follows thatn1 = 1. HenceA11 is a scalar,P̄12 is
a row vector of dimensionn−1, andP̄22 is a (n−1)× (n−1)
matrix. The dimension ofSTP̄22S is equal ton−2.

As P̄12 ∈ R1×(n−1), P̄12 6= 0, (38) implies that−Ā11 is an
eigenvalue of̄A22 andP̄12 is the corresponding left eigenvector.
Now, let λ be any eigenvalue of̄A22 such thatλ 6=−Ā11 and
let q be a corresponding right eigenvector; that is,Ā22q= λq.
Then Lemma A.3 implies that̄P12q= 0. Hence,q∈ Ker P̄12.

Pre- and post-multiplying the(2,2) block of (36) by qT

and q respectively implies thatqT P̄22Ā22q+ qT ĀT
22P̄22q+

qTC̄T
2 C̄2q= 0. Therefore,λqTP̄22q+ λ̄qT P̄22q+ ‖C̄2q‖2 = 0.

Using the fact thatα = qT P̄22q is positive on Ker̄P12, we
have 2αRe(λ )+‖C̄2q‖2 = 0. Sinceq 6= 0 is an eigenvector of
Ā22, C̄2q 6= 0. Therefore, Re(λ )< 0.

The above derivation shows that all eigenvalues ofĀ22,
possibly with the exception of−Ā11, have negative real part.
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Therefore, if−Ā11 is negative, then̄A22 is Hurwitz; if −Ā11 is
positive, thenĀ22 has all the eigenvaluesλ 6= −Ā11 negative
except−Ā11.

Now, we can conclude that the spectrum ofĀ is σ(Ā) =
{−Ā11, Ā11 andλ : λ 6= −Ā11,Reλ < 0}. Also, since the pair
(C,A) has no unobservable modes on the imaginary axis,
it follows that Ā11 6= 0. Hence,Ā is pseudo-Hurwitz. This
completes the proof of Lemma A.1.�

Proof of Theorem 3.1: By assumption,P is such that

δ (A+BBTP) = 0. Letting C̄ =

[

BTP
C

]

, K̄ =
[

B 0
]

, it

follows that A+ K̄C̄ is such thatδ (A+ K̄C̄) = 0. Therefore,
(A+ K̄C̄,C̄) has no unobservable mode on the imaginary axis
and hence(A,C̄) has no unobservable mode on the imaginary
axis, either. Applying Lemma A.1 to the Lyapunov equation
ATP+PA+ C̄TC̄ = 0, it follows that A is pseudo-Hurwitz.
Hence, det( jω I −A) 6= 0 for all ω ∈ R.

Now, we show that (7) holds. SinceA is pseudo-Hurwitz,
then det( jω −A) 6= 0, ∀ω ∈ R. Hence, (8) implies that

G(− jω)TG( jω) =

I − [I −BTP(− jω I −A)−1B]T [I −BTP( jω I −A)−1B]

≤ I (39)

for all ω ≥ 0. It follows that max
ω∈R

{σmax[G( jω)G(− jω)T ]} ≤

1. Furthermore, note thatG( jω) → 0 as ω → ∞.
Now suppose that there exists an̄ω ≥ 0 such that
max

ω
{σmax[G(− jω)TG( jω)]} = 1. It follows from (39) that

there exists a vectorz such that[I − BTP( jω̄ −A)−1B]z =
0. Hence, det[I − BTP( jω̄ − A)−1B] = 0. However, using a
standard result on determinants, it follows that det[ jω̄ I −
A− BBTP] = det[ jω̄ I − A]det[I − BTP( jω̄ I − A)−1B]. Thus
det[ jω̄ I − A− BBTP] = 0. This conclusion contradicts the
assumption thatδ (A+BBTP) = 0. Hence, (7) holds.�

D. Proof of Theorem 3.2:

Let µ △
=

(

max
ω∈R

{σmax[(− jω I −AT)−1CTC( jω I −A)−1]}

) 1
2

.

It follows from (7) that there exist anε ≥ 0 such that
G( jω)G( jω)T ≤ (1− ε)I . Hence, ε

2µ2C( jω I −A)−1(− jω I −

AT)−1CT ≤ ε
2I for all ω ≥ 0. Then, given anyω ≥ 0,

C( jω I −A)−1B̃B̃T(− jω I −AT)−1CT ≤
(

1− ε
2

)

I , whereB̃ is
a non-singular matrix defined bỹBB̃T = BBT + ε/2µ2I . This
further implies that

B̃T(− jω I −AT)−1CTC( jω I −A)−1B̃≤
(

1−
ε
2

)

I (40)

for all ω ≥ 0. Let η2 △
= max

ω∈R

σmax[B̃T(− jω I −

AT)−1CTC( jω I − A)−1B̃]. Hence, ε
2η2 B̃T(− jω I −

AT)−1( jω I − A)−1B̃ ≤ ε
2I , holds for all ω ≥ 0. From

(40), it follows that given anyω ≥ 0,

G̃(− jω)TG̃( jω)≤ I (41)

whereG̃(s) = C̃(sI−A)−1B̃ with C̃ being a non-singular matrix
defined so thatC̃TC̃ = CTC+ (ε/2η2)I . Furthermore, (41)
implies G̃( jω)G̃(− jω)T ≤ I .

Since A has no eigenvalue on thejω-axis and the pair
(A, B̃) is stabilizable (since it is controllable), it follows
from Theorem 13.34 in [10] and (41) that there exists a
right coprime factorizationG̃(s) = Ñ(s)M̃−1(s) such that
M̃(s) ∈ RH ∞ is an inner transfer function matrix where
M̃(s) = F̃(sI−A− B̃F̃)−1B̃+ I ∈ RH ∞, Ñ(s) = C̃(sI−A−
B̃F̃)−1B̃∈ RH ∞ with F̃ = −B̃T X̃, and the Riccati equation
AT X̃ + X̃A− X̃B̃B̃T X̃ = 0 has a solutionX̃ ≥ 0 such that
A− B̃B̃T X̃ is stable. SinceM̃(s) is an inner transfer function, it
follows that Ñ( jω)ÑT (− jω) = G̃( jω)G̃T(− jω) ≤ I . Apply-
ing the bounded real lemma (e.g., see [7]), the above condition
is equivalent to the existence of a stabilizing solution to the
Riccati equation

(A− B̃B̃TX̃)T P̂+ P̂(A− B̃B̃T X̃)+ P̂B̃B̃T P̂+C̃TC̃= 0. (42)

Let P̃= P̂− X̃. Then substituting this into (42) gives that

(AT X̃+ X̃A− X̃TB̃B̃T X̃)

+(AT P̃+ P̃A+ P̃B̃B̃T P̃+C̃TC̃) = 0. (43)

Therefore, (43) implies thatAT P̃+ P̃A+ P̃BBTP̃+CTC+
ε

2µ2 P̃2+ ε
2η2 I = 0. This implies thatP= P̃ satisfies (9). This

proves the first claim of the theorem. Now we prove the second
claim.

From (7), it follows thatG( jω)GT(− jω) ≤ I . As the pair
(A,B) is stabilizable, Theorem 13.34 in [10] implies that there
exists a right coprime factorizationG(s) = N(s)M−1(s) such
that M(s) ∈ RH ∞ is an inner transfer function matrix where
M(s) = F(sI−A−BF)−1B+ I ∈ RH ∞, N(s) = C(sI−A−
BF)−1B∈ RH ∞ with F = −BTX, and the Riccati equation
ATX + XA− XBBTX = 0 has a solutionX ≥ 0 such that
A−BBTX is stable. SinceM(s) is an inner transfer function,
it follows that N( jω)NT (− jω) = G( jω)GT(− jω) ≤ I . Ap-
plying the bounded real lemma [7], the above condition is
equivalent to the condition that the following Riccati equation
has a stabilizing solution

(A−BBTX)T P̄+ P̄(A−BBTX)+ P̄BBT P̄+CTC= 0. (44)

Let P= P̄−X. Then substituting this into (45) gives that

(ATX+XA−XTBBTX)+ (ATP+PA+PBBTP+CTC) = 0. (45)

Therefore, the Riccati equation (8) has a stabilizing solution.
Furthermore, as the pair(A,C) is observable, it follows from
the Inertia theorem in [21] that the solutionP = PT of the
Riccati equation (8) is a pseudo-positive definite matrix. This
completes the proof.�

Proof of Theorem 3.3: The Riccati equation (10) can be
written as

(A−B2E
−1
1 DT

12C1)
TP+P(A−B2E

−1
1 DT

12C1)

+PB1BT
1 P+CT

1 (I −D12E
−1
1 DT

12)C1

−PB2E−1
1 DT

12(I −D12E
−1
1 DT

12)C1−PB2E
−1
1 BT

2 P

−CT
1 (I −D12E

−1
1 DT

12)D12E
−1
1 BT

2 P= 0. (46)

As the Riccati equation (10) has a solutionP = PT which
is pseudo-positive definite, the equation (46) also has this
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property. SubstitutingK = −E−1
1

(

DT
12C1+BT

2 P
)

into (46)
implies that

(A+B2K)TP+P(A+B2K)+PB1B
T
1 P

+(C1+D12K)T(C1+D12K) = 0 (47)

has a solutionP = PT which is pseudo-positive definite.
Also, the fact that the matrix (11) has no purely imaginary
eigenvalues implies thatA+ B2K + B1BT

1 P has no purely
imaginary eigenvalues. Therefore, it follows from Theorem
3.1 that the resulting closed-loop system

ẋ =
(

A−B2E
−1
1 DT

12C1−B2E−1
1 BT

2 P
)

x+B1w,

z = C1−D12E
−1
1

(

DT
12C1+BT

2 P
)

x

is pseudo strict bounded real. This completes the proof of
Theorem 3.3.�

E. Proof of Theorem 3.4

In order to prove Theorem 3.4, the following lemma is
introduced.

Lemma A.4:Suppose the conditions of Theorem 3.4 hold.

Then, the matrixZ
△
= (I −YX)−1Y = Y (I −XY)−1 > 0 is a

stabilizing solution to the Riccati equation

A∗Z+ZAT
∗ −ZM∗Z+N∗ = 0 (48)

whereA∗ = A−B1DT
21E

−1
2 C2+B1(I −DT

21E
−1
2 D21)BT

1 X, N∗ =
B1(I − DT

21E
−1
2 D21B

−1
1 ), M∗ = (C2 + D21BT

1 X)TE−1
2 (C2 +

D21BT
1 X)− (BT

2 X+DT
12C1)

TE−1
1 (BT

2 X+DT
12C1).

The proof of this lemma is similar to that of Lemma 3.2 in
[8] and is omitted.

Proof of Theorem 3.4: We will prove that the compensator
of the form (6), (15) makes the closed-loop system pseudo
strict bounded real. In order to establish this fact, note that
Lemma A.4 implies that matrixZ = (I −YX)−1Y > 0 is a
stabilizing solution to the Riccati equation (48). Substituting
(I −YX)−1Y = Z and (I −YX)−1 = (I + ZX) into (15), it
follows that the compensator input matrixBc can be written
as

Bc = B1DT
21E

−1
2 +Z(CT

2 +XB1DT
21)E

−1
2 . (49)

We now form the closed-loop system associated with system
(5) and compensator (6). This system is described by the state
equation

η̇ = Āη + B̄w,

z = C̄η , (50)

where η △
=

[

x
x− xc

]

, Ā
△
=

[

A+B2Cc −B2Cc

A−Ac+B2Cc−BcC2 Ac−B2Cc

]

, B̄
△
=

[

B1

B1−BcD21

]

andC̄
△
=
[

C1+D12Cc −D12Cc
]

.
In order to verify that this system is pseudo strict bounded

real, we first recall thatZ > 0 is a stabilizing solution to the
Riccati equation (48). This implies thatZ > 0 will also be a
stabilizing solution to the Riccati equation

A0Z+ZAT
0 +ZCT

0 C0Z+B0BT
0 = 0 (51)

where A0
△
= A − B1DT

21E
−1
2 C2 + B1(I − DT

21E
−1
2 D21)BT

1 X −

Z(C2 + D21BT
1 X)TE−1

2 (C2 + D21BT
1 X), B0

△
=

B1(I − DT
21E

−1
2 D21) − Z(C2 + D21BT

1 X)TE−1
2 D21,

C0
△
= E

1
2
1 (B

T
2 X+DT

12C1).
Let W = Z−1 > 0, then the Riccati equation (51) leads to

AT
0W+WA0+WB0BT

0W+CT
0 C0 = 0. (52)

Now, we prove thatW =WT is an anti-stabilizing solution of
(52). Using the Riccati equation (52), it follows that−(A0+
ZCT

0 C0) = Z(AT
0 +Z−1B0BT

0 )Z
−1. Hence the matrix−(AT

0 +
ZCT

0 C0) is similar to the matrix(A0+B0BT
0W)T . SinceZ is

a stabilizing solution to (51), the matrixAT
0 + ZCT

0 C0 must
be Hurwitz and hence the matrixA0+B0BT

0W must be anti-
Hurwitz; i.e.,W is an anti-stabilizing solution to (52).

Now, we defineΣ △
=

[

X 0
0 W

]

. As X is pseudo-positive

definite andW > 0, it follows that Σ is also pseudo-positive
definite. Using equations (13), (15), (49), (52), it is straight-
forward to verify thatΣ satisfies the Riccati equation̄ATΣ+
ΣĀ+ΣB̄B̄TΣ+C̄TC̄= 0. Furthermore, it is straightforward to

verify that Ā+ B̄B̄TΣ =

[

Ǎ11 Ǎ12

0 A0+B0BT
0W

]

whereǍ11 =

A−B2E−1
1 DT

12C1 − (B2E−1
1 BT

2 −B1BT
1 )X, Ǎ12 = B2E−1

1 BT
2 +

B2E−1
1 DT

12C1 + B1(I − DT
21E

−1
2 D21)BT

1W − B1DT
21E

−1
2 (C2 +

DT
21)ZW. Using the fact thatX is a stabilizing solution to

(13) andW is an anti-stabilizing solution to (52), it follows
that Ā+ B̄B̄TΣ has no purely imaginary eigenvalues. We
have noted previously that the matrixΣ is pseudo-positive
definite. Therefore, using Theorem 3.1, we conclude that the
system (50) is pseudo strict bounded real. Using the fact that

η =

[

I 0
I −I

][

x
xc

]

, it follows that the closed-loop system

[

ẋ
ẋc

]

=

[

A B2Cc

BcC2 Ac

][

x
xc

]

+

[

B1

BcD21

]

w;

z =
[

C1 D12Cc
]

[

x
xc

]

is also pseudo strict bounded real. This completes the proof
of Theorem 3.4.�

F. Proof of Theorem 3.5:

Consider the system described by the state equations

˙̃x = Ãx̃+ B̃2ũ+ B̃1w̃,
z̃ = C̃1x̃+ D̃12ũ,
ỹ = C̃2x̃+ D̃21w̃,

(53)

where

Ã = AT , B̃1 =CT
1 , B̃2 =CT

2 , C̃1 = BT
1 , D̃12 = DT

21,

C̃2 = BT
2 , D̃21 = DT

12, (54)

Let

Ẽ1 = D̃T
12D̃12 = E2, Ẽ2 = D̃T

21D̃21= E1, X̃ =Y, Ỹ = X. (55)

Substituting the matrices in (54) and (55) into Conditions
(i), (ii), (iii) of the theorem gives that the system (53) satisfies
the following conditions of Theorem 3.4:
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(i’) The Riccati, as shown below, has a pseudo-positive
definite stabilizing solution

(Ã− B̃2Ẽ−1
1 D̃T

12C̃1)
T X̃+ X̃(Ã− B̃2Ẽ−1

1 D̃T
12C̃1)

+X̃(B̃1B̃T
1 − B̃2Ẽ

−1
1 B̃T

2 )X̃

+C̃T
1 (I − D̃12Ẽ

−1
1 D̃T

12)C̃1 = 0. (56)

(ii’) The following Riccati equation has a positive definite
stabilizing solution

(Ã− B̃1D̃T
21Ẽ

−1
2 C̃2)Ỹ+ Ỹ(Ã− B̃1D̃T

21Ẽ
−1
2 C̃2)

T

+Ỹ(C̃T
1 C̃1−C̃T

2 Ẽ−1
2 C̃2)Ỹ

+B̃1(I − D̃T
21Ẽ

−1
2 D̃21)B̃

T
1 = 0. (57)

(iii’) The matrix X̃Ỹ has a spectral radius strictly less than
one,ρ(X̃Ỹ)< 1.

Using Theorem 3.4, it follows that there exists a dynamic
output feedback compensator of the form (6) such that the
closed-loop system consisting of the system (53) and this
compensator is pseudo strict bounded real. The parameters
of this compensator are as follows:

Ãc = Ã+ B̃2C̃c− B̃cC̃2+(B̃1− B̃cD̃21)B̃
T
1 X̃,

B̃c = (I − ỸX̃)−1(ỸC̃T
2 + B̃1D̃T

21)Ẽ
−1
2 ,

C̃c = −Ẽ−1
1 (B̃T

2 X̃+ D̃T
12C̃1). (58)

Substituting the matrix in (54) and (55) into (58), the
transfer function of this closed-loop system becomesG̃(s) =
[

BT
1 DT

21B
T
c

]

(

sI−

[

AT CT
2 BT

c
CT

c BT
2 AT

c

])−1[
CT

1
CT

c DT
12

]

.

Consider the system (5) with compensator (6) whose pa-
rameters are determined by (16). It is readily seen that the
transfer function of this closed-loop system̌G(s) satisfies
Ǧ(s) = G̃T(s). Therefore, from the fact that the system (53),
(54), (55), (58) is pseudo strict bounded real, it follows that

max
ω

σmax[ǦT(− jω)Ǧ( jω)] < 1. Also,

[

Ã B̃2C̃c

B̃cC̃2 Ãc

]T

=
[

A B2Cc

BcC2 Ac

]

and is pseudo-Hurwitz. Hence, the closed-

loop system (5), (6), (16) is pseudo strict bounded real.�

G. Proof of Theorem 4.1:

We first prove that the closed-loop system
[

ẋc

ẋ

]

=

[

Ac BcC2

B2Cc A

][

xc

x

]

+

[

BcD21

B1

]

w,

z =
[

D12Cc C1
]

[

xc

x

]

, (59)

obtained by substituting the controller (6), (20) into the system
(5), is pendulum-like. Letd̄ = [ 01×n eT

n TT ]T . Note the
identity

[

I 0
0 T

]−1[
Ac BcC2

B2Cc A

]

d̄

=





Ac BcC2a 0
B2aCc Ã1 0
B2bCc Ã2 0





[

0(2n−1)×1
1

]

= 0.

Since

[

I 0
0 T

]

is non-singular, it follows that
[

Ac BcC2

B2Cc A

]

d̄ = 0. Using this fact and Assumption

4.1, it follows from Lemma 2.1 that the resulting closed-loop
system (59) is pendulum-like system with respect to the set
Π(τ0p̄d̄).

From the output feedback pseudoH∞ control
theory in Section III, Conditions I, II, III of the

theorem imply that the matrix

[

λ I +A B2Cc

BcC2 λ I +Ac

]

is pseudo-Hurwitz and the frequency-domain condition
max

ω
σmax[ḠT(− jω)Ḡ( jω)] < 1 holds, where Ḡ(·) is

defined as Ḡ(s)
△
= M

1
2
τ Gc(s)M

− 1
2

τ and here Gc(s)
△
=

[

C1 D12Cc
]

(

s−

[

λ I +A B2Cc

BcC2 λ I +Ac

])−1[
B1

BcD21

]

.

Then, it follows thatGT
c (− jω)Mτ Gc( jω) < M−1

µ MτM−1
µ for

all ω ∈R. Now, all the conditions of Lemma 2.2 are satisfied
and hence the closed-loop nonlinear system (59), (2), (3), (4)
is Lagrange stable.�

H. Proof of Theorem 5.1:

We first prove that the closed-loop system (59), obtained
by applying the compensator (6), (22) to the system (5), is a
pendulum-like system.

Since

[

I 0
0 T̄

]−1[
Ac BcC2

B2Cc A

]

d̄ =




[

Ac BcC̃2a

B̃2a Ã1

] [

BcC̃2b

Ã2

]

01×(n−1) 0





[

d̄0

1

]

= 0 and

[

I 0
0 T̄

]

is a non-singular matrix, it follows that
[

Ac BcC2

B2Cc A

]

d̄ = 0. Using this fact and Condition

IV of the theorem, it follows from Lemma 2.1 that the
augmented closed-loop system (59), (2), (3), (4) is a
pendulum-like system with respect toΠ(p̄τ0d̄).

Using the output feedback pseudoH∞ control theory given
in Section III, it follows from Conditions I, II and III of
the theorem that the closed-loop system (59) is pseudo strict
bounded real. In a similar way to the proof of Theorem 4.1, we
haveGT

c (− jω −λ )MτGc( jω −λ )< M−1
µ MτM−1

µ . Now, using
Lemma 2.2, it follows that the closed-loop system (59), (2),
(3), (4) is Lagrange stable.�

I. Proof of Theorem 5.2

The stabilizing solutions to the Riccati equations (18) and
(19) are functions of the vector of constantsτ̄. To highlight
this, we use the notationX(τ̄) and Y(τ̄). In the proof of
Theorem 5.2, we use the following lemma:

Lemma A.5:The nonsingular stabilizing solutionsX(τ̄) and
Y(τ̄) to Riccati equations (18) and (19) are real analytic
functions on the setT.
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Proof: As X(τ̄) is nonsingular, we can rewrite the Riccati
equation (18) as

(λ I +A−B2Ē
−1
1 DT

12MτC1)+B1Mµ M−1
τ MµBT

1 X(τ̄)
−B2Ē−1

1 BT
2 X(τ̄)

= −X−1(τ̄)
[

(λ I +A−B2Ē
−1
1 DT

12MτC1)
T+

CT
1 (Mτ −MτD12Ē

−1
1 DT

12Mτ)C1X−1(τ̄)

]

×X(τ̄). (60)

As X(τ̄) is a pseudo-positive definite stabilizing
solution to the Riccati equation (18), it follows that
the matrix −(λ I + A − B2Ē−1

1 DT
12MτC1)

T − CT
1 (Mτ −

MτD12Ē
−1
1 DT

12Mτ)C1X−1(τ̄) is Hurwitz and hence
the pair (−(λ I + A − B2Ē−1

1 DT
12MτC1)

T ,−CT
1 (Mτ −

MτD12Ē
−1
1 DT

12Mτ)C1) is stabilizable.
The Riccati equation (18) can be written as

X−1(τ̄)(λ I +A−B2Ē
−1
1 DT

12MτC1)
T

+(λ I +A−B2Ē
−1
1 DT

12MτC1)X
−1(τ̄)

+(B1MµM−1
τ MµBT

1 −B2Ē
−1
1 BT

2 )

+X−1(τ̄)CT
1 (Mτ −MτD12Ē

−1
1 DT

12Mτ)C1X−1(τ̄) = 0.

(61)

Substituting the matrices −(λ I + A −
B2Ē−1

1 DT
12MτC1)

T , CT
1 (Mτ − Mτ D12Ē

−1
1 DT

12Mτ)C1 and
−B1MµM−1

τ Mµ BT
1 + B2Ē−1

1 BT
2 into A, R and Q of

Theorem 2 in [22], respectively, it follows thatX−1(τ̄)
is the maximal solution for all solutions of the Riccati
equation (61). SinceCT

1 (Mτ −MτD12Ē
−1
1 DT

12Mτ )C1 ≥ 0 and
−B1MµM−1

τ Mµ BT
1 +B2Ē−1

1 BT
2 is Hermitian, Theorem 4.1 in

[23] is applicable. Using Theorem 4.1 in [23] by substituting
−(λ I +A−B2Ē

−1
1 DT

12MτC1)
T , CT

1 (Mτ −MτD12Ē
−1
1 DT

12Mτ)C1

and −B1MµM−1
τ MµBT

1 + B2Ē−1
1 BT

2 into A, R and Q,
respectively, givesX−1(τ̄) is a real analytic function of̄τ ∈ T.
This further implies thatX(τ̄) is a real analytic function
of τ̄ ∈ T. Similarly, we can verify thatY(τ̄) is also a real
analytic function ofτ̄ ∈ T.�

Proof of Theorem 5.2:Let ε > 0 be chosen to be sufficiently
small so that the setB(τ̃ ,ε) =

{

τ̄ ∈ Rm
+ : ‖τ̄ − τ̃‖< ε

}

⊂
{τ̃ ∈ F : Condition I, II and III of Theorem 5.1 holds} . The
existence of such anε > 0 follows from Lemma A.5.

SinceX(τ̄) andY(τ̄) are analytic function on the setT, it
straightforward to verify thatf (τ̃) is an analytic function on
the setF. Since ∆−1 is a diagonal positive definite matrix,
it follows that Condition II of the theorem implies that
detJ(τ̃) 6= 0. Letc= f (τ̃). It follows from the Inverse Function
Theorem (e.g., see Theorem 7.8 in [24]) that there is an open
ball B(c, ι) and a unique continuously differentiable function
g from B(c, ι) into B(τ̃,ε) such thatτ̃ = g(c) and f (g(c̄)) = c̄
for all c̄∈ B(c, ι).

Since the set of rational vectorsQm is dense inRm, we can
choose ˇc∈ B(c, ι) such that all the elements of ˇc are rational
and non-zero. Also, it follows from the above discussion that
there exists a poinťτ ∈ B(τ̃ ,ε) such thatf (τ̌) = č whereτ̌ =
g(č). Therefore, Condition IV of Theorem 5.1 is satisfied.

It follows from the definition ofB(τ̃ ,ε) that τ̌ satisfies
Conditions I, II and III of Theorem 5.1. Hence, Theorem

5.1 implies that the corresponding closed-loop system is
pendulum-like and Lagrange stable.�

J. Proof of Theorem 6.1:

Substituting the controller law (29) into the system (5a),
(5b) gives the closed-loop system

ẋ =
(

A−B2Ē
−1
1 DT

12MτC1−B2Ē
−1
1 BT

2 X
)

x+B1ξ ,
z =

((

I −D12Ē
−1
1 DT

12Mτ
)

C1−D12Ē
−1
1 BT

2 X
)

x. (62)

Since T−1(A − B2Ē−1
1 DT

12MτC1 − B2Ē−1
1 BT

2 X)d̄ =
(Ã − B̃2Ē−1

1 DT
12MτC̃1 − B̃2Ē−1

1 B̃T
2 X̄)d̄ = 0, it follows that

(A−B2Ē−1
1 DT

12MτC1−B2Ē−1
1 BT

2 X)d̄ = 0. Using this fact and
condition II, it follows from Lemma 2.1 that the closed-loop
system (62) is a pendulum-like system with respect to
Π(p̄τ0d̄).

Using the fact that the Riccati equation (18) has a pseudo-
positive definite solution and Condition I holds, Theorem
3.3 implies that the closed-loop system (62) is pseudo strict
bounded real. Then, using Lemma 2.2, it follows that the
closed-loop system (62), (5b), (2), (3), (4) is Lagrange stable.
�
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