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Optimal Control of Inhomogeneous Ensembles
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Abstract

Inhomogeneity, in its many forms, appears frequently in practical physical systems. Readily apparent in quantum

systems, inhomogeneity is caused by hardware imperfections, measurement inaccuracies, and environmental variations,

and subsequently limits the performance and efficiency achievable in current experiments. In this paper, we provide

a systematic methodology to mathematically characterize and optimally manipulate inhomogeneous ensembles with

concepts taken from ensemble control. In particular, we develop a computational method to solve practical quantum

pulse design problems cast as optimal ensemble control problems, based on multidimensional pseudospectral approx-

imations. We motivate the utility of this method by designing pulses for both standard and novel applications. We

also show the convergence of the pseudospectral method for optimal ensemble control. The concepts developed here

are applicable beyond quantum control, such as to neuron systems, and furthermore to systems with by parameter

uncertainty, which pervade all areas of science and engineering.

I. I NTRODUCTION

Recent advancements in quantum research have enabled breakthroughs in biology, chemistry, physics, engineering,

and medicine including better methods to understand the structure of macromolecules used in biochemical signaling

and drug delivery, to facilitate the fast and efficient storage of information, and to yield higher resolution medical

images for diagnosis and treatment of early stage cancer [1]–[3]. Most, if not all, measurements and manipulations

of quantum systems are achieved through the appropriate design of externally applied time-varying electromagnetic

pulses, or controls [1]. These pulses guide the system to produce a desired time-evolution or a specific terminal

state. The design of such pulses is made significantly more difficult by inherent variations within the systems of

interest. Inhomogeneity is one of the fundamental obstacles for the practical implementation and physical realization

of quantum science and quantum technology. In classical systems the dispersions resulting from inhomogeneity is

often compensated for by feedback control. Significant research effort has been employed in the area of quantum

feedback control with several promising theoretical and practical discoveries in recent years [4], [5]. There is still

a large portion of quantum systems for which state feedback is either impractical or difficult to achieve due to

the short timescales and large state-space of quantum phenomena. These limitations motivate us to consider the
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open-loop synthesis of optimal pulses that achieve a desired goal while compensating for the inhomogeneity present

in the quantum ensemble.

The behavior of a bulk quantumsystem is the aggregate behavior of a large ensemble of individual quantum

systems. Although in isolation these individual systems, e.g. atoms, spins, qubits, etc., are fundamentally identical, in

a physical system they are distinct due to different chemical and electromagnetic environments. This variation across

the ensemble exhibits itself at the macroscopic level as variation in the values of parameters that characterize the

dynamics of the bulk quantum system [6]. For example, adjacent atoms within the same macromolecule shield the

full strength of the applied external magnetic fields. Varied levels of shielding create a dispersion in the frequency

of the quantum spins, which is observed as inhomogeneity in the value of the natural frequency of the bulk sample.

In addition, hardware imperfection causes attenuation in the applied electromagnetic pulse over the ensemble and

can be represented as variation in a scaling factor multiplying the applied pulse. Often several pulses are applied

in sequence in order to achieve an intricate time-evolutionof the system [7]. Each pulse is designed assuming an

exact (usually uniform) initial system state, however, in practice, the previous pulses only prepare the system to

within a neighborhood of the assumed initial state. The additive error in such a pulse sequence can cause significant

performance degradation.

Guiding the evolution of inhomogeneous ensembles is a central idea in the design and implementation of quantum

experiments. As such, there is a rich literature of methods addressing this class of challenging problems. Initially

these were intuitive or ad-hoc methods motivated by the symmetry of the state space [7], [8], which were then

augmented with various heuristic and specifically designedtechniques [9], [10]. More recently pulse design problems

have been cast as optimal control problems [11]–[15]. Here we present a methodology that addresses the difficulties

of the current methods and is easily generalizable to any inhomogeneous ensemble or uncertain system. The proposed

method has both theoretical, such as convergence rates and computational complexity, and practical, such as ease

of implementation and computation time, advantages.

In this article we describe a framework to pose robust quantum pulse design problems in the language of mathe-

matical control theory with support from new theoretical concepts in ensemble control [16]–[18] and computational

advances in multidimensional pseudospectral methods adapted for ensemble systems [6], [19]. In a larger context,

we provide a rigorous methodology to study and control inhomogeneous ensembles or systems with parameter

uncertainty from any area or application. In the following section we introduce the problem statement as well as

our theoretical and computational tools. In Section III, wetake several examples from nuclear magnetic resonance

(NMR) in liquids modeled by the bilinear Bloch equations, including broadband excitation in the presence of

inhomogeneity, a sequence of broadband pulses robust to variation in the initial conditions, and systems with a

time-varying frequency. We then provide empirical and theoretical justifications that the solutions computed using

the pseudospectral method converge to solution of the original optimal control problem.
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II. M OTIVATION & T HEORY

In this section, we review the underlying concepts involvedin our approach to design robust quantum pulses

as well as the broader mathematical formulations necessaryto characterize and solve such design problems. In

what follows, we present a highly general model of quantum dynamics, which demonstrates the abundance of

inhomogeneity in these problems and motivates studying thecontrol of a family of parameterized systems. We then

show how the notion of ensemble control is well suited for dealing with the inherent variation and uncertainty in

practical quantum systems and formulate a new type of optimal control problem based on ensemble control.

A. Quantum Dynamics & Pulse Design

The dynamics of a quantum system is given by the time-evolution of its density matrix. We consider here general

dynamics in which the system may have interaction with the environment that leads to dissipation in the system

state. Under the Markovian approximation, where the environment is modeled as an infinite thermostat which has

constant state, the evolution of the density matrix can be written in Lindblad form in terms of the system Hamiltonian

H(t) and superoperatorL(·) which model the unitary and nonunitary dynamics [20], respectively,

d

dt
ρ = −i[H(t), ρ]− L(ρ), (~ = 1).

The expression of the Hamiltonian has components corresponding to free evolution Hamiltonian,Hf , and the control

HamiltoniansHi,

H(t) = Hf +

m
∑

i=1

ui(t)Hi,

whereui(t) are externally applied electromagnetic pulses that can be used to manipulate, or guide, the evolution of

the system state. Typical pulse design problems involve designing these pulses, or controls, to bring the final state

of the density matrixρ(T ) as close as possible to a target operator. This problem can betransformed, by taking

the expectation values of the operators involved in the state transfer, to the vector-valued, bilinear control problem,

x ∈ R
n andu ∈ R

m given by,
d

dt
x =

[

Hd +
m
∑

i=1

ui(t)Hi

]

x, (1)

whereHd ∈ R
n×n corresponds to the drift evolution representingHf and L, Hi ∈ R

n×n corresponds to the

controlled evolution representingHi, andt ∈ [0, T ] [21]. While (1) accurately represents the classical interaction of

magnetic fields, in practice the effective fields - and, therefore, the matrices representing the HamiltoniansHd and

Hi - show variation in magnitude due to different chemical environments and equipment errors. The system can no

longer be described by a single equation but rather by a family of equations with variation in the parameters that

characterize the motion, which motivates us to consider thedispersion in the dynamics as a continuum parameterized

by the system values,
d

dt
x(t, s) =

[

Hd(s) +
m
∑

i=1

ui(t)Hi(s)
]

x(t, s), (2)
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where s ∈ D ⊂ R
d is a d-dimensional interval representing thed parameters exhibiting variation [19]. In a

more general formulation the matrices representing the Hamiltonians can be time-dependent,Hd = Hd(t, s) and

Hi = Hi(t, s), as in the case of random fluctuations.

Designing a single set of controls (pulses)ui(t) that simultaneously steer an ensemble of dispersive systems

in (2) from an initial state to a desired final state is a fundamental problem in the control of quantum systems.

Moreover, similar parameterized structures can be found across all areas of science and engineering, such as in

neuroscience where a single stimulus is used to trigger a simultaneous firing of neuron oscillators with distinct

oscillation frequencies [22]. In these applications full state feedback, which is required in most current methods to

compensate for system uncertainty, is impractical to obtain due to the sheer number of members (and states) within

the ensemble. Averaged measurement is possible in some applications, however, this type of measurement restricts

the forms of available feedback. It is, then, of particular importance to consider the corresponding open-loop control

problem.

B. Optimal Ensemble Control

Systems as in (2) motivate the study of a new class of inhomogeneous control systems. Ensemble control [17]

is a mathematical framework to characterize parameterizedsystems of the form,

d

dt
x(t, s) = F

(

t, s, x(t, s), u(t)
)

, x(0, s) = x0(s), (3)

wherex ∈ R
n, u ∈ R

m, s ∈ D ⊂ R
d, with F and x0(s) smooth functions of their respective arguments. The

significant challenge of this class of control problems originates from requiring the same open-loop control,u(t)

to guide the continuum of systems from an initial distribution, x0(s), to a desired final distribution, over the

corresponding function space. Fundamental properties of these systems, such as controllability, are of particular

interest - specifically addressing what types of inhomogeneities can be compensated for robustly. For example, it

has been shown that the controllability of an ensemble of bilinear Bloch equations, used as a sample system in this

paper (see Section III), corresponds to the synthesis of appropriate polynomials [16] and controllability conditions

for an ensemble of time-varying linear systems are related to the Picard criterion of Fredholm integral equations

of the first kind [17].

Subsequently, given dynamics and initial and final distributions, we seek methods to construct controls for such

steering problems. As with any control problem, in general there may be many possible solutions that satisfy a state-

to-state ensemble control problem. In addition there are often benefits, penalties, and limitations that are associated

with the physical system, which can be used to rank the different solutions. Such practical considerations lead to

considering an optimal control problem based on the ensemble dynamics in (3) which includes a cost functional

(with terminal,ϕ, and running,L, cost terms) to be minimized as well as possible endpoint andpath constraints
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(e andg, respectively),

min

∫

D

ϕ(T, x(T, s)) +

∫ T

0

L(x(t, s), u(t))dt ds, (4)

s.t.
d

dt
x(t, s) = F

(

t, s, x(t, s), u(t)
)

,

e(x(0, s), x(T, s)) = 0,

g(x(t, s), u(t)) ≤ 0.

An optimal nonlinear control problem of this form is, in general, analytically intractable. Computational methods are

then required to solve such exceedingly complex optimal ensemble control problems. The idea from our previous

work that constructing appropriate polynomials is a key tool in characterizing the controllability of ensemble

systems of interest motivates the use of polynomials withinthe computational framework [16]. Below we review

the main ideas of the previously established pseudospectral method for optimal control to lay the foundation for

our developed extension to optimal ensemble control problems. In Section IV we complete this framework with a

proof of convergence of this numerical method.

Without loss of generality, we consider a general continuous-time optimal control problem defined on the time

intervalΩ = [−1, 1], which can be achieved by a simple affine transformation.

Problem 1 (Continuous-Time Optimal Control):

min J(x, u) = ϕ(x(1)) +

∫ 1

−1

L(x(t), u(t))dt, (5)

s.t.
d

dt
x(t) = f(t, x(t), u(t)), (6)

e(x(−1), x(1)) = 0, (7)

g(x(t), u(t)) ≤ 0, (8)

‖u(t)‖∞ ≤ A, u ∈ Hα
m(Ω), α > 2 (9)

whereϕ ∈ C0 is the terminal cost; the running cost,L ∈ Cα, whereCα is the space of continuous functions with

α classical derivatives, and dynamics,f ∈ Cα−1
n , whereCα−1

n is the space ofn-vector valuedCα−1 functions,

with respect to the state,x(t) ∈ R
n, and control,u(t) ∈ R

m; e andg are terminal and path constraints, respectively;

Hα
m(Ω) is them-vector valued Sobolev space. The norm associated with the Sobolev space withm = 1, Hα(Ω),

is given with respect to theL2(Ω) norm [23],

‖h‖(α) =

( α
∑

k=0

∣

∣

∣

∣h(k)
∣

∣

∣

∣

2

2

)1/2

.

C. Pseudospectral Method

The pseudospectral method was originally developed to solve problems in fluid dynamics and since then has been

successfully used for optimal control [24]–[26] and applied to various areas [21], [22]. Pseudospectral discretization

methods use expansions of orthogonal polynomials to approximate the states of the system and thereby inherit the

spectral accuracy characteristic of orthogonal polynomial expansions (thekth coefficient of the expansion decreases
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faster than any inverse power ofk) [23]. Through special properties, derivatives of these orthogonal polynomials can

be expressed in terms of the polynomials themselves, makingit possible to accurately approximate the differential

equation that describes the dynamics with an algebraic relation imposed at a small number of discretization points.

An appropriate choice of these discretization points, or nodes, facilitates the approximation of the states as well as

ensuring accurate numerical integration through Gaussianquadrature.

As a collocation (or interpolation) method, the pseudospectral method uses Lagrange polynomials to approximate

the states and controls of the optimal control problem,

x(t) ≈ INx(t) =
∑N

k=0 x̄kℓk(t), (10)

u(t) ≈ INu(t) =
∑N

k=0 ūkℓk(t), (11)

wherex(tk) = INx(tk) = x̄k and u(tk) = INu(tk) = ūk because the Lagrange polynomials have the property

ℓk(ti) = δki, whereδki is the Kronecker delta function andtk are the interpolation nodes [27]. Therefore, the

coefficientsx̄k and ūk are the discretized values of the original problem and become the decision variables of the

subsequent discrete problem.

Although the interpolation with Lagrange polynomials discretizes the original problem, we require a means to

ensure that both the integral in the cost functional is computed accurately and the dynamics are obeyed. The integral

can be approximated through Gauss quadrature; here we use Legendre polynomials as the orthogonal basis for the

pseudospectral method. The Legendre-Gauss-Lobatto (LGL)quadrature approximation,
∫ 1

−1

f(t)dt ≈

N
∑

i=1

f(ti)wi, wi =

∫ 1

−1

ℓi(t)dt, (12)

is exact if the integrandf ∈ P2N−1 and the nodesti ∈ ΓLGL, whereP2N−1 denotes the set of polynomials of

degree at most2N − 1 and whereΓLGL = {ti : L̇N (t)|ti = 0, i = 1, . . . , N − 1}
⋃

{−1, 1} are theN + 1 LGL

nodes determined by the derivative of theN th order Legendre polynomial,̇LN (t), and the interval endpoints [23].

Using the LGL nodes, we can rewrite the Lagrange polynomialsin terms of the orthogonal Legendre polynomials,

which is critical to inherit the special derivative and spectral accuracy properties of the orthogonal polynomials

despite using Lagrange interpolating polynomials. Giventk ∈ ΓLGL, we can express the Lagrange polynomials as

[28],

ℓk(t) =
1

N(N + 1)LN(tk)

(t2 − 1)L̇N (t)

t− tk
.

The derivative of (10) attj ∈ ΓLGL is then,

d

dt
INx(tj) =

N
∑

k=0

x̄k ℓ̇k(tj) =

N
∑

k=0

Djkx̄k
.
= (DNx)(tj), (13)

whereD is the constant differentiation matrix [29].

We are now able to write the discretized optimal control problem using equations (10), (11), (12), and (13). We
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transform the continuous-time problem to a constrained optimization,

min ϕ(x̄N ) +
N
∑

i=0

L(x̄i, ūi)w
N
i ,

s.t.

N
∑

k=0

Djkx̄k = f(x̄j , ūj), (14)

e(x̄0, x̄N ) = 0,

g(x̄j , ūj) ≤ 0, ∀ j ∈ {0, 1, . . . , N}.

D. Multidimensional Pseudospectral Method

The pseudospectral method lends itself to a natural extension to consider the ensemble case, which we develop

here. This is most readily apparent for a single parameter variation, i.e.,s ∈ [a, b] ⊂ R, however, is easily scaled

to an arbitrary parameter dimension. In this basic case, theensemble extension of (10) is

x(t, s) ≈ IN×Ns
x(t, s) =

N
∑

k=0

x̄k(s)ℓk(t) ≈

N
∑

k=0

(

Ns
∑

r=0

x̄krℓr(s)

)

ℓk(t). (15)

The approximate derivative from (13) at the LGL nodes in the respectivet ands domains,ti ∈ ΓLGL andsj ∈ ΓLGL
Ns

,

is

d

dt
IN×Ns

x(ti, sj) =
N
∑

k=0

Dik

(

Ns
∑

r=0

x̄krℓr(sj)

)

=
N
∑

k=0

Dikx̄kj , (16)

wherex̄kj = x(tk, sj). In these equations we use a two-dimensional interpolatinggrid at theN + 1 andNs + 1

LGL nodes in time and the parameter, respectively. For a general number of parameters,s = (s1, s2, . . . , sd)
′ ∈

D ⊂ R
d, d > 1,

x(t, s) ≈ IN×Ns1
×···×Nsd

x(t, s) =

N
∑

k=0

x̄k(s)ℓk(t) =

N
∑

k=0

Ns1
∑

r1=0

· · ·

Nsd
∑

rd=0

x̄kr1...rdℓrd(sd) · · · ℓr1(s1)ℓk(t). (17)

and the derivative is, correspondingly, withj = (j1, j2, . . . , jd)
′,

d

dt
IN×Ns1

×···×Nsd
x(t, sj) =

N
∑

k=0

Dikx̄kj1...jd . (18)

The simplification from (17) to (18) illustrates why the pseudospectral approximations are effective methods for

ensemble control, as they mimic the lack of information in the parameter dimension. This aspect will also make

the extension of the convergence proof for ensemble systemsstraightforward, as will be discussed in Section IV.

III. E XAMPLES

In this paper, we consider several examples based on the prototypical quantum control system described by

the Bloch equations [30]. The Bloch equations have been found to model a range of quantum phenomena from

protein spectroscopy in nuclear magnetic resonance (NMR) [1] and medical scans in magnetic resonance imaging

(MRI) [31] to Rabbi oscillations in quantum optics [32]. In the following discussion, we will consider the specific
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application and terminology for NMR spectroscopy, however, the methods and results are easily transferred to these

other areas of interest. In NMR spectroscopy, when the duration of the pulse design problem is small compared

with the relaxation times (T ≪ T1, T2, the characteristic longitudinal and transverse relaxation times, respectively),

the evolution of spins can be well approximated as sequencesof unitary rotations driven by the static magnetic field

and the applied electromagnetic controls. In practice, theeffective fields generating these rotations show variation

across the quantum sample due to hardware imperfection and chemical shielding, which leads us to consider a range

of magnetic field variations. The corresponding dimensionless Bloch equations in the rotating frame (see Appendix

A) are,
d

dt
M(t, ω, ǫ) =

[

ωΩz + ǫu(t)Ωy + ǫv(t)Ωx

]

M(t, ω, ǫ), (19)

whereM(t, ω, ǫ) = (Mx(t, ω, ǫ),My(t, ω, ǫ),Mz(t, ω, ǫ)) is the Cartesian magnetization vector for the parameter

valuess = (ω, ǫ), ω ∈ [−B,B] ⊂ R, is the dispersion of natural frequencies,ǫ ∈ [1 − δ, 1 + δ], 0 < δ < 1,

is the amplitude attenuation factor, andΩα ∈ SO(3) is the generator of rotation around theα axis. A pulse that

compensates for the dispersion in frequency and is insensitive to the scaling of the applied controls is called

a broadband pulse robust to inhomogeneity. In this section we consider several examples based on this model,

including pulses robust not only to frequency dispersion and inhomogeneity, but also robust to uncertainty in initial

conditions and time-varying frequencies.

A. Robust π Pulse

Variation and dispersion in system dynamics pervade all physical experiments. In quantum systems, these

inhomogeneities are often large enough to cause significantreduction in performance. The systematic framework

we present here provides a rigorous way to frame any general pulse design problem for quantum control, as well

as other areas of parameterized and uncertain systems.

A canonical problem in the control of quantum systems modeled by the Bloch equations is to design pulses that

will accomplish a state-to-state transfer of the system. Such pulses, e.g.,π/2 and π pulses (accomplishingπ/2

andπ rotations, respectively), are the fundamental building blocks of the pulse sequences used in many quantum

experiments. Here, consider the inversion, orπ, pulse that rotates the net magnetization from the equilibrium position

(+z) to the−z axis, i.e.,M(0) = (0 0 1)′ → M(T ) = (0 0 − 1)′. In the ensemble case, this goal corresponds to

a uniform inversion of the spin vector across all choices of frequency and inhomogeneity. Specifically we consider

the optimal ensemble control problem,

min

∫ 1+δ

1−δ

∫ B

−B

Mz(T, ω, ǫ) dω dǫ+

∫ T

0

u2(t) + v2(t) dt, (20)

s.t.
d

dt
M(t, ω, ǫ) =

[

ωΩz + ǫu(t)Ωy + ǫv(t)Ωx

]

M(t, ω, ǫ),

M(0, ω, ǫ) = (0 0 1)′,

√

u2(t) + v2(t) ≤ A, ∀ t ∈ [0, T ],
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Fig. 1. The “inversion” control pulse designed by the multidimensional pseudospectral method to make the state transfer M(0, ω, ǫ) =

(0 0 1)′ → M(T, ω, ǫ) = (0 0 − 1)′ while compensating forω ∈ [−1, 1] and ǫ ∈ [0.9, 1.1], i.e., B = 1 and δ = 0.1. The final states

Mz(T, ω, ǫ) shown have an average value less than -0.99, achieving a highly uniform transfer across the ensemble.

whereA is the maximum allowable amplitude and the cost functional serves to equally minimize the z-component

of the spin vector (integrated across the ensemble) and the energy of the designed pulse.

Figure 1 displays a pulse that compensates forB = 1 andδ = 0.1 (10%) as well as the corresponding inversion

profile. In physical units for a normalizing amplitude of 10 kHz, the maximum amplitude isA = 20 kHz with

bandwidthω ∈ [−20, 20] kHz and durationT = 120 µs. Pulses developed in this manner have been implemented

experimentally in true protein NMR experiments to yield significant improvement in signal recovery [6]. Although

designing individual pulses is of importance and benefit there are a myriad of other variations and uncertainties

within typical quantum experiments, which calls for an approach that can address such new inhomogeneities and

their corresponding challenges.

B. Uncertainty in Initial Conditions

In most experiments, individual pulses, such as the one in Figure 1, are combined into a longer pulse sequence,

which performs a more complicated manipulation of the system state with intermediate steps and goals. Even in

the case of highly optimized individual pulses, as shown in the prior example, there is an error between the desired

and actual final states. Moreover, pulses depend upon an exact (and usually uniform) initial condition in order to

achieve their expected levels of performance. These effects combine to create a magnified accumulated error at the

termination of the pulse sequence. The variation of the initial conditions of these pulses, therefore, causes significant

degradation in achievable performance.

A representative example of such a pulse sequence is to perform a three step pulse sequence, which rotates the

magnetization of the ensemble (1) from equilibrium (+z) to a point on the transverse plane (e.g.+y); (2) to the

opposite point on the transverse plane (e.g.−y); (3) back to the equilibrium position (+z). Such pulses generally

include “phase locking” pulses before and after the second pulse during which the magnetization dissipates. This

dissipation is the portion of the experiment that is important to recover accurately and reflects a quantity to be
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+- + +

Fig. 2. Pulses are optimized to produce a desiredz → y → −y → z evolution of the Bloch equations. The upper plot displays the concatenation

of individually optimized z → y and y → −y pulses, which achieves the dashed terminal profiles shown below, with respective average

performances: 0.99, 0.98, 0.97 (0.91 minimum). The middle plot displays a 3-part simultaneously-optimized pulse robust to variation in the

initial condition and achieves the solid terminal profiles shown below, with respective average performances: 0.99, 0.99, 0.99 (0.97 minimum).

The noticeable enhancement in performance and uniformity is due to compensating for the inhomogeneity in the initial condition of the individual

pulses.

measured, for example, a metabolic rate [33], [34]. If, in addition, there is accumulated error due to uncertainty in

the initial conditions of the individual pulses, this leadsdirectly to measurement inaccuracy. Here, by removing the

“phase locking” pulses, we can abstract this pulse sequenceto a unitary process and directly address any losses

due to error. The controllability of the Bloch equations is shown constructing parameter-dependent (e.g. frequency,

rf inhomogeneity) rotations of the spin vectors [18]. This,therefore, ensures that the problem with variation in

initial conditions can be solved provided that the initial conditions can be parameterized by the frequency and

rf-inhomogeneity.

Figure 2 displays a three-stage optimized pulse designed bythe multidimensional pseudospectral method which is
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Fig. 3. Control pulses (top) and state trajectories (bottom) corresponding to different objectives and designed to compensate for the time-

varying frequencyω(t) = sin(t). A single-system state transferM(0) = (0 0 1)′ → M(T ) = (1 0 0)′ is designed using the terminal cost

ϕ(T ) = Mx(T ) and running costsL(t) = 0 (left), L(t) = 0.1(u(t)2 + v(t)2) (middle), L(t) = 0.1 (right). The terminal time was free in

all cases, bounded byTmax = 1.

robust to frequency dispersion and variation in the initialconditions of the three stages. This pulse was run as three

concurrent optimizations, with the final states of one pulsefed in as the initial conditions of the next. This optimized

pulse is compared with the combination of three separately optimized pulses; these combined pulses were designed

with equal total duration. The terminal profiles at each intermediate goal quickly show the evidence of accumulated

error in the case of the individually optimized pulses (eachindividual pulse has an average performance greater

than 0.98). Most importantly, the uniformity of the inversion is lost in the additive error, with dips in performance

down to 0.91.

C. Time-Varying Frequency

Until now, we have considered that the dispersion and uncertainty of the system are stationary. However,

addressing time-varying fluctuations in parameters is alsoof particular theoretical and practical importance. For

example, in the formulation of quantum control problems given in (2) we noted that the Hamiltonians can be time-

varying, motivated by such phenomena as random telegraph noise [35]. The first step to addressing stochastic

variations in such physical systems is to demonstrate control of time-varying systems, such as given by the

expectation value of the corresponding random process.

Figure 3 presents a series of optimizations designingπ/2 pulses providing a state transfer+z to +x, while

compensating for a time-varying frequency,ω(t) = sin(t). Various choices of cost functional yield different results.

The arbitrary control pulse profile corresponding to the terminal costϕ(T ) = Mx(T ) (Fig. 3, left) motivates studying

optimal control methods that provide the capacity for hybrid objectives resulting in more physically meaningful

controls, e.g. minimizing energy (middle) and time (right).
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IV. CONVERGENCE

By accepting and implementing a numerical method, we implicitly assume that the transformations and discretiza-

tion used to prepare the problem for computational work doesnot fundamentally alter the nature of the problem. It

is then critically important to show that this assumption isjustified. Here we do so by both empirical and theoretical

means. More specifically, we show that as the number of discretizations in the pseudospectral method (and samples

in the multidimensional pseudospectral method) increasesthe solution of the algebraic nonlinear programming

problem converges to the solution of the original continuous-time optimal control problem. For this argument, we

consider a modified nonlinear programming problem statement.

Problem 2 (Algebraic Nonlinear Programming):

min J̄(x̄, ū) = ϕ(x̄N ) +

N
∑

k=0

L(x̄k, ūk)wk (21)

s.t.
∣

∣

∣

∣f(INx, INu)−DNx
∣

∣

∣

∣

N
≤ cdN

1−α (22)

e(x̄0, x̄N ) = 0 (23)

g(x̄k, ūk) ≤ 0 (24)

‖uk‖ ≤ A ∀ k = 0, 1, . . . , N (25)

wherecd is a positive constant; we define the discreteL2
n(Ω) norm ‖h‖N =

√

〈h, h〉N , for h, h1, h2 ∈ L2
n(Ω),

Ω = [−1, 1], with,

〈h1, h2〉N =

N
∑

k=0

h′
1(tk)h2(tk)wk,

where′ denotes the transpose andwk is the Gauss quadrature weight from (12).

Remark 1: The dynamics in (22) have been relaxed from the equality in (14) to ensure the feasibility of the

discrete problem, which is used in Proposition 1. It is trivial to show that in the limit, asN → ∞, these two

conditions coincide.

We seek to address three questions related to solving the continuous-time optimal control (Problem 1) by solving

the pseudospectral discretized constrained optimization(Problem 2). Suppose a feasible solution(x, u) exists to

Problem 1. Under what conditions:

1) Feasibility: For a given order of approximation,N , does Problem 2 have a feasible solution,(x̄, ū), which are

the interpolation coefficients given in (10) and (11)?

2) Convergence: As N increases, does the sequence of optimal solutions,{(x̄†, ū†)}, to Problem 2 have a

corresponding sequence of interpolating polynomials which converges to a feasible solution of Problem 1?

Namely,

lim
N→∞

(INx†, INu†) = (x, u)
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3) Consistency: As N increases, does the convergent sequence of interpolating polynomials corresponding to the

optimal solutions of Problem 2 converge to an optimal solution of Problem 1? Namely,

lim
N→∞

(INx†, INu†) = (x∗, u∗)

Remark 2: It is possible that Problem 1 has more than one optimal solution, i.e., there is more than one solution

with the same optimal costJ(x∗, u∗) = J∗. Therefore, to show that the sequence of discrete solutionsconverges

to an optimal solution, we can instead show that the cost of the discrete solution,J̄ , converges to the optimal cost

J∗.

Previous work has been done in the area of convergence of the pseudospectral method and we aim to augment this

literature with several key insights that make convergenceresults applicable to a wider class of systems and relax the

conditions on which the current proofs are based. Rather complete analysis has been done for the class of nonlinear

systems which can be feedback linearized, including convergence rates [36]. We show below that ensemble quantum

systems of interest do not fall within the class of feedback linearizable systems. Work has also included general

nonlinear systems, but with the assumption that the solutions of the algebraic nonlinear programming problem have

a limit point (i.e., have a convergent subsequence) [37]. Inthe language used above, this is very close to assuming

“Convergence”, which in this presentation we relax and prove Feasibility, Convergence, and Consistency directly.

Finally, we examine the convergence of the multidimensional pseudospectral method as applied to ensemble optimal

control problems. In what follows we consider first the convergence of the standard pseudospectral method and

then discuss the convergence of the ensemble case.

We first observe that ensemble control systems of interest are not feedback linearizable [38], which motivates

a need for a more general convergence proof. Consider the bilinear Bloch equations in (19) without variation in

rf inhomogeneity (i.e.,ǫ = 1). The ability to feedback linearize a general nonlinear system is given by the Lie

algebra generated by the drift and control vector fields (theconditions on this algebra must hold for each control

term individually; here we consider the case foru). In particular, the terms ad0ωΩz
Ωy = Ωy, ad1ωΩz

Ωy = −ωΩx,

ad2ωΩz
Ωy = −ω2Ωy, . . . , and,

ad2k−1
ωΩz

Ωy = (−1)kω2k−1Ωx,

ad2kωΩz
Ωy = (−1)kω2kΩy,

wherek = 1, 2, . . . , andω is any value in the intervalD ⊂ R. It is clear that this Lie algebra, with increasing

powers of the parameterω, is never closed. Therefore, the span of the appropriate Liebrackets is not involutive,

which indicates that such a system is not feedback linearizable.

A. Empirical Convergence

The orthogonal polynomials of the pseudospectral method provide spectral convergence rates similar to Fourier

series approximations for periodic functions, which can easily be seen in practice. Figure 4 shows the rapid

convergence of the method in both the discretization (time)and sampling (parameter) dimensions for a broadband
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Fig. 4. The characteristic rapid convergence of the multidimensional pseudospectral method for aπ/2 pulse designed to perform the state

transferM(0, ω, 1) = (0 0 1)′ → M(T, ω, 1) = (1 0 0)′, with B = 1 andT = 1. Average terminal values ofMx(T, ω, 1) are shown for

various choices ofN andNω.

π/2 pulse maximizing the terminalx value across the ensemble. As the order of discretization (N) and/or sampling

(Ns) increase, the method yields an objective (ϕ(T ) = Mx(T, ω, 1)) that converges to the maximum value of unity.

The low order of approximation is a characteristic of the orthogonal approximations at the heart of the numerical

method. Although such empirical figures are convincing, we now show this convergence in a more rigorous fashion.

B. Theoretical Preliminaries

The results in this section will provide the foundation on which we can analyze the feasibility, convergence,

and consistency of the pseudospectral approximation method for optimal control problems. We begin by presenting

several key established results in polynomial approximation theory and the natural vector extensions. With these

identities, we are able to then prove feasibility and convergence. We define an optimal solution to Problem 1 as

any feasible solution that achieves the optimal costJ(x∗, u∗) = J∗. We use this definition of an optimal solution

within the subsequent preliminaries and the main result.

Remark 3: Given Problem 1,x ∈ Hα
n (Ω). Sincex(t) exists andf ∈ Cα−1

n , all the derivativesx(k) ∈ C0
n,

∀ k = 0, 1, . . . , α exist and are square integrable on the compact domainΩ, x(k) ∈ L2
n(Ω). Therefore,x ∈ Hα

n (Ω).

Lemma 1 (Interpolation Error Bounds [23], p. 289): If h ∈ Hα(Ω), the following hold withc1, c2, c3, c > 0.

(a) The interpolation error is bounded,

‖h− INh‖2 ≤ c1N
−α‖h‖(α).

(b) The error between the exact derivative and the derivative of the interpolation is bounded,

‖ḣ−DNh‖2 ≤ c2N
1−α‖h‖(α).

The same bound holds for the discreteL2(Ω) norm,

‖ḣ−DNh‖N ≤ c3N
1−α‖h‖(α).
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(c) The error due to quadrature integration is bounded,
∣

∣

∣

∣

∫ 1

−1

h(t)dt−

N
∑

k=0

h(tk)wk

∣

∣

∣

∣

≤ cN−α‖h‖(α),

wheretk is thekth LGL node andwk is the correspondingkth weight for LGL quadrature as defined in (12).

Lemma 2: If h ∈ Hα
n (Ω), i.e., ann-vector valued Sobolev space,h = (h1 h2 . . . hn)

′, hi ∈ Hα(Ω), i =

1, 2, . . . , n.

(a) The vector-valued extension of Lemma 1a is, by the triangle inequality on theL2
n(Ω) norm,

‖h− INh‖2 ≤

n
∑

i=1

‖hi − INhi‖2 ≤

n
∑

i=1

ciN
−α‖hi‖(α).

(b) Similarly, 1b can be extended,

‖ḣ−DNh‖2 ≤

n
∑

i=1

‖ḣ−DNh‖2 ≤

n
∑

i=1

ciN
1−α‖hi‖(α) ≤ cN1−α,

which again also holds for the discreteL2
n(Ω) norm.

Proposition 1 (Feasibility): Given a solution(x, u) of Problem 1, then Problem 2 has a feasible solution,(x̄, ū),

which are the corresponding interpolation coefficients.

Proof: Given the feasible solution(x, u), let (INx, INu) be the polynomial interpolation of this solution at the

LGL nodes. Our aim is to show that the coefficients of this interpolation satisfy (22)-(24) of Problem 2. Consider

the constraints imposed by the dynamics in (22). Because thediscrete norm is evaluated only at the interpolation

points,

‖f(INx, INu)−DNx‖N = ‖f(x, u)−DNx‖N = ‖ẋ−DNx‖N ≤ cdN
1−α

where the last step is given by Lemma 2b. Therefore, the interpolation coefficients(x̄, ū) satisfy the dynamics of

Problem 2 in (22). We can easily show that the path constraints are also satisfied becauseg(x(t), u(t)) ≤ 0 for all

t ∈ Ω by (8). Since this holds for allt ∈ Ω, it also holds for all LGL nodestk ∈ ΓLGL, i.e.,

g(x̄k, ūk) = g(x(tk), u(tk)) ≤ 0,

which gives (24). The endpoint constraints are trivially satisfied by the definition of interpolation and the presence

of interpolation nodes at both endpoints. Therefore,(x̄, ū) is a feasible solution to Problem 2.

Proposition 2 (Convergence): Given the sequence of solutions to Problem 2,{(x̄, ū)}N , then the sequence of

corresponding interpolation polynomials,{(INx, INu)}, has a convergent subsequence, such that

lim
Nj→∞

(INj
x, INj

u) = (I∞x, I∞u),

which is a feasible solution to Problem 1.

Proof: Given that(x̄, ū) is a feasible solution of Problem 2, it satisfies (22)-(24). Our goal is to show (i)

that the sequence of solutions,{(INx, INu)}N , has a convergent subsequence and (ii) that the limit point of this

function subsequence is a feasible solution of Problem 1, satisfying (6)-(8).
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(i) The sequence{INx}, is a sequence of polynomials on a compact domain, therefore, INx ∈ Hα
n (Ω). With

the boundedness of the interpolating polynomials and the compactness ofΩ, Rellich’s Theorem (see Appendix B)

states there is a subsequence{INj
x} which converges inHα−1

n (Ω). The same is true for the control interpolating

polynomial. Therefore, there exists at least one limit point of the function sequence{(INx, INu)} which we denote

(I∞x, I∞u).

(ii) Explicitly writing out the calculation of the discrete normin (22) gives
(

N
∑

k=0

n
∑

i=1

(fi(INx, INu)−DNxi)
2(tk)

)1/2

≤ cdN
1−α.

In the limit, becausef is continuous,

lim
N→∞

(

fi(INx, INu)−DNx
)

(tk) =
(

fi(I∞x, I∞u)− (I∞x)′
)

(tk) = 0,

therefore,
d

dt
(I∞x)(tk) = f(I∞x, I∞u)(tk),

which states that(I∞x, I∞u) satisfies the dynamics in (6) at the interpolation nodes. Moreover, asN → ∞, the

LGL nodestk ∈ ΓLGL are dense inΩ, which further shows that(I∞x, I∞u) satisfies the dynamics of Problem

1 at all points on the intervalΩ. Similarly, one can prove that this solution satisfies the path constraints because

the LGL nodes become dense inΩ asN → ∞ andg(x̄k, ūk) = g(x(tk), u(tk)) ≤ 0 at all LGL nodes. Again, the

endpoint constraints are met exactly because the LGL grid has nodes at the endpoints.

Lemma 3: Given(x, u), wherex ∈ Hα
n (Ω), u ∈ Hα

m(Ω), and the corresponding interpolation coefficients,(x̄, ū),

then the error in the continuous and discrete cost functionals defined in (5) and (21), respectively, due to interpolation

is given by,

|J(x, u)− J̄(x̄, ū)| ≤ cN−α.

Remark 4: Notice that(x, u) and(x̄, ū) are not required to be a feasible solutions to Problem 1 and 2,respectively.

This result characterizes the error due to interpolation.

Proof: From (6) and (22) sinceϕ(x(1)) = ϕ(x̄N ),

|J(x, u)− J̄(x̄, ū)| =

∣

∣

∣

∣

∫ 1

−1

L(x, u)dt −

N
∑

k=0

L(x̄k, ūk)wk

∣

∣

∣

∣

.

SinceL ∈ Cα with respect to both the state and control,x ∈ Hα
n (Ω) and u ∈ Hα

m(Ω), the composite function

L̃(t) = L(x(t), u(t)) ∈ Hα(Ω). Let Lk = L(x̄k, ūk). Substituting these definitions and employing Lemma 1c, we

obtain
∣

∣

∣

∣

∫ 1

−1

L̃(t)dt−

N
∑

k=0

Lkwk

∣

∣

∣

∣

≤ cN−α‖L̃(t)‖(α).

SinceL̃ ∈ Hα(Ω), ‖L̃(t)‖(α) is bounded and the result follows.
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V. M AIN RESULT

Theorem 1 (Consistency): Suppose Problem 1 has an optimal solution(x∗, u∗). Given a sequence of optimal solu-

tions to Problem 2,{(x̄†, ū†)}N , then the corresponding sequence of interpolating polynomials,{(INx†, INu†)}N ,

has a limit point,(I∞x†, I∞u†) which is an optimal solution to the original optimal controlproblem.

Proof: We break the proof into four sections, employing the resultsfrom the previous section.

(i) By Proposition 1, since(x∗, u∗) is a solution to Problem 1, then for each choice ofN , the corresponding

interpolation coefficients,(x̄∗, ū∗), are a feasible solution to Problem 2. By the definition of optimality of (x̄†, ū†),

J̄(x̄†, ū†) ≤ J̄(x̄∗, ū∗). (26)

(ii) By Proposition 2, the limit point of the polynomial interpolation of the discrete optimal solution to Problem 2,

limN→∞(INx†, INu†) = (I∞x†, I∞u†), is a feasible solution of Problem 1. Therefore, we have, by the definition

of the optimality of(x∗, u∗) and the continuity ofJ ,

J(x∗, u∗) ≤ lim
N→∞

J(INx†, INu†) = J(I∞x†, I∞u†). (27)

(iii) Using Lemma 3, we can bound the error in the cost between the optimal solution of Problem 1,(x∗, u∗), and

the corresponding interpolating coefficients,(x̄∗, ū∗), as

|J(x∗, u∗)− J̄(x̄∗, ū∗)| ≤ c1N
−α. (28)

Similarly, we can bound the error in the cost between the optimal solution of Problem 2,(x̄†, ū†), and the polynomial

interpolation of this solution,(INx†, INu†), as

|J(INx†, INu†)− J̄(x̄†, ū†)| ≤ c2N
−α. (29)

Recall that Lemma 3 does not require(INx†, INu†) to be a feasible solution of Problem 1. From (28) and (29),

lim
N→∞

J̄(x̄∗, ū∗) = J(x∗, u∗), (30)

lim
N→∞

[

J(INx†, INu†)− J̄(x̄†, ū†)
]

= 0. (31)

(iv) We are now ready to assemble the various pieces of this proof.Combining (30) and (26) we have,

lim
N→∞

J̄(x̄†, ū†) ≤ lim
N→∞

J̄(x̄∗, ū∗) = J(x∗, u∗).

Adding the result from (27),

lim
N→∞

J̄(x̄†, ū†) ≤ J(x∗, u∗) ≤ lim
N→∞

J(INx†, INu†). (32)

Since the difference between the left and right sides, as given by (31), decreases to zero asN → ∞, the quantities

J̄(x̄†, ū†) andJ(INx†, INu†) converge toJ(x∗, u∗). In particular,

0 ≤ lim
N→∞

[

J(x∗, u∗)− J̄(x̄†, ū†)
]

≤ lim
N→∞

[

J(INx†, INu†)− J̄(x̄†, ū†)
]

= 0.
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Thus the optimal discrete cost̄J(x̄†, ū†) of Problem 2 and the continuous costJ(INx†, INu†) of the corresponding

interpolation polynomials converge to the optimal costJ(x∗, u∗) of Problem 1. Moreover,(I∞x†, I∞u†) is a

feasible solution to Problem 1 and achieves the optimal cost. Therefore,(I∞x†, I∞u†) is an optimal solution to

Problem 1.

Remark 5 (Ensemble Extension): The nature in which the ensemble extension enters into the multidimensional

pseudospectral method makes it straightforward to extend this convergence proof to the ensemble case. Section

II-D showed the simplicity of the derivative term in multidimensional sampling with equation (18). Similarly, in the

ensemble case, the constraints corresponding to the dynamics (22) operate entirely in parallel for different parameter

values. The additional integration in the cost function over the parameter domain, as in (4) adds another layer of

quadrature approximation that can be shown to converge witharguments similar to those presented above.

VI. CONCLUSION

In this work we have presented a cohesive perspective and methodology for optimal control of inhomogeneous

ensembles, as particularly motivated by compelling problems in quantum control and extendable to both parame-

terized systems in, for example, neuroscience [22] and uncertain systems throughout science and engineering. Such

systems are mathematically characterized by considering aparameterized family of differential equations indexed

by a parameter vector that shows variation. Applying this rigorous framework prompts us to solve the corresponding

optimal control problems with computational methods of particular form. The notion of polynomial approximation

entering into the controllability analysis of the Bloch equations indicates that a modified pseudospectral method

is a prime candidate. The method has natural extensions which we develop to model ensemble variation. This

direct collocation method transforms the continuous-timeoptimal control problem into an algebraic nonlinear

programming problem, which we show to be effective in a variety of applications. We supplied additional and more

general arguments for the convergence of this method, in particular relaxing several assumptions and discussing the

convergence characteristic of the multidimensional pseudospectral method for optimal ensemble control.

APPENDIX A

THE DIMENSIONLESSBLOCH EQUATIONS

The Bloch equations without relaxation,̇M = M × γBeff, utilizes the classical description of interacting

electromagnetic forces, whereM is the spin magnetization vector,γ is the gyromagnetic ratio, the effective

externally applied field isBeff = (B1 cos(ω0t+ φ), B1 sin(ω0t+ φ), B0)
′, B1(t) andB0 are the amplitudes of the

applied fields in the transverse plane andz direction respectively, andφ(t) is the phase angle [1]. Conventionally,

the fields are given as frequenciesγBeff = (ω1x, ω1y, ω0) and measured in units of Hertz. Using the generators of

rotation,

Ωx =











0 0 0

0 0 −1

0 1 0











Ωy =











0 0 1

0 0 0

−1 0 0











Ωz =











0 −1 0

1 0 0

0 0 0
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the Bloch equations are be given by

d

dt
M(t) =

[

ω0Ωz + ω1y(t)Ωy + ω1x(t)Ωx

]

M(t). (33)

If we consider variation in the applied electromagnetic fieldsB0 andB1, we can express (33) in matrix form,

d

dt











Mx(t, ω, ǫ)

My(t, ω, ǫ)

Mz(t, ω, ǫ)











= γ











0 −(ω0 + ω) ǫB1 sin(ω0t+ φ)

ω0 + ω 0 −ǫB1 cos(ω0t+ φ)

−ǫB1 sin(ω0t+ φ) ǫB1 cos(ω0t+ φ) 0





















Mx(t, ω, ǫ)

My(t, ω, ǫ)

Mz(t, ω, ǫ)











whereω ∈ [−β, β] and ǫ ∈ [1 − δ, 1 + δ], 0 ≤ δ ≤ 1. For calculation and computation, it is useful to transform

the Bloch equations into the so-called rotating frame and normalize the system by a nominal pulse amplitudeA

to yield a dimensionless equation. Solutions based on the dimensionless equation can then be scaled for a specific

choice of nominal amplitude. Consider a transformationM = exp(−ω0Ωzt)M. In addition we scale time with

τ = At. It is straightforward to show that the new state equation isgiven by,

d

dτ
M(τ, ω, ǫ) =

[

ωΩz + ǫu(τ)Ωy + ǫv(τ)Ωx

]

M(τ, ω, ǫ),

whereτ ∈ [0, AT × 2π], ω ∈ [−B,B], B = β/A, and

u(τ) =
γB1(τ/A)

A
cos
(

φ(τ/A)
)

v(τ) =
γB1(τ/A)

A
sin
(

φ(τ/A)
)

,

(all dimensionless). Note the2π factor in the time scaling is introduced to convert from units of Hertz to radi-

ans/second. Designing the time-varying controlsu(τ) and v(τ) is equivalent to the original design of amplitude

B1(t) and phaseφ(t).

APPENDIX B

RELLICH ’ S THEOREM

Theorem 2 (Rellich’s Theorem [39], p. 272): Suppose{fk} is a sequence inHα such that

(i) supk ‖fk‖(α) < ∞, and

(ii) the fk’s are all supported in a fixed compact setV .

Then there is a subsequence{fkj
} which converges inHβ for all β < α.
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