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Experimental demonstration of coherent feedback
control on optical field squeezing
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Abstract—Coherent feedback is a non-measurement based, (@) (b)
hence a back-action free, method of control for quantum sys- Output Quantum Input Output Input
tems. A typical application of this control scheme is squeéag System OoPO
enhancement, a purely non-classical effect in quantum opts. In
this paper we report its first experimental demonstration that
well agrees with the theory taking into account time deIays ad Quantum Boam
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Fig. 1. (a) General structure of the CF control. The arrowsespond
. INTRODUCTION to unidirectional flows of “quantum signals” such as optitaser fields.

b) Optical system structure of the CF control for squeeznfpancement,
Feedback control theory has recently been further extencig)qefpondiné to Fig. 3. queeznb

to cover even quantum systems such as a single atom.

The methodologies are broadly divided into two categories:

measurement-based feedback control and-measurement-  Hare we mention about aqueezed dtate [25]; this is a
based one called theoherent feedback control. Below we nrely non-classical state where the fundamental quantum

briefly describe their major difference and particularlyp®s noise is reduced below the quantum noise limit in one of

cific feature of the latter control strategy. the quadrature observables such as the posijiand the
~ Quantum (continuous-time) measurement produces us&ftbmentump (a more detailed description will be given in
information (which is of course a continuous-time signaksection 11). Therefore, a situation in which noise reduttio
that can be fed back to the system of interest, though at thg the CF control shows the best efficiency may appear in
same time it introduces unavoidalback-action noise into roplems of generating squeezed states. Actually Yanagisa
the system([B],[[5]. A number of investigation of this tradeg) and Goughl[11] theoretically showed that this idea vgork
off have discovered several situations where the measumteme, the case of quantum optics. Fig. 1 (b) illustrates the CF
based feedback control has clear benefits [27], for instangg, siructure they studied. The quantum system, which now
an application to quantum error correction [1]. On the Oth%'brresponds to aoptical parametric oscillator (OPO), has
hand, the coherent feedback (CF) contioll [12].I[18].1[17hn apility of noise reduction; that is, it transforms an inpu
[26], [28], [29] takes a totally different approach. The g&l  coherent state into an output squeezed state. It was then
structure of the CF control is shown in Fig. 1 (a); thgpown that the performance of squeezing can be enhanced by
system outputs a “quantum signal”, then the controlleroivhi ¢onstrycting an appropriate CF controller, which in thiseca
is also a ql_Jantum system, coherently modulates_ the Ou%lbiven by abeam splitter with tunable transmissivity.
and feeds it back to control the system. In this schemeryg b ryose of this paper is to report the first experimental
any measurement is not performed, implying that no excegsmanstration of the above-mentioned CF control on optical
measurement back-action noise is introduced into the systg;q|q squeezing, which well agrees with the theory that care-
Because of this feature the CF control is suitable for dg,al”f'ully takes into account the effects of the actual labonator
ywth problems ofnoise reduction, WhICh is the central topic setup, particularly time delays and losses in the feed s |
in the control theory. Actually we find that the very succalssf-l-he results are significant in the sense that, both theatltic

. : - . )
noise-reducing controllers, the> and the Linear Quadratic 54 exnerimentally, they clarify the situation where the CF
Gaussian controllers, have natural CF control analoduéls [1;onq) s really effective and the limitation on how much it
[18], [19], [23], [2€]- can improve the system performance practically. Note that i
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applicability of the CF control to non-classical regime. important roles in quantum information technologies, bsea
for instanceentanglement, which is a key property to perform
1. PRELIMINARIES various quantum information processing, can be generated

In this section we provide some notions of quantum maising squeezed states. Quantum information processieg oft

chanics and the dynamics of an OPO. For more details d64€s on highly entangled states, and this equivalentizmse
[21, 71, [8l, [9], [LO], [L6]. highly squeezed states are desirable. This is the reason why

squeezing enhancement is of vital important.

A. Observables, states, and statistics in quantum optics

In quantum mechanics, unlike the classical case, physi€al Optical parametric oscillator as a linear system
guantities must take different values probabilisticalljhem
measuring them. The corresponding statistics is desciibed
terms of astate, which is represented by a unit vectar). In
general, when measuring a physical quantity represented by Cini(t)
self-adjoint operatotX = X, the mean and variance of the
measurement results are respectively given by

<X> — <¢|X|7/)>7 (AX2> — <¢|X2|ZZJ> _ <7/)|X|¢>2, Fig. 2. Schematic of the OPO. Arrows represent optical betelling

along those directionsV/; are mirrors(i = 1,--- ,4). A crystal between the
c5:urved mirrorsMs and My is a second-order nonlinear medium.

Pumping field M = M, Qini ()

! a outl (t)

L; a i

where(y| is the adjoint tol¢)). That is, a state corresponds t

a probability distribution. For these statistical valuestake _ ) ) _
real numbers,X must be self-adjoint; actually in quantum_ 1ne optical parametric process is a widely-used method

mechanics any physical quantity is represented by a sdff generating a squeezed optical field, where a coherent
adjoint operator and is called abservable. optical field is squeezed by the interaction with a strong

A single-mode quantum optical field is described with aRUMPing field through a nonlinear medium. To produce a
operatora and its adjointa’, which respectively correspondSdueezed state of light more effectively, it is common to use
to a complex amplitude and its conjugate of a classical OB1_e0pt|cal parametrlc_oscﬂlator (OPQ); a cavity that contamg.
tical field. These operators satisfy thanonical commutation @ Second-order nonlinear crystal. Hig. 2 shows a convestion
relation (CCR) [a, af] = aa' — ata = 1. These field operators bow-tie type cavity with four mirrors, where the mirrdr,

are not self-adjoint, i.e., not observables, hence let tingle (INPUt-output port) is partially transmissive and the othare
highly reflective for the fundamental optical field. All the

ip=a+a’, i_:=—i(a—al). mirrors are perfectly transparent for the pumping field.sThi
aiﬁ/stem renders the input coherent fiélgl (¢) interact with

the medium many times inside the cavity and finally produces
a well-squeezed field,,::1(t) at the output port. These input
and output fields couple to the internal cavity fiéld) through

the mirror M; characterized by the power transmissivity.
<A:%i)<A:%2,> >1. (1) Losses inside the OPO are modeled as a coupling between
and an unwanted vacuum fielg,; (¢) through one of the
mirror M, with the transmissivityL;. Here we assume
hat such interactions occur instantaneously, implyirag the
outer fields satisfy the CCRiin (t),al ,(¢))] = 6(t —t') and

» Yinl

Analogous to the classical case, these observables apgl ¢
the amplitude and phase quadratures. The CCR for these
observables &, 4] = 2¢; due to this equality, for any state
the variances satisfy thideisenberg’s uncertainty relation:

This means that the amplitude and phase quadratures carﬁlrg%
be determined simultaneously. In other words, there isdun n
mental uncertainty with respect to these two non-commnugati
observables. In particular, it is known that, for aclpassical

: et (08 (0] = 3t = 1),
state such as a thermal state, each variance must be bi ‘é‘?} Hal ibe the d . fth ity fiald hich
thanl, i.e., (A22) > 1 and (Az%) > 1; this lower bound et us describe the dynamics of the cavity field), whic

is called thequantum noise limit (QNL). Related to this limit, is on resonant with the outer fields. In quantum mechanigs, an

we here introduce two important states in quantum Opticgl?se_rvableg( chang'esA in time according to _theesenberg
Jation dX/dt = i[X,H], where H = H' is called the

coherent and squeezed states. A coherent state is thetclogad . ! . TR
possible analogue to a classical electromagnetic wave:hNhI_'am'lton'an' Now the Hamiltonian only fof(t) is given by
is generated with a laser device. The coherent stateis . e
defined as an eigenvector afwith a € C the corresponding 1 = «o (t)a(t) +
eigenvalue, i.e.i|la) = «ala). Note that|0) represents a

%[EefiQwot&T(t)Q _ e*eiQw"td(t)Q]

vacuum state. A crucial property dé) is that it achieves Where&;O rlls the rﬁsonant fr('je.quencr:]y ?}ﬂgemtzs the ehffectlve-.

the ONL, i.e.. we haveAi2) — (A:2) = 1 for any a ness of the nonlinear medium which depends on the pumping
o + - ' field strength of frequencgwy. The Heisenberg equation of

meaning that a coherent state is a lowest-noise classatal St?ég that involves the coupling to the outer fields is given by
f

On the other hand, a squeezed state is a purely non-clas . . : : )
state with one of the quadrature variance below the QNSL ollowing quantum Langevin equation [2], [, [9], [10J:

In particular, for an ideal pure squeezed state the quadratu da(t)
variances are given byA#?) = e?” and (Az?2) = e " dt
with » € R a unit-less parameter. Squeezed states play + V1Gin1 () + /VL16in1 (), (2)

)

= —iwod(t) + ee" 20t (1) — %d(t)



wherey := ~v1 4+ 1, andy; = ¢I1/l and v, = cLq/l System

________

represent the damping rates withthe optical path length in Aout1(® ) L Ain1(®) \
the OPO ana the speed of light. The outer fields satisfy the / | - ‘ ! N
following boundary condition: bmmmm - EOE@@ | Controller
Goutn (1) = V/ATA(t) — dina (1). (3) AN
~ 74 1 "4 A
The single-input and single-output linear system given bg.E Bin2(® b Aouz®
(@) and [(B) is the system generating a squeezed state of light Cine®|  Ain2®

As in the classical case, a simple input-output relation is
found in the Fourier domair@(Q) = fdtOA(t)emt/\/ﬂ, Fig. 3. Schematic of the CF control on optical field squeezing
where we have moved to the rotating frame at frequency
wo by setting O(t) = o(t)e’ot. We will deal with for
instanceAinl(Q) and Alutl(ﬂ)’ that corresponds t@iy1 (t)
anda! ., (t), respectively. As a result we have

input-output port. Hereafter we name this BS as ¢baetrol-
BS (CBS) to discern it from the other BSs. The transmissivity
T, of the CBS is tuned to obtain higher squeezing level. The
Agut1 (Q) = G(Q) A1 (Q) + g(V AL L (Q) coherent input fieldd;,»(t) is sent to one port of the CBS,
+ G(Q)éinl(ﬂ) + g(Q)C*.T (Q), (@) and then, one of itsi outputB,,+2(t) is sent to the OPO. The
m output of the OPOA,:(t), is sent back to the CBS to close

where the loop. Finally at the other output port of the CBS we will
(71/2)% = (y£1/2 — i) + |¢|? find an enhanced squeezed field,.>(¢). The input-output
G(Q) = (v/2 —iQ)Z — |e]2 ’ relation at the CBS is given by (in the rotating frame)
G(Q) :\/'YIVLl('Y/Q — ZQ) (Q) _ €71 Aoth(t) —/1— Tzz‘iinz(t)

(v/2 —i)2 — |e]2” (/2 —iQ)2 — |¢|2 + VT [V = LaBuo(t) + VI2Cina (1),

gndg(ﬂ) = 'yLl/'ylg(Q). To evaluate the squeezipg, .Iet us BoutZ(t) =—\/1-T [, /1 — LQBing(t) + \/LQOing(t)]
introduce the (generalized) quadrature in the Fourier doma N \/ZTA t)
241in2 3

. 1. o
2] _ 0 —i0 it ~

Kou1 () = ) [ Aour () + 7P AL ()] (5) where Ciyo(t) is a vacuum field entering through a fictitious

. o . /2 BS with rfaflectivity Lo, and this is a model of losses in the
We write Xg,; (2) = Xgu1(2) and X5, (92) = Xoui1 (). CF loop. By (1) is the output of the OPO just before entering
For Ai;1(€2) and Cini1 (©2) their quadratures are defined in theys fictitious BS. Here it is assumed that the fictitious BS is
same form as EqL{5). Then, from Efl (4) we have placed just before the CBS. Now lef := I, /c (1, := ly/c)
XE () = [G(Q) + g(VXE, (Q) +[G(Q) £ Gg(V)]XFE (). be the time delay resulting from the optical path lenitil,)

() = [G() £ gD X0, () +C(D) £ OIXL () from (to) the CBS to (from) the OPO. Then we have
Ouﬂ((}) is simply given by the power . R ivora £ R iosoms

spectrumS=, (Q) := (| XL, (2)[?). In particular, when the Ain1 (1) = Bourz(t=7a)e™™, Bina(t) = Aoutr (=7 )™ ™.
input field is a vacuum state, we have Combining these equations with Efl (4) the final input-otitpu

Sc::ltl(ﬂ) — |G(Q) + g(Q)? + |G(Q) + G(Q)[2. reIAaiion is given in terms of the quadrature representaiipn
If € =0, thenS=, () = 1, VQ, which is the QNL. But a Koua () N
squeezed state of light is generated whes 0; actually for _ { -7+ Tov/1 — Laa™(Q) }X.:I:

simplicity in the casey;; = 0,¢ € R, and{2 = 0, we have 1+ af(Q) /(I —To)(1 — Ly)J~ ™

B ’Yl+2€ 2 - . ’}/1—26 2 T2(1_L2)ﬁi(9) o+
St = (2250) " San®= (250 o T @

The variance of X*

()

Y1 — 2€ Y1 + 2¢
one of which is below the QNL. Note that the sign ef \/T2(1 — Ly)(1 — Ty) Lot (Q) f
determines which quadrature is squeezedri-squeezed. T {V T2Ly — 1+ a* (VI = To)(1 = La) } £2(9),

+ _ i(Q4wo) (Ta+T + _
IIl. COHERENT FEEDBACK CONTROL ON OPTICAL FIELD  Wherea™(Q) = [G(Q) = g(Q)]e!(* o) (atm) and 5*(Q) =

SQUEEZING [G(Q) £ g(Q)]e!@+wo)™ When the input is a vacuum state,

+ Yt 2\ ic A
The basic idea of the CF control for optical squeezintg?e POWer Spectruns,(12) := (1Xoua (W) is given by

enhancement is fqund in [11], [29]. We here study.a realistigi Q) = ’\/ﬁ+ To\/T = Lya™ () ‘2
model corresponding to an actually constructed opticaksys Ut 1+a®(Q)/(1-Ty)(1— La)
in the laboratory, which takes into account time delays and To(1 — L) |B*(Q)[2
losses in the feedba(_:k Ioop. _ _ + T+ ot (V1 —To) (1 - Lo)P

The CF structure is depicted in Figl 3. The system is the 2 2

OPO described in Sec. Il. B. In this CF control scheme, a
beam splitter (BS) plays the roles of both a controller and an

VAT - VL LTl ()

| 1+ % (@)1= 1)1 - L)



It is immediately verifiedSE, () = SE.,(?) when the must incur. Therefore, when the OPO is already pumped
system is just the uncontrolled OPO described in Sectid Il-strongly, the CF loop loss becomes dominant compared to the
i.e.,7To =1 and L, = 0. Also L, = 1 leads toS;me(Q) = enhancement of the nonlinear effect, and we cannot perform
1 vV, implying that the CF loop loss will cause the overalinuch enhancement of the squeezing. This is a limitation of
degradation of squeezing level in frequency. The time delathe CF control for the squeezing enhancing problem.
appearing ina*(Q) will affect on the control performance
as well, particularly for the effective bandwidth in freemeg.
This will be seen later on. In what follows we assume that the
CF loop is on resonance, i.@wo(7at7) = _1,

(b)
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8s 8 rransmissivty Tof the cBs Lo Fig. 5. Frequency dependences of the squeezing and aet:zqg levels.
@ The green, red, pink, and blue lines represent those undecdhdition of
0 ‘ ‘ ‘ ‘ T»=0.7, 0.8, 0.9, and 1.0, respectively.
b |
o 1
73,\// Next, to see the frequency-dependence of the CF control,
-4t ] we calculateS= ,(Q) with fixed value atz = 0.1, which

5\ in the above discussion was proven to be a value such that
Bl \_J the CF control has clear benefit. Fid. 5 shows the squeezing
| ] and anti-squeezing levels in the following casés=0.7, 0.8,
-9 ] 0.9, and 1.0. Now the squeezing and anti-squeezing levels
18- o5 07 o8 o 2o of the uncontrolled OPO are almost the same as those with
Transmissiviy Jof the CBS T, =1 and L, = 0.05, which are indicated by the blue lines.
Fig. 4. The transmissivit§f» of the CBS versus the (a) anti-squeezing anJherefore’ the squeezing enhancement can be evaluated by

(b) squeezing levels for various normalized pumping stfengThe blue, red, SIMply comparing the squeezing level with the Ck & 1)
and green lines correspond 4o= 0.1, z = 0.35, andz = 0.6, respectively. to that without the CF1, = 1), for a fixed value ofL,. (Note
Igsoﬂtrgﬁ: d'”g'sgte the values & = 1 with L2 = 0, corresponding to the s argument makes sense only in the case of weak pumping
power.) Then, in each case 9§, the squeezing enhancement
Let us numerically evaluate the performance of how mudh observed only at lower frequencies. Moreover, whiledett
the CF control can enhance the squeezing, or equivalentigueezing is achieved by taking a smaller valuelgf this
can reduce the noise further. Here a set of practical valugrings the narrower effective bandwidth in frequency. This
of parameters are taken [24]; = 0.12, L; = 5.0 x 10~3, additional limiting property of the CF control is mainly dtce
Ly =5.0x10"2,1=0.5m, andl, =, = 0.25 m. To calcu- the time delays occurred in the OPO and the feedback loop.
late Scfm(ﬂ) we particularly focus on the values at frequency
/2 =1 MHz. Fig.[4 depicts how the (a) anti-squeezing and IV. THE COHERENT FEEDBACK EXPERIMENT
(b) squeezing levels depend @h, with various values of the
normalized pumping strength := 2|¢|/~. Here, the power
spectrum is shown in the unit of normalized magnitude, i.e., Fig.[8 shows our experimental setup. The light source is a
101log,(SE,5/5E,) dB, whereSE, (Q) := (| X,(Q)]?) =1 continuous-wave Ti:Sapphire laser (Coherent, MBR-110¢ T
is the power of the vacuum input. Thus the horizontal aximavelength is 860 nm and the beam is horizontally polarized.
(0 dB) corresponds to the QNL. Now the circles indicate thd phase modulation of 10.4 MHz is applied on the beam for
values atTy = 1 with Ly, = 0, i.e., the squeezing and anti-locking of all cavities by Pound-Drever-Hall methad [4]].[6
squeezing levels of the uncontrolled OPO. Then, in the caseThe system is composed of four parts. The first is a
of weak pumping{ = 0.1 or z = 0.35), we findT; such that frequency-doubler, which is a cavity to generate a second
the squeezing level is enhanced by the CF control compatetmonic beam of 430 nmi_[22]. This beam is used as a
to that of the uncontrolled OPO. However, in the case @umping beam for the OPO. The second is a mode-cleaning
strong pumping £ = 0.6), the CF control cannot enhancecavity that is used to clean up the spatial mode of local
the squeezing at all. This is understood by considering thscillator (LO) for homodyne detection so as to attain highe
trade-off between the enhancement of the nonlinear squgezinode matching between the LO and the squeezed beam.
effect and the CF loop loss; that is, the more strongly the The third part consists of the OPO, the CBS, and the CF
CF control enhances the nonlinear effect, the more losslabp. The structure of the OPO is the same aslin [24]. In

Normalized noise power(dB)

A. Experimental setup
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Fig. 6. Experimental configuration. OPO: optical paransetscillator, MCC: Time(sec)
mode cleaning cavity, PD: photo detector, PZT: piezodkettansducer, PBS: ®

polarized beam splitter, HWP: half wave plate, and LO: |laastillator. The i ;
blue dashed line indicates the CF loop. The green dashednlifieates the 2 1
Mach-Zehnder interferometer, which corresponds to the .CBS R

order to realize several locking,pobe beam is injected into |
the OPO from the high-reflection-coated mirror. The reflécte
beam is detected with PD1 and PD4 to get error signals Zw
for locking the cavity and the relative phase between the 4 . o 55
probe beam and the pumping beam. To lock the cavity we Transmissivity T of the CBS
demodulate the output of the PD1 with 10.4 MHz modulation _ o
signal, and feed back the error signal to PZT1. On the ottfgf- 7. (@) Measurement resulis ofthe squeezing and anéiezing levels
. quency of 2.5 MHz. The green line representvabaum noise
hand, to lock the relative phase between the probe beam @R .., the QNL. The blue lines represent the squeeaimbanti-squeezing
the pumping beam, we apply a phase modulation of 107 klxels without the CF, and the red lines represent thosethdlCF wherils =
on the probe beam with PZT4. We demodulate the output SJ%A" the traces are averaged over 50 times. Dark noise igauisd. (b)
) . ) >-dependence of the squeezing and anti-squeezing levetntrdrequency
the PD4 with 107 kHz modulation signal, and feed back th# 2.5 MHz. Circles and solid curves represent experimeatal theoretical
error signal to PZT5. Furthermore, we obtain the probe beamtues, respectively.
at the output port of the OPO which is used to lock the relative
phase between the probe and the LO beams as explained lateThe parameters in this experiment are= 0.111, T} =
The CBS is realized by using a Mach-Zehnder (MZ) inte®.20, L, = 6.5 x 1073, Ly, = 0.12, ] = 0.5 m, and
ferometer. The transmissivity can be determined by adjgstil, = I, = 0.25 m. First we measure the squeezing and anti-
the phase difference between two arms in the MZ interferorsgqueezing levels with the CHY{ = 0.8) and those without the
eter. In order to lock a particular transmissivity, a s-paked CF (1> = 1.0). Note again that the squeezing enhancement can
(s-pol) beam is injected into the CF loop from PBS2. Notke evaluated by comparing these two values. [Big. 7 (a) shows
that this s-pol beam does not circulate in the CF loop. Thiee measurement results. The center frequency, the risolut
beam is detected by PD3 to give the error signal of the CBBandwidth, and the video bandwidth@s/2r = 2.5 MHz, 30
which is fed back to PZT3. Additionally, to lock the CF loopkHz, and 300 Hz, respectively. Here, because of a practical
we inject a p-polarized (p-pol) beam into the CF loop fromeason explained later, we cannot take the frequén@r = 1
the mirror of 0.99 reflectivity. Note that this beam and th&Hz unlike the case discussed in Section Ill. The green line
squeezed beam counter-propagate, hence this beam doegepresents the vacuum noise level, i.e., the QNL. The bhgs i
contaminate the CF output (the squeezed beam). We obtapresent the squeezing and anti-squeezing levels witheut
the error signal by demodulating the output of PD2 with 10.CF, and the red lines represent those with the CF. All theerac
MHz modulation signal, and feed back it to PZT2. are normalized to the QNL. Figl 7 (a) clearly demonstrates th
The last part is homodyne detection. In order to measueffect of the CF, showing the squeezing enhancement from
a specific quadrature amplitude accurately, the relativasgh —1.64+0.15 dB to —2.20+0.15 dB and the anti-squeezing
between the probe beam (equivalently, the squeezed beam) anhancement from 1.520.15 dB to 2.720.15 dB.
the LO beam should be locked. The error signal is obtainedWe carry out measurements with sevefal, Fig. [ (b)
from the output of the homodyne detector by demodulatingshows T>-dependence of the squeezing and anti-squeezing
with 107 kHz modulation signal. The error signal is fed baclkevels. Circles stand for the measurement results, and soli
to PZT6. When measuring the squeezed beam, the probe bdiaes show the following theoretical values [243 (Q) =
is set to 4uW, and the LO beam is set to 3 mW, so that we + 5(SZ,.,(Q) — 1), wheren represents the overall detection
can attain high signal-to-noise ratio without saturatiérihe efficiency given byy = £2p, ¢ is homodyne visibility ang is
homodyne detector. The output of the homodyne detectorgsantum efficiency of photo diodes in the homodyne detector.

0.3

Normalized noise power(dB)

1
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