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Abstract

In this paper, we propose a stochastic model to describe how search service providers charge client
companies based on users’ queries for the keywords related to these companies’ ads by using certain
advertisement assignment strategies. We formulate an optimization problem to maximize the long-term
average revenue for the service provider under each client’s long-term average budget constraint, and
design an online algorithm which captures the stochastic properties of users’ queries and click-through
behaviors. We solve the optimization problem by making connections to scheduling problems in wireless
networks, queueing theory and stochastic networks. Unlikeprior models, we do not assume that the
number of query arrivals is known. Due to the stochastic nature of the arrival process considered here,
either temporary “free” service, i.e., service above the specified budget (which we call “overdraft”) or
under-utilization of the budget (which we call “underdraft”) is unavoidable. We prove that our online
algorithm can achieve a revenue that is withinO(ǫ) of the optimal revenue while ensuring that the
overdraft or underdraft isO(1/ǫ), whereǫ can be arbitrarily small. With a view towards practice, we
can show that one can always operate strictly under the budget. In addition, we extend our results to
a click-through rate maximization model, and also show how our algorithm can be modified to handle
non-stationary query arrival processes and clients with short-term contracts.

Our algorithm also allows us to quantify the effect of errorsin click-through rate estimation on the
achieved revenue. We show that we lose at most∆

1+∆
fraction of the revenue if∆ is the relative error

in click-through rate estimation.
We also show that in the long run, an expected overdraft levelof Ω(log(1/ǫ)) is unavoidable

(a universal lower bound) under any stationary ad assignment algorithm which achieves a long-term
average revenue withinO(ǫ) of the offline optimum.

I. INTRODUCTION

Providing online advertising services has been the major source of revenue for search service
providers such as Google, Yahoo and Microsoft. When an Internet user queries a keyword,
alongside the search results, the search engine may also display advertisements from some
companies which provide services or goods related to this keyword. These companies pay the
search service providers for posting their ads with a specified amount of price for each ad on a
pay-per-impression or pay-per-click basis. We call them “clients” in the following text.

Maximizing the revenue obtained from their clients is the key objective of search service
providers. Research which targets this objective has followed two major directions. One is based
on auction theory, in which the goal is to design mechanisms in favour of the service provider,
and much of the research in this direction considers static bids (e.g. [13]; see [10] for a survey),
while dynamic models such the one in [22] are still emerging.The other is from the perspective of
online resource allocation without considering the impactof the service provider’s mechanisms
on the clients’ bids, and the main focus of this kind of research is on designing an online
algorithm which posts specific ads in response to each searchquery arriving online, in order to
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achieve a high competitive ratio with respect to the offline optimal revenue. Our work follows
the second direction.

Our model is as follows:

Online Advertising Model:
Assume that queries for keywordq arrive to the search engine according to a stochastic process

at rateνq queries per time slot, where we have assumed that time is discrete and a“time slot” is
our smallest discrete time unit. In response to each query arrival, the search engine may display
ads from some clients on the webpage. There areL different places (e.g., top, bottom, left,
right, etc.) on a webpage where ads could be displayed. We will call these places“webpage
slots.” When clienti’s ad is displayed in webpage slots when keywordq is queried, there is
a probability with which the user who is viewing the page (theone who generated the query)
will click on the ad. This probability, called the“click-through rate,” is denoted bycqis.

A client specifies the amount of money (“bid”) that it is willing to pay to the search service
provider when a user clicks on its ad related to a specific query. We userqi to denote this
per-click payment from clienti for its ad related to a query for keywordq. Additionally, client
i also specifies an average budgetbi which is the maximum amount that it is willing to pay
per “budgeting cycle” on average, where a budgeting cycle equals toN time slots (we have
introduced the notion of a budgeting cycle since the time-scale over which queries arrive may
be different than the time-scales over which budgets may be settled).

The problem faced by the search service provider is then to assign advertisements to webpage
slots, in response to each query, so that its long-term average revenue is maximized.

Based on the above model, we design an online algorithm whichachieves a long-term average
revenue withinO(ǫ) of the offline optimal revenue, whereǫ can be chosen arbitrarily small,
indicating the near-optimality of our online algorithm. Before entering into the details, in the
next two subsections we will first survey the related literature, highlight the main contributions
of our work, and discuss the differences between our model and previous ones.

A. Related Work

We will only survey the online resource allocation models here, and not the auction models.
The online ads model in prior literature mainly include two types, namely AdWords (AW)
and Display Ads (DA), of which the difference lies in the constrained resource of each client.
In the AW model, the resource is the client’s budget, while inthe DA model, the resource
is the maximum number of impressions agreed on by the client and the service provider.
Correspondingly, after each resource allocation step, theresource of a client whose ad is posted,
is reduced by the bid value1 in the AW model, or1 impression in the DA model. Both of
them belong to a general class of packing linear programs formulated in [8]. Most of the prior
online algorithms for solving the AW and DA model respect thehard constraint on the client’s
resources. One exception is [9], where the authors argue that “free disposal” of resources makes
the DA model more tractable (but not necessary for the AW model).

Mehta et al. [20] modeled the online ads problem as a generalization of an online matching
problem [16] on a bipartite graph of queries and clients. Later in [5], Buchbinder et al. showed
that matching clients to webpage slots (whether it is a single slot or multiple slots) can be solved

1This refers to the pay-per-impression scheme. With a pay-per-click scheme, the reduction only happens if the ad is clicked.
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as a maximum-weighted matching problem. Following [5], a number of other online algorithms
using the maximum-weighted bipartite matching idea have been proposed in [19], [9], [6] and
[8]. The algorithms in [15] and [20], which were earlier than[5], can also be regarded as
maximum-weighted matching solutions on this bipartite graph of clients and webpage slots.

In [15], the “b-matching” problem (related to the online adscontext, bids are trivially0 or 1
and budgets are allb) is solved by an1− 1/e competitive algorithm asb→ ∞ and the weights
are the remaining budgets of those clients interested in thenewly arrived query (i.e., the bid
equals1). For the online ads problem in which bids and budgets can have general and different
values, [20] (its longer version is [21]) uses the “discounted” bids as the weights corresponding
to each client. The discount factor is calculated by a functionψ(x) = 1−ex−1, of which the input
x is the fraction of a client’s budget that has been consumed. Their algorithm is also1 − 1/e
competitive, under an assumption that bids are small compared to budgets. By taking advantage
of estimated numbers of query arrivals for each keyword within a given period and modifying
the discount factor in [20], Mahdian et al. [19] designed a class of algorithms which achieve a
considerably better competitive ratio with accurate estimates while still guarantee a reasonably
good competitive ratio with inaccurate estimates, also assuming small bids.

The algorithms in [5], [9], [6], [8] and [1], all use a primal-dual framework to compute a
maximum-weighted matching at each iteration, in which the dual variables (corresponding to
each client) are used to determine the weights. The two1 − 1/e competitive algorithms in [5]
and [9] update the dual variables dynamically in their primal-dual type algorithms every time
a decision is made. Specifically, each dual variable in [5], which implicitly tracks the fraction
of budget that has been spent by the corresponding client, grows during each iteration at a rate
parameterized by the fraction of the bid for the incoming query in this client’s total budget, while
[9] uses an “exponentially weighted average” of the up-to-daten(i) most valuable impressions2

assigned to clienti as a new dual variable with respect to this client. On the other hand, the three
dual type learning-based algorithms in [6], [8] and [1] achieve a competitive ratio of1 − O(ǫ)
based on a random-order arrival model (rather than the adversarial model in most of the earlier
work), assuming small bids and knowledge of the total numberof queries. The main difference
between them is that [6] and [8] use an initialǫ fraction of queries to learn the optimal dual
variables (with respect to this training set), while the algorithm in [1] repeats the learning process
over geometrically growing intervals. Additionally, the “small bids” condition in [1] is slightly
weaker than the condition in [6] and [8].

B. Our Contributions and Comparison to Prior Work

As in prior work (especially [5] and [9]), our solution relies on a primal-dual framework to
solve a maximum-weighted matching problem on a bipartite graph of clients and webpage slots,
with dynamically updated dual variables which contribute to the weights on the edges of the
bipartite graph. However, unlike prior work, we are able to obtain a revenue which isO(ǫ) close
to the optimal revenue using a purely adaptive algorithm without the need for the knowledge of
the number of query arrivals over a time period or the averagearrival rates.

Our solution is related to scheduling problems in wireless networks. In particular, we use
the optimization decomposition ideas in [11], the stochastic performance bounds in [18] and
the modeling of delay-sensitive flows in [14]. Borrowing from that literature, we introduce
the concept of an“overdraft” queue. The overdraft queue measures the amount by which the

2In the DA model in [9],n(i) is defined as the maximum number of impressions agreed for client i. After allowing free
disposal, only the currentn(i) most valuable impressions assigned to clienti will be considered.
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provided service temporarily exceeds the budget specified by a client. In making the connection
to wireless networks, we define something called the“per-client revenue region,”which is
related to the concept of capacity region in queueing networks (see [11], [18]). In our context,
it characterizes the revenue extractable from each client as a function of all the clients’ budgets.

Our online algorithm exhibits a trade-off between the revenue obtained by the service provider
and the level of overdrafts. We can further modify our onlinealgorithm so that clients can always
operate strictly under their budgets. Finally, our algorithm and analysis naturally allow us to
assess the impact of click-through rate estimation on the service providers revenue.

We are able to show that our online algorithm achieves an overdraft level ofO(1/ǫ). So a
natural question is whether this bound is tight. We show thatthe overdraft for any algorithm
must beΩ(log(1/ǫ)). While there is a gap between the upper and lower bounds, together they
imply that the overdraft must increase whenǫ goes to zero. This work is related to [3], [25],
[26], [24] and [12] in the context of communication networks. See Section IV for a detailed
survey.

Besides the revenue maximization model, we also study another online ads model in which the
objective is to maximize the average overall click-throughrate, subject to a minimum impression
requirement for each client. We also show that our results can be naturally extended to handle
non-stationary query arrival processes and clients which have short-term contracts with the
service provider. .

Like the algorithm in [1], our algorithm can also be generalized to a wider class of linear
programs within different application contexts, where thecoefficients in the objective function
and constraints are not necessarily nonnegative.

There are two points of departure in our algorithm compared to existing models: the first one
is that we assume a purely stochastic model in which the queryarrival rates are unknown. Thus,
there is no need to know the number of arrivals in a time periodas in prior models, and this
is even true for non-stationary query arrival processes. The other is that we assume an average
budget rather a fixed budget over a time horizon. This allows us to better model permanent clients
(e.g., big companies who do not stop advertising) and who do not provide a fixed time-horizon
budget. Clients who advertise for a limited amount of time can also be handled well since the
algorithm is naturally adaptive.

A minor difference with respect to prior models is that our model assumes that time is slotted.
This can be easily modified to assume that query arrivals can occur at any time according to
some continuous-time stochastic process. The only difference is that our analysis would then
involve continuous-time Lyapunov drift instead of the discrete-time drift used in this paper. From
a theoretical point of view, our analysis is different from prior work which uses competitive ratios:
our model and solution is similar in spirit to stochastic approximation [4] where gradients (here
the gradient of the dual objective) are known only with stochastic perturbations. This point of
view is essential to model stochastic traffic with unknown statistics.

Instead of the1−O(ǫ) competitive ratio in prior work, we show that our algorithm achieves
a revenue which is withinO(ǫ) of the optimal revenue. TheO(ǫ) penalty arises due to the
stochastic nature of our model. However, we do not require assumptions such as knowledge
of the total number of queries in a given period [19], [6], [8], [1], or information of keyword
frequencies [19].3

3It should be mentioned that another common assumption “small bids” (or “large budgets”, “large offline optimal value”)
used in [15], [20], [19], [9], [6] and [8] is not essentially different from our “long-term” assumption.
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C. Organization of the Paper

The rest of the paper is organized as follows: In Section II, we formulate an optimization
problem involving long-term averages. In Section III, we start considering the stochastic version
of our model and propose an online algorithm, which also introduces the concept of “overdraft
queue.” Performance analysis of this online algorithm, which includes the near-optimality of
the long-term revenue and an upper bound on the overdraft level, will also be done in Section
III. The last two subsections of Section III present two extensions, namely the decisions based
on estimated click-through rates and the “underdraft” mechanism. In Section IV, we derive a
universal lower bound on the expected overdraft level underany stationary algorithms for online
advertising. The second online ads model “click-through rate maximization problem” with its
related extensions, algorithm design and analysis is givenin Section V. Section VI concludes
the whole paper.

Compared to an earlier version of this paper which appeared in [28], we give a more detailed
literature survey in Subsection I-A, all the proofs for the lemmas, theorems and corollaries in
Section III (we only stated these results without proofs in [28] due to page limits), and full
discussions on the underdraft mechanism in Subsection III-F. Sections IV and V are completely
new.

II. A N OPTIMIZATION PROBLEM INVOLVING LONG-TERM AVERAGES

Based on the model described in Section I, we first pose the revenue maximization problem as
an optimization problem involving long-term averages. Forthis purpose, we define an assignment
of clients to webpage slots as a matrixM of which the(i, s)th element is defined as follows:

Mis =

{

1, if client i is assigned to webpage slots
0, else.

The matrixM has to satisfy some practical constraints. First, a webpageslot can be assigned to
only one client and vise versa. Furthermore, the assignmentof clients to certain webpage slots
may be prohibited for certain queries. For example, it may not make sense to advertise chocolates
when someone is searching for information about treatmentsfor diabetes. These constraints can
be abstracted as follows: For the queried keywordq, the set of assignment matrices have to
belong to some setMq. We also letp

qM
be the probability of choosing matrixM when the

queried keyword isq.
The optimization problem is then given by

max
p

R̄(p) =
∑

q

νq
∑

M∈Mq

p
qM

∑

i,s

Miscqisrqi (1)

subject to

N
∑

q

νq
∑

M∈Mq

p
qM

∑

s

Miscqisrqi ≤ bi, ∀i; (2)

0 ≤ p
qM

≤ 1, ∀q, M ∈ Mq; (3)
∑

M∈Mq

p
qM

≤ 1, ∀q. (4)

In the above formulation, the objective (1) is the average revenue per time slot and constraint (2)
expresses the fact that the average payment over a budgetingcycle should not exceed the average
budget. The optimization is a linear program and if all the problem parameters are known, in
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principle, it can be solved offline, returning probabilities {p
qM

} which can be used by a service
provider to maximize its revenue. However, such an offline solution is not desirable for at least
two reasons:

• Being a static approach, it does not use any feedback about the current state of the system.
For example, the fact that the empirical average payment of aclient has severely exceeded
its average budget would have no impact on the subsequent assignment strategy. Since
the formulation and hence, the solution, only cares about long-term budget constraint
satisfaction, severe overdraft or underdraft of the budgetcan occur over long periods of
time.

• The offline solution is a function of the query arrival rates{νq}. Thus, a change in the
arrival rates would require a recomputation of the solution.

In view of these limitations of the offline solution, we propose an online solution which
adaptively assigns client advertisements to webpage slotsto maximize the revenue. As we will
see, the online solution does use feedback about the overdraft (or underdraft) level in future
decisions, and does not require knowledge of{νq}.

III. ONLINE ALGORITHM AND PERFORMANCE ANALYSIS

A. A Dual Gradient Descent Solution

To get some insight into a possible adaptive solution to the problem, we first perform a dual
decomposition which suggests a gradient solution. However, a direct gradient solution will not
take into the account the stochastic nature of the problem and will also require knowledge of
the query arrival rates{νq}. We will address these issues in the following subsections, using
techniques that, to the best of our knowledge, have not been used in prior literature on the online
advertising problem.

We append the constraint (2) to the objective (1) using Lagrange multipliersδi ≥ 0 to obtain
a partial Lagrangian function

L(p, δ) =
∑

q

νq
∑

M∈Mq

p
qM

∑

i,s

Miscqisrqi −
∑

i

δi ·





∑

q

νq
∑

M∈Mq

p
qM

∑

s

Miscqisri −
bi
N





=
∑

q

νq
∑

M∈Mq

p
qM

∑

i,s

Miscqisrqi(1− δi) +
∑

i

δibi
N
,

subject to constraints (3) and (4). The dual function is

D(δ) = max
p

∑

q

νq
∑

M∈Mq

p
qM

∑

i,s

Miscqisrqi(1− δi) +
∑

i

δibi
N
,

subject to constraints (3) and (4). Note that the maximization part in the dual function can be
decomposed into independent maximization problems with regard to each queried keywordq,
i.e., for all q,

max
{p

qM
, M∈Mq}

∑

M∈Mq

p
qM

∑

i,s

Miscqisrqi(1− δi) = max
M∈Mq

∑

i,s

Miscqisrqi(1− δi),

where it is easy to see that each maximization is solved by a deterministic solution. This suggests
the following primal-dual algorithm to iteratively solve the original optimization problem (1): at
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stepk,

∀q, M̂∗(q, k) ∈ arg max
M∈Mq

∑

i,s

Miscqisrqi(1− δi(k));

∀i, δi(k + 1) =

[

δi(k) + ǫ

(

N
∑

q

νq
∑

s

[M̂∗(q, k)]is · cqisrqi − bi

)

]+

,

where ǫ > 0 is a fixed step-size parameter, and[x]+ = x if x ≥ 0 or [x]+ = 0 otherwise.
Furthermore, defininĝQi(k) , δi(k)/ǫ, the above iterative algorithm becomes

∀q, M̂∗(q, k) ∈ arg max
M∈Mq

∑

i,s

Miscqisrqi

(

1

ǫ
− Q̂i(k)

)

;

∀i, Q̂i(k + 1) =
[

Q̂i(k) + λ̂i(k)− bi

]+

,

where
λ̂i(k) , N

∑

q

νq
∑

s

[M̂∗(q, k)]iscqisrqi. (5)

Note thatQ̂i(k) can be interpreted as a queue which hasλ̂i(k) arrivals andbi departures at
step k. Although this algorithm already uses the feedback provided by {Q̂(k)} (or {δ(k)})
about the state of the system, it is still using a priori information about the arrival rates of
queries in{λ̂(k)}, hence not really “online.” However, it motivates us to incorporate a queueing
system with stochastic arrivals into the real online algorithm, which will be described in the next
subsection.

B. Stochastic Model, Online Algorithm, and “Overdraft Queue”

In practice, a search service provider may not have a priori information about the query arrival
rates{νq}, and generally, query arrivals during each time slot are stochastic rather than constant.
Let time slots be indexed byt ∈ Z+ ∪ {0}. We specify our detailed statistical assumptions as
follows:

• Query arrivals: Assume that a time slot is short enough so that query arrivals in each time
slot can be modeled as a Bernoulli random variable with occurrence probabilityν. The
probability that an arrived query is for keywordq is assumed to beϑq and

∑

q ϑq = 1.
Let q̃(t) represent the index of the keyword queried in time slott, such that̃q(t) = q w.p.
νq = νϑq for all q (indexed by positive integers) and̃q(t) = 0 w.p. 1 − ν, which accounts
for the case that no query arrives.

• Budget spending: We limit the values of budget spent in each budgeting cycle to be integers.
To match the average budgetbi (when it is not an integer), the budget of clienti in budgeting
cyclek is assumed to be a random variableb̃(k) which equals⌈bi⌉ w.p.̺i and⌊bi⌋ otherwise,
such thatE[b̃(k)] = ̺i⌈bi⌉+ (1− ̺i)⌊bi⌋ = bi, i.e., ̺i =

bi−⌊bi⌋
⌈bi⌉−⌊bi⌋

= bi −⌊bi⌋. For the trivial
case thatbi is already an integer, we let̺i = 1.

• Click-through behaviors: In time slott, after a query for keywordq arrives, if the ad of
client i is posted on webpage slots in response to this query, then whether this ad will be
clicked is modeled as a Bernoulli random variablec̃qis(t) with occurrence probabilitycqis.

We now want to implement the above iterative algorithm online based on this stochastic model.
According to definition (5),̂λi includes average query arrivals and click-through choiceswithin



8

N time slots (i.e., one budgeting cycle). Thus, each iteration step in the online algorithm should
correspond to a budgeting cycle. For convenience, we define

u(k) , {q̃(t), c̃(t) for kN ≤ t ≤ kN +N − 1}
as a collection of random variables describing user behaviors (including stochastic query arrivals
and click-through choices) in budgeting cyclek. The online algorithm is then described as
follows:

Online Algorithm: (in each budgeting cyclek ≥ 0)

In each time slott ∈ [kN, kN +N − 1], if q̃(t) > 0, choose the assignment matrix

M̃∗(t, q̃(t),Q(k)) ∈ arg max
M∈Mq̃(t)

∑

i,s

Miscq̃(t)isrq̃(t)i

(

1

ǫ
−Qi(k)

)

. (6)

At the end of budgeting cyclek, for each clienti, update

Qi(k + 1) =
[

Qi(k) + Ai(k,Q(k),u(k))− b̃i(k)
]+

, (7)

where

Ai(k,Q(k),u(k)) ,

kN+N−1
∑

t=kN

∑

s

[M̃∗(t, q̃(t),Q(k))]is · c̃q̃(t)is(t) · rq̃(t)i. (8)

Here,Ai(k,Q(k),u(k)) represents the revenue obtained by the service provider from client i
during budgeting cyclek, and recall that̃bi(k) is a random variable which takes integer values
whose mean is equal to the average budget per budgeting cycle.

In this algorithm, clienti is associated with a virtual queueQi (maintained at the search
service provider). During budgeting cyclek, the amount of money clienti is charged by the
search service providerAi(k,Q(k),u(k)) is the arrival to this queue, and the average budget per
budgeting cyclebi is the departure from this queue. Note that if this queue is positive, it means
that the total value of the real service already provided to the client has temporarily exceeded
the client’s budget, i.e., “free” service has been providedtemporarily. Hence, we call this queue
the “overdraft queue.”

There are two different time scales here. The faster one is a time slot, the smallest time unit
used to capture user behaviors (including stochastic queryarrivals and click-through choices)
and execute ad-posting strategies. The slower one is a budgeting cycle (equal toN time slots),
at the end of which the overdraft queues are updated based on the revenue obtained over the
whole budgeting cycle.

We make the following assumptions on the above stochastic model: {q̃(t)} are i.i.d. across
time slotst; {c̃qis(t)} are independent acrossq, i, s, and t; each variable in{q̃(t)} and each
variable in{c̃qis(t)} are mutually independent. In fact, the model can be generalized to allow
for query arrivals correlated over time and across keywords, and other similar correlations inside
the click-through choices or between these two stochastic processes. Such models would only
make the stochastic analysis more cumbersome, but the main results will continue to hold under
these more general models.

In order to guarantee that the Markov chain which we will define later is both irreducible and
aperiodic, we further assume that the probability of whether there is an arrival in a time slot
ν ∈ (0, 1). We also assume thatrqi for all q and i can only take integer values. Together with
the fact that̃b(k) takes integer values,{Q(k)} becomes a discrete-time integer-valued queue.
Note that assuming integer values is only for ease of analysis, but not necessary.
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C. An Upper Bound on the Overdraft

According to the ad assignment step (6), if at the beginning of budgeting cyclek, Qi(k) > 1/ǫ,
then for this budgeting cycle, theith row of M̃∗(t, q,Q(k)) is always a zero vector, i.e., the service
provider will not post the ads of clienti until Qi(k) falls below1/ǫ. Since by assumption the
number of query arrivals per time slot is upper bounded, for any budgeting cyclek, one can
bound the transient length of each overdraft queue as below:

Qi(k) ≤
1

ǫ
+N · argmax

q,s
{rqicqis} − ⌊bi⌋, ∀i.

Therefore,Qi(k) ∼ O(1/ǫ) for all i, and stability is not an issue for these “upper bounded”
queues. It further implies that this online algorithm satisfies the budget constraints in the long
run, i.e., for all clienti,

lim
K→∞

E

[

1

K

K−1
∑

k=0

Ai(k,Q(k),u(k))

]

≤ bi (9)

must hold.
It should be mentioned that in [12], through using the LIFO queueing discipline, the authors

show anO((log(1/ǫ))2) bound on the averaged waiting time encountered by most of thepackets,
which is tighter than the boundO(1/ǫ) under the FIFO queueing discipline (see e.g. [11]; our
above result also fits this bound). While the length of a FIFO queue is proportional to the arrival
rate according to Little’s law [2], the length of a LIFO queuein [12] is still O(1/ǫ), even if it is
occupied by very “old” packets which only accounts for a negligible fractionO(ǫlog(1/ǫ)) of all
the packets that have arrived. Unlike in a communication network where waiting time is usually
the main concern and dropping a small fraction of old packetsdoes almost no hurt to many
online applications, what clients of online advertising service care about is how much they have
paid beyond their budgets, which is measured by the overdraft queue in our model.

D. Near-Optimality of the Online Algorithm

We now show that, in the long term, the proposed online algorithm achieves a revenue that is
close to the optimal revenuēR(p∗) (wherep∗ is the solution to the optimization problem (1)).
We start with the following lemma:

Lemma 1:Consider the Lyapunov functionV (Q) = 1
2

∑

iQ
2
i . For anyǫ > 0, and each time

periodk,

E[V (Q(k + 1))|Q(k) = Q]− V (Q) ≤ −N
ǫ

(

R̄(p∗)− R̄(p̃∗(k,Q))
)

+B1 − B2

∑

i

Qi.

Here,

B1,
1

2

(

(N(N − 1)L2 +NL)(argmax
q,i,s

{cqisrqi})2

+
∑

i

⌈bi⌉2(bi − ⌊bi⌋) + ⌊bi⌋2(1− bi + ⌊bi⌋)
)

, (10)

whereL is the number of webpage slots;

B2,min
i
{bi−N

∑

q

νq
∑

M∈Mq

p∗
qM

∑

s

Miscqisrqi}; (11)
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and p̃∗(k,Q) , {p̃∗
qM

(k,Q), ∀q,M ∈ Mq} where p̃∗
qM

(k,Q) equals1 if M = M̃∗(t, q,Q) for
kN ≤ t ≤ kN +N − 1 (i.e., the optimal matrix in the maximization step (6)) and0 otherwise.
⋄

The proof is given in Appendix A.

Now we are ready to present one of the major theorems in this paper, indicating that the
long-term average revenue achieved by our online algorithmis within O(ǫ) of the maximum
revenue obtained by the offline optimal solution. The proof is given in Appendix B.

Theorem 1:For anyǫ > 0,

0 ≤ lim
K→∞

E

[

R̄(p∗)− 1

KN

K−1
∑

k=0

R(k)

]

≤ B1ǫ

N

for some constantB1 > 0 (defined in (10) in Lemma 1), whereR(k) ,
∑

iAi(k,Q(k),u(k)).
is defined as the revenue obtained during budgeting cyclek. ⋄

Remark 1: If we choose a very smallǫ, the matching in (6) behaves like a greedy solution
until the queue lengths grows comparably large. This indicates a tradeoff between how close to
the long-term optimal revenue the algorithm can achieve andthe actual convergence time.

Additionally, supposing that{rqi} and{bi} are both measured in another scale with a factor
α, e.g., using cents instead of dollars (α = 100), and assuming thatα is unknown, it can be
shown that theO(ǫ) convergence bound will also be scaled byα if we measure the revenue in
the original scale. To change the algorithm into a “scale-free” version,{rqi} and {bi} should
be divided by a common benchmark value, e.g., the largest budget specified by all the initially
existing clients. Since the benchmark value is also implicitly multiplied by α if measured in
another scale, the scaling factor will be canceled in the normalized{rqi} and{bi} and no longer
affect the convergence bound. ⋄

E. Impact of Click-Through Rate Estimation

In our online algorithm, the decision of picking an optimal ad assignment matrix in (6) in
response to each query is based on the true click-through ratesc. In reality, an estimatêc based
on historical click-through behaviors is used, i.e., in response to each query for keywordq, which
arrives in time slott ∈ [kN, kN +N − 1], we choose the assignment matrix

M̃∗(t, q̃(t),Q(k)) ∈ arg max
M∈Mq̃(t)

∑

i,s

Misĉq̃(t)isrq̃(t)i

(

1

ǫ
−Qi(k)

)

. (12)

We then have the following corollary in addition to Theorem 1in Subsection III-D:

Corollary 1: Assume that the estimated click-through ratesĉ ∈ [c(1 − ∆), c(1 + ∆)] with
some∆ ∈ (0, 1). Under our online algorithm with estimated click-through rates,Q(k) is still
positive recurrent. Then, for anyǫ > 0,

lim
K→∞

E

[

1

KN

K−1
∑

k=0

R(k)

]

≥
(

1−∆

1 +∆

)

· R̄(p∗)− B1ǫ

N
,

for some constantB1 > 0 (defined in equation (10) in Lemma 1). ⋄
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Proving this needs some minor changes to the proof of Lemma 1 and Theorem 1, which will
be shown in Appendix C.

Remark 2:Corollary 1 tells us that for smallǫ, the long-term average revenue achieved by
our online algorithm with estimated click-through rates will be at least

(

1−∆
1+∆

)

of the offline
optimal revenue. ⋄

F. Underdraft: Staying under the Budget

In the previous sections, we allowed the provision of temporary free service to clients, which
we call overdraft. If this is not desirable for some reason, the algorithm can be modified to have
non-positive overdraft. We do this by allowing the queue lengths to become negative, but not
positive. The practical meaning of negative queue lengths is to allow each client to accumulate a
certain volume of “credits” if the current budget is under-utilized and use these credits to offset
future possible overdrafts. We call this negative queue length “underdraft.” Corresponding to this
mechanism, we modify our online algorithm as follows: in response to each query for keyword
q, which arrives in time slott ∈ [kN, kN +N − 1], choose the assignment matrix

M̃∗(t, q̃(t),Q(k)) ∈ arg max
M∈Mq̃(t)

∑

i,s

Miscq̃(t)isrq̃(t)i (Γi −Qi(k)) ,

and at the end of budgeting cyclek, for each clienti, update

Qi(k + 1) = max{Qi(k) + Ai(k,Q(k),u(k))− b̃i(k),−Ci},
where Γi denotes a customized “throttling threshold” (not necessarily 1/ǫ) and Ci denotes
the maximum allowable credit volume for clienti. Recall thatAi(k,Q(k),u(k)) is defined
in equation (8).

We can bound each overdraft queue as below:

Qi(k) ≤ Γi +N · argmax
q,s

{rqicqis} − ⌊bi⌋, ∀i, k.

Thus, if our objective is to eliminate overdrafts (i.e.,Qi(k) ≤ 0 for all k), we can set

Γi :=

[

⌊bi⌋ −N · argmax
q,s

{rqicqis}
]−

, ∀i, (13)

where in contrary to[x]+, [x]− takes the non-positive part ofx, i.e., [x]− = x if x ≤ 0 or
[x]− = 0 otherwise. We further let

Ci :=
1

ǫ
− Γi, ∀i,

so that after convertingQi(k) to be nonnegative by using̃Qi(k) = Qi(k)+Ci for all i, everything
is transformed back to the original online algorithm exceptthat eachQi(k) is replaced byQ̃i(k),
hence we can still show that the revenue achieved by this modified version of online algorithm
is within O(ǫ) of the optimal revenue.

It might seem counter-intuitive that by lettingǫ go to zero, we can incur potentially large
underdrafts (under-utilization of the budget) and yet are able to achieve maximum revenue. This
is not a contradiction: for each fixedǫ, in the long term, the average service provided to each
client is close to the average budget. TheO(1/ǫ) is a fixed amount by which the total budget
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Fig. 1: Temporary unfairness in service

up to any timeT is under-utilized, and, after divided byT , it goes to zero whenT approaches
infinity.

We note that while an underdraft does not seem to significantly hurt either the client, who
actually benefits from an underdraft, or the service provider, whose long-run average revenue is
still diminished only byO(ǫ), large values of the underdraft may result in temporary unfairness
in the system.4 If, for example, a client accumulates a large underdraft compared to the other
clients, then it may receive priority over other clients forlarge periods of time. To illustrate
this, we consider an example with two clients and one queriedkeyword. Assume thatΓi < 0
for i = 1, 2, and at time slotk0, Q1(k0) = Γ1 andQ2(k0) = −C2 (this occurs with a positive
probability due to the ergodicity of the Markov chain{Q(k)} proved before). We simulate the
sample paths of the weights in the maximization step (32) with the following setting: budgets
b1 = b2 = 0.6, click-through ratesc1 = c2 = 0.5, revenue-per-clickr1 = r2 = 1; the number
of query arrivals per time slot equals2 w.p. 0.5 and 0 otherwise; a budgeting cycle equals to
one time slot (N = 1) for simplicity. The results for bothǫ = 0.01 and ǫ = 0.005 (k = 0
corresponds tok0 here) are shown in Figure 1. Client2 keeps getting services until the weights
of both clients reaches the same level, and the smallerǫ is, the longer the “unfair serving” period
lasts.

It should be mentioned that this underdraft idea can be used under any upper-bounded query
arrival model, not restricted in the Bernoulli arrival model considered in this paper.

IV. A U NIVERSAL LOWER BOUND ON THE EXPECTED OVERDRAFT LEVEL

We want to show that in the long run, an expected overdraft level ofΩ(log(1/ǫ)) is unavoidable
under any stationary ad assignment algorithm which achieves a long-term average revenue within
O(ǫ) of the offline optimum, when the queue length is only allowed to be nonnegative. An ad
assignment algorithm̟ is defined as a strategy which uses matrixM̟(t, q) ∈ Mq for ad

4Note that this temporary unfairness is not an artifact of theunderdraft mechanism. In fact, it occurs once a sample path
enters a state where some clients have huge differences fromothers in their corresponding queue lengths, which can alsohappen
under the original algorithm. We are just using the underdraft scheme to illustrate this phenomenon.
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assignment when a query for keywordq arrives at each time slott. During each budgeting cycle
k, the revenue obtained from clienti under algorithm̟ is defined as

A̟
i (k) ,

kN+N−1
∑

t=kN

∑

s

[M̟(t, q̃(t))]is · c̃q̃(t)is(t) · rq̃(t)i. (14)

We then define average revenue obtained from clienti per budgeting cycle asλ̟i , E[A̟
i (k)]

in the steady state. The long-term average revenue (per timeslot) is thusR̟̄ =
∑

i λ
̟
i /N , and

the overdraft level of clienti evolves as

Q̟
i (k + 1) =

[

Q̟
i (k) + A̟

i (k)− b̃i(k)
]+

. (15)

Note that our online algorithm is one particular̟, which makes the decision based on the
current overdraft levels of all clients.

To seek a universal lower bound on expected overdraft level in the long run (here, equivalent
to steady state), we only have to consider those algorithms̟ such thatQ̟̄

i , E[Q̟
i (k)] < ∞

for all i. To categorize these “stable” algorithms, we define “per-client revenue region,” similar
to the concept of “capacity region” in the context of queueing networks:

Definition 1 (“Per-Client Revenue Region”):

C ,

{

λ̟={λ̟i }≥0 : ∃̟ s.t. λ̟i , E [A̟
i (k)] ≤ bi, ∀i

}

,

given fixed parameters{rqi}, {bi}, {cqis}, N and statistical properties of̃q(t) and{c̃qis(t)}. ⋄
The offline optimal average revenue is then equal tomaxλ∈C

∑

i λi/N, which is denoted as̄R∗.

Note that if the query arrival rates per budgeting cycle are too low, the average revenue drawn
from some client will never hit its specified budget, no matter which algorithm̟ s.t. λ̟ ∈ C
you pick (i.e.,∃ i s.t. no feasible solutionp can make constraint (2) for thisi tight). The system
resources (here, budgets) are underutilized and it is not soimportant to consider the tradeoff
between revenue and overdraft. To avoid this, we can assume arelatively largeN (i.e., the
number of time slots in one budgeting cycle) such that

N ≥ max
i

{

bi
∑

q νqrqi ·maxM∈Mi
q
cqis(i,M)

}

, (16)

whereMi
q ⊆ Mq is defined as a set of ad assignment matrices, of which theith row has a “1”,

ands(i,M) in cqis(i,M) refers to the column inM where that “1” stays. This guarantees that for
eachi, there exists an algorithm̟ i such thatλ̟i ∈ C andλ̟i

i = bi. The reason is that
In the following text, we will assume the above condition forN .

A. One Keyword, One Client and One Webpage Slot

We start with the simplest model: one keyword, one client andone webpage slot (hence
we omit all the subscripts in the corresponding notations).Under condition (16), the offline
maximum average revenue is triviallyb/N .



14

Theorem 2:Given a smallǫ > 0, if an algorithm̟ leads toE[A̟(k)] ≥ b− ǫ in the steady
state, then

Q̟̄ ≥ log(1/ǫ)

2(1− log(ϕP+))
− 1,

where we assume that

ϕ , Pr(no query arrival in a budgeting cycle) > 0,

andP+ , Pr(b̃(k) > 0) > 0. ⋄

Note that this result works for any query arrival and budget spending model satisfying the
above two stated assumptions, and not only restricted to themodel we described in Subsection
III-B. In the proof below, we generally writẽb(k) as a random variable which can possibly take
all nonnegative integer values.

Proof: We ignore the superscript̟ for brevity. The dynamics of the queue is rewritten as
Q(k + 1) = Q(k) + A(k)− b̂(k), where the actual departure process is defined as

b̂(k) ,

{

b̃(k) if Q(k) + A(k)− b̃(k) ≥ 0;
Q(k) + A(k) otherwise.

(17)

Let pi , Pr(b̂(k) = i) andqi , Pr(b̃(k) = i) in the steady state. Note that

b− ǫ ≤ E[A(k)] = E[b̂(k)] =

∞
∑

i=1

Pr(b̂(k) ≥ i) = Pr(b̂(k) ≥ 1) +

∞
∑

i=2

Pr(b̂(k) ≥ i)

(a)

≤ (1− p0) +
∞
∑

i=2

Pr(b̃(k) ≥ i) = 1− p0 +
(

b− Pr(b̃(k) ≥ 1)
)

= 1− p0 + b− (1− q0)

= q0 − p0 + b,

where (a) holds becausePr(b̂(k) ≥ i) ≤ Pr(b̃(k) ≥ i) for all i ≥ 0. Thus,p0 ≤ q0 + ǫ. Since

Pr(b̂(k) = 0) = Pr(b̃(k) = 0) + Pr(b̂(k) = 0, b̃(k) ≥ 1),

we havep0 = q0 + p̃0, wherep̃0 , Pr(b̂(k) = 0, b̃(k) ≥ 1). Therefore,

p̃0 ≤ ǫ. (18)

Next, we are looking for a lower bound oñp0 in relation toQ̄. Letting P+ , Pr(b̃(k) > 0)
(which is surely a positive constant sinceb > 0), we then have

np̃0 =

n−1
∑

k=0

Pr(b̂(k) = 0, b̃(k) > 0)
(a)

≥ Pr

(

n−1
⋃

k=0

{b̂(k) = 0, b̃(k) > 0}
)

(b)

≥ Pr(Q(0) ≤ n− 1; A(k) = 0, b̃(k) > 0, ∀ 0 ≤ k ≤ n− 1)

= Pr(Q(0) ≤ n− 1) ·
n−1
∏

k=0

Pr(A(k) = 0) · Pr(b̃(k) > 0)

= (ϕP+)
n · Pr(Q(0) ≤ n− 1)

(c)

≥ (ϕP+)
n
(

1− Q̄/n
)

, (19)
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where (a) holds according to the union bound, (b) holds sincethe event on the RHS implies
the one on the LHS, and (c) holds due to the Markov inequality.If we pick n :=

⌈

2Q̄
⌉

∈
[2Q̄, 2

(

Q̄+ 1
)

], inequality (19) further implies that

p̃0 ≥
(ϕP+)

n

2n

(e)

≥ e−n(1−log(ϕP+)) ≥ e−2(Q̄+1)(1−log(ϕP+)), (20)

where (e) holds because1
2x

≥ e−x for all x > 0. Combining inequalities (18) and (20) then
completes the proof.

In the related literature, [3] comes up with anΩ(1/
√
ǫ) bound for a set of algorithms under

some admissibility conditions, while [25] provides anΩ(log(1/ǫ)) bound for more general
algorithms.

Our proof uses the following ideas inspired by [25]: if the throughput is lower bounded by a
number close to the average potential departure rate, then the probability of zero actual departures
given nonzero potential departures must be upper bounded bya small number; further, if the
average queue length is given, then the probability of hitting zero must be upper bounded because
otherwise, the queue length would become small. However, wecannot directly use the expression
for the lower bound in [25] since it imposes certain strict convexity assumptions which do not
apply to our model where the objective is linear. So we have provided a very simple derivation
of the lower bound on the queue length for our specific model.

Additionally, ourΩ(log(1/ǫ)) bound based on a linear objective function can be extended to
the multi-queue case (in Subsection IV-B). TheΩ(1/

√
ǫ) bound in [3] has been extended to the

multi-queue case in [24] but still under strict convexity assumption and for a restrictive class of
algorithms. Whether theΩ(log(1/ǫ)) bound in [25] can be easily extended to multiple queues
still remains a question.

B. Multiple Keywords, Multiple Clients and Multiple Webpage Slots

We now extend this lower bound to the original general model,which can have multiple
keywords, multiple clients and multiple webpage slots. It is easy to see that the “per-client
revenue region”C in Definition 1 is a polytope, which can then be rewritten as

C =

{

λ ≥ 0 :
∑

i

h
(n)
i λi ≤ d(n), ∀ 1 ≤ n ≤ L

}

, (21)

whereh(n)i ≥ 0 and d(n) > 0 for all i andn.The outer boundary of the polytopeC consists of
theL hyperplanes, i.e.,

∑

i h
(n)
i λi = d(n) for all n ∈ [1, L].

Under condition (16),L is at least equal to the number of clients (i.e., number of budget
constraints), so (21) gives a more precise description of the stability condition for this “multi-
queue system,” compared to the original definition ofC. Thus, corresponding to the normal
vector of each hyperplane, we convert the original multi-queue system into a new one withL
queues: For eachn ∈ [1, L], we first scale theith queue described in (15) byh(n)i , so that it
has a queue length equal toh(n)i Qi(k), with h(n)i Ai(k) arrivals andh(n)i b̃i(k) potential departures
in time slot k, for all i. Next, we treat

∑

i h
(n)
i Qi(k) as thenth queue, and since anyλ ∈ C

satisfies
∑

i h
(n)
i λi ≤ d(n), its maximum achievable average departure rate equalsd(n), where

d(n) ≤∑i h
(n)
i bi, because the potential departure rate of each individual scaled queue may not

be fully achieved when all of them are coupled together.
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We then come up with the formal definition of the class of algorithms which achieves a “near-
optimal” average revenue.

Definition 2 (“ǫ-Neighbourhood” of the maximum):Let λ∗ be one optimal point inC such
that

∑

i λ
∗
i = R̄∗. The ǫ-neighbourhood ofλ∗ is defined as

Nǫ , {λ̟ ∈ C \ ∂C : 0 < N · (R̄∗ − R̟̄) ≤ ǫ}, (22)

where∂C represents the outer boundary ofC, and it should be noted that the average revenue
is evaluated per time slot whileλ is evaluated perN time slots. ⋄

Note that in the above definition, sinceλ̟ ∈ Nǫ is not on any boundary,̄R∗ is strictly larger
than R̟̄, which is easy to see from some basic principles of linear programming.

The following theorem shows the universal lower boundΩ(log(1/ǫ)) for the general case.

Theorem 3:For any algorithm̟ s.t.λ̟ ∈ Nǫ, we have

M
∑

i=1

Q̟̄
i ≥ log(1/ǫ)− C2

C1
− 1,

where ϕ , Pr(no query arrival in a budgeting cycle) = (1 − ν)N > 0, P+ , Pr(b̃i(k) >
0, ∀i) > 0, and

C1 , 2(1− log(ϕP+)) ·max
i,n

h
(n)
i ∈ (0,∞),

C2 , max{log(max
i,n

h
(n)
i ), 0} ∈ [0,∞). (23)

⋄
Proof: We ignore the superscript̟ for brevity. According to some basic principles of linear

programming, an optimal pointλ∗ is at a corner ofC. If there are several optimal points, any
convex combination of them is also optimal. Denote this optimal point sets asΛ∗ and∀λ∗ ∈ Λ∗,
∃ n∗ ∈ [1, L], s.t.

∑

i h
(n∗)
i λ∗i = d(n

∗).
Given aλ ∈ Nǫ, ∃ θ s.t.

∑

i θi =
∑

i λ
∗
i and θi ≥ λi for all i (but at least one inequality is

strict). Besides, for thisθ, ∃ ñ ∈ [1, L], s.t.
∑

i h
(ñ)
i θi ≥ d(ñ) (otherwise,θ ∈ C \ ∂C will hold

and hence
∑

i θi <
∑

i λ
∗
i , which leads to a contradiction). Therefore,

d(ñ)−
∑

i

h
(ñ)
i λi ≤

∑

i

h
(ñ)
i (θi − λi)

(a)

≤ h(ñ)max

∑

i

(θi − λi)

= h(ñ)max

∑

i

(λ∗i − λi) ≤ h(ñ)maxǫ, (24)

whereh(ñ)max , maxi h
(ñ)
i > 0 and inequality (a) holds becauseθi ≥ λi for all i. Letting P ′

+ ,

Pr(
∑

i h
(ñ)
i b̃i(k) > 0), it is easy to see thatP ′

+ ≥ Pr(b̃i(k) > 0, ∀i) = P+ > 0. Together with
Theorem 2, we can conclude that

∑

i

h
(ñ)
i Q̄i ≥ log(1/ǫ)− log(h

(ñ)
max)

2(1− log(ϕP ′
+))

− 1 ≥ log(1/ǫ)− log(h
(ñ)
max)

2(1− log(ϕP+))
− 1.
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Fig. 2: An illustration of the idea in the proof of Theorem 3

Since
∑

i h
(ñ)
i Q̄i ≤ h

(ñ)
max

∑

i Q̄i, it is further concluded that

∑

i

Q̄i ≥
log(1/ǫ)− log(h

(ñ)
max)

2h
(ñ)
max(1− log(ϕP+))

− 1 ≥ log(1/ǫ)− C2

C1
− 1,

where the universal constants are defined in (23), and it is guaranteed thatC1 ∈ (0,∞) and
C2 ∈ [0,∞). This completes the proof.

Remark 3:We briefly explain the idea behind choosingθ in the above proof: For thoseλ ∈ Nǫ

such thatλi ≤ λ∗i for all i (at least one is strict),θ can be directly chosen asλ∗ to make
inequality (a) in (24) hold. But for the otherλ ∈ Nǫ which do not satisfy the above condition,
it is necessary to introduce aθ other thanλ∗, which both lies on the “maximum revenue line”
(i.e.,

∑

i θi =
∑

i λ
∗
i ) and dominatesλ component-wise, in order to derive inequality (24). Note

that θ is not unique and furthermore,θ lies either on∂C or in the exterior ofC and it can be
chosen as a boundary point only if the optimal revenue point is not unique. Figure 2 illustrates
this idea using an example with one keyword, two clients and one webpage slot, specifically for
showing where such aθ is located. ⋄

The basic idea in our proof is to use Theorem 2 to first get a lower bound for those new
single queues written as a “weighted sum” of the original queues (described above). This idea is
similar to one part in the proof for the lower bound on the expected queue length of a departure-
controlled multi-queue system in [26], but some technique in their proof cannot directly apply
to arrival-controlled queues like ours.

C. Tightness of the Lower Bound

We want to show that theΩ(log(1/ǫ)) universal lower bound is tight, i.e., achievable by some
algorithms. Consider the following simple queueing model:the arrival processa(k) is i.i.d.
across time,a(k) = 2 w.p. ν and a(k) = 0 otherwise. The service rate is constant and equal
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to 1. Assume thatν ∈ (1/2, 1). With the controlled arrival procesŝa(k), we want to achieve a
throughputE[â(k)] ≥ 1− ǫ for a given smallǫ > 0. A “threshold policy” based on a threshold
T is proposed below:

• WhenQ(k) > T , reject all arrivals;
• WhenQ(k) = T , accept one arrival w.p.p1, accept two arrivals w.p.p2, and reject all of

them otherwise.
• WhenQ(k) < T , accept all arrivals.

Defining πi as the steady-state probability thatQ(k) = i (0 ≤ i ≤ T + 1) for the resulting
Markov chain, the local balance equations are given below:

πiν = πi+1(1− ν), ∀ 0 ≤ i ≤ T − 2;

π
T−1

· p1ν = π
T
(1− (p1 + p2)ν);

π
T
· p2ν = π

T+1
;

T+1
∑

i=0

πi = 1. (25)

Combining these equations with the throughput requirement, we get

ν

[

2
T−1
∑

i=0

πi + π
T
(2p2 + p1)

]

= 1− ǫ, (26)

and one can finally show that (ignoring detailed calculations)

T =
log(1/ǫ) + logC(ǫ)

log
(

ν
1−ν

) ,

where

C(ǫ) ,
(2ν − 1 + ǫ)(1 − ν(p1 + p2))

ν(2 − 2(1− ν)p2 − p1)
.

The above result further implies that̄Q ∼ Θ(log(1/ǫ)). we can also see that asν → 1, T → 0,
which is consistent with the fact the lower bound given in Theorem 2 goes to0 as the “zero
arrival probability”ϕ→ 0.

Another example showing the tightness of anΩ(log(1/ǫ)) bound is the dynamic packet
dropping algorithm in [25] (note that this universal lower bound is proved based on a strict
convexity assumption as mentioned before in Subsection IV-A).

V. CLICK -THROUGH RATE MAXIMIZATION PROBLEM

In this section, we consider another online ads model, in which the objective is to maximize
the long-term average total click-through rate of all queries. Instead of average budget, clienti
specifies in the contract an average “impression requirement” mi, which is the minimum number
of times an ad of this client should be posted by the service provider per “requirement cycle”
(equal toN time slots) on average. The other parameters are the same as in the model proposed
in Section I for the revenue maximization problem.

The corresponding optimization formulation now becomes

max
p∈F

J̄(p) =
∑

q

νq
∑

M∈Mq

p
qM

∑

i,s

Miscqis (27)
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where the feasible setF is characterized by

N
∑

q

νq
∑

M∈Mq

p
qM

∑

s

Mis ≥ mi, ∀i; (28)

0 ≤ p
qM

≤ 1, ∀q, M ∈ Mq; (29)
∑

M∈Mq

p
qM

≤ 1, ∀q. (30)

Different from the revenue maximization problem, here the feasible set can become empty if
somemi is too high. Basically, without constraint (28),F is relaxed to

F0 , {p : 0 ≤ p
qM

≤ 1, ∀q,M ∈ Mq;
∑

M∈Mq

p
qM

≤ 1, ∀q}. (31)

We can then define the following capacity region which characterizes how large the average
number of impressions can be achieved for each client per requirement cycle:

C ,







µ : µi=N
∑

q

νq
∑

M∈Mq

p
qM

∑

s

Mis, ∀i, s.t. p ∈ F0







.

Clearly, m ∈ C must hold to ensure the existence of a solution for the above optimization
problem.

Through a similar approach as in Subsection III-A, we can write down a similar online
algorithm based on the same stochastic model as defined in Subsection III-B. We defineq(k) ,
{q̃(t), for kN ≤ t ≤ kN + N − 1}. Similar to b̃i(k), m̃(k) = ⌈mi⌉ w.p. mi − ⌊mi⌋ and
m̃(k) = ⌊mi⌋ otherwise.

Online Algorithm: (in each requirement cyclek ≥ 0)
In each time slott ∈ [kN, kN +N − 1], if q̃(t) > 0, choose the assignment matrix

M̃∗(t, q̃(t),Q(k)) ∈ arg max
M∈Mq̃(t)

∑

i,s

Mis

(cq̃(t)is
ǫ

+Qi(k)
)

. (32)

At the end of requirement cyclek, for each clienti, update

Qi(k + 1) = [Qi(k) + m̃(k)− Si(k,Q(k),q(k))]+ ,

where

Si(k,Q(k),q(k)) ,
kN+N−1
∑

t=kN

∑

s

[M̃∗(t, q̃(t),Q(k))]is. (33)

In real online advertising business, some clients may only have short-term contracts, i.e.,
clients may not be interested in the average number of impressions per time slot but may be
interested in a minimum number of impressions in a given duration (such as a day). Further,
query arrivals may not form a stationary process. In fact, they are more likely to vary depending
on the time of day. These extensions are considered in Appendix E. Such extensions also make
sense for the revenue maximization model considered in the previous sections, but the approach
is similar to Appendix E and so will not be considered here.
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A. Performance Evaluation

Si(k,Q(k),q(k)) defined in (33) represents the actual number of impressions for client
i’s ads during requirement cyclek. The queue length increases when the average impression
requirements in a particular requirement cycle cannot be fulfilled. Hence, a positive queue
represents accumulated “credits,” which enhances the chance of being assigned with a webpage
slot in the future, much like a negative queue in the revenue maximization problem. We thus
call this queue a “credit queue.”

Unlike the revenue maximization problem in which anO(1/ǫ) upper bound on the transient
queue length is automatically imposed by the online algorithm, here we need to prove the stability
of the queues and show an upper bound on the mean queue length.Since{Q(k)} defines an
irreducible and aperiodic Markov chain, in order to prove its stability (positive recurrence), we
will first bound the expected drift ofQ(k) for a suitable Lyapunov function.

Lemma 2:Consider the Lyapunov functionV (Q) = 1
2

∑

iQ
2
i . For any ǫ > 0 and each

requirement cyclek,

E[V (Q(k + 1))|Q(k) = Q]− V (Q) ≤ D3

ǫ
+D1 −D2

∑

i

Qi. (34)

Here,

D1 ,
1

2

(

N(N − 1)L2 +NL+
∑

i

⌈mi⌉2(mi − ⌊mi⌋) + ⌊mi⌋2(1−mi + ⌊mi⌋)
)

, (35)

whereL is the number of webpage slots;

D2 , min
i
{N
∑

q

νq
∑

M∈Mq

p̂
qM

∑

s

Mis −mi}, (36)

for somep̂ ∈ F such thatD2 > 0; and

D3 , N ·max
p∈F0

J̄(p) (37)

whereF0 is defined in (31). ⋄

The proof is similar to the proof of Lemma 1 with some modifications in the final steps, which
will be given briefly in Appendix D. With this lemma, we can conclude thatQ(k) is positive
recurrent because the expected Lyapunov drift is negative except for a finite set of values of
Q(k), according to Foster-Lyapunov theorem ([2], [23]).

Remark 4:Note that compared to the definition ofB2 in (11) of Lemma 1 whereB2 ≥ 0, D2

needs to be strictly positive in order to prove the stabilityof queues. Such âp in the definition
of D2 can always be found unlessF is a degenerate set with at most one element. ⋄

The stability of the queues directly implies the following corollary:
Corollary 2 (Overservices in the long term):

lim
K→∞

E

[

1

K

K
∑

k=1

Si(k,Q(k),q(k))

]

≥ mi, ∀i.

⋄
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In addition to proving stability, Lemma 2 will be used to evaluate the upper bound on the
expected total queue length in the steady state, as shown in the following theorem:

Theorem 4:Under the online algorithm,

E

[

∑

i

Qi(∞)

]

≤ 1

D∗
2

(

D1 +
D3

ǫ

)

, (38)

whereD1 andD3 are respectively defined in (35) and (37);D∗
2 is defined as

D∗
2 , max

p∈F0

D2(p). (39)

whereD2 is defined in (36) (regarded as a function ofp). ⋄

Proof: Averaging both sides of inequality (34) over0 ≤ k ≤ K − 1, takingK → ∞ and
doing some simple algebra, one obtains

lim sup
K→∞

1

K

K−1
∑

k=0

E

[

∑

i

Qi(k)

]

≤ 1

D2

(

D1 +
D3

ǫ

)

.

The LHS equals toE [
∑

iQi(∞)] according to Theorem 15.0.1 in [23]. The RHS is minimized
through maximizingD2 over allp ∈ F0 (which will certainly satisfyp ∈ F andD2 > 0). This
completes our proof.

The following theorem shows that the online algorithm proposed above achieves a long-term
average click-through rate withinO(ǫ) of the offline optimum. The proof is similar to the one
for Theorem 1 and hence will be omitted.

Theorem 5:For anyǫ > 0,

0 ≤ lim
K→∞

E

[

J̄(p∗)− 1

KN

K−1
∑

k=0

J(k)

]

≤ D1ǫ

N
,

for some constantD1 > 0 (defined in (35) in Lemma 2). Here,J(k) is defined as the total
number of click-through events within requirement cyclek. ⋄

B. Customizing Impression Requirements{mi} Based on Query Arrival Rates{νq}
Since a positive queue measures how much the service provider “owes” a client, reducing the

coefficient of the1/ǫ term in the upper bound on the mean queue length becomes important.
Besides, we also need to guaranteem ∈ C. In order to handle these two issues, we introduce
an approach to customizing{mi} based on known (or estimated) query arrival rates{νq},

ReplacingD∗
2 in Theorem 4 by a commonD2 defined in equation (36), if we want the expected

total queue length to be upper bounded byQmax, it suffices to let

D2 ≥ ξ ,
1

Qmax

(

D1 +
D3

ǫ

)

, (40)
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whereD3 is already determined, andD1 does not matter much given a smallǫ although it
includes unknown{mi}. We then solve the following optimization problem to determine {mi}:

max
p∈F0,m

∑

i

logmi

s.t. N
∑

q

νq
∑

M∈Mq

p
qM

∑

s

Mis −mi ≥ ξ, ∀i.

Here we use
∑

i logmi as the objective function in order to guarantee a unique optimal solution
and impose a certain fairness rule called “proportional fairness” (see e.g. [17]). Note thatξ
cannot be set too large (i.e.,Qmax cannot be set too small), otherwise there may not exist a
feasible solution.

Naturally, a question would arise: now that we need to solve some mathematical programming
like the above one based on knowledge of query arrival rates,why not also directly solve the
original linear programming in (27) and use the offline optimal solutionp∗ to assign ads? The
answer to this is similar to the max-weight algorithm for wireless networks. In [27] and [29], it
has been shown that adaptive algorithms lead to much better queueing performance compared
to static offline algorithms. We verify this assertion in ourcontext through simulations in the
next subsection.

C. Queue Update in a Faster Time Scale

In the original algorithm, the queue length is updated only at the end of each requirement
cycle and used in the max-weight matching for the next whole requirement cycle. The longer
a requirement cycle lasts, the more obsolete the queue length information becomes, so with a
largeN , short-term performances may not be so good even if long-term performances are still
guaranteed.

We then propose a solution which updates queue lengths in a faster time scale. Specifically, we
divide each requirement cycle intoT queueing cycleswith equal lengths (assumingN/T ∈ Z+

without loss of generality). We use{Q̂(k, τ) : 0 ≤ τ ≤ T}k≥0 to denote this new queueing
system and assumêQ(−1, T ) = 0. At the beginning of each requirement cyclek before any
decision, update

Q̂(k, 0) = Q̂(k − 1, T ) + m̃(k),

and at the end of theτ th queueing cycle within this requirement cycle (1 ≤ τ ≤ T ), for all
client i,

Q̂i(k, τ) =



Q̂i(k, τ−1)−
kN+τ N

T
−1

∑

t=kN+(τ−1)N
T

∑

s

[M̃∗(t, q̃(t), Q̂(k, τ))]is





+

.

Since‖Q̂(k, T ) − Q(k)‖ ≤ B for some constantB independent of the queue lengths, it can
be shown that the long-term performances evaluated in Subsection V-A are still guaranteed (the
idea behind such a proof would be similar to the one in [7] and so is omitted).

Next, we use simulations to compare three different algorithms, namely a randomized algo-
rithm following the offline optimal solution (labeled as OPT) and two versions of our online
algorithm “max-weight matching” with and without “fast queue update” respectively (labeled as
MWM-Fast and MWM respectively). In each scenario we test, all the parameters are randomly
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Fig. 3: Average overall over-service and under-service (normalized by the total impression
requirement) impacted by the “fast queue update”
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Fig. 4: The standard variance of overall over-service and under-service (normalized by the total
impression requirement) impacted by the “fast queue update”

generated. The impression requirements{mi} are chosen through the approach in Subsection
V-B.

We take an example scenario with 2 webpage slots, 5 keywords and 10 clients. The probability
that a query arrives in a time slot equals0.7. Specifically, for the five keywords, the query arrival
rates areν = [0.2364, 0.0594, 0.1669, 0.0714, 0.1659]. Table I shows the click-through rates for
the ten clients (C1 ∼ C10) corresponding to each keyword (q1 ∼ q5), on webpage slots 1 and
2 respectively (a zero click-through rate indicates that the corresponding client is not related to
this keyword). We useN = 1440 (say, one time slot is one minute and one requirement cycle is
one day),ǫ = 10−4 andQmax = 20/ǫ (recall thatQmax is used to set up an upper bound on the
mean queue length by the heuristic in Subsection V-B). The simulation has been run for 1000
requirement cycles.

To compare the performances of all the three algorithms, instead of considering the long-
term performance requirements that we have used in the theory, we introduce two new metrics:
over-serviceS+

i (k) , [Si(k)− m̃i(k)]
+ and under-serviceS−

i (k) , [m̃i(k)− Si(k)]
+ to client i
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Webpage Slot 1
q1 0 0.519 0.973 0 0.649 0 0 0 0.800 0
q2 0 0 0 0.340 0 0 0.952 0 0 0
q3 0.982 0.645 0.856 0.461 0.190 0 0.369 0.669 0.156 0
q4 0.423 0 0 0 0.599 0 0.179 0 0.471 0.094
q5 0 0 0 0.875 0 0.518 0 0 0 0

Webpage Slot 2
q1 0 0.235 0.421 0 0.536 0 0 0 0.067 0
q2 0 0 0 0.312 0 0 0.050 0 0 0
q3 0.118 0.248 0.194 0.222 0.036 0 0.158 0.252 0.092 0
q4 0.296 0 0 0 0.020 0 0.124 0 0.032 0.060
q5 0 0 0 0.826 0 0.330 0 0 0 0

TABLE I: Click-through rates for all the clients’ ads

during requirement cyclek. Note that these metrics measure deviations from the guarantees over
short time scales and so are more stringent requirements than the long-term guarantees used in
the theory.

We show respectively in Figures 3(a) and 3(b) that the average overall over-service and
under-service normalized by the total impression requirement, i.e.,E[

∑

i S
+
i (k)]/

∑

imi and
E[
∑

i S
−
i (k)]/

∑

imi, are both reduced by the fast queue update. Similarly, a “variance reduc-
tion” effect is shown by the fast queue update based on the statistics

√

var[
∑

i S
+
i (k)]/

∑

imi

and
√

var[
∑

i S
−
i (k)]/

∑

imi, respectively in Figures 4(a) and 4(b). In terms of the overall
click-through rate, our simulation has verified that the three algorithms achieve approximately
the same performance (the figure is omitted here) and furtherdemonstrated in Figure 5 that the
fast queue update can also reduce its variance. Note that these performances of each individual
client also improve and we simply omit the figures here.

Observed from Figure 6, the offline optimal solution leads tovery unstable queue dynamics.
This essentially arises from the fact that the algorithm operates on an optimal pointp∗ for which
some inequalities in constraint (28) may be tight. In contrast, our online algorithm guarantees
the stability of queues, and the faster the queues update, the more stable the queue dynamics
become (as an example we useT = 24, i.e., the number of time slots per queueing cycle equals
60). This is consistent with the above results which show a reduction of over-service and under-
service in both mean and variance since these metrics directly measure the level of deviations
around the equilibrium point of each stable queue.

Remark 5:While a long-term client may only be concerned with average performances, a
short-term client cares about both mean (the average level for all the clients of its type) and
variance (related to its own individual level), especiallyfor the performances of under-service
and click-through rate.5 All of these are well handled by our online algorithm with fast queue
updates.

VI. CONCLUSIONS

In this paper, we propose a stochastic model to describe how search service providers charge
client companies based on users’ queries for the keywords related to these companies’ ads

5Over-service are cared about by the online ads service provider.
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Fig. 5: The “standard variance to mean ratio” of overall click-through rate impacted by the
“fast queue update”
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Fig. 6: Queue dynamics under three algorithms

by using certain advertisement assignment strategies. We formulate an optimization problem
to maximize the long-term average revenue for the service provider under each client’s long-
term average budget constraint, and design an online algorithm which captures the stochastic
properties of users’ queries and click-through behaviors.We solve the optimization problem by
making connections to scheduling problems in wireless networks, queueing theory and stochastic
networks. Our online algorithm is entirely oblivious to query arrivals and fully adaptive, so even
non-stationary query arrival patterns and short-term clients can be handled.

With a small customizable parameterǫ which is the step size used in each iteration of the
online algorithm, we have shown that our online algorithm achieves a long-term average revenue
which is withinO(ǫ) of the optimal revenue and the overdraft level of this algorithm is upper
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bounded byO(1/ǫ). By allowing negative values for the length of overdraft queues, we can
eliminate overdraft.

When estimated click-through rates instead of true ones areused in our online algorithm, we
show that the achievable fraction of the offline optimal revenue is lower bounded by1−∆

1+∆
, where

∆ is the relative error in click-through rate estimation.
We also show that in the long run, an expected overdraft levelof Ω(log(1/ǫ)) is unavoidable

(a universal lower bound) under any stationary ad assignment algorithm which achieves a long-
term average revenue withinO(ǫ) of the offline optimum. The tightness of this universal lower
bound is also shown for a simple queueing model using a threshold policy.

In another optimization formulation where the objective isto maximize the long-term average
click-through rate and the constraints include a minimum impression requirement for each client,
we further propose an approach to set impression requirements which make the contract feasible
and limit the average accumulated under-service to clients. Simulations show that making queues
update in a faster time scale will reduce both over-service and under-service, which benefits a
system involving short-term clients.
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APPENDIX

A. Proof of Lemma 1

E[V (Q(k + 1))|Q(k) = Q]− V (Q)

=
1

2
E

[

∑

i

(

[

Qi + Ai(k,Q,u(k))− b̃i(k)
]+
)2

−Q2
i

]

≤ 1

2
E

[

∑

i

(

Qi + Ai(k,Q,u(k))− b̃i(k)
)2

−Q2
i

]

= E

[

∑

i

Qi

(

Ai(k,Q,u(k))− b̃i(k)
)

+
1

2

∑

i

(

Ai(k,Q,u(k))− b̃i(k)
)2
]

≤
∑

i

Qi (λi(k,Q)− bi) +
1

2

∑

i

(E[A2
i (k,Q,u(k))] + E[b̃2i (k)]), (41)

where it was already defined in equation (8) that for alli,

Ai(k,Q(k),u(k)) =

kN+N−1
∑

t=kN

∑

s

[M̃∗(t, q̃(t),Q(k))]is · c̃q̃(t)is(t) · rq̃(t)i.

and we further define

λi(k,Q(k)) , E[Ai(k,Q(k),u(k))|Q(k)] = N
∑

q

νq
∑

s

[M̃∗(q, t,Q(k))]iscqisrqi.

Since each client can at most get one webpage slot for each query, we can further bound
∑

i

A2
i (k,Q,u(k))≤(N(N − 1)L2 +NL)(argmax

q,i,s
{cqisrqi})2.

Besides,

E[b2i (k)] = ⌈bi⌉2̺i + ⌊bi⌋2(1− ̺i) = ⌈bi⌉2(bi − ⌊bi⌋) + ⌊bi⌋2(1− bi + ⌊bi⌋).
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Thus, by defining

B1 ,
1

2

(

(N(N − 1)L2 +NL)(argmax
q,i,s

{cqisrqi})2 +
∑

i

⌈bi⌉2(bi − ⌊bi⌋) + ⌊bi⌋2(1− bi + ⌊bi⌋)
)

,

and continuing from inequality (41), we have

E[V (Q(k + 1))|Q(k) = Q]− V (Q)

≤ N
∑

q

νq
∑

i,s

Qi[M̃
∗(q, t,Q)]iscqisrqi −

∑

i

Qibi +B1

= −N
∑

q

νq
∑

i,s

(

1

ǫ
−Qi

)

[M̃∗(q, t,Q)]iscqisrqi

+
N

ǫ

∑

q

νq
∑

i,s

[M̃∗(q, t,Q)]iscqisrqi +B1 −
∑

i

Qibi

= −N
∑

q

νq
∑

i,s

(

1

ǫ
−Qi

)

[M̃∗(q, t,Q)]iscqisrqi

+
N

ǫ
R̄(p̃∗(k,Q)) +B1 −

∑

i

Qibi (42)

(a)

≤ −N
∑

q

νq
∑

i,s

(

1

ǫ
−Qi

)

∑

M∈Mq

p∗
qM
Miscqisrqi +

N

ǫ
R̄(p̃∗(k,Q)) +B1 −

∑

i

Qibi

= −N
ǫ

(

R̄(p∗)− R̄(p̃∗(k,Q))
)

+B1

−
∑

i

Qi ·



bi −N
∑

q

νq
∑

M∈Mq

p∗
qM

∑

s

Miscqisrqi



 , (43)

where inequality (a) holds because equation (6) in the online algorithm is equivalent to

∀q, p̃∗
q(k,Q(k)) ∈ arg max

{p
qM

,

M∈Mq}

∑

M∈Mq

p
qM

∑

i,s

Miscqisrqi

(

1

ǫ
−Qi(k)

)

,

(44)

which means that evaluating the objective function in (44) with p = p∗ cannot achieve a larger
value. Letting

B2 , min
i
{bi −N

∑

q

νq
∑

M∈Mq

p∗
qM

∑

s

Miscqisrqi},

from inequality (43), we finally obtain

E[V (Q(k + 1))|Q(k) = Q]− V (Q) ≤ −N
ǫ

(

R̄(p∗)− R̄(p̃∗(k,Q))
)

+B1 − B2

∑

i

Qi.
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B. Proof of Theorem 1

The first inequality which shows that the online algorithm cannot do better than the offline
optimal solution is too obvious, so we just ignore it here (proving it in a very rigorous way is
also very easy, after defining the “per-client revenue region” in Subsection IV-B and then using
the fact that the average revenue vectorλ corresponding to our online algorithm falls inside that
region, according to inequality (9) which is implied by stability).

We now focus on the second inequality, i.e., theO(ǫ) convergence bound. From Lemma 1,

E
[

R̄(p∗)− R̄(p̃∗(k,Q(k)))
]

≤ ǫ

N
· E
[

B1 −B2

∑

i

Q(k) + V (Q(k))− E[V (Q(k + 1))|Q(k)]

]

≤ ǫ

N
· (B1 − E[V (Q(k))]− E[V (Q(k + 1))]),

Adding the terms for0 ≤ k ≤ K − 1 and dividing byK, we get

1

K

K−1
∑

k=0

E
[

R̄(p∗)− R̄(p̃∗(k,Q(k)))
]

≤ ǫ

N

(

B1 −
E[V (Q(K))]

K
+
V (Q(0))

K

)

≤ ǫ

N

(

B1 +
V (Q(0))

K

)

.

SinceV (Q(0)) <∞, we get the following limit expression:

lim
K→∞

1

K

K−1
∑

k=0

E
[

R̄(p∗)− R̄(p̃∗(k,Q(k)))
]

≤ B1ǫ

N
. (45)

Finally, because

E
[

NR̄(p∗)−R(k)
]

= E
[

E
[

NR̄(p∗)−R(k)|Q(k)
]]

= N · E
[

R̄(p∗)− R̄(p̃∗(k,Q(k)))
]

,

inequality (45) is equivalent to

lim
K→∞

E

[

R̄(p∗)− 1

KN

K−1
∑

k=0

R(k)

]

≤ B1ǫ

N
.

C. Proof of Corollary 1

Continuing from inequality (42) in Appendix A (the proof of Lemma 1), we get

E[V (Q(k + 1))|Q(k) = Q]− V (Q)

(a)

≤ − 1

1 + ∆
N
∑

q

νq
∑

i,s

(

1

ǫ
−Qi

)

[M̃∗(q, t,Q)]isĉqisrqi +
N

ǫ
R̄(p̃∗(k,Q)) +B1 −

∑

i

Qibi

(b)

≤ − 1

1 + ∆
N
∑

q

νq
∑

i,s

(

1

ǫ
−Qi

)

∑

M∈Mq

p∗
qM
Misĉqisrqi +

N

ǫ
R̄(p̃∗(k,Q)) +B1 −

∑

i

Qibi
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(c)

≤ −1 −∆

1 +∆
N
∑

q

νq
∑

i,s

(

1

ǫ
−Qi

)

∑

M∈Mq

p∗
qM
Miscqisrqi +

N

ǫ
R̄(p̃∗(k,Q)) +B1 −

∑

i

Qibi

= −N
ǫ

(

1−∆

1 +∆
R̄(p∗)− R̄(p̃∗(k,Q))

)

+B1

−
∑

i

Qi ·



bi −
1−∆

1 +∆
N
∑

q

νq
∑

M∈Mq

p∗
qM

∑

s

Miscqisrqi



 . (46)

Here, inequalities (a) and (c) hold respectively becauseĉ ≤ c(1 + ∆) and ĉ ≥ c(1 −∆), with
the fact that all the coefficients in this summation are nonnegative. Inequality (b) holds because
equation (12) in the online algorithm with estimated click-through rates is equivalent to

∀q, p̃∗
q(k,Q(k)) ∈ arg max

{p
qM

,

M∈Mq}

∑

M∈Mq

p
qM

∑

i,s

Misĉqisrqi

(

1

ǫ
−Qi(k)

)

, (47)

which means that evaluating the objective function in (47) with p = p∗ cannot achieve a larger
value. Letting

B′
2 ,min

i







bi−
1−∆

1 +∆
·N
∑

q

νq
∑

M∈Mq

p∗
qM

∑

s

Miscqisrqi







,

from inequality (43), we finally obtain

E[V (Q(k + 1))|Q(k) = Q]− V (Q) ≤ −N
ǫ

(

1−∆

1 +∆
R̄(p∗)− R̄(p̃∗(k,Q))

)

+B1 −B′
2

∑

i

Qi.

Therefore, similarly as in the proof of Theorem 1, we can finally show that

lim
K→∞

E

[

1

KN

K−1
∑

k=0

R(k)

]

≥
(

1−∆

1 +∆

)

· R̄(p∗)− B1ǫ

N
.

D. Proof of Lemma 2

By a similar approach as in the proof of Lemma 1 (Appendix A), we have

E[V (Q(k + 1))|Q(k) = Q]− V (Q)

≤ −N
∑

q

νq
∑

i,s

(

Qi +
cqis
ǫ

)

[M̃∗(q, t,Q)]is +
N

ǫ
J̄(p̃∗(k,Q)) +D1 +

∑

i

Qimi

(a)

≤ −N
∑

q

νq
∑

i,s

(

Qi +
cqis
ǫ

)

∑

M∈Mq

p̂
qM
Mis +

N

ǫ
J̄(p̃∗(k,Q)) +D1 +

∑

i

Qimi

= −N
ǫ

(

J̄(p̂)− J̄(p̃∗(k,Q))
)

+D1 −
∑

i

Qi



N
∑

q

νq
∑

M∈Mq

p̂
qM

∑

s

Mis −mi



 , (48)
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whereD1 is an upper bound on1
2

∑

i(E[S
2
i (k,Q,u(k))] + E[m̃2

i (k)]) and defined as

D1 ,
1

2

(

N(N − 1)L2 +NL+
∑

i

⌈mi⌉2(mi − ⌊mi⌋) + ⌊mi⌋2(1−mi + ⌊mi⌋)
)

.

Note that inequality (48) has the same form as inequality (43) in the proof of Lemma 1, except
that the offline optimump∗ is replaced by somêp ∈ F . Letting

D2 , min
i
{N
∑

q

νq
∑

M∈Mq

p̂
qM

∑

s

Mis −mi},

it is always possible to pick âp ∈ F such thatD2 > 0 (unlessF is a degenerated set which
has at most one element). We further bound the above inequality as

E[V (Q(k + 1))|Q(k) = Q]− V (Q) ≤ D3

ǫ
+D1 −D2

∑

i

Qi.

Here,D3 , N ·maxp∈F0 J̄(p) whereF0 is defined in (31). This concludes our proof.

E. Short-Term Clients and Non-Stationary Query Arrivals

We focus on the click-through rate maximization problem, although a similar model and
solution can be used for revenue maximization problem.

First, consider how to include short-term clients in the system. Let us index long-term clients
from 1 to n, the ith of which has an average impression requirement ofmi per requirement
cycle. There are further̃n types of short-term clients indexed byn + 1 ≤ i ≤ n + ñ. Each
short-term client of typei has a impression requirement ofli per contract term. Without loss of
generality, we assume that the contract term of any short-term client is equal to one requirement
cycle. In each requirement cyclek, there areXi(k) clients of typei in the system, whereXi(k)
follows a stationary stochastic process with meanxi andXi(k) is known at the beginning of
requirement cyclek.

Correspondingly in an ad assignment matrixM , the firstn rows and the subsequentñ rows
represent then long-term clients and thẽn types of short-term clients, respectively. If short-
term typej is assigned to some webpage slot, one out ofXj(k) clients of this type is chosen
uniformly at random due to their homogeneity.

Additionally, for a short-term client of typei, the algorithm is actually aimed to satisfy at
least only (1 − αi)li, whereαi ∈ [0, 1] is called “unfulfilled rate” for clients of typei and
to be determined by the algorithm. A strictly convex and monotonically increasing function
φ(αi) ∈ [0,∞) is then introduced to measure the “unhappiness” of short-term clients about
unfulfilled impression requirements, and deducted from theoriginal objective function “overall
average click-through rate” in (27) after scaled by some predetermined weightwi which reflects
the importance of the new metric “unfulfilled rate.”

The second extension from the original model is to consider amore general query arrival
pattern. We introduce a new time scale “stationary-arrivalperiod” between the fast one “time slot”
t and the slow one “requirement cycle”k, namely one requirement cycle equalsH stationary-
arrival periods (assuming thatN/H ∈ Z+ and usuallyN/H ≫ 1), and we assume that query
arrivals with respect to each keywordq form a stationary stochastic process with rateνq(h)
within the hth stationary-arrival period in one requirement cycle for all1 ≤ h ≤ H. This is a
more reasonable assumption for the query arrival pattern inthe real Internet. For example, in one
day, the query arrivals are stationary within each individual hour, non-stationary across different
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hours, and stationary in the same hour across different days. This corresponds toH = 24,
although setting a contract term (already assumed to be equal to one requirement cycle) as one
day would only be a simplification for ease of exposition. Based on this example, in the following
text we are going to use “day” and “hour” instead of “requirement cycle” and “stationary-arrival
period” to better describe the basic ideas.

In summary, the new optimization problem is formulated as

max
{p(h),∀h; α}

1

H

∑

q

H
∑

h=1

νq(h)
∑

M∈Mq

p
qM

(h)
∑

1≤i≤n+ñ,s

Miscqis −
n+ñ
∑

i=n+1

wiφ(αi)

subject to

N

H

∑

q

H
∑

h=1

νq(h)
∑

M∈Mq

p
qM

(h)
∑

s

Mis ≥
{

mi , ∀ 1 ≤ i ≤ n
(1− αi)lixi, ∀ n+ 1 ≤ i ≤ n+ ñ

and

0 ≤ p
qM

(h) ≤ 1, ∀q, M ∈ Mq, 1 ≤ h ≤ H ;
∑

M∈Mq

p
qM

(h) ≤ 1, ∀q, 1 ≤ h ≤ H.

The only modification in the online algorithm described in Subsection is to add the following
two steps specially for each type of short-term clients:

• At the beginning of thekth day, update

α∗
i (k) = ψ

(

liXi(k) ·Qi(k)

Hwi

)

,

which corresponds to the target “unfulfilled rate” for each type of short-term clients in this
day. Here, the functionψ ,

[

dφ
dα

]−1
.

• At the end of thekth day, “credit queue”i maintained for typei of short-term clients is
updated as

Qi(k + 1) = Qi(k) + (1− α∗
i (k)) · liXi(k)− Si(k,Q(k),q(k)),

whereSi(k,Q(k),q(k)) is defined in (33).
The conclusions and proofs about near-optimality of the objective value, queueing stability and

upper bound on the expected queue length are similar as thoseshown for the original problem
in Subsection V-A and hence omitted here.

Note that the online algorithm is still “oblivious” to the query arrivals, when the arrival
processes become non-stationary to some extent. This is an artifact of dual decomposition w.r.t.
each hourh, in addition to a decomposition w.r.t. each keywordq as we have seen before.
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