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Optimal Control of Inhomogeneous Ensembles

Justin Ruths and Jr-Shin LMember, |EEE,

Abstract

Inhomogeneity, in its many forms, appears frequently ircgical physical systems. Readily apparent in quantum
systems, inhomogeneity is caused by hardware imperfes;tinaasurement inaccuracies, and environmental vargation
and subsequently limits the performance and efficiencyesabie in current experiments. In this paper, we provide
a systematic methodology to mathematically charactenizkaptimally manipulate inhomogeneous ensembles with
concepts taken from ensemble control. In particular, weeldgva computational method to solve practical quantum
pulse design problems cast as optimal ensemble controlgmsb based on multidimensional pseudospectral approx-
imations. We motivate the utility of this method by designipulses for both standard and novel applications. We
also show the convergence of the pseudospectral methogfional ensemble control. The concepts developed here
are applicable beyond quantum control, such as to neurderags and furthermore to systems with by parameter

uncertainty, which pervade all areas of science and engimge

|I. INTRODUCTION

Recent advancements in quantum research have enablethboegghs in biology, chemistry, physics, engineering,
and medicine including better methods to understand thietstie of macromolecules used in biochemical signaling
and drug delivery, to facilitate the fast and efficient sggraf information, and to yield higher resolution medical
images for diagnosis and treatment of early stage cantcef3J1Most, if not all, measurements and manipulations
of quantum systems are achieved through the appropriatgndesexternally applied time-varying electromagnetic
pulses, or controld [1]. These pulses guide the system tdugma desired time-evolution or a specific terminal
state. The design of such pulses is made significantly mdfieuti by inherent variations within the systems of
interest. Inhomogeneity is one of the fundamental obstgfolethe practical implementation and physical realizatio
of quantum science and quantum technology. In classicé¢sssthe dispersions resulting from inhomogeneity is
often compensated for by feedback control. Significantaredeeffort has been employed in the area of quantum
feedback control with several promising theoretical anatcpeal discoveries in recent yeals [4]] [5]. There is still
a large portion of quantum systems for which state feedbsakither impractical or difficult to achieve due to

the short timescales and large state-space of quantum pleer@o These limitations motivate us to consider the
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open-loop synthesis of optimal pulses that achieve a dkgival while compensating for the inhomogeneity present
in the quantum ensemble.

The behavior of a bulk quantursystem is the aggregate behavior of a large ensemble of individuahtum
systems. Although in isolation these individual systems, e.g. a&pspins, qubits, etc., are fundamentally identical, in
a physical system they are distinct due to different chehaigd electromagnetic environments. This variation across
the ensemble exhibits itself at the macroscopic level agmtian in the values of parameters that characterize the
dynamics of the bulk quantum systemm [6]. For example, adjgatoms within the same macromolecule shield the
full strength of the applied external magnetic fields. \rdievels of shielding create a dispersion in the frequency
of the quantum spins, which is observed as inhomogeneityarvalue of the natural frequency of the bulk sample.
In addition, hardware imperfection causes attenuatioméadpplied electromagnetic pulse over the ensemble and
can be represented as variation in a scaling factor muiltiglyhe applied pulse. Often several pulses are applied
in sequence in order to achieve an intricate time-evoluibthe system([7]. Each pulse is designed assuming an
exact (usually uniform) initial system state, however, nagtice, the previous pulses only prepare the system to
within a neighborhood of the assumed initial state. Thetagderror in such a pulse sequence can cause significant
performance degradation.

Guiding the evolution of inhomogeneous ensembles is aalddta in the design and implementation of quantum
experiments. As such, there is a rich literature of methattbessing this class of challenging problems. Initially
these were intuitive or ad-hoc methods motivated by the sgimnof the state spacel[7].1[8], which were then
augmented with various heuristic and specifically desigaedniqued[9],[10]. More recently pulse design problems
have been cast as optimal control problems [11]-[15]. Hexrgwesent a methodology that addresses the difficulties
of the current methods and is easily generalizable to argnidgeneous ensemble or uncertain system. The proposed
method has both theoretical, such as convergence ratesoamguitational complexity, and practical, such as ease
of implementation and computation time, advantages.

In this article we describe a framework to pose robust quamulse design problems in the language of mathe-
matical control theory with support from new theoreticahcepts in ensemble contrél [16]-[18] and computational
advances in multidimensional pseudospectral methodsted dpr ensemble systems [6], [19]. In a larger context,
we provide a rigorous methodology to study and control inbgemeous ensembles or systems with parameter
uncertainty from any area or application. In the followirgcon we introduce the problem statement as well as
our theoretical and computational tools. In Secfioh Ill, take several examples from nuclear magnetic resonance
(NMR) in liquids modeled by the bilinear Bloch equations¢lirding broadband excitation in the presence of
inhomogeneity, a sequence of broadband pulses robust t&tiwarin the initial conditions, and systems with a
time-varying frequency. We then provide empirical and tieéioal justifications that the solutions computed using

the pseudospectral method converge to solution of ther@ligiptimal control problem.
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Il. MOTIVATION & THEORY

In this section, we review the underlying concepts involuedur approach to design robust quantum pulses
as well as the broader mathematical formulations necedsacharacterize and solve such design problems. In
what follows, we present a highly general model of quantumadlyics, which demonstrates the abundance of
inhomogeneity in these problems and motivates studyingdimnérol of a family of parameterized systems. We then
show how the notion of ensemble control is well suited forlidgawith the inherent variation and uncertainty in

practical quantum systems and formulate a new type of optiorrol problem based on ensemble control.

A. Quantum Dynamics & Pulse Design

The dynamics of a quantum system is given by the time-exaiudf its density matrix. We consider here general
dynamics in which the system may have interaction with thdrenment that leads to dissipation in the system
state. Under the Markovian approximation, where the enwvirent is modeled as an infinite thermostat which has
constant state, the evolution of the density matrix can biemrin Lindblad form in terms of the system Hamiltonian
H(t) and superoperatdt(-) which model the unitary and nonunitary dynamics![20], resigely,

d .
=P =—uH®),pl = L(p),  (R=1).
The expression of the Hamiltonian has components corretpgio free evolution Hamiltoniar ¢, and the control

HamiltoniansH;,

H(t) = Hy + i wi(t) Hi,

whereu;(t) are externally applied electromagnetic pulses that carsbd to manipulate, or guide, the evolution of
the system state. Typical pulse design problems involvegdes) these pulses, or controls, to bring the final state
of the density matrixp(T') as close as possible to a target operator. This problem carahsformed, by taking
the expectation values of the operators involved in the gtansfer, to the vector-valued, bilinear control problem

z € R* andu € R™ given by,
d m
E(E = |:Hd —+ ii - ul(t)Hz] Z, (1)

where’H,; € R™*™ corresponds to the drift evolution representiilg and L, #; € R™*" corresponds to the
controlled evolution representing;, andt € [0, 7] [21]. While () accurately represents the classical irtgoa of
magnetic fields, in practice the effective fields - and, tfee the matrices representing the Hamiltonidysand

‘H, - show variation in magnitude due to different chemical emwiments and equipment errors. The system can no
longer be described by a single equation but rather by a yaofiequations with variation in the parameters that
characterize the motion, which motivates us to considediggersion in the dynamics as a continuum parameterized

by the system values,

D a(t.5) = [Hals) + > ui(t)Hi(s)] a(, 9), @
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wheres € D c R? is a d-dimensional interval representing thieparameters exhibiting variation [19]. In a
more general formulation the matrices representing the iltamans can be time-dependeft,; = H,(¢,s) and
H; = Hi(t,s), as in the case of random fluctuations.

Designing a single set of controls (pulses)¢) that simultaneously steer an ensemble of dispersive sgstem
in @) from an initial state to a desired final state is a fundatal problem in the control of quantum systems.
Moreover, similar parameterized structures can be foumdsacall areas of science and engineering, such as in
neuroscience where a single stimulus is used to trigger algimeous firing of neuron oscillators with distinct
oscillation frequencies [22]. In these applications fudite feedback, which is required in most current methods to
compensate for system uncertainty, is impractical to obdaie to the sheer number of members (and states) within
the ensemble. Averaged measurement is possible in somieatfpis, however, this type of measurement restricts
the forms of available feedback. It is, then, of particutaportance to consider the corresponding open-loop control

problem.

B. Optimal Ensemble Control

Systems as iM{2) motivate the study of a new class of inhomames control systems. Ensemble contral [17]

is a mathematical framework to characterize parametesystéms of the form,

%I(f, s) = F(t, s, x(t, 8), u(t)), x(0,8) = zo(s), 3)

wherez € R?, u € R™, s € D C R?, with F' and zo(s) smooth functions of their respective arguments. The
significant challenge of this class of control problems iodges from requiring the same open-loop contedl,)

to guide the continuum of systems from an initial distribatizo(s), to a desired final distribution, over the
corresponding function space. Fundamental propertiehexfet systems, such as controllability, are of particular
interest - specifically addressing what types of inhomoijiesecan be compensated for robustly. For example, it
has been shown that the controllability of an ensemble afidalr Bloch equations, used as a sample system in this
paper (see Sectidn]ll), corresponds to the synthesis afopppte polynomials [16] and controllability conditions
for an ensemble of time-varying linear systems are relatetheé Picard criterion of Fredholm integral equations
of the first kind [17].

Subsequently, given dynamics and initial and final distidns, we seek methods to construct controls for such
steering problems. As with any control problem, in gendraté may be many possible solutions that satisfy a state-
to-state ensemble control problem. In addition there atendbenefits, penalties, and limitations that are assatiate
with the physical system, which can be used to rank the diffesolutions. Such practical considerations lead to
considering an optimal control problem based on the ensemjmhamics in[(8) which includes a cost functional

(with terminal, ¢, and running,C, cost terms) to be minimized as well as possible endpointpatd constraints
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(e and g, respectively),
T
: L
mnéf@ﬂﬂw+4 (a(t, s), u(t)dt ds, (4)

d
s.t. Ea:(t, s) = F(t, s, z(t, s), U(t))a

e(z(0,s),z(T,s)) =0,
g(z(t,s),u(t)) <0.

An optimal nonlinear control problem of this form is, in geale analytically intractable. Computational methods are
then required to solve such exceedingly complex optimagrie control problems. The idea from our previous
work that constructing appropriate polynomials is a keyl tmocharacterizing the controllability of ensemble
systems of interest motivates the use of polynomials withancomputational framework [16]. Below we review
the main ideas of the previously established pseudospestthod for optimal control to lay the foundation for
our developed extension to optimal ensemble control probldén Sectiof IV we complete this framework with a
proof of convergence of this numerical method.

Without loss of generality, we consider a general contirsdtbme optimal control problem defined on the time
interval Q = [—1, 1], which can be achieved by a simple affine transformation.

Problem 1 (Continuous-Time Optimal Control):

min J(z,u) = p(z(1)) + /_ 11 L£((t), u(t))dt, 5)
sit. %x(t) = a(t), u(t), (6)
e(z(—1),z(1)) = 0, )
g(z(t), u(t)) <0, (8)
[u(®lloe < A, we HL(Q), a>2 ©)

wherep € CY is the terminal cost; the running cost,c C, whereC* is the space of continuous functions with
« classical derivatives, and dynamics,c C2~1, whereC%~! is the space ofi-vector valuedC“~! functions,
with respect to the state(t) € R™, and controlu(t) € R™; e andg are terminal and path constraints, respectively;
H2(Q) is them-vector valued Sobolev space. The norm associated with abel&s space withn = 1, H*(Q),

is given with respect to th&?(Q2) norm [23],

o ) 1/2
|m@:(21w“m)-
k=0

C. Pseudospectral Method

The pseudospectral method was originally developed teegmeblems in fluid dynamics and since then has been
successfully used for optimal control [24]-[26] and apglie various areas [21], [22]. Pseudospectral discretinati
methods use expansions of orthogonal polynomials to ajppaig the states of the system and thereby inherit the

spectral accuracy characteristic of orthogonal polynbexpansions (thé&™" coefficient of the expansion decreases
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faster than any inverse power k¥ [23]. Through special properties, derivatives of thesbagonal polynomials can
be expressed in terms of the polynomials themselves, makjmgssible to accurately approximate the differential
equation that describes the dynamics with an algebraitioalanposed at a small number of discretization points.
An appropriate choice of these discretization points, ate) facilitates the approximation of the states as well as
ensuring accurate numerical integration through Gaussgisdrature.

As a collocation (or interpolation) method, the pseudospémethod uses Lagrange polynomials to approximate

the states and controls of the optimal control problem,

w(t) = Inaz(t) = Sop o Trli(t), (10)
u(t) ~ Inu(t) = S anli(t), (11)

wherex(t;) = Inz(ty) = T andu(ty) = Iyu(ty) = ux because the Lagrange polynomials have the property
l(t;) = ori, Wheredy; is the Kronecker delta function ang are the interpolation nodes [27]. Therefore, the
coefficientsz; anduy are the discretized values of the original problem and bectiva decision variables of the
subsequent discrete problem.

Although the interpolation with Lagrange polynomials detzes the original problem, we require a means to
ensure that both the integral in the cost functional is cagbaccurately and the dynamics are obeyed. The integral
can be approximated through Gauss quadrature; here we gsadre polynomials as the orthogonal basis for the

pseudospectral method. The Legendre-Gauss-Lobatto (lg@&agirature approximation,

1 N 1
/ﬂf(t)dtx ;f(ti)wi, w; = ﬁléi(t)dt, (12)

is exact if the integrand € Pyy_; and the nodes; € T'GL, whereP,y_; denotes the set of polynomials of
degree at mostN — 1 and wherel'"GL = {t; : Ly(t)|;, = 0,i=1,...,N —1}{J{-1,1} are theN + 1 LGL
nodes determined by the derivative of thé" order Legendre ponnomiaEN(t), and the interval endpoints [23].

Using the LGL nodes, we can rewrite the Lagrange polynoniiaisrms of the orthogonal Legendre polynomials,
which is critical to inherit the special derivative and spakcaccuracy properties of the orthogonal polynomials
despite using Lagrange interpolating polynomials. Givgr I'““%, we can express the Lagrange polynomials as
[28],

1 (t2 — 1)Ly (1)
N(N+1)Ln(ty)  t—tp

The derivative of[(I0) at; € T'Z¢~ is then,

ly(t) =

N
—IN:c Z Tl (t; Z D7y, = (Dnz)(t)), (13)

k=0
where D is the constant differentiation matrix [29].

We are now able to write the discretized optimal control peobusing equation$ (10), (11}, {12), andl(13). We

September 4, 2018 DRAFT



transform the continuous-time problem to a constraineihopation,

N
min (Zn) + Y L(E, w)w,
=0

N

ZDjki'k:f(jjvaj)a (14)
k=0
e(i'o,,f]v) =0,

g(z;,u;) <0, Vje{0,1,...,N}.

D. Multidimensional Pseudospectral Method

The pseudospectral method lends itself to a natural exterisi consider the ensemble case, which we develop
here. This is most readily apparent for a single parameteatian, i.e.,s € [a,b] C R, however, is easily scaled
to an arbitrary parameter dimension. In this basic caseetisemble extension df {(110) is

x(t,s) = Inxn,x( Zxk )k (t Z <Z Trr b ( ) (t)- (15)

k=0
The approximate derivative frofi{[13) at the LGL nodes in thepectivet ands domainst; € I'““L ands; € IXSL,

is
d N
7 —Inxn,x(ts, s5) ZDzk (Z Trlr(s; ) = ZDikfkj, (16)
k=0

whereZy; = x(tx, s;). In these equations we use a two-dimensional interpolaiidyat the N + 1 and Ny + 1

LGL nodes in time and the parameter, respectively. For argémeimber of parameters,= (s1, s2,...,84)" €
D CcRYd>1,
N N NSI N
2(t,8) ~ INuN,, xo N, (6 S) = > Er(S)lk(t) = chm ralra(sa) ey (s1)l(t).  (17)

k=0 k=071=0 rq=0

and the derivative is, correspondingly, with= (j1, j2, ..., 74)",

d
EINXN XX Ny, x(t, sj) ZDzkaﬁ da- (18)

The simplification from[(T]7) to[(18) illustrates why the pdeapectral approximations are effective methods for
ensemble control, as they mimic the lack of information ie larameter dimension. This aspect will also make

the extension of the convergence proof for ensemble syssaraightforward, as will be discussed in Section V.

Il. EXAMPLES

In this paper, we consider several examples based on thetypaal quantum control system described by
the Bloch equationg [30]. The Bloch equations have beenddonmodel a range of quantum phenomena from
protein spectroscopy in nuclear magnetic resonance (NMR&fd medical scans in magnetic resonance imaging

(MRI) [B1] to Rabbi oscillations in quantum optids [32]. lhet following discussion, we will consider the specific
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application and terminology for NMR spectroscopy, howetlee methods and results are easily transferred to these
other areas of interest. In NMR spectroscopy, when the wuraif the pulse design problem is small compared
with the relaxation timesT{ <« T3, T, the characteristic longitudinal and transverse relaxetimes, respectively),

the evolution of spins can be well approximated as sequesfaasitary rotations driven by the static magnetic field
and the applied electromagnetic controls. In practice effiective fields generating these rotations show variation
across the quantum sample due to hardware imperfectiontamdical shielding, which leads us to consider a range
of magnetic field variations. The corresponding dimengssiBloch equations in the rotating frame (see Appendix

[A) are,

%M(t, we) = W, + eu(t)Qy, + ev(t)Qm} M(t,w,e), (19)

where M (t,w,€) = (My(t,w,€), My(t,w,e€), M,(t,w,€)) is the Cartesian magnetization vector for the parameter
valuess = (w,¢), w € [-B,B] C R, is the dispersion of natural frequenciese [1 —§,1+ 6], 0 < § < 1,

is the amplitude attenuation factor, afid, € SO(3) is the generator of rotation around thexis. A pulse that
compensates for the dispersion in frequency and is insengid the scaling of the applied controls is called
a broadband pulse robust to inhomogeneity. In this sectiencensider several examples based on this model,
including pulses robust not only to frequency dispersiod immomogeneity, but also robust to uncertainty in initial

conditions and time-varying frequencies.

A. Robust = Pulse

Variation and dispersion in system dynamics pervade allsjghy experiments. In quantum systems, these
inhomogeneities are often large enough to cause signifieghiction in performance. The systematic framework
we present here provides a rigorous way to frame any genalsé plesign problem for quantum control, as well
as other areas of parameterized and uncertain systems.

A canonical problem in the control of quantum systems matiblethe Bloch equations is to design pulses that
will accomplish a state-to-state transfer of the systenthSpulses, e.g.xr/2 and = pulses (accomplishing /2
and 7 rotations, respectively), are the fundamental buildingcks of the pulse sequences used in many quantum
experiments. Here, consider the inversiongppulse that rotates the net magnetization from the eqiilibposition
(+2) to the—z axis, i.e.,M(0) =(001) - M(T)= (00 —1)". In the ensemble case, this goal corresponds to
a uniform inversion of the spin vector across all choicesrefjfiency and inhomogeneity. Specifically we consider

the optimal ensemble control problem,

146 B T
min / / M. (T,w,¢) dw de —|—/ u?(t) + 03 (t) dt, (20)
1-5 J-B 0
s.t. %M(t,w, €) = [wQZ + eu(t)Qy, + ev(t)Qz}M(t,w, €),
M(0,w,¢) = (00 1),

W2 1 02() < A, Vit e0,T],
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Fig. 1. The “inversion” control pulse designed by the muftidnsional pseudospectral method to make the state tran$f®,w,e¢) =
(001) - M(T,w,e) = (00 — 1) while compensating foww € [-1,1] ande € [0.9,1.1], i.e., B = 1 andé = 0.1. The final states
M (T, w, €) shown have an average value less than -0.99, achieving & higliorm transfer across the ensemble.

where A is the maximum allowable amplitude and the cost functioeaVes to equally minimize the z-component
of the spin vector (integrated across the ensemble) andribeye of the designed pulse.

Figure[1 displays a pulse that compensatesHoe 1 andd = 0.1 (10%) as well as the corresponding inversion
profile. In physical units for a normalizing amplitude of 161X the maximum amplitude isl = 20 kHz with
bandwidthw € [-20, 20] kHz and duratioril” = 120 us. Pulses developed in this manner have been implemented
experimentally in true protein NMR experiments to yieldrsfigant improvement in signal recovery [6]. Although
designing individual pulses is of importance and benefitahare a myriad of other variations and uncertainties
within typical quantum experiments, which calls for an a@uoh that can address such new inhomogeneities and

their corresponding challenges.

B. Uncertainty in Initial Conditions

In most experiments, individual pulses, such as the onedgorEfl, are combined into a longer pulse sequence,
which performs a more complicated manipulation of the sysstate with intermediate steps and goals. Even in
the case of highly optimized individual pulses, as showrhagrior example, there is an error between the desired
and actual final states. Moreover, pulses depend upon an @t usually uniform) initial condition in order to
achieve their expected levels of performance. These sffaonbine to create a magnified accumulated error at the
termination of the pulse sequence. The variation of théinibnditions of these pulses, therefore, causes signtfica
degradation in achievable performance.

A representative example of such a pulse sequence is torpeddhree step pulse sequence, which rotates the
magnetization of the ensemble (1) from equilibriusz§ to a point on the transverse plane (eig); (2) to the
opposite point on the transverse plane (e-g); (3) back to the equilibrium positionz). Such pulses generally
include “phase locking” pulses before and after the secarsgepduring which the magnetization dissipates. This

dissipation is the portion of the experiment that is impoirteo recover accurately and reflects a quantity to be
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Fig. 2. Pulses are optimized to produce a desired y — —y — =z evolution of the Bloch equations. The upper plot displaysdbncatenation
of individually optimized 2 — y and y — —y pulses, which achieves the dashed terminal profiles showswpevith respective average
performances: 0.99, 0.98, 0.97 (0.91 minimum). The middée gisplays a 3-part simultaneously-optimized pulse sbko variation in the
initial condition and achieves the solid terminal profilé®wn below, with respective average performances: 0.8, @.99 (0.97 minimum).

The noticeable enhancement in performance and uniformityé to compensating for the inhomogeneity in the initiadition of the individual

pulses.

measured, for example, a metabolic rate [33]] [34]. If, inliidn, there is accumulated error due to uncertainty in
the initial conditions of the individual pulses, this leatlgectly to measurement inaccuracy. Here, by removing the
“phase locking” pulses, we can abstract this pulse sequeneeunitary process and directly address any losses
due to error. The controllability of the Bloch equations li®&n constructing parameter-dependent (e.g. frequency,
rf inhomogeneity) rotations of the spin vectors [18]. Thiserefore, ensures that the problem with variation in
initial conditions can be solved provided that the initi@inditions can be parameterized by the frequency and
rf-inhomogeneity.

Figure[2 displays a three-stage optimized pulse designeeomultidimensional pseudospectral method which is
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Fig. 3. Control pulses (top) and state trajectories (boxtoorresponding to different objectives and designed to pmmeate for the time-
varying frequencyw(¢) = sin(¢). A single-system state transf@f (0) = (0 0 1)) — M(T) = (1 0 0)’ is designed using the terminal cost
©(T) = M(T) and running costL(t) = 0 (left), £(¢) = 0.1(u(t)? + v(¢)?) (middle), £(t) = 0.1 (right). The terminal time was free in

all cases, bounded H¥max = 1.

robust to frequency dispersion and variation in the initiahditions of the three stages. This pulse was run as three
concurrent optimizations, with the final states of one pégskin as the initial conditions of the next. This optimized
pulse is compared with the combination of three separafatiynized pulses; these combined pulses were designed
with equal total duration. The terminal profiles at eachrimtediate goal quickly show the evidence of accumulated
error in the case of the individually optimized pulses (eautividual pulse has an average performance greater
than 0.98). Most importantly, the uniformity of the invemiis lost in the additive error, with dips in performance
down to 0.91.

C. Time-Varying Freguency

Until now, we have considered that the dispersion and uaicgyt of the system are stationary. However,
addressing time-varying fluctuations in parameters is afsparticular theoretical and practical importance. For
example, in the formulation of quantum control problemsegivn [2) we noted that the Hamiltonians can be time-
varying, motivated by such phenomena as random telegrajse (8%]. The first step to addressing stochastic
variations in such physical systems is to demonstrate abwofr time-varying systems, such as given by the
expectation value of the corresponding random process.

Figure[3 presents a series of optimizations designif@ pulses providing a state transferz to +z, while
compensating for a time-varying frequenegyt) = sin(t). Various choices of cost functional yield different result
The arbitrary control pulse profile corresponding to thenieal costp(T) = M, (T) (Fig.[3, left) motivates studying
optimal control methods that provide the capacity for hgtwbjectives resulting in more physically meaningful

controls, e.g. minimizing energy (middle) and time (right)
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IV. CONVERGENCE

By accepting and implementing a numerical method, we intpliassume that the transformations and discretiza-
tion used to prepare the problem for computational work damgfundamentally alter the nature of the problem. It
is then critically important to show that this assumptiojustified. Here we do so by both empirical and theoretical
means. More specifically, we show that as the number of dizat®ns in the pseudospectral method (and samples
in the multidimensional pseudospectral method) incredisessolution of the algebraic nonlinear programming
problem converges to the solution of the original contirasime optimal control problem. For this argument, we
consider a modified nonlinear programming problem statémen

Problem 2 (Algebraic Nonlinear Programming):
N

min j(f,ﬂ) = (p(J_TN) + Zﬁ(fk, ﬂk)wk (22)
k=0

s.t. Hf(IN:Z?,INU) — DNI‘ ‘N < Cleia (22)

e(fo,i']v) =0 (23)

9(Zx, ux) <0 (24)

Huk||§A Vk=0,1,...,N (25)

wherec, is a positive constant; we define the discréte(Q2) norm ||h||x = +/{(h,h)n, for h,h1,ha € L2(),

Q = [-1, 1], with,
N

(h1,ho)n =Y Bh (te)ha(tk)wp,
k=0

where’ denotes the transpose ang is the Gauss quadrature weight from](12).
Remark 1. The dynamics in[{22) have been relaxed from the equalitf #) (& ensure the feasibility of the
discrete problem, which is used in Proposit[dn 1. It is &ivio show that in the limit, agV — oo, these two
conditions coincide.
We seek to address three questions related to solving thaaons-time optimal control (Problelm 1) by solving
the pseudospectral discretized constrained optimizafoblem[2). Suppose a feasible solutign«) exists to
Problenm1. Under what conditions:
1) Feasihility: For a given order of approximatio®V, does Problern]2 have a feasible solutign,u), which are
the interpolation coefficients given ih_(10) aid](11)?

2) Convergence: As N increases, does the sequence of optimal soluti¢s!, ')}, to Problem[2 have a
corresponding sequence of interpolating polynomials tvltonverges to a feasible solution of Problem 1?
Namely,

lim (Zyz', Zyu') = (z,u)
N — 00
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3) Consistency: As N increases, does the convergent sequence of interpolatigggmials corresponding to the

optimal solutions of Problerl 2 converge to an optimal sohutf ProblenIL? Namely,

]\;iirlm(INxT,INuT) = (z",u")

Remark 2: It is possible that Problefd 1 has more than one optimal swiutie., there is more than one solution
with the same optimal cost(z*,u*) = J*. Therefore, to show that the sequence of discrete solutonserges
to an optimal solution, we can instead show that the cost of therelie solution,/, converges to the optimal cost
J*.

Previous work has been done in the area of convergence osthalpspectral method and we aim to augment this
literature with several key insights that make convergeaselts applicable to a wider class of systems and relax the
conditions on which the current proofs are based. Rathept@imanalysis has been done for the class of nonlinear
systems which can be feedback linearized, including cayarere rates [36]. We show below that ensemble quantum
systems of interest do not fall within the class of feedbackdrizable systems. Work has also included general
nonlinear systems, but with the assumption that the salstid the algebraic nonlinear programming problem have
a limit point (i.e., have a convergent subsequerice) [37{hénlanguage used above, this is very close to assuming
“Convergence”, which in this presentation we relax and prBeasibility, Convergence, and Consistency directly.
Finally, we examine the convergence of the multidimendipsaudospectral method as applied to ensemble optimal
control problems. In what follows we consider first the cagemnce of the standard pseudospectral method and
then discuss the convergence of the ensemble case.

We first observe that ensemble control systems of interesnat feedback linearizablé [38], which motivates
a need for a more general convergence proof. Consider theedil Bloch equations i (19) without variation in
rf inhomogeneity (i.e.¢ = 1). The ability to feedback linearize a general nonlineatesysis given by the Lie
algebra generated by the drift and control vector fields ¢irditions on this algebra must hold for each control
term individually; here we consider the case gt In particular, the terms é,gzzﬂy =, aqlmzﬂy = —w,,
ad, Q, = —w?Q,, ..., and,

ady 'Q, = (-1)Fw?* 1,
acﬁl?zzﬂy = (_1)kw2ka7
wherek = 1,2,..., andw is any value in the intervaD C R. It is clear that this Lie algebra, with increasing

powers of the parameter, is never closed. Therefore, the span of the appropriatébtaekets is not involutive,

which indicates that such a system is not feedback lindalgza

A. Empirical Convergence

The orthogonal polynomials of the pseudospectral methosligee spectral convergence rates similar to Fourier
series approximations for periodic functions, which casilgabe seen in practice. Figuid 4 shows the rapid

convergence of the method in both the discretization (tiere) sampling (parameter) dimensions for a broadband
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Fig. 4. The characteristic rapid convergence of the muaftafisional pseudospectral method forr &2 pulse designed to perform the state
transfer M (0,w,1) = (00 1)) — M(T,w,1) = (1 0 0), with B =1 andT = 1. Average terminal values a¥/ (7, w, 1) are shown for
various choices ofV and Nw.

/2 pulse maximizing the terminal value across the ensemble. As the order of discretizatiyra(id/or sampling
(NVs) increase, the method yields an objectiygl) = M,.(T,w, 1)) that converges to the maximum value of unity.
The low order of approximation is a characteristic of thehogonal approximations at the heart of the numerical

method. Although such empirical figures are convincing, we Bhow this convergence in a more rigorous fashion.

B. Theoretical Preliminaries

The results in this section will provide the foundation oniebhwe can analyze the feasibility, convergence,
and consistency of the pseudospectral approximation rddtraoptimal control problems. We begin by presenting
several key established results in polynomial approxiomatheory and the natural vector extensions. With these
identities, we are able to then prove feasibility and cogeace. We define an optimal solution to Problem 1 as
any feasible solution that achieves the optimal cbgt*, u*) = J*. We use this definition of an optimal solution
within the subsequent preliminaries and the main result.

Remark 3: Given Problenflly € HS(Q). Sincex(t) exists andf € C2~', all the derivativest*) € C9,
¥V k=0,1,...,a exist and are square integrable on the compact dofairi*) ¢ L2 (Q). Thereforex € H* ().

Lemma 1 (Interpolation Error Bounds [[23], p. 289): If h € H*(Q), the following hold withcy, c2, ¢35, ¢ > 0.

(&) The interpolation error is bounded,
[h—=Znhl2 <t N"||Rf(a)-

(b) The error between the exact derivative and the derigaiivthe interpolation is bounded,
|h = Dbz < N[l ()
The same bound holds for the discrét&(§2) norm,

I — Dnhln < esN(|A]| (a)-
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(c) The error due to quadrature integration is bounded,

'/ t)dt — thkwk

wheret;, is the k™ LGL node andwy, is the c:orrespondingth weight for LGL quadrature as defined in_{12).

< eN" Al

Levma 2: If h € H2(Q), i.e., ann-vector valued Sobolev spack,= (hy hy ... hy), h; € H¥Q), i =
1,2,....n
(@) The vector-valued extension of Lemfifa 1a is, by the tt@imgequality on theL? () norm,
Ih = Znhlla <Y lhi = Inhilla <Y eiN ™[Rl (o)

=1 =1

(b) Similarly,[dB can be extended,
Jiv= Dl < 3 = Dbl < 306N il < V1
i=1 =1
which again also holds for the discret& (©2) norm.
Proposition 1 (Feasibility): Given a solutionz, ) of Probleni, then Problef 2 has a feasible soluti@ni),

which are the corresponding interpolation coefficients.

Proof: Given the feasible solutiofr, u), let (Zyx, Znu) be the polynomial interpolation of this solution at the
LGL nodes. Our aim is to show that the coefficients of thisnmtéation satisfy [(22)E(24) of Probled 2. Consider
the constraints imposed by the dynamics[inl (22). Becauseéliweete norm is evaluated only at the interpolation

points,
If(Znz, Inu) = Dyzlln = || f(z,u) = Dyzlly = ||l# — Dnafn < caN' ™
where the last step is given by Lemidd 2b. Therefore, thepotation coefficient§z, u) satisfy the dynamics of
Problen{2 in[(2R). We can easily show that the path consgaire also satisfied becauge:(t), u(¢)) < 0 for all
t € by (8). Since this holds for all € €, it also holds for all LGL nodeg; € I'*®t, i.e.,
9(Tx, ) = g(a(te), u(tr)) <0,

which gives [24). The endpoint constraints are triviallyi§eed by the definition of interpolation and the presence
of interpolation nodes at both endpoints. Therefdfie) is a feasible solution to Proble 2. [ |

Proposition 2 (Convergence): Given the sequence of solutions to Problem{gz, )}y, then the sequence of

corresponding interpolation polynomialSZyx,Zyu)}, has a convergent subsequence, such that

lim (Zn,z,Zn;u) = (Zoo®, Loou),

Nj-}OO

which is a feasible solution to Probldm 1.

Proof: Given that(z,u) is a feasible solution of Problel 2, it satisfies1(22)}(24ur @oal is to show (i)
that the sequence of solution§Zyx,Zyu)} N, has a convergent subsequence and (i) that the limit pdithis

function subsequence is a feasible solution of Prolilem tisfgimg (6)-(8).
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(i) The sequencdZyzx}, is a sequence of polynomials on a compact domain, therefore € HS(Q). With
the boundedness of the interpolating polynomials and timepeetness of, Rellich’s Theorem (see AppendiX B)
states there is a subsequerde,, -} which converges if72~1(Q2). The same is true for the control interpolating
polynomial. Therefore, there exists at least one limit poirthe function sequencfZyx, Zyu)} which we denote

(Zooz, Zoou).

(ii) Explicitly writing out the calculation of the discrete norim (22) gives

n 1/2
<ZZ fZ INzx, INU 'DN,TZ')Q(tk)> < Cleia.

k=0 i=
In the limit, because’ is continuous,

Jim (fi(Zne, Iyu) = Dya) (i) = (filTsw, Tocu) = (Toc)) (t) = 0,

therefore,
d

E(Ioox)(tk) = [(Toox, Toou) (tr),

which states thatZ..z, Z..u) satisfies the dynamics ifll(6) at the interpolation nodes.ddeer, asN — oo, the
LGL nodest; € I''Ct are dense iff2, which further shows thatZ..z,Z..u) satisfies the dynamics of Problem
[ at all points on the intervdl. Similarly, one can prove that this solution satisfies ththgmnstraints because
the LGL nodes become densefhas N — oo andg(zy, ux) = g(z(tx), u(ts)) < 0 at all LGL nodes. Again, the

endpoint constraints are met exactly because the LGL gidnlodes at the endpoints. ]

Lemma 3: Given(z,u), wherex € H¥(Q2), u € H2 (), and the corresponding interpolation coefficieiiis,z),
then the error in the continuous and discrete cost fundsatefined in[(b) and (21), respectively, due to interpolatio
is given by,

|J(z,u) — J(Z,0)] < N~

Remark 4: Notice that(z, u) and(z, u) are not required to be a feasible solutions to Prolilem Threspectively.

This result characterizes the error due to interpolation.

Proof: From [8) and[(2R) since(z(1)) = p(Z

N
|J(x |—’/ EIU t—ZK(i'k,@k)wk.
k=0

Since £ € C* with respect to both the state and controle H3(Q2) andu € HZ(2), the composite function
L(t) = L(z(t),u(t)) € H*(Q). Let L, = L(Zy, Uy). Substituting these definitions and employing Leniita 1c, we
obtain

< eN=LO) | (w)-

’ / E dt Zﬁkwk

SinceL € H*(Q), HZ(t)H(a) is bounded and the result follows. [ |
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V. MAIN RESULT

Theorem 1 (Consistency): Suppose Problef 1 has an optimal solufieh, «*). Given a sequence of optimal solu-
tions to Problenil2{(z', a")} 5, then the corresponding sequence of interpolating polyalsy{ (Zyz", Znu')} v,

has a limit point,(Z..z', Z..u') which is an optimal solution to the original optimal contmybblem.
Proof: We break the proof into four sections, employing the resiutisn the previous section.

(i) By Proposition[1L, sincéz*,v*) is a solution to Probleril1, then for each choice ¥f the corresponding

interpolation coefficients(z*, u*), are a feasible solution to Problém 2. By the definition ofiroptity of (z', uf),
J(z'at) < J@@*,u). (26)

(ii) By Propositior[ 2, the limit point of the polynomial interpion of the discrete optimal solution to Problein 2,
limy oo (Znzl, Inu') = (Zoozt, Zooul), is a feasible solution of Problelm 1. Therefore, we have hieydefinition

of the optimality of(z*,u*) and the continuity ofJ,
J(a", ") < lim J(Znat, Iyu') = J(Zooz', Toou'). (27)
— 00

(iii) Using LemmdB, we can bound the error in the cost between thmalpsolution of Problen]1(z*, v*), and

the corresponding interpolating coefficients;, ©*), as
|J(x*,u*) — J(z*,a%)| < eyt N~ (28)

Similarly, we can bound the error in the cost between thenmgdtsolution of Problernl2z, @), and the polynomial

interpolation of this solution(Zyz", Zyu'), as
|J(Znat, Inu®) — J(ZT,a")| < caN . (29)

Recall that Lemma&]3 does not requitEvz', Zyu') to be a feasible solution of Probldm 1. From](28) and (29),

lim J(z*,a*) = J(z*,u*), (30)
N —oc0

lim [J(Zyz', Zyul) — J(2', al)] =o. (31)
N —oc0

(iv) We are now ready to assemble the various pieces of this p@wofibining [30) and{26) we have,

lim J(z',a') < lim J(Z* a*) = J(z*, u*).

N —oc0 N—o00

Adding the result from[{27),

lim J(z',a') < J(z*,u*) < lim J(Znz', Inub). (32)

N—co ~ N—oco
Since the difference between the left and right sides, asngby [31), decreases to zero/ds— oo, the quantities

J(zT, a') and J(Znz', Zyu') converge taJ(z*,u*). In particular,

0< lim [J(z*,u*) — J(@',a")] < lim [J(Zya!, Inu') - J(z1,ah)] = 0.

N—o0 N —oc0
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Thus the optimal discrete cogtz, u') of Problen{2 and the continuous coBtZy =", Zyu') of the corresponding
interpolation polynomials converge to the optimal cdst:*, u*) of Problem[l. Moreover(Z .z, Z u') is a
feasible solution to Problef 1 and achieves the optimal. ddstrefore,(Z..x", Z.,u') is an optimal solution to
Problen(1. [ |
Remark 5 (Ensemble Extension): The nature in which the ensemble extension enters into tHedmensional
pseudospectral method makes it straightforward to extbisddonvergence proof to the ensemble case. Section
[T=Dlshowed the simplicity of the derivative term in multidensional sampling with equatidn {18). Similarly, in the
ensemble case, the constraints corresponding to the dgadPi) operate entirely in parallel for different paramete
values. The additional integration in the cost functionraye parameter domain, as il (4) adds another layer of

guadrature approximation that can be shown to convergeavghments similar to those presented above.

VI. CONCLUSION

In this work we have presented a cohesive perspective andoah@bgy for optimal control of inhomogeneous
ensembles, as particularly motivated by compelling pnoisién quantum control and extendable to both parame-
terized systems in, for example, neuroscience [22] andrtainesystems throughout science and engineering. Such
systems are mathematically characterized by consideripgrameterized family of differential equations indexed
by a parameter vector that shows variation. Applying tlismus framework prompts us to solve the corresponding
optimal control problems with computational methods oftigatar form. The notion of polynomial approximation
entering into the controllability analysis of the Bloch etjons indicates that a modified pseudospectral method
is a prime candidate. The method has natural extensionshwhéc develop to model ensemble variation. This
direct collocation method transforms the continuous-tioptimal control problem into an algebraic nonlinear
programming problem, which we show to be effective in a \grig applications. We supplied additional and more
general arguments for the convergence of this method, iticpkar relaxing several assumptions and discussing the

convergence characteristic of the multidimensional psspectral method for optimal ensemble control.

APPENDIXA

THE DIMENSIONLESSBLOCH EQUATIONS

The Bloch equations without relaxatio! = M x yBey, utilizes the classical description of interacting
electromagnetic forces, whet® is the spin magnetization vectot, is the gyromagnetic ratio, the effective
externally applied field if5e = (B cos(wot + ¢), By sin(wot + ¢), Bg)’, B1(t) and B, are the amplitudes of the
applied fields in the transverse plane andirection respectively, and(¢) is the phase anglé|[1]. Conventionally,

the fields are given as frequenci@Best = (w14, w1y, wp) and measured in units of Hertz. Using the generators of

rotation,
0 0 O 0 0 1 0 -1 0
Q=10 0 -1 Q, = 0 0 O Q, = 1 0 O
01 0 -1 0 0 0 0 0
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the Bloch equations are be given by
d
EM(t) = [wold; + wiy (t)Qy + w1 (1) Qg | M(2). (33)

If we consider variation in the applied electromagnetiadieB, and B;, we can expres$ (B3) in matrix form,

M (t,w,€) 0 —(wo +w) €B; sin(wot + ¢) M (t,w,€)
T My(t,w,e) | =7 wo + w 0 —eBj cos(wot + @) M,y (t,w,e)
M (t,w,e€) —eBy sin(wot + ¢)  €B1 cos(wot + @) 0 M, (t,w,e€)

wherew € [-3,5] ande € [1 —§,1+ 4], 0 < ¢ < 1. For calculation and computation, it is useful to transform
the Bloch equations into the so-called rotating frame anciatize the system by a nominal pulse amplitudie

to yield a dimensionless equation. Solutions based on timemsionless equation can then be scaled for a specific
choice of nominal amplitude. Consider a transformatidn= exp(—wo{2.t)M. In addition we scale time with

T = At. It is straightforward to show that the new state equatiogiven by,

iM(T,o.), €) = {wQZ + eu(T)Qy, + ev(T)Qw]M(T,w, €),

dr
wherer € [0, AT x 27], w € [-B, B|, B = /A, and
u(r) = w cos (¢(T/A)) o(T) = % sin ((b(T/A)),

(all dimensionless). Note ther factor in the time scaling is introduced to convert from anif Hertz to radi-
ans/second. Designing the time-varying contre{$) and v(7) is equivalent to the original design of amplitude
Bi(t) and phaseb(t).

APPENDIXB

RELLICH’S THEOREM
Theorem 2 (Rellich’s Theorem [[39], p. 272): Suppose{f;} is a sequence i/~ such that

(0) supy, || frll(a) < oo, and
(ii) the fi's are all supported in a fixed compact $ét

Then there is a subsequengf;, } which converges ir# for all 3 < a.
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