
1

Control Communication Complexity of
Distributed Actions

Wing Shing Wong and John Baillieul

Abstract

Recent papers have treated control communication complexity in the context of information-based,
multiple agent control systems including nonlinear systems of the type that have been studied in
connection with quantum information processing. The present paper continues this line of investigation
into a class of two-agent distributed control systems in which the agents cooperate in order to realize
common goals that are determined via independent actions undertaken individually by the agents. A
basic assumption is that the actions taken are unknown in advance to the other agent. These goals can
be conveniently summarized in the form of a target matrix, whose entries are computed by the control
system responding to the choices of inputs made by the two agents. We show how to realize such
target matrices for a broad class of systems that possess an input-output mapping that is bilinear. One
can classify control-communication strategies, known as control protocols, according to the amount of
information sharing occurring between the two agents. Protocols that assume no information sharing on
the inputs that each agent selects and protocols that allow sufficient information sharing for identifying
the common goals are the two extreme cases. Control protocols will also be evaluated and compared
in terms of cost functionals given by integrated quadratic functions of the control inputs. The minimal
control cost of the two classes of control protocols are analyzed and compared. The difference in the
control costs between the two classes reflects an inherent trade-off between communication complexity
and control cost.

Index Terms

Information-based control system, Control communication complexity, Brockett-Heisenberg system

1. INTRODUCTION

In [29] and [30] the authors proposed the concept of control communication complexity as
a formal approach for studying a group of distributed agents exercising independent actions
to achieve common goals. For distributed cooperative systems, it is natural to expect that
communication can help improve system performance, such as reducing the control cost. In
this paper, we demonstrate how the concept of control communication complexity can lead to
an inherent estimate of the value of communication bits in reducing the control cost.
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Information-based control theory aims to deal with systems in which the interplay between
control and communication are closely intertwined. For some early work see for example [10],
[31], [32], [12], [13], [18], [23], and [28]. In this paper, we investigate information-based systems
controlled by two distributed agents. In particular, we focus on cooperative control, the goal of
which is for the agents, Alice and Bob, to induce a system output that depends jointly on the
controls they independently select from their respective finite sets of control inputs. The problems
treated below have extensions to settings in which the number of agents is larger than two, but
such extensions are beyond the scope of the present paper.

The concept of multiple distributed selections of control actions from a specified set of possible
choices has not received much attention in the control literature until recent work by the authors.
While we believe this perspective is novel, there are connections with earlier work on cooperative
decision making such as in the team decision problems treated in [15] and [1]. It also makes
contact with (but differs from) a substantial body of work that has been devoted to extending the
concepts of centralized control to the treatment of distributed and multi-agent systems. Space does
not permit a complete survey, but relevant work includes [34] where the exchange of information
is modeled and then used to reduce a certain non-classical stochastic optimization problem to
a classical one. The recent papers [35] and [22] address problems of distributed control with
feedback loops closed through networks of communication-constrained data channels.

The aims and fundamental problems encountered in our work on control communication
complexity are substantially different. In what is reported below, the objective has been to extend
ideas of communication complexity theory such that the cost of both communication and control
is explicitly modeled and taken into account. The models being proposed are abstractions of a
variety of physical processes arising in diverse applications such as controlled quantum spin
systems and motion control of robotic vehicles. Our goal is to understand the general principles
underlying communication by means of the dynamics of such systems.

While the distinction between our work below and previous work on decentralized control is
real, the differences can be subtle as in the following example. Suppose that two agents wish
to find touring strategies in order to meet as quickly as possible, as exemplified by the scenario
of a mother and her child separated in a crowded park. For that problem, a practical solution,
not necessarily optimal, is to ask the child to stay in one place and for the mother to conduct
a complete tour of the park. For a more complex situation, consider Alice and Bob who jog in
the same park at the same time every day. By tacit understanding, they wish their paths to cross
or not to cross according to their moods (the choices) as prescribed in the following table

Alice in good mood Alice in bad mood
Bob in good mood Paths cross Paths do not cross
Bob in bad mood Paths do not cross Paths do not cross

Table 1

If Alice and Bob can call each other to communicate their choice of inputs, the problem is
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trivial to solve. However, if direct communication is not available or allowed, a basic question is
whether it is possible for Alice and Bob to follow different tour paths based on their moods to
accomplish the stated objective. Moreover, if multiple feasible solutions exist, we are interested
in identifying those that are optimal with regard to an appropriate metric, such as the total energy
expended by the agents over a period of time encompassing many jogs in the park.

Although Table 1 bears resemblance to the payoff functions in classical game theory, one
cannot over-emphasize the point that there is no optimization of the table values in our problem
formulation.

A second example that is more closely aligned to the model studied here is the mobile sensor
network positioning problem introduced in [29]. Consider a mobile sensor network, such as a
network of remote sensing satellites. The sensor network serves two agents, Alice and Bob; each
of them wants to monitor a geographic region of interest selected from a pre-defined list. The
agents do not communicate to each other directly; in fact, they may not even know the identity
of the other party. If for any given ordered pair of choices there is an optimal configuration
for the sensors, it is natural to investigate whether one can design communication and control
strategies, known as control protocols, for the agents to jointly maneuver the mobile sensors to
the optimal configuration based on their own individual control selections. Moreover, if such
feasible control protocols do exist, a second objective is to find the optimal protocols under
appropriately defined performance measures.

To fix ideas for subsequent discussions, there is assumed to be a control system with two
input channels, one to be used by each of the two agents. The case of larger numbers of agents
will be considered elsewhere. Throughout the paper we index the finite collection of control
inputs that Alice can send to the system by a set of labels A ≡ {1, . . . ,m}. Similarly, a finite
set B ≡ {1, . . . , n} is used to label the controls available to Bob. It is assumed that over
many enactments of the protocol the inputs used by Alice and Bob will appear to be randomly
chosen samples from uniformly distributed random variables with sample spaces A and B. If
one represents the target output when Alice chooses α = i and Bob chooses β = j by Hij , then
the m-by-n matrix

H = [Hij] (1.1)

provides a compact representation of the set of target outputs for all possible choices of inputs
and will be referred to as the target matrix.

While the structure of control protocols will be explained in the following section, a basic
observation is that the input labels of the agents, α ∈ A and β ∈ B, are key inputs to these
protocols. Once α and β are specified, following the basic premise of [16], the control protocol
is assumed to run to completion. For a control protocol, P , let x(P(i, j), t) represent the state
at time t when α = i and β = j. If the system output mapping is represented by F , the
feasibility problem of protocol-realizing control is to determine whether it is possible to design
a control protocol, P , so that at the termination time, T , the following condition is satisfied for
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all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}:

F (x(P(i, j), T )) = Hij. (1.2)

Solutions to the feasibility problem may involve control protocols that require observations
of the system state; even though there is no direct communication links between the agents, it
is possible for them to signal to one another via the dynamic system. An example of such a
control protocol was discussed in [30]. The number of bits exchanged during the execution of a
control protocol is a useful indicator of its complexity. On the other hand, control protocols can
also be evaluated in terms of the control cost incurred, for example as measured by the control
energy required. Although communication complexity and control cost seem unrelated, we will
demonstrate that there is a close relation between the two.

To make our results concrete, we will focus on a class of systems whose input-output mappings
are bilinear. A prototypical example of such a system is the Brockett-Heisenberg system, which
we hereafter refer to as the B-H system. The system is arises in sub-Riemannian geometry
([4]), and it shares essential features with models arising in nonholonomic mechanics ([26],[27])
and quantum mechanics ([30]). For B-H systems one can characterize exactly when protocol-
realizing control problems have feasible solutions in the absence of any communication between
the agents. Moreover, when a problem is feasible it is possible to determine the minimal control
cost needed to achieve it. On the other hand, in the case that the agents have partial information
about each other’s choice of inputs, it will sometimes be possible to decompose the control
communication problem into simpler parts on each of which a smaller control cost can be
calculated. The concept of ε-signaling will be introduced, by means of which the agents may
share partial information with each other. Pursuing this idea, it will be possible to estimate the
minimal control costs for two extreme scenarios, one without side communication or partial prior
knowledge and the other with enough communication to allow the players to precisely compute
intermediate results regarding the target matrix. The two extreme scenarios suggest a natural
framework for appraising the inherent value of a communication bit in terms of control cost.

The organization of the paper is as follows. In section 2, we provide a description of the basic
model as well as the definition of key concepts. In section 3, background results on a bilinear
input-output system are presented. In section 4 we describe how to transform the optimization of
a single round protocol into a matrix optimization problem, the solution to which is presented in
section 5. Implications of the result for understanding the trade-off issue between communication
complexity and control cost is explained in section 6. Multi-round protocols are discussed in
section 7. Section 8 provides a brief conclusion of the paper.

2. THE BASIC MODEL

The dynamical systems considered here are inherently continuous time systems of the form:
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
d

dt
x(t) = d(x(t), u(t), v(t)), x(0) = x0 ∈ RN ,

z(t) = c(x(t)) ∈ R,
(2.1)

where d is an arbitrary smooth vector field and u and v are scalar control functions that, once
chosen, are applied over a time interval of standard length T . The output z(·) is sampled at
discrete time instants t0 < t1 < . . . , where t0 = 0 and tk+1 = tk+T . Information about the state
is made available to the two agents through encoded observations bA(x(t)) and bB(x(t)) which
are made at the same time instants. The fact there are standard intervals of time over which
observations and selected control inputs are applied allows the analysis to make contact with
prior work on information-based control of discrete-time systems. Under our assumptions, we
thus consider the following simplified version of the model introduced in [29]. For k = 1, 2, . . .,
let tk represent the fixed time when observations are taken. Define

xk = x(tk). (2.2)

Observations of the state, bA(xk) and bB(xk), are made available to each agent as encoded
messages, Q(A)

k and Q(B)
k , consisting of finite bit-length codewords; in other words, the ranges of

these quantization functions are finite sets. Computation and communication delays in reporting
observations to the agents are assumed to be negligible. The agents select respective control
actions, uk = PA

k (Q(A)
k , α) and vk = PB

k (Q(B)
k , β), where QAk represents the set of coded

observations {Qk(bA(xk)), . . . , Q1(bA(x1))}; QBk is defined similarly. Note that the arguments
of uk and vk are defined on finite discrete sets. It is assumed that for each element in the
corresponding argument set, uk identifies a unique element in a set of admissible Lebesgue
measurable control functions over [tk, tk+1); similar assumption holds for vk. If one imposes a
probability measure on the sets of choices, these controls may be interpreted in terms of the
observation sigma algebras over the corresponding probability space. However, this probabilistic
interpretation is not essential to the results presented in this paper.

For reasons of simplicity, we assume that the controls u and v are scalar functions. The
codewords identifying the selected controls are transmitted to the dynamic system. Computation
and communication delays associated with this step are also assumed to be negligible. Thus at
time tk the dynamic system can determine the control selected by Alice and Bob.

The state transition (2.1) between times tk and tk+1 is thus described by the following discrete
time control model where the controls are square integrable scalar functions:

xk+1 = a(xk, uk, vk), x(0) = x0 ∈ RN ,

y
(A)
k = bA(xk) ∈ R`A , y

(B)
k = bB(xk) ∈ R`B ,

uk = PA
k (Q(A)

k , α), vk = PB
k (Q(B)

k , β),

zk = c(xk) ∈ R.

(2.3)

The quantity zk = c(xk) is a global system output that is observable to Alice, Bob, and
possibly to exogenous observers as well. The protocol parameters, α and β, are specified at
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time t0 and remain unchanged while the protocol runs to completion. The case where these
parameters are allowed to change over time is an interesting extension which is not considered
here.

Definition 2.1. A control protocol, P , consists of the functions:
{Q(A)

k }∞k=0, {Q
(B)
k }∞k=0, {P

(A)
k }∞k=0, and {P (B)

k }∞k=0.

We define the epoch between time tk and tk+1 as round k + 1. In round k + 1, an agent
first observes and then selects a control to be applied to the system. The selected controls
uk = PA

k (Q
(A)
k (bA(xk)), α) and vk = PB

k (Q
(B)
k (bB(xk)), β) will typically be time-varying in the

epoch between time tk and tk+1, but they depend only on the encoded value of the state at time
tk. Hence, the agents use essentially open-loop controls during the round, but the selection of
the control at the beginning of the round can depend on partial state information.

Definition 2.2. Consider a dynamic system, (2.3), with parameters defined by (a,bA,bB, c,x0).
A target matrix H is said to be realizable at termination time Tf if there exists a k-round
protocol, such that

tk = Tf ,

and for any choice of indices i ∈ A and j ∈ B, the k-round protocol defined with α = i and
β = j terminates with

c(xk) = Hij. (2.4)

The initial state is assumed to be fixed and known to the agents. For the first round, there
is no need for any communication to the agents. That is, we assume the quantization functions
Q

(A)
0 and Q(B)

0 always take the same value for all control choices and need not be transmitted.
Because a target matrix may be realized by different protocols, there is an interest in identifying

those that are optimal with respect to some performance measures. One such measure is to count
the number of communication bits exchanged during the protocol execution. To make this precise,
[29] introduced the concept of control communication complexity by extending the concept of
communication complexity that was introduced in computer science by Yao [33]. Briefly speaking,
given a dynamic system and a target matrix, one defines the protocol complexity of a feasible
protocol to be the maximum number of bits exchanged by the agents in running the protocol to
completion. The control communication complexity is then the minimum protocol complexity
over the set of all feasible protocols. A caveat: unlike classical communication complexity,
control communication complexity is defined with regard to a fixed dynamical system.

In the models considered in the present paper, control inputs are square integrable functions,
and this suggests measuring the complexity of a protocol in terms of the integral of a quadratic
function of the control. This makes contact with performance measures commonly used in
centralized control. Indeed, control communication complexity provides a rich new class of
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optimal control problems. While the relation between communication complexity and integral
control cost may not be transparent, the analysis of the B-H system in [30] demonstrates that
there is an intriguing relation between them. Intuition suggests that protocols in which there is
limited communication between the agents except for their common observations of the system
dynamics may require a larger integral control cost than those that employ a large number of
communication bits in addition to the system observations. If the agents have partial information
about each others choices of inputs, control laws can be more precisely tailored. A contribution of
this paper is to take the first step towards analyzing this trade-off by comparing two limiting types
of control protocols, namely, single round protocols which entail no communication bits, and
protocols in which agents share partial information about which elements α ∈ A and β ∈ B are
governing the execution of the protocol. We provide a fairly complete treatment of single round
protocols, but multi-round protocols are less well understood at this point. As a lower bound
on the control cost, we assume that it is possible for the agents to communicate their choices
of inputs to each other without incurring any control cost or state change, thereby decomposing
the original problem into a sequence of standard optimal control problems. The difference in
the minimal control costs between this type of protocol and the single round protocols having
no communication provides an upper bound on the saving afforded by the bits of information
that are communicated between the two agents as described in [29].

In the current model the only unknown parameter to Alice is Bob’s choice of control input
and vice versa the only unknown parameter to Bob is Alice’s choice of input. The single choice
problem in which each agent has only one choice of control input is equivalent to the scenario
where the agents have complete information on the system. Since the initial state is known and
there is no state noise, optimal distributed control can be devised without resorting to any state
observations. In other words, for optimizing single choice problems, we only need to consider
single round protocols.

For the rest of the paper we focus on scalar output functions to simplify the analysis. Vector-
valued outputs, as necessitated by the sensor network example, present a significantly larger
technical challenge, and will not be discussed here.

To analyze the cost of letting our control system evolve under different input curves in single
round protocols, we lift the evolution dynamics (2.3) back up to the continuous domain as
described by equation (2.1) but with c replaced by a scalar function.

Unless stated otherwise, the controls u and v exercised by the agents are assumed to lie in a
closed subspace L ⊂ L2[0, T ]. Let L ⊗ L represent the tensor product Hilbert space with inner
product defined by

< u1 ⊗ v1, u2 ⊗ v2 >=< u1, u2 >< v1, v2 > . (2.5)

At time T , the input-output mapping of system (2.1) can be regarded as a functional from L⊗L
to R, denoted by F . F of course depends on the initial state x0 but as the state is assumed to be
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fixed and since for the time being we consider only single round protocols, this dependency can
be hidden for simplification. Without loss of generality we assume that t0 = 0 and t1 = T = 1.
F is a bounded functional if there exists a finite ‖F‖ so that for all (u, v) ∈ L ⊗ L,

|F (u, v)| ≤ ‖F‖‖(u⊗ v)‖L⊗L = ‖F‖‖u‖L‖v‖L. (2.6)

To realize a given target matrix H, the optimal controls in general depend jointly on the
parameters, α and β. However, if the agents make their choices independently and there is
no communication between them, u can only depend on Alice’s parameter α and v on Bob’s
parameter β.

A target matrix H is realized by a single round protocol P if there exist sets of controls,
U = {u1, . . . , um} and V = {v1, . . . , vn}, so that

F (ui, vj) = Hij. (2.7)

We emphasize that F represents the system output at time T . Such a single round protocol
solution may not always exist as we will see in subsequent sections. The problem may become
feasible if Alice and Bob can exchange information about their choices to each other.

Given the system (2.1) and the parameter sets A and B, the cost of a single round control
protocol P is defined as an average of the required control energy, given explicitly by the formula,

I(U ,V) =
1

m

m∑
i=1

∫ 1

0

u2i (t)dt+
1

n

n∑
j=1

∫ 1

0

v2j (t)dt. (2.8)

One can also write equation (2.8) in the form,

I(U ,V) =
1

mn

m∑
i=1

n∑
j=1

(∫ 1

0

u2i (t)dt+

∫ 1

0

v2j (t)dt

)
, (2.9)

which highlights the fact that the control cost is averaged over all possible event outcomes based
on the control actions that are chosen by the agents.

In subsequent sections, we compute the minimum averaged control energy for an arbitrary
target function H. That is, our aim is to compute

ĈF (H) ≡ min
U ,V⊂L

I(U ,V) (2.10)

subject to the constraints that for i = 1, . . . ,m and j = 1, . . . , n,

F (ui, vj) = Hij. (2.11)

Before concluding this section we note that there are some similarities between the cooperative
control communication protocols studied in this paper and more classical dynamic game strategies
as studied in, say, [3]. Yet there are fundamental differences; for example, optimization of payoff
functions is not the focus of our investigation. Using the rendezvous problem as an example,
once the moods of the the agents are fixed, the outcome to be achieved is automatically defined
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by the target matrix. The investigation focus is on how to ensure that the target objective—paths
crossing or not crossing—can be guaranteed. The work here also has some connection with
the many papers in the literature dealing with distributed control of mobile agents, multi-agent
consensus problems, and classical team decision theory. See, for instance, [8],[9],[11],[14],[15],
and [24]. In these papers the dynamics of the subsystems controlled by the agents are usually
not tightly coupled and the control cost is not explicitly calculated, unlike the models we are
considering here. Moreover, allowing agents to select controls from sets of standard inputs is
also a fundamental point of departure.

3. SYSTEMS WITH BILINEAR INPUT-OUTPUT MAPPINGS

The simplest system defined in Section 2 is probably of the following linear type:
dx(t)

dt
= Ax(t) + u(t)b1 + v(t)b2, x0 ∈ RN ,

yA(t) = yB(t) = z(t) = cTx(t) ∈ R.
(3.1)

The input-output mapping of this system is affine in (u, v). Moreover, it is easy to check that
if F (ui, vk) = Hik, F (ui, vl) = Hil, F (uj, vk) = Hjk, and F (uj, vl) = Hjl for some ui, uj , vk,
and vl, then

Hik −Hjk = Hil −Hjl. (3.2)

Thus, there are severe restrictions on the set of realizable target functions for such an input-
output mapping. A class of distributed control systems that realizes a richer class of input-output
mappings has two independent input channels entering the system in a jointly bilinear fashion.
More precisely, we have the following definition:

Definition 3.1. Consider a system defined by equation (2.1) with control functions defined in L,
a closed subset of L2[0, T ]. The system is a bilinear input-output system if for any time t ≥ t0,
the output at t, regarded as a mapping (u(·), v(·)) 7→ z(T ) from L ⊗ L to R is bilinear in the
control function ordered pair (u, v).

In state-space representation, two prototypical classes come to mind. The first class is:
dx(t)

dt
= Ax(t) + u(t)v(t)b, x(0) = 0 ∈ RN ,

yA(t) = yB(t) = z(t) = cTx(t) ∈ R,
(3.3)

for some matrix A and vectors b and c.
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A second, in a way more important class, comes from the Brockett-Heisenberg (B-H) system
and their generalization, [4],[5]. The B-H system, denoted by ΣB, can be described as follows.

d

dt

 x

y

z

 =

 u

v

vx− uy

 ,

 x(0)

y(0)

z(0)

 =

 0

0

0

 ∈ R3,

yA(t) = yB(t) = z(t) ≡ c((x(t), y(t), z(t)).

(3.4)

The fact that the input-output mappings of these systems are bilinear in u and v can be easily
verified. Note that in both cases we could take L to be L2[0, T ] which results in a bilinear input-
output function with an infinite dimensional matrix representation. On the other hand, we could
also restrict L to some finite dimensional subspace of L2[0, T ] if only certain control functions
are allowed to be used in the system.

While our main results make use of properties that are to some extent particular to (3.4), it is
important to note that the system (3.4) has features of an intrinsically geometric nature in common
with a much larger class of two-input “drift-free” control systems whose output mappings are
not necessarily bilinear functionals of the inputs. These systems arise in applications including
the kinematic control of nonholonomic wheeled vehicles (See, e.g. [17].) and the control of
ensembles of spin systems arising in coherent spectroscopy and quantum information processing.
(See [19].) To illustrate how important features of a broad class of two-input systems are held in
common with (3.4), we consider the Bloch equations in a spatially fixed frame in which there is
an rf-inhomogeneity but no Larmor dispersion. The system is governed by ordinary differential
equations evolving on the rotation group SO(3).

Ẋ = [u(t)Ωy + v(t)Ωx]X, X(0) = I, (3.5)

where

Ωx =

 0 0 0

0 0 −1
0 1 0

 , Ωy =

 0 0 1

0 0 0

−1 0 0

 ,

and Ωz =

 0 −1 0

1 0 0

0 0 0


are the infinitesimal generators of rotations about the x-,y-, and z-axes in R3. To briefly explore
the connection between (3.4) and (3.5), we recall the area rule.

Lemma 3.1. (Brockett, [6].) Let u, v ∈ L2[SO(2)] be as above, and let x, y be defined by (3.4).
Then x, y ∈ L2[SO(2)], and z(·) as defined by (3.4) satisfies

z(1) =

∫ 1

0

v(t)x(t)− u(t)y(t) dt =

∮
x dy − y dx = 2A,
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where A is the signed area enclosed by (x(t), y(t)).

The connection between (3.4) and (3.5) is made by the following.

Example 3.1. Let the inputs

u(t) = ε cos(2πt), v(t) = ε sin(2πt)

be applied to both (3.4) and (3.5). For (3.4), corresponding to these inputs,

x(t) =
ε

2π
sin(2πt) and y(t) = − ε

2π
cos(2πt).

By Lemma 3.1 (or a direct calculation), the output of (3.4) is z(1) = ε2/(2π). For this choice
of input, (3.5) may be solved explicitly yielding

X(t) = exp

 0 −2π 0

2π 0 0

0 0 0

 t

 exp

 0 2π ε

−2π 0 0

−ε 0 0

 t

 .
Note that the first factor in this expression has period 1, while the second factor is periodic with
period T = 1/

√
1 + (ε/(2π))2. At time T ,

X(T ) =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1


where θ = −(1/2)(ε2/(2π)) + 0(ε2). Hence, the output of (3.4) provides a good approximation
of the z-axis rotation θ = −z(1)/2 resulting from application the inputs u, v to (3.5) over the
time interval [0, 1/

√
1 + (ε/(2π))2]. We refer to [30] for further information regarding area rules

and approximate motions of (3.5) on SO(3) and to [17] and [7] for information on the general
application of area rules in two-input control systems. As detailed in [20], systems of the form
(3.5) can be used to guide the design of rf pulses for quantum control experiments. While
(3.5) does not have the same natural bilinear input-output structure as (3.4) the approximate
relationship between the two system responses to closed curve inputs augurs well for potential
applications of the computability results to be established in the remainder of the paper.

With such broader applications of B-H systems in mind, we confine our attention in the
remainder of the paper to studying the response of (3.4) to those closed input curves (u(t), v(t))

that give rise to closed curves (x(t), y(t)). Recall that U = {u1, . . . , um} and V = {v1, . . . , vn},
represent the sets of the control actions. We assume the controls are elements in L, a closed
subspace of L2[0, 1] consisting of functions that can be represented by the following type of
Fourier series with square summable coefficients:

ui(t) =
√

2
∑∞

k=1 [ai,2k−1 sin(2πkt) + ai,2k cos(2πkt)] ,

vj(t) =
√

2
∑∞

k=1 [−bj,2k−1 cos(2πkt) + bj,2k sin(2πkt)] .
(3.6)

February 1, 2012 DRAFT



12

This restriction is not essential to the investigation reported in this paper, but it allows connection
to the results presented in [30] and [2]. Note that L contains continuous periodic functions with
zero mean and period one. From basic orthogonality properties of the sine and cosine functions,
one can show:

Lemma 3.2. If the controls ui and vj are used, then at time t = 1,

z(1) =
∑∞

k=1

ai,2k−1bj,2k−1
πk

+
∑∞

k=1

ai,2kbj,2k
πk

. (3.7)

Moreover, ∫ 1

0

u2i (t)dt =
∞∑
k=1

(a2i,2k−1 + a2i,2k), (3.8)

∫ 1

0

v2j (t)dt =
∞∑
k=1

(b2j,2k−1 + b2j,2k). (3.9)

The proof is a straightforward calculation and is omitted. Define matrices UB, VB, and FB

as follows:

UB =

 a1,1 a1,2 a1,3 . . .
a2,1 a2,2 a2,3 . . ....

...
... . . .

am,1 am,2 am,3 . . .

 , (3.10)

VB =

 b1,1 b1,2 b1,3 . . .
b2,1 b2,2 b2,3 . . ....

...
... . . .

bn,1 bn,2 bn,3 . . .

 , (3.11)

FB ≡
1

π


1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 0 2−1 0 0 0 . . .
0 0 0 2−1 0 0 . . .
0 0 0 0 3−1 0 . . .
0 0 0 0 0 3−1 . . ....

...
...

...
...

... . . .

 . (3.12)

Lemma 3.3. The output of the B-H system is given by UBFBVB
T . Moreover,

m∑
i=1

∫ 1

0

u2i (t)dt = trUBUB
T ,

n∑
i=1

∫ 1

0

v2i (t)dt = trVBVB
T . (3.13)

The proof is straightforward and is omitted. It should be noted that the weight assignment
and the indexing in (3.6) are chosen to allow the matrices UB,VB, and FB to assume these
simple representations. The control cost defined in (2.8) can be rewritten as

I(U ,V) =

(
1

m
trUBUB

T +
1

n
trVBVB

T

)
. (3.14)
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These results can be generalized to any system where the input-output mapping, F , is a
bounded functional on L⊗ L. Let {e1, e2, . . .} and {f1, f2, . . .} be orthonormal bases (possibly
the same) for L with respect to the standard inner product on L2[0, 1]. Let L be the order of L,
which could be infinity. If u =

∑L
i=1 riei and v =

∑L
j=1 sjfj , by the bounded bilinear

F (u, v) = F (
L∑
i=1

riei,

L∑
j=1

sjfj) =
L∑

i,j=1

risjF (ei, fj). (3.15)

We can represent ui ∈ U and vj ∈ V as L dimensional row vectors by means of their coefficients
with respect to these orthonormal bases. Let U be the m by L matrix whose i-th row is the vector
representation of ui and V be the n by L matrix whose j-th row is the vector representation
of vj . Under these bases, F has an L by L dimensional matrix representation: F ≡ [F (ei, fj)] ;

that is, F (ei, fj) = Fij .

Proposition 3.1. The condition that the targets are achievable can be expressed by the equation:

H = UFVT . (3.16)

The proof is straightforward and is omitted.
As usual, define the rank of F to be the number of its independent columns (or rows). The

rank of F is said to be infinite if there is no finite subset of columns (rows) in terms of which all
columns (rows) can be expressed as linear combinations. One can show via arguments presented
in Appendix A that the rank is independent of the bases chosen. Hence, we can speak of the
rank of a bilinear map without ambiguity.

Proposition 3.2. There exists a single round protocol that realizes an m-by-n target matrix, H,
of rank k, if and only if the rank of the bilinear input-output mapping F is at least k.

Proof : Let Hk be a full rank k-by-k sub-matrix of H. If there is a single round protocol to
realize H, we can select controls from the solution protocol to obtain a realization for Hk.
Conversely, if a single round protocol exists for Hk, we can extend it to obtain a protocol for
realizing H by adding control functions to the control sets according to the additional choices
allowed; these added controls can be constructed as linear combinations of the original controls
used in realizing Hk. Hence, we can assume without loss of generality that m = n = k and H

is a k-by-k full rank matrix.
Suppose a single round protocol exists for such a target matrix. The solutions consist of k

controls for Alice and k for Bob. We can construct an orthonormal basis for L so that the
controls used by Alice are spanned by the first k basis elements. Construct similarly a basis for
Bob. Represent F in terms of these bases and let F̂ denote the restriction of F to the first k
basis elements. Then, F̂ is a k-by-k matrix and the equation

H = UF̂VT (3.17)
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has a solution. It follows that the rank of F̂, and hence, F is at least k.
Conversely, if there exists a k-by-k matrix F̂ of full rank representing the restriction of F to

some control subspaces, equation (3.17) always has a solution for any k-by-k matrix, H. �

The previous proposition implies that the existence of a target realizing single round protocol
depends on the rank of the bilinear input-output mapping and the rank of the target matrix. For
a bilinear input-output mapping of finite rank, there exists target matrices that cannot be realized
without communication between the agents. For a bilinear input-output mapping of infinite order,
any finite dimensional target matrix can be realized by a single round protocol.

Given a matrix representation, F, for j = 1, 2, . . ., define its j-dimensional leading principal
minors by:

Fl =

[
F1,1 . . . F1,j...

. . .
...

Fl,j . . . Fj,j

]
. (3.18)

Definition 3.2. A matrix representation of a bilinear map is regular if for all positive integers
j less than or equal to its rank, its j-dimensional leading principal minors are nonsingular.

Definition 3.3. A matrix representation of a bilinear map is strongly regular if it is finite
dimensional and regular or if it is in diagonal form such that for all positive integers j the
diagonal elements satisfy the ordering

Fj,j ≥ Fj+1,j+1 > 0. (3.19)

It is easy to find examples of finite dimensional regular or strongly regular matrix representa-
tions. For the B-H system, the input-output mapping that takes (u, v) to z(1) by means of (3.4)
has a matrix representation FB described by (3.12) with respect to the orthonormal basis,

B0 = {
√

2 sin(2πt),
√

2 cos(2πt),
√

2 sin(4πt),
√

2 cos(4πt), . . .}. (3.20)

The matrix is diagonal of infinite rank and provides an infinite dimensional strongly regular
representation of F .

To prepare for subsequent discussions we recall some basic ideas on singular values. A p-by-
q matrix, M, has p singular values while MT has q singular values. It is well-known that the
nonzero singular values of the two matrices are identical (see [21] for details). We denote by
σi(M) the i-th singular value of M under the ordering

σ1(M) ≥ σ2(M) . . . ≥ σp(M). (3.21)

If M is a p-by-p symmetric matrix, represent by λi(M) the i-th eigenvalue under the ordering

λ1(M) ≥ λ2(M) . . . ≥ λp(M). (3.22)
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Lemma 3.4. Consider a k-by-k matrix, M, with a matrix decomposition so that

M =

[
M1,1 M1,2

M2,1 M2,2

]
, (3.23)

where M1,1 is l-by-l, M1,2 is l-by-(k − l), M2,1 is (k − l)-by-l, and M2,2 is (k − l)-by-(k − l).
Then, for i = 1, . . . , l

σi(M) ≥ σi(M1,1). (3.24)

Proof : Consider the following positive semi-definite matrix:

MMT

=

[
M1,1M

T
1,1 + M1,2M

T
1,2 M1,1M

T
2,1 + M1,2M

T
2,2

M2,1M
T
1,1 + M2,2M

T
1,2 M2,1M

T
2,1 + M2,2M

T
2,2

]
. (3.25)

It follows from Fischer’s Minimax Theorem (page 510, A.1.c [21]) that for i = 1, . . . , l

λi(MMT ) ≥ λi(M1,1M
T
1,1 + M1,2M

T
1,2). (3.26)

By means of a result of Loewner (page 510, A.1.b [21]):

λi(M1,1M
T
1,1 + M1,2M

T
1,2) ≥ λi(M1,1M

T
1,1). (3.27)

The result then follows by combining these two inequalities. �

We conclude this section by noting that if a matrix representation, F, is finite dimensional,
then its singular values are well-defined and we use σi(F) to represent the i-th largest singular
value. One can extend this concept to the infinite dimensional case in the following way. For
any matrix F and corresponding sequence of principal minors (F1,F2, . . . ) (3.18), it follows
from the preceding discussion that

σi(Fl) ≤ σi(Fl+1). (3.28)

On the other hand, it is shown in Appendix B that σi(Fl) ≤ ‖F‖ for all i. Hence the limit
liml→∞ σi(Fl) exists and is finite. Denote this limit by σi(F). If F is a strongly regular infinite
dimensional representation then clearly for all integers i and l, σi(F) = σi(Fl).

4. MATRIX REPRESENTATION OF THE OPTIMIZATION PROBLEM

The control cost of U and V defined in (2.8) can be rewritten in matrix form as
1

m
trUUT +

1

n
trVVT . (4.1)

Our goal of finding the optimal control to realize a given target matrix can now be represented
as a matrix optimization problem. One is also interested in approximate solutions restricted to
finite dimensional control subspaces. In particular, for any positive integer l, satisfying l ≥
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max(m,n), consider the following optimization problem involving the l-by-l leading principal
minor of F, Fl:
Optimization Problem (H,Fl): Let U and V be m-by-l and n-by-l matrices respectively. The
optimization problem is defined by:

min
U,V

(
1

m
trUUT +

1

n
trVVT

)
(4.2)

subject to the constraint:
H = UFlV

T . (4.3)

While it is not clear whether optimal sequences of controls for the above problem always exist,
the infimum cost, denoted by ĈF (H), is always well-defined if the target matrix is realizable.

One can formulate a slightly more general version of this optimization problem by allowing
the weights in the cost function to be arbitrary positive integers:
Generalized Optimization Problem (H,Fl; p, q): Let H be an m-by-n target matrix, Fl be an
l-by-l leading principal minor of F, with l ≥ max(m,n), p and q be arbitrary positive integers.
The optimization problem is defined by:

min
U,V

(
1

p
trUUT +

1

q
trVVT

)
(4.4)

subject to the condition
H = UFlV

T . (4.5)

There is an important connection between these two classes of problems. Given an m-by-n
target matrix, H, one can obtain another target matrix by appending rows of zeros and columns
of zeros to obtain an l-by-l matrix, with l ≥ n, l ≥ m, so that

H̃ =

[
H 0m,l−n
0l−m,n 0l−m,l−n

]
, (4.6)

where 0i,j is an i-by-j matrix with all zeros.
Now consider the Generalized Optimization Problem (H̃,Fl;m,n). Any optimal solution to

the Generalized Optimization Problem must satisfy the property:

ui = 0, vj = 0 (4.7)

for i > m and j > n. Otherwise, a lower cost solution can be obtained by substituting with
these zero controls. From this, one can conclude that the solution is also optimal for the lower
dimensional Optimization Problem, (H,Fl). Conversely, an optimal solution to the latter problem
can be extended to an optimal solution to the Generalized Optimization Problem (H̃,Fl;m,n).
Hence, by using the Generalized Optimization Problem formulation, we can assume without loss
of generality that the target matrices are square matrices with the same dimensions as Fl.
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5. SINGLE ROUND PROTOCOLS: MINIMUM ENERGY CONTROL

One of the key results in this paper is summarized by the following theorem.

Theorem 5.1. Consider a bounded bilinear input-output mapping, F , with a regular matrix
representation F with rank s. Let H be an m-by-n target matrix, such that s ≥ max(m,n). The
infimum control cost of any single round protocol that realizes H is given by:

ĈF (H) =
2√
mn

min(m,n)∑
k=1

σk(H)/σk(F). (5.1)

If the matrix representation is strongly regular, there exists a single round protocol that achieves
this infimum control cost.

Before proving Theorem 5.1, we present a corollary that specializes the result to the B-
H system (3.4). First note that the diagonal entries of FB in (3.12) can be represented as
(dk/2eπ)−1, and this leads to the following result.

Corollary 5.1. Consider the input-output system (3.4) and an m-by-n target matrix H. For
single round protocols that realize H the infimum control cost is given by

ĈFB
(H) =

2π√
mn

min(m,n)∑
k=1

dk/2eσk(H), (5.2)

and this is achieved by Alice choosing m controls and Bob choosing n controls from the space
spanned by the basis B0 defined in (3.20).

To prove the main theorem, we first establish a proposition in which we prove the result for
a square target matrix H and for controls restricted to finite dimensional subspaces.

Proposition 5.1. Consider an invertible matrix Fl and an l-by-l target matrix H with rank r.
The minimum control cost for the Generalized Optimization Problem (H,Fl; p, q) is achievable
and is given by the formula,

ĈFl
(H) =

2
√
pq

r∑
k=1

σk(H)/σk(Fl). (5.3)

Proof : To prove the proposition, first of all we show that the right-hand-side of (5.3) can be
achieved. Let Π be the orthogonal matrix that puts FlF

T
l into the following diagonal form:

ΠTFlF
T
l Π =

 σ2
1(Fl) . . . 0

... . . . ...
0 . . . σ2

l (Fl)

 . (5.4)

Define Ũ = ΠTUΠ and Ṽ = ΠTVΠ. Then (U,V) is a solution to

H = UFlV
T (5.5)
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if and only if (Ũ, Ṽ) is a solution to the equation

ΠTHΠ = ŨΠTFlΠṼT . (5.6)

Since the cost of (U,V) and (Ũ, Ṽ) are identical, we can assume without loss of generality
that FlF

T
l is in the diagonal form (5.4). Let Θ be the orthogonal matrix that diagonalizes HTH

so that

ΘHTHΘT =


σ2
1(H) . . . 0

. . .
... σ2

r(H)
...

0
. . .

0 . . . 0

 , (5.7)

and let

Rδ =

(
q

p

)1/4

·



√
σ1(H)σ1(Fl) . . . 0

. . .
...

√
σr(H)σr(Fl)

...
δ

. . .
0 . . . δ

 (5.8)

for a small δ > 0. In equation (5.7) the lower right-hand-side zero-diagonal block is absent if
r = l. Similarly for equation (5.8), the lower right-hand-side δ-diagonal block is absent if r = l.
Define

Uδ = HΘRδ
−1, VT

δ = F−1l RδΘ
T , (5.9)

we obtain a solution to (5.5). By direct computation, it follows that

1

p
trUδU

T
δ =

1

p
trHΘR−2δ ΘTHT (5.10)

=
1

p
trR−2δ ΘTHTHΘ (5.11)

=
1
√
pq

r∑
k=1

σk(H)/σk(Fl). (5.12)

Since entries of Uδ are affine functions of 1/δ, equation (5.12) implies Uδ is independent of δ.
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We express this by writing Uδ ≡ U0. It is clear that limδ→0 Vδ exists. Denote it by V0. Then,

1

q
trVδV

T
δ =

1

q
trΘRδ(FlF

T
l )−1RδΘ

T (5.13)

=
1

q
trRδ(FlF

T
l )−1Rδ (5.14)

=
1

q
trR2

δ(FlF
T
l )−1 (5.15)

=
1
√
pq

r∑
k=1

σk(H)

σk(Fl)
+

δ2
√
pq

l∑
k=r+1

1

σ2
k(Fl)

. (5.16)

Taking the limit as δ → 0,

1

p
trU0U

T
0 +

1

q
trV0V

T
0 =

2
√
pq

r∑
k=1

σk(H)/σk(Fl), (5.17)

proving that the right-hand-side of (5.3) can be achieved.
To complete the proof, we want to show the right-hand-side of (5.3) is a lower bound for all

single round protocols realizing H. We show this first for invertible H. In this case, all solutions
(U,V) to the equation (5.5) consist of invertible matrices and for every invertible V there is a
unique matrix U that solves (5.5). By applying polar decomposition to FlV

T we obtain

VT = F−1l RΘT , (5.18)

for an orthogonal matrix, Θ, and a non-singular symmetric matrix, R. These two matrices can
be regarded as free variables and we can parametrize the solution space to (5.3) by R and Θ.
Specifically, if we let U = HΘR−1, then the control cost is

1

p
trUUT +

1

q
trVVT

=
1

p
trR−2ΘTHTHΘ +

1

q
trR2(FlF

T
l )−1. (5.19)

For any two l-by-l positive semidefinite symmetric matrices, P and Q

trPQ =
l∑

k=1

λk(PQ) ≥
l∑

k=1

λk(P)λl−k+1(Q). (5.20)

(See, for instance, p.249 of [21].) Therefore,

trR2(FlF
T
l )−1 ≥

l∑
k=1

λ2k(R)σ2
l−k+1(F

−1
l ) (5.21)

=
l∑

k=1

λ2k(R)/σ2
k(Fl). (5.22)
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Similarly,
trR−2ΘTHTHΘ ≥

∑l
k=1 σ

2
k(H)/λ2k(R). (5.23)

Hence,

I(U ,V) ≥ 1

p

l∑
k=1

σ2
k(H)/λ2k(R) +

1

q

l∑
k=1

λ2k(R)/σ2
k(Fl). (5.24)

One can minimize the right-hand-side of (5.24) by considering

min
l∑

k=1

[
1

p

σ2
k(H)

tk
+

1

q

tk
σ2
k(Fl)

]
, (5.25)

subject to the constraint
t1 ≥ t2 . . . ≥ tl > 0. (5.26)

Via calculus, the unconstrained optimal solution to (5.24) is shown to be

tk = σk(H)σk(Fl)

√
q

p
, (5.27)

which also satisfies the condition in (5.26). It follows that

ĈFl
(H) ≥ 2

√
pq

l∑
k=1

σk(H)/σk(Fl). (5.28)

By (5.17) the right-hand-side of (5.28) can be achieved, hence the inequality is an equality and
the proposition holds for invertible H, that is r = l.

We want to show the inequality (5.28) also holds when H is not full rank. Suppose Û and
V̂ give an optimal solution to (H,Fl; p, q). Define

U(ε) = Û + εI, V(ε) = V̂ + εI, (5.29)

where I is the l-by-l identity matrix. Other than at most a finite set of values, all these matrices
are invertible. Without loss of generality, assume that for some a > 0 and all 0 < ε ≤ a, the
matrices U(ε) and V(ε) are invertible and restrict ε in subsequent discussion to such an interval.
Let U(ε) denote the set of controls corresponding to U(ε) and similarly, V(ε) denote the sets of
controls corresponding to V(ε). Define

G(ε) = U(ε)FlV(ε)T = H + ε(ÛFl + FlV̂
T ) + ε2Fl. (5.30)

For 0 < ε ≤ a, the matrices G(ε) are invertible. Hence,
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I(U ,V) =
1

p
trÛÛT +

1

q
trV̂V̂T (5.31)

= lim
ε→0

(
1

p
trU(ε)U(ε)T +

1

q
trV(ε)V(ε)T

)
(5.32)

≥ lim
ε→0

ĈFl
(G(ε)) (5.33)

= lim
ε→0

2
√
pq

l∑
k=1

σk(G(ε))/σk(Fl) (5.34)

=
2
√
pq

l∑
k=1

σk(H)/σk(Fl) (5.35)

=
2
√
pq

r∑
k=1

σk(H)/σk(Fl) = ĈFl
(H). (5.36)

Note that the equality (5.34) follows from the fact that the proposition holds for invertible target
matrices, while the equality (5.35) follows from the continuity of the singular values as a function
of the matrix coefficients. This proves the proposition. �

Proof of Theorem 5.1: If F is finite dimensional, the theorem follows from Proposition 5.1 if
we take Fl to be Fs. Hence, assume that F is infinite dimensional and let {e1, e2, . . .} and
{f1, f2, . . .} be the bases corresponding to the representation of F. Let Û = {û1, . . . , ûm} and
V̂ = {v̂1, . . . , v̂n} be the controls in an optimal solution for the Optimization Problem (H,F),
with corresponding matrices Û and V̂ respectively. Let

ûi =
∞∑
j=1

aijej, v̂i =
∞∑
j=1

bijfj. (5.37)

Then

I(Û , V̂) =
1

m

m∑
i=1

∞∑
j=1

a2ij +
1

n

n∑
i=1

∞∑
j=1

b2ij, (5.38)

and
H = ÛFV̂T . (5.39)

Define approximating control functions

û
(l)
i =

l∑
j=1

aijej, v̂
(l)
i =

l∑
j=1

bijfj (5.40)

with corresponding m-by-l and l-by-n matrices

Ûl =

 a1,1 . . . a1,l
... . . . ...
am,1 . . . am,l

 , V̂T
l =

 b1,1 . . . b1,n
... . . . ...
bl,1 . . . bl,n

 . (5.41)
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Then, equation (5.38) can be rewritten as

I(Û , V̂) =
1

m
trÛÛT +

1

n
trV̂V̂T (5.42)

= lim
l→∞

(
1

m
trÛlÛ

T
l +

1

n
trV̂lV̂

T
l

)
. (5.43)

Define the m-by-n approximate target matrix by

Hl =
(
H

(l)
ij

)
= ÛlFlV̂

T
l , (5.44)

where Fl is the l-th principal minor of F. Since F is bounded,

Hij = F (ûi, v̂j) = lim
l→∞

F (û
(l)
i , v̂

(l)
j ) = lim

l→∞
H

(l)
ij . (5.45)

In matrix form:
lim
l→∞

ÛlFlV̂
T
l = lim

l→∞
Hl = H. (5.46)

Since the singular value function is continuous on the space of m-by-n matrices, for any integer
k, 0 ≤ k ≤ m, we have

lim
l→∞

σk(Hl) = σk(H). (5.47)

For any integer l > max(m,n), define the l-by-l augmented matrix H̃l by

H̃l =

[
Hl 0m,l−n
0l−m,n 0l−m,l−n

]
. (5.48)

Here, 0ij represents an i-by-j zero matrix, (empty when one of the dimensions is zero.) As argued
before, the minimum control costs for the Optimization Problem (Hl,Fl) and the Generalized
Optimization Problem (H̃l,Fl,m, n) are identical. By Proposition 5.1,

1

m
trÛlÛ

T
l +

1

n
trV̂lV̂

T
l ≥ ĈFl

(H̃l) (5.49)

=
2√
mn

l∑
k=1

σk(H̃l)/σk(Fl). (5.50)

Moreover, the last expression in (5.50) can be realized by some control functions.
The rank of H̃l is equal to the rank of Hl, which is at most min(m,n), moreover, the first

min(m,n) singular values of the two matrices are identical. It follows that for k > min(m,n)

σk(H̃l) = 0, (5.51)

and the last expression in (5.50) is equal to

2√
mn

min(m,n)∑
k=1

σk(Hl)/σk(Fl) (5.52)
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and can be realized. The first part of the theorem then follows from:

1

m
trÛÛT +

1

n
trV̂V̂T ≥ lim

l→∞

2√
mn

min(m,n)∑
k=1

σk(Hl)/σk(Fl)

=
2√
mn

min(m,n)∑
k=1

σk(H)/σk(F). (5.53)

Since F is diagonal, σk(Fl) = σk(F) for all integers k and l, the solution to the Optimization
Problem (Hl,Fl) achieves the control cost given by the lower bound in (5.53). This completes
the proof of Theorem 5.1. �

We conclude the discussion in this section by pointing out that there is an apparent non-
symmetry in the solution constructed in the proof of Proposition 5.1. Even if H and F are
symmetric, the optimal solution may not be symmetric in the sense that U and V may not be
identical. This would appear less surprising if one considers the example where H is[

0 1

1 0

]
, (5.54)

and F is the 2-by-2 identity matrix. Having a symmetric solution to the optimization problem
would imply H is non-negative semidefinite which is obviously not the case.

6. COST OF DISTRIBUTED ACTION

Results in the preceding section provide an explicit formula for computing the control cost in
the absence of any communication between the agents. However, if information can be shared
between the agents, controls with lower average cost of distributed action can be designed. For
the B-H system, if both agents have information on the other agent’s choice, they can use the
following control functions to realize the target, Hij:

uij(t) = sgn(Hij)
√

2πHij cos(2πt), (6.1)

vij(t) =
√

2πHij sin(2πt). (6.2)

The control energy of such a protocol is 2π|Hij|. Using the isoperimetric inequality [25], one
can show as in [30] that this is the minimum control cost to realize the single target, Hij .

Hence, if both agents have complete information of the other agent’s choice, the averaged
control cost over all possible choices (m for Alice and n for Bob) is

J(H) =
2π

mn

m∑
i=1

n∑
j=1

|Hij|, (6.3)

for the B-H system. One can compare this control cost with the control cost for a single round
protocol defined in (2.9) and note that while the number of control input pairs available to Alice
and Bob is the same in both cases, the number of distinct controls used by each is typically not.
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In order to enable a concrete comparison between single round protocols and protocols based
on completely shared information we will use the B-H system as an example. First of all, we
consider the case that H is a Hadamard matrix of order n. Since the entries of such matrices
are either 1 or -1, the averaged control cost with perfect information J(H) is simply 2π. On the
other hand, the singular values of H are all equal to

√
n. Thus, by Corollary 5.1 the optimal

single round protocol cost ĈFB
(H) is{

π
√
n

2
(n+ 2) for evenn,

π
√
n

2
(n+ 2 + 1

n
) for oddn.

(6.4)

Thus, the ratio of two control costs is asymptotically (n+ 2)
√
n/4.

We can perform a similar comparison for the case of orthogonal matrices. To do so, we need
to quote the following bounds on the sum of the absolute value of the entries in an orthogonal
matrix. These elementary results on matrices are provided here for the sake of completeness.

Proposition 6.1. Consider B-H system. For an orthogonal H,

2π

n
≤ 2π

n2

n∑
i,j=1

|Hij| ≤
2π√
n
. (6.5)

For any square matrix H,
2π

n2

n∑
i,j=1

|Hij| ≤
2π

n

n∑
k=1

σk(H). (6.6)

Proof : To prove the lower bound when H is an orthogonal matrix, use the inequality
n∑

i,j=1

|Hij| ≥
n∑

i,j=1

H2
ij = n. (6.7)

To prove the upper bound, consider the optimization problem,

S = max
n∑

i,j=1

xij (6.8)

subject to the constraint that for all j,
∑n

i=1 x
2
ij = 1. Since the constraint is weaker than the

requirement that the xij’s form an orthogonal matrix, it follows that
n∑

i,j=1

|Hij| ≤ S = n max
z21+···+z2n=1

n∑
i=1

zi = n
√
n. (6.9)

For the case where H is a general square matrix, decompose it by SVD so that

H = ΦΛΘ, Λ =


σ1(H) 0 · · · 0

0 σ2(H) · · · 0
...

...
...

...
0 0 · · · σn(H)

 . (6.10)
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where Φ and Θ are orthogonal. For k, 1 ≤ k ≤ n, define an n-by-n matrix, H(k), by

H(k) = ΦΛkΘ, Λk = diag[0, . . . , 0︸ ︷︷ ︸
k−1

, σk(H), 0, . . . , 0︸ ︷︷ ︸
n−k

], (6.11)

Then, ∑n
i,j=1 |H(k)ij| = σk(H)

∑n
i,j=1 |ΦikΘkj|

≤ σk(H)
∑n

i=1 |Φik|
∑n

i=1 |Θkj| ≤ nσk(H).
(6.12)

From this, it follows that

2π

n2

n∑
i,j=1

|Hij| ≤
2π

n2

n∑
k=1

n∑
i,j=1

|H(k)ij| ≤
2π

n

n∑
k=1

σk(H). (6.13)

�

This result together with Corollary 5.1 imply the following

Theorem 6.1. For the B-H system and a general n-by-n target matrix H,

ĈFB
(H)− J(H) ≥ 2π

n

n∑
k=1

(dk/2e − 1)σk(H) ≥ 0. (6.14)

The difference in the control energy is strictly positive if the rank of H is larger than 2.

If H is an orthogonal matrix, then the optimal single round cost ĈF (H) is{
π
2
(n+ 2) for evenn,

π
2
(n+ 2 + 1

n
) for oddn.

(6.15)

By comparison,
2π

n
≤ J(H) ≤ 2π√

n
. (6.16)

For example, consider the case where n = 2. The identity matrix, I2, incurs an averaged cost
of π under information sharing: there are two entries whose computation requires control energy
of 2π; for the other two entries, H12 and H21, zero control can be used. However, for the case
where the information on the choice is not shared, it is not possible to save control cost by
setting any of the controls to zero, resulting in a cost increase by a factor of 2. In general, the
control cost ratio grows super-linearly as a function of the dimension of target matrix.

7. MULTI-ROUND PROTOCOLS

Analysis from the previous section indicates that control cost can be substantially reduced by
using protocols that allow communication between the agents. For the extreme scenario where
the agents have complete prior information of each others inputs, optimization of the control
cost can be reduced to solving a family of single output target optimization problems. For any
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m-by-n target matrix H and a general bilinear input-output mapping, F, the averaged control
cost for solving a family of single output target optimization problems is given by:

J(H) =
2

mnσ1(F)

m∑
i=1

n∑
j=1

|Hij|. (7.1)

This is a generalization of equation (6.3).
If the agents do not have prior information on the inputs to be selected, they can communicate

their input choice to each other in a multi-round protocol. Detailed analysis of general multi-
round protocols lies beyond the scope of this paper. We shall briefly consider two-phase protocols,
however, in which one phase allows partial information to be shared at negligible cost. The main
result here is that if the cost of signaling certain partial information is negligible, the control
cost can be made arbitrarily close to the lower bound, J(H) that was determined in the previous
section. It is important to note that the protocols approaching J(H) do not necessarily require the
agents to communicate their choices completely to each other. It will be shown that the number
of bits communicated is related to the classical communication complexity of computing H.
This result provides insight into the value of information in terms of the control energy savings
that can be achieved through communication between the agents as they evaluate H.

Various concepts of communication at negligible cost can be considered. One possible ap-
proach to partial information exchange in a two-phase protocol is to use a side channel in
an initiation phase in which it is assumed that there is no cost of transmitting some partial
information between the agents. It is in the second phase that this information is used by the
agents to select controls that effect the computation specified in the single-round protocols of
Section 5. Another approach to information sharing at negligible communication cost is to assume
that under certain circumstances, very low cost control signals can be used. Formally, for the
model (2.3) described in section 2, we introduce the following concept of ε-signaling capability.

Definition 7.1. Alice possesses ε-signaling capability around the initial state x0 if for any ε

there exist times, 0 < t1 < t2 and controls u1 and u2 for Alice, v1 for Bob, so that∫ t2

0

(u21 + v21)dt < ε,

∫ t2

0

(u22 + v21)dt < ε. (7.2)

Moreover, when u is set to u1 or u2 and v is set to v1, the following conditions hold:
1) xu1,v1(t1) 6= xu2,v1(t1), 2) xu1,v1(t2) = xu2,v1(t2) = x0.

One can define similar capability for Bob. For example, for the B-H system both agents possess
ε-signaling capability as the loop controls can enclose arbitrarily small areas. For systems in
which both agents have ε-signaling capability one can design multi-round protocols for realizing
H with control cost arbitrarily close to J(H). These protocols consist of two phases. In the first
phase, the agents communicate their choices of inputs to each other. Based on the information
received, the original target matrix is decomposed into a finite number of sub-matrices and
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controls can then be applied to realize the sub-matrix that corresponds to the choices of the
agents. We call such a protocol a two-phase protocol. To describe the detail, we recall the
definition of a monochromatic matrix, (see for example [16]).

Definition 7.2. A sub-matrix is said to be monochromatic if all its entries have the same value.

Given an m-by-n target matrix, H, we can define a set of sub-matrices, {H1, . . . ,HK}, so
that Hk is an mk-by-nk sub-matrix with its (i, j) entry defined by

Hk(i, j) = Htk,i,sk,j (7.3)

where tk,i lies in an index set Mk ⊂ {1, . . . ,m} and sk,j lies in an index set Nk ⊂ {1, . . . , n}.
Note that by definition, |Mk| = mk, |Nk| = nk. Define lk = min(mk, nk).

The set of sub-matrices forms a matrix partition for H if the following holds:

1) For any i and j with 1 6 i 6 m and 1 6 j 6 n, there exist k, α, and β such that
tk,α = i, sk,β = j.

2) If tk,α = tk′,α′ , sk,β = sk′,β′ , then k = k′, α = α′, and β = β′.

For example, the following figure shows a sub-matrix partition involving five sub-matrices:
H11 H12

H21 H22

H31

H41

H31

H41

H13 H14

H23 H24

H33 H34

H43 H44

 (7.4)

It follows from direct verification that for all k
lk∑
l=1

σ2
l (Hk) = trHkH

T
k =

mk∑
i=1

nk∑
j=1

H2
k(i, j) (7.5)

=
∑

tk,i∈Mk

∑
sk,j∈Nk

H2
tk,i,sk,j

. (7.6)

Thus, for a sub-matrix partition into K sub-matrices,
K∑
k=1

lk∑
l=1

σ2
l (Hk) =

m∑
i=1

n∑
j=1

H2
i,j = trHHT . (7.7)

A sub-matrix partition can be regarded as a decomposition of a complex distributed control
problem into simpler sub-problems. We can estimate the effectiveness of a decomposition by
calculating the control cost averaged over the decomposed sub-problems, namely,

A =
1

mn

K∑
k=1

mknkĈF(Hk). (7.8)
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The following result provides a lower bound for this averaged control cost.

Theorem 7.1. Consider a bounded, bilinear input-output mapping, F , with a regular matrix
representation F. The average control cost, A, for applying single round protocols to the sub-
matrices in a sub-matrix partition {H1, . . . ,HK} of H satisfies the lower bound:

A =
1

mn

K∑
k=1

mknkĈF(Hk) ≥
2

mnσ1(F)

m∑
i=1

n∑
j=1

|Hij|. (7.9)

If all the sub-matrices are monochromatic, this lower bound is the infimum value of A.

Proof :

A =
1

mn

K∑
k=1

mknkĈF(Hk) (7.10)

≥ 2

mn

K∑
k=1

√
mknk

lk∑
l=1

σl(Hk)/σl(F) (7.11)

≥ 2

mnσ1(F)

K∑
k=1

√
mknk

lk∑
l=1

σl(Hk) (7.12)

≥ 2

mnσ1(F)

K∑
k=1

(
mknk

lk∑
l=1

σ2
l (Hk)

)1/2

(7.13)

=
2

mnσ1(F)

K∑
k=1

(
mknk

mk∑
i=1

nk∑
j=1

H2
k(i, j)

)1/2

(7.14)

≥ 2

mnσ1(F)

K∑
k=1

mk∑
i=1

nk∑
j=1

|Hk(i, j)| (7.15)

=
2

mnσ1(F)

m∑
i=1

n∑
j=1

|Hij|. (7.16)

(7.15) follows from the well-known inequality that for any real numbers, (x1, . . . , xp)

p

p∑
i=1

x2i ≥

(
p∑
i=1

xi

)2

(7.17)

with equality holding if and only if all the xi’s equal to each other.
According to Theorem 5.1 the infimum value of A is given by the right-hand-side of (7.11). If

all the sub-matrices are monochromatic, then σl(Hk) if l > 1. Hence inequalities (7.12), (7.13),
and (7.15) all become equality, and the last expression in (7.16) is the infimum value. �

In the first phase of a two-phase protocol, the agents communicate with each other via
the dynamic system by means of ε signals. The bit sequence defined by the communication
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complexity protocol can be regarded as an algorithm to identify the chosen sub-matrix in a
given partition. We can visualize the algorithm by moving down a binary tree, so that depending
on the value of the bit sent by either one of the agents in the communication protocol, we
descend from a given node to its left or right child. For additional details about communication
protocol,we refer to [16] or [29]. To make explicit contact with [16], suppose that each sub-
matrix in the given matrix partition is monochromatic. The number of leaves in the binary
tree that defines the protocol is equal to the number of sub-matrices defining the partition, and
each of these sub-matrices is mapped to one of the leaves of the binary tree. The maximum
number of bits communicated in the protocol is equal to two times the depth of the tree. (Since
the communication has to pass through the dynamic system, if Alice wants to send one bit of
information to Bob, the bit has to pass from Alice to the dynamic system and from the dynamic
system to Bob, leading to two communication bits being exchanged.) The protocol complexity
is thus defined as two times the height of the binary tree and can provide an upper bound for
control communication complexity.

For illustration, consider a target function,

H =

 1 1 1 1
1 1 5 5
2 3 5 5
2 3 5 5

 (7.18)

The sub-matrix partition shown in (7.4) represents a decomposition of the target matrix into
the minimum number of monochromatic blocks. (Such minimal decomposition is not unique.)
One can define a communication protocol to identify the components of the matrix partition
(monochromatic blocks in this case) as follows.

Protocol to communicate the structure of a matrix partition: Assume that Alice controls the
choice of columns and Bob controls the choice of rows.

1) Alice sends a bit to Bob with value 0 if she chooses the first 2 columns, otherwise she
sends 1.

2) Upon receiving a bit of value 1 from Alice, Bob sends a bit to Alice with value 0 if he
chooses the first row, otherwise, he sends a bit of value 1. No further bit needs to be sent.

3) On the other hand if a bit of value 0 is received from Alice, Bob sends a bit to Alice with
value 0 if he chooses the first two rows, otherwise he sends a bit 1. Only in the latter
case, Alice sends one more bit, with value 0 if she chooses the first column and 1 if she
chooses the second column.

The communication protocol can be represented by the binary tree shown in Figure 1. A
maximum of six bits (counting bits sent by the dynamic system) are needed in this protocol in
order to guarantee all sub-matrices can be identified.

In our two-phase protocol, once the communication phase is completed—which is to say
that the phase-one protocol has run to completion and a leaf node identifying a sub-matrix has
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Fig. 1. Binary tree of a communication protocol to realize the partition defined by the matrix in equation (7.4).

been reached, the second phase of the protocol starts. The target matrix that is collaboratively
evaluated by the agents in phase two is the sub-matrix that had been selected in phase one. It is
assumed that in phase one, communication of negligible cost (e.g. ε-signaling) occurs, but that
in phase two, open-loop controls of the form described in Section 5 realize the output specified
in the chosen sub-matrix. It is clear that one can construct two-phase protocols with total control
cost arbitrarily close to (7.1), the lower bound for all protocols realizing H. We summarize the
results in this section in the following theorem.

Theorem 7.2. Consider a bounded, bilinear input-output mapping, F , with a regular matrix
representation F. Suppose both agents have ε-signaling capability around the initial state. Let
H be an m-by-n target matrix. The infimum control cost of any multi-round protocol that realizes
H is given by:

J(H) =
2

mnσ1(F)

m∑
i=1

n∑
j=1

|Hij|. (7.19)

By comparing the control cost of an optimal single round protocol as given by (5.1) with
that of the multi-round protocol (7.19), one can estimate the value of communicated bits in
reducing the control energy cost. Using the target matrix H of (7.18) as an example, for the
B-H system the minimal control cost without using any communication is defined in equation
(5.2) and has a value of 7.68π. If communication cost is negligible then the minimal control cost
is approximated by the right-hand-side of (7.9) and has a value of 2.88π. This can be achieved
by the information sharing protocol shown in Figure 1, which has a protocol complexity of 6
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(= two times the length of the binary tree). The protocol complexity is a “worst case” metric,
reflecting the maximum number of bits that might need to be communicated. Thus, the value of
a single communication bit in reducing the control energy cost for this problem is at least 0.8π

with the units being control energy (as defined by (2.8)) per bit.

8. CONCLUSION

This paper has continued our study of problems in control communication complexity, which
may be viewed as an extension of classical communication complexity with the additional focus
on control cost. There are several important application contexts in which the optimization
problems of the type we have considered seem to arise naturally. The single round protocols
for steering the B-H system realizes the solution to a problem in distributed computing where
independent agents act to evaluate a function without foreknowledge of each other’s choices. As
was noted in [2], the problems also arise naturally in what we have called the standard parts
optimal control problem in which it is desired to find a specific number, m, of control inputs
to a given input-output system that can be used in different combinations to attain a certain
number, n, of output objectives so as to minimize the cost of control averaged over the different
objectives. The connection with quantum control, and in particular, the control of quantum spin
systems (see for example the references to quantum control and computation in [30]) is another
interesting line of investigation that is under way and will be treated elsewhere.
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APPENDIX A

To prove the rank of a matrix representation of a bilinear input-output mapping is well-defined,
let F be a representation corresponding to the bases {e1, e2, . . .} and {f1, f2, . . .}. Let F′ be a
representation corresponding to the bases {e1, e2, . . .} and {f ′1, f ′2, . . .}. Assume first that F has
finite rank equal to r. By relabeling the indices, we can assume without loss of generality that the
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first r columns of F are independent. Hence, there exists a matrix C with r rows and infinitely
many columns such that

F =


F11 F12 F13 . . .

F21 F22 F23 . . .

F31 F32 F33 . . .
...

...
...

. . .

 (8.1)

=


F11 F12 . . . F1r

F21 F22 . . . F2r

F31 F32 . . . F3r

...
...

...
...

C ≡ F̄C. (8.2)

By relabeling the indices of the basis {e1, e2, . . .} if necessary, we can assume that the first r
rows F̄ are independent. Label the sub-matrix of F̄ formed by the first r rows by D. Note that
D is an invertible r-by-r matrix and

C = D−1


F11 F12 F13 . . .

F21 F22 F23 . . .
...

...
...

...
Fr1 Fr2 Fr3 . . .

 . (8.3)

That is, for 1 ≤ k ≤ r and 1 ≤ l

Ckl =
r∑
i=1

D−1ki Fil. (8.4)

Let C0 be the upper bound of the entries in D−1, so that for all 1 ≤ i, j ≤ r, D−1ij ≤ C0 <∞.
For any positive integer j, the base vector, f ′j , has a representation of the form

f ′j =
∞∑
l=1

αjlfl. (8.5)

The coefficients are square summable so that
∑∞

l=1 α
2
jl <∞. For any 1 ≤ i ≤ r, define

gij =
∞∑
l=1

αjlsgn(αjlFil)fl. (8.6)

Since the coefficients for gij are square summable, this is a well-defined element in L. Moreover,

F (ei, gij) =
∞∑
l=1

|αjlFil| <∞, (8.7)

since F is bounded. On the other hand,

F ′ij = F (ei, f
′
j) =

∞∑
l=1

αjlFil =
∞∑
l=1

αjl

r∑
k=1

FikCkl. (8.8)
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Formally, by exchange the summation order, the right-hand-side of equation (8.8) is equal to
r∑

k=1

Fik

∞∑
l=1

αjlCkl =
r∑

k=1

FikEjk, Ejk ≡
∞∑
l=1

αjlCkl. (8.9)

The equality holds if the expression in (8.9) is convergent. By means of equation (8.4),

|Ejk| ≤
∞∑
l=1

r∑
i=1

|αjlD−1ki Fil| ≤ C0

r∑
i=1

∞∑
l=1

|αjlFil|. (8.10)

It follows that the expression in (8.9) is convergent and

F ′ij =
∞∑
l=1

αjl

r∑
k=1

FikCkl =
r∑

k=1

Fik

∞∑
l=1

αjlCkl. (8.11)

Then equation (8.11) can be rewritten as F′ = F̄E, E ≡ [Eij] . Therefore, the rank of F′ is
equal to or less than r. By reversing the roles of F and F′, the ranks of the two matrices must
be identical if one of them has finite rank. Thus, if the basis {e1, e2, . . .} is fixed the rank is
independent of the other basis. Similarly, one can argue that if {f1, f2, . . .} is fixed, the rank is
independent of the other basis.

In the general case, consider matrix representation, F, with respect to bases {e1, e2, . . .} and
{f1, f2, . . .}, and matrix representation, F′′, with respect to bases {e′1, e′2, . . .} and {f ′1, f ′2, . . .}.
If the rank of F is finite, it is equal to the rank of the matrix representation with respect to the
bases {e1, e2, . . .} and {f ′1, f ′2, . . .}, which in turn is equal to the rank F′′. It is easy to see that
it is not possible for one representation to have finite rank while the other has an infinite rank.
Thus the rank is independent of the choice of the bases.

APPENDIX B

Let {e1, e2, . . .} and {f1, f2, . . .} be orthonormal bases corresponding to the representation F .
Let v =

∑l
j=1 vjfj be an element of L and vT = [v1, . . . , vl] be the corresponding l-dimensional

vector. Let uT = vTFT
l and denote the corresponding element

∑l
i=1 uiei in L by u. Then,

F (u, v) = uTFlv = vTFT
l Flv. (9.1)

Using the assumption that F is bounded and the inequality (2.6), one can show that

‖Flv‖2 = vTFT
l Flv = F (u, v) ≤ ‖F‖‖v‖‖Flv‖ (9.2)

≤ ‖F‖2‖v‖2. (9.3)

Let wi be the eigenvector of FT
l Fl with unit norm that corresponds to σi(Fl). Then,

σ2
i (Fl) = wT

i FT
l Flwi = ‖Flwi‖2 ≤ ‖F‖2. (9.4)
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