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Coherence in Large-Scale Networks:
Dimension-Dependent Limitations of Local

Feedback
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Abstract—We consider distributed consensus and vehicular
formation control problems. Specifically we address the question
of whether local feedback is sufficient to maintain coherence in
large-scale networks subject to stochastic disturbances. We define
macroscopic performance measures which are global quantities
that capture the notion of coherence; a notion of global order
that quantifies how closely the formation resembles a solid
object. We consider how these measures scale asymptotically
with network size in the topologies of regular lattices in 1, 2
and higher dimensions, with vehicular platoons corresponding to
the 1 dimensional case. A common phenomenon appears where
a higher spatial dimension implies a more favorable scaling of
coherence measures, with a dimensions of 3 being necessary to
achieve coherence in consensus and vehicular formations under
certain conditions. In particular, we show that it is impossible to
have large coherent one dimensional vehicular platoons with only
local feedback. We analyze these effects in terms of the underlying
energetic modes of motion, showing that they take the form of
large temporal and spatial scales resulting in an accordion-like
motion of formations. A conclusion can be drawn that in low
spatial dimensions, local feedback is unable to regulate large-
scale disturbances, but it can in higher spatial dimensions. This
phenomenon is distinct from, and unrelated to string instability
issues which are commonly encountered in control problems for
automated highways.

I. INTRODUCTION

The control problem for strings of vehicles (the so-called
platooning problem) has been extensively studied in the last
two decades, with original problem formulations and studies
dating back to the 60’s [1]–[5]. These problems are also
intimately related to more recent formation flying and for-
mation control problems [6]. It has long been observed in
platooning problems that to achieve reasonable performance,
certain global information such as leader’s position or state
need to be broadcast to the entire formation. A precise
analysis of the limits of performance associated with localized
versus global control strategies does not appear to exist in
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the formation control literature. In this paper we study the
platooning problem as the 1 dimensional version of a more
general vehicular formations control problem on regular lat-
tices in arbitrary spatial dimensions. For such problems, we
investigate the limits of performance of any local feedback
law that is globally stabilizing. In particular, we propose and
study measures of the coherence of the formation. These are
measures that capture the notion of how well the formation
resembles a rigid lattice or a solid object.

The coherence of a formation is a different concept from,
and often unrelated to, string instability. In the platooning
case (i.e. 1 dimensional formations), which turns out to be
most problematic, a localized feedback control law may posses
string stability in the sense that the effects of any injected
disturbance do not grow with spatial location. However, as we
show in this paper, it is impossible to achieve a large coherent
formation with only localized feedback if all vehicles are
subject to any amount of distributed stochastic disturbances.
The net effect is that with the best localized feedback, a 1
dimensional formation will appear to behave well on a “micro-
scopic” scale in the sense that distances between neighboring
vehicles will be well regulated. However, if a large formation
is observed in its entirety, it will appear to have temporally
slow, long spatial wavelength modes that are unregulated,
resembling an “accordion” type of motion. This is not a safety
issue, since the formation is microscopically well regulated,
but it might effect throughput performance in a platooning
arrangement since throughput does depend on the coherence
or rigidity of the formation.

The phenomenon that we discuss occurs in both consensus
algorithms and vehicular formation problems. We therefore
treat both as instances of networked dynamical systems with
first order and second order local dynamics respectively. Both
problems are set up in the d-dimensional torus ZdN . We begin
in section II with problem formulations of the consensus type
and vehicular formations, where we view the former as a
first order dynamics version of the latter. In section III, we
define macroscopic and microscopic measures of performance
in terms of variances of various quantities across the net-
work. We argue that the macroscopic measures capture the
notion of coherence. We also present compact formulae for
calculating those measures as H2 norms of systems with
suitably defined output signals. These norms are calculated
using traces of system Grammians, which in turn are related
to sums involving eigenvalues of the underlying system and
feedback gains matrices. Since the network topologies we con-
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sider are built over Tori networks, these system matrices are
multi-dimensional circulant operators, and their eigenvalues
are calculated as the values of the Fourier symbols of the
underlying feedback operators, thus allowing for a rather direct
relation between the structure of the feedback gains and the
system’s norms. Much of the remainder of the paper is devoted
to establishing asymptotic (in network size) bounds for these
performance measures for each underlying spatial dimension.
Section IV establishes upper bounds of standard algorithms,
while section V is devoted to establishing lower bounds for
any algorithm that satisfies a certain number of structural
assumptions including the locality of feedback and bounded-
ness of control effort. This shows that asymptotic limits of
performance are determined by the network structure rather
than the selection of parameters of the feedback algorithm. We
pay particular attention to the role of control effort as our lower
bounds are established for control laws that have bounded
control effort in a stochastic sense. Some numerical examples
illustrating the lack-of-coherence phenomenon are presented in
section VI, as well as an illustration of how it is distinct from
string instability. The interested reader may initially skim this
section which numerically illustrates the basic phenomenon
we study analytically in the remainder of the paper. We end
in section VII with a discussion of related work in which
various versions of this phenomenon were observed, as well
as a discussion of some open questions.

Notation and Preliminaries

The networks we consider are built over the d-dimensional
Torus ZdN . The one-dimensional Torus ZN is simply the set of
integers {0, 1, . . . , N−1} with addition modulo N ( mod N ),
and ZdN is the direct product of d copies of ZN . Functions
defined on ZdN are called arrays, and we use multi-index
notation for them, as in ak = a(k1,...,kd) to denote individual
entries of an array. Indices are added in the ZdN arithmetic as
follows

(r1, . . . , rd) = (k1, . . . , kd) + (l1, . . . , ld)

m
ri = (ki + li)N , i = 1, . . . , d,

where ()N is the operation mod N . The set ZdN and the
corresponding addition operation can be visualized as a “circu-
lant” graph in d-dimensional space with edge nodes connected
to nodes on corresponding opposite edge of the graph.

The multi-dimensional Discrete Fourier Transform is used
throughout. All states are multi-dimensional arrays which we
define as real or complex vector-valued functions on the Torus
ZdN . The Fourier transform (Discrete Fourier Transform) of an
array a is denoted with â. We refer to indices of spatial Fourier
transforms as wavenumbers. Generally, we use k and l for
spatial indices and n and m for wavenumbers. For example, an
array a(k1,...,kd) has (k1, . . . , kd) as the spatial index, while its
Fourier transform â(n1,...,nd) has the index (n1, . . . , nd) as the
wavenumber. The wavenumber is simply a spatial frequency
variable. Some elementary properties of this Fourier transform
are summarized in Appendix A,

Convolution operators arise naturally over ZdN . Let a be any
array of numbers (or matrices) over ZdN , that is a : ZdN → C
(or Cn×n). Then the operator Ta of multi-dimensional circular
convolution with the array a is defined as follows

g = Taf = a ? f

m
g(k1,...,kd) =

∑
(l1,...,ld)∈ZdN

a(k1,...,kd)−(l1,...,ld) f(l1,...,ld).

Note that f and g may be scalar or vector-valued (depending
on whether a is scalar or matrix-valued respectively), and that
the arithmetic for (k1, . . . , kd) − (l1, . . . , ld) is done in ZdN ,
i.e. arithmetic mod N in each index as described above.

It is important to distinguish between an array a and the
corresponding linear operator Ta. The Fourier transform â
of the array a is called the Fourier symbol of the operator
Ta. It is a standard fact that the eigenvalues of the operator
Ta are exactly the values of the Fourier transform â, i.e. the
values of its Fourier symbol. When a is matrix valued, then the
eignvalues of Ta are the union of all eigenvalues of â(n1,...,nd)

as the wavenumber (n1, . . . , nd) runs through ZdN , i.e.

σ (Ta) =
⋃

(n1,...,nd)∈ZdN

σ
(
â(n1,...,nd)

)
,

where σ(.) refers to the spectrum of a matrix or operator (all
finite-dimensional in our case).

In this paper, we use the term dimension to refer exclusively
to the spatial dimension of underlying networks. To avoid
confusion with the notion of state dimension, we refer to the
dimension of the state space of any dynamical system as the
order of that dynamical system.

The vector dimension of signals is mostly suppressed to
keep the notation from being cumbersome. For example, the
state of node (k1, . . . , kd) in the d-dimensional Torus is written
as

x(k1,...,kd)(t).

It is a scalar-valued signal for consensus problems, and vector-
valued (in Rd) signal for vehicular formation problems.

We use MT to denote the transpose of a matrix M , and
M∗ to denote the complex-conjugate transpose of a matrix
M or the adjoint of an operator M . Although all operators in
this paper are finite dimensional, we sometimes refer to them
as operators rather than matrices since we often avoid writing
the cumbersome explicit matrix representations (such as in the
case of multi-dimensional convolution operators).

II. PROBLEM FORMULATION

We formulate two types of problems, consensus and ve-
hicular formations. The mathematical setting is analogous in
both problems, with the main difference being that vehicular
models have two states (position and velocity) locally at each
site in contrast to a scalar local state in consensus problem.
This difference leads to more severe asymptotic scalings in
vehicular formations as will be shown in the sequel.
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A. Consensus with random insertions/deletions

We begin by formulating a continuous-time version of the
consensus algorithm with additive stochastic disturbances in
the dynamics [7], [8]. As opposed to standard consensus
algorithms without additive disturbances, nodes do not achieve
equilibrium asymptotically but fluctuate around the equilib-
rium, and the variance of this fluctuation is a measure of how
well approximate consensus is achieved. This formulation can
be used to model scenarios such as load balancing over a
distributed file system, where the additive noise represents file
insertion and deletion, parallel processing systems where the
noise processes model job creation and completion, or flocking
problems in the presence of random forcing disturbances.

We consider a consensus algorithm over undirected tori,
ZdN , where the derivative of the scalar state at each node is
determined as a weighted average of the differences between
that node and all its 2d neighbors. One possible such algorithm
is given by

ẋk = β
[(
x(k1−1,...,kd) − xk

)
+ · · ·+(

x(k1,...,kd+1) − xk
)]

+ wk,

= (−2dβ) xk + β
[
x(k1−1,...,kd) + x(k1+1,...,kd)+

· · ·+ x(k1,...,kd−1) + x(k1,...,kd+1)

]
+ wk, (1)

where we have used equal weights β > 0 for all the differ-
ences. The process disturbance w is a mutually uncorrelated
white stochastic process. We call this the standard consensus
algorithm in this paper since it is essentially the same as other
well-studied consensus algorithms [9]–[13].

The sum in the equation above can be written as a
multimulti-dimensional convolution by defining the array

O(k1,...,kd) =

 −2dβ k1 = · · · = kd = 0,
β ki = ±1, and kj = 0 for i 6= j,
0 otherwise.

(2)

The system (1) can then be written as

ẋ = O ? x + w, (3)

where ? is circular convolution in ZdN .
We recall that we use the operator notation Ta x := a ? x

to indicate the circulant operator of convolution with any array
a. With this notation, a general spatially invariant consensus
algorithm can be written abstractly as

ẋ = Ta x + w, (4)

for any array a defined over ZdN . Such algorithms can be
regarded as a combination of open loop dynamics

ẋk = uk + wk, k ∈ ZdN ,

with the feedback “control” u = Tax, where the feedback
operator array is to be suitably designed. With this point of
view, consensus algorithms can be thought of as first order
dynamics versions of vehicular formation problems that we
introduce next.

B. Vehicular Formations

Consider Nd identical vehicles arranged in a d-dimensional
torus, ZdN , with the double integrator dynamics

ẍ(k1,...,kd) = u(k1,...,kd) + w(k1,...,kd), (5)

where (k1, . . . , kd) is a multi-index with each ki ∈ ZN , u
is the control input and w is a mutually uncorrelated white
stochastic process which can be considered to model random
forcing. In the sequel, we will also consider the consequences
of the presence of viscous friction terms in models of the form

ẍ(k1,...,kd) = −µẋ(k1,...,kd) + u(k1,...,kd) + w(k1,...,kd), (6)

where µ > 0 is the linearized drag coefficient per unit mass.
Each position vector xk is a d-dimensional vector with

components xk =
[
x1
k · · · xdk

]T
. The objective is

to have the kth vehicle in the formation follow the desired
trajectory x̄k

x̄k := v̄t + k∆ ⇔

 x̄1
k
...
x̄dk

 :=

 v̄1

...
v̄d

 t +

 k1

...
kd

∆,

which means that all vehicles are to move with constant
heading velocity v̄ while maintaining their respective position
in a ZdN grid with spacing of ∆ in each dimension. The
situation of different spacings in different directions can be
similarly represented, but is not considered for notational
simplicity.

The deviations from desired trajectory are defined as

x̃k := xk − x̄k, ṽk := ẋk − v̄.

We assume the control input to be full state feedback and
linear in the variables x̃ and ṽ (therefore affine linear in x
and v), i.e. u = Gx̃ + F ṽ, where G and F are the linear
feedback operators. The equations of motion for the controlled
system are thus

d

dt

[
x̃
ṽ

]
=

[
0 I
G F

] [
x̃
ṽ

]
+

[
0
I

]
w. (7)

We note that the above equations are written in operator form,
i.e. by suppressing the spatial index of all the variables.

Example: The operators G and F will have some very
special structure depending on assumptions of the type of
feedback and measurements available. Consider for example
a feedback control of the kth vehicle (in a one dimensional
formation) of the following form

uk = g
+

(xk+1 − xk −∆) + g−(xk−1 − xk −∆) +
f

+
(vk+1 − vk) + f−(vk−1 − vk) +

go (xk − x̄k) + fo (vk − v̄),

where the g’s and f ’s are design constants. The first two lines
represent look-ahead and look-behind position and velocity
error feedbacks respectively. We refer to such terms as relative
feedback since they only involve measurements of differences.
On the other hand, terms in the last line require knowledge
of positions and velocities in an absolute coordinate system (a
grid moving at constant velocity), and we thus refer to such
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terms as absolute feedback. For later reference, it is instructive
to write the feedback in the above example in terms of the state
variables x̃ and ṽ as

uk = g
+

(x̃k+1 − x̃k) + g−(x̃k−1 − x̃k) +

f
+

(ṽk+1 − ṽk) + f−(ṽk−1 − ṽk) +

go x̃k + fo ṽk. (8)

C. Structural assumptions

We now list the various assumptions that can be imposed on
system operators and on the control feedbacks G and F . These
are structural restrictions representing the structure of open
loop dynamics and measurements, and the type of feedback
control available respectively.

(A1) Spatial Invariance. All operators are spatially in-
variant with respect to ZdN . This implies that they are
convolution operators. For instance, the operation Gx can
be written as the convolution (over ZdN ) of the array x with
an array {G(k1,...,kd)}

(Gx)k =
∑
l∈ZdN

Gk−l xl, (9)

where the arithmetic for k−l is done in ZdN . For each k, the
array element Gk is a d× d matrix (G is then an Nd×Nd

operator). Note that in the absence of spatial invariance,
each term of the sum in (9) would need to be written as
Gk,l xl. That is, one would require a two-indexed array of
matrices Gk,l rather than a single-indexed array.
In the example above of a one dimensional circular forma-
tion, the array elements for position feedback are given by{(
go − g+

− g−

)
, g

+
, 0, . . . , 0, g−

}
.

(A2) Relative vs. Absolute Feedback. We use the term
Relative Feedback when given feedback involves only dif-
ferences between quantities. For example, in position feed-
back, this implies that for each term of the form αx(k1,...,kd)

in the convolution, another term of the form −αx(l1,...,ld)

occurs for some other multi-index l. This implies that the
array G has the property∑

k∈ZdN

Gk = 0. (10)

We use the term Absolute Feedback when given operator
does not satisfy this assumption.
Note that in the example above, relative position feedback
corresponds to go = 0, and in this case, condition (10) is
satisfied.

(A3) Locality. The feedbacks use only local information
from a neighborhood of width 2q, where q is independent
of N . Specifically,

G(k1,...,kd) = 0, if ki > q, and ki < N − q
for any i ∈ {1, . . . , d}. (11)

The same condition holds for F .
(A4) Reflection Symmetry. The interactions between ve-
hicles have mirror symmetry. This has the consequence that
the arrays representing G and F have even symmetry, e.g.

for each nonzero term like αG(k1,...,kd) in the array there
is a corresponding term αG(−k1,...,−kd). This in particular
implies that the Fourier symbols of G and F are real valued.
In the example above, this condition gives g

+
= g− and

f
+

= f− .
(A5) Coordinate Decoupling. For d ≥ 2, feedback control
of thrust in each coordinate direction depends only on mea-
surements of position and velocity error vector components
in that coordinate. This is equivalent to imposing that each
array element Gk and Fk are d× d diagonal matrices. For
further simplicity we assume those diagonal elements to be
equal, i.e.

Gk = diag{gk, . . . , gk}, Fk = diag{fk, . . . , fk}. (12)

This in effect renders the matrix-vector convolution in (9)
into d decoupled scalar convolutions.
Assumptions (A1) through (A3) appear to be important for

subsequent developments, while assumptions (A4) and (A5)
are made to simplify calculations.

III. PERFORMANCE MEASURES

We will consider how various performance measures scale
with system size for the consensus and vehicle formations
problems. Some of these measures can be quantified as steady
state variances of outputs of linear systems driven by stochastic
inputs, so we consider some generalities first. Consider a
general linear system driven by zero mean white noise with
unit covariance

ẋ = Ax + Bw,

y = Hx.

Since we are interested in cases where A is not necessarily
Hurwitz (typically due to a single unstable mode at the origin
representing motion of the mean), the state x may not have
finite steady state variances. However, in all cases we consider
here the outputs y do have finite variances, i.e. the unstable
modes of A are not observable from y. In such cases, the
output does have a finite steady state variance, which is
quantified by the square of the H2 norm of the system from
w to y

V :=
∑
k∈ZdN

lim
t→∞

E {y∗k(t)yk(t)} , (13)

where the index k ranges over all “sites” in the lattice ZdN .
We are interested in spatially invariant problems over dis-

crete Tori. This type of invariance implies that the variances
of all outputs are equal, i.e. E {y∗kyk} is independent of k.
Thus, if the output variance at a given site is to be computed,
it is simply the total H2 norm divided by the system size

E {y∗kyk} =
1

M

∑
l∈ZdN

E {y∗l yl} =
V

M
, (14)

where M is the size of the system (M = Nd for d-dimensional
Tori). We refer to quantities like (14) as individual output
variances.
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Next, we define several different performance measures and
give the corresponding output operators for each measure for
both the consensus and vehicular formation problems. In the
vehicular formation problem, we assume for simplicity that the
output involves positions only, and thus the output equation
has the form

y =
[
C 0

] [ x̃
ṽ

]
,

i.e. H =
[
C 0

]
, where C is a circulant operator. A

consensus problem with the same performance measure has
a corresponding output equation of the form (with the same
C operator)

y = Cx.

Performance Measures: We now list the three different
performance measures we consider.

(P1) Local error. This is a measure of the difference
between neighboring nodes or vehicles. For the consensus
problem, the kth output (in the case of one dimension) is
defined by

yk := xk − xk−1.

For the case of vehicular formations, local error is the
difference of neighboring vehicles positions from desired
spacing, which can equivalently be written as

yk := x̃k − x̃k−1.

The output operator is then given by C := (I−D), where
D is the right shift operator, (Dx)k := xk−1.
In the case of d dimensions, we define a vector output that
contains as components the local error in each respective
dimension, i.e.

C :=
1√
2d

[
I −D1 · · · I − Dd

]T
, (15)

where Dr is the right shift along the rth dimension, i.e.
(Drx)(k1,...,kr,...,kd) := x(k1,...,kr−1,...,kd), and 1/

√
2d is

a convenient normalization factor. This operator is closely
related to the standard consensus operator O in Eq. (2) by
the following easily established identity

C∗C =
−1

2dβ
O. (16)

(P2) Long range deviation (Disorder). In the consensus
problem, this corresponds to measuring the disagreement
between the two furthest nodes in the network graph. As-
sume for simplicity that N is even and we are in dimension
1. Then, the most distant node from node k is N

2 hops away,
and we define

yk := xk − xk+N
2
.

In the vehicular formation problem, long range deviation
corresponds to measuring the deviation of the distance
between the two most distant vehicles from what it should
be. The most distant vehicle to the kth one is the vehicle

indexed by k + N
2 . The desired distance between them is

∆N
2 , and the deviation from this distance is

yk := xk − xk+N
2
−∆

N

2
= x̃k − x̃k+N

2
. (17)

We consider the variance of this quantity to be a measure
of disorder, reflecting the lack of “end-to-end rigidity” in
the vehicle formation.
Generalizing this measure to d dimensions yields an output
operator of the form

C := T(δ0−δ(N/2,...,N/2)), (18)

i.e. the operator of convolution with the array1 δ0 −
δ(N/2,...,N/2).

(P3) Deviation from average. For the consensus problem,
this quantity measures the deviation of each state from the
average of all states,

yk := xk −
1

M

∑
l∈ZdN

xl. (19)

In operator form we have y = (I − T1̄)x, where 1̄ is the
array of all elements equal to 1/M .
In vehicular formations, this measure can be interpreted
as the deviation of each vehicle’s position error from the
average of the overall position error y = (I − T1̄)x̃.
We note that performance measures (P1) through (P3) are

such that C can be represented as a convolution with an array
{Ck} which has the property

∑
k∈ZdN

Ck = 0. This condition
causes the mean mode at zero to be unobservable, and thus
guarantees that all outputs defined above have finite variances.

We refer to the performance measure (P1) as a microscopic
error since it involves quantities local to any given site. This is
in contrast to the measures (P2) and (P3) which involve quanti-
ties that are far apart in the network, and we thus refer to these
as macroscopic errors. We consider the macroscopic errors as
measures of disorder or equivalently, lack of coherence. As
we will show in the sequel, both macroscopic measures scale
similarly asymptotically with system size, which justifies using
either of them as a measure of disorder.

Formulae for variances: Since we consider spatially invari-
ant systems and in particular systems on the discrete Tori ZdN ,
it is possible to derive formulae for the above defined measures
in terms of the Fourier symbols of the operators K, F and C.
Recall the state space formula for the H2 norm V defined
in (13)

V = tr
(∫ ∞

0

B∗eA
∗tH∗HeAtB dt

)
.

When A, B and H are circulant operators, traces can be
rewritten in terms of their respective Fourier symbols (see
(47)) as

V = tr

(∑
n

∫ ∞
0

B̂∗ne
Â∗
ntĤ∗nĤne

ÂntB̂n dt

)
(20)

=
∑
n

tr
(
B̂∗nP̂nB̂n

)
, (21)

1By a slight abuse of notation, we define the shifted Kronecker delta δlk :=
δk−l, where δk = 1 for k = 0, and zero otherwise, is the standard Kronecker
delta. With this notation, δ0 is also the standard Kronecker delta.
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where the individual integrals are defined as

P̂n :=

∫ ∞
0

eÂ
∗
ntĤ∗nĤne

Ântdt. (22)

If Ân is Hurwitz, then P̂n can be obtained by solving the
Lyapunov equation

Â∗nP̂n + P̂nÂn = − Ĥ∗nĤn. (23)

For wavenumbers n for which Ân is not Hurwitz, P̂n is still
finite if the non-Hurwitz modes of Ân are not observable from
Ĥn. In this case we can analyze the integral in (22) on a case
by case basis.

The Lyapunov equations are easy to solve in the Fourier
domain. Equation (23) is a scalar equation in the Consensus
case and a 2d × 2d matrix equation in the Vehicular case2.
The two respective calculations are summarized in the next
lemma. The proof is given in the Appendix.

Lemma 3.1: The output variances (13) for the consensus
and vehicular problems satisfying assumptions (A1)-(A5) are
given by

Vc = − 1

2

∑
n 6=0, n∈ZdN

|ĉn|2

<(ân)
, (24)

Vv =
d

2

∑
n 6=0, n∈ZdN

|ĉn|2

ĝnf̂n
, (25)

where <(ân) is the real part of ân, ĉ is the Fourier symbol
of the output operator corresponding to the performance index
under consideration, and â, ĝ and f̂ are the Fourier symbols
of the consensus operator (4), and the position and velocity
feedback operators (12) respectively.

These expressions can then be worked out for the variety
of output operators C representing the different performance
measures defined earlier. The next result presents a summary
of those calculations for the six different cases.

Corollary 3.2: The following are performance measures
(P1), (P2) and (P3) expressed in terms of the Fourier symbols
ĝ, f̂ and â, of the operators G, F , and Ta defining vehicular
formations and consensus algorithms which satisfy assump-
tions (A1)-(A5). The array O is that of the standard consensus
algorithm (2).

1) Consensus
a) Local Error:

V locc =
1

4d

1

β

∑
n 6=0, n∈ZdN

Ôn
<(ân)

(26)

b) Long Range Deviation:

V lrdc = − 2
∑

n1+···+nd odd, n∈ZdN

1

<(ân)
(27)

c) Deviation from Average:

V davc = − 1

2

∑
n6=0, n∈ZdN

1

<(ân)
. (28)

2Note that in d dimensions, the transformed state vector is of dimension
2d for each wavenumber n.

2) Vehicular Formations
a) Local Error:

V locv = − 1

4

1

β

∑
n 6=0, n∈ZdN

Ôn

ĝnf̂n
(29)

b) Long Range Deviation:

V lrdv = 2d
∑

n1+···+nd odd, n∈ZdN

1

ĝnf̂n
(30)

c) Deviation from Average:

V davv =
d

2

∑
n 6=0, n∈ZdN

1

ĝnf̂n
. (31)

IV. UPPER BOUNDS USING STANDARD ALGORITHMS

In this section we derive asymptotic upper bounds for
all three performance measures of both the consensus and
vehicular problems. These bounds are derived by exhibiting
simple feedback laws similar to the one in the standard
consensus algorithm (2). In the case of vehicular formations,
we make a distinction between the cases of relative versus
absolute position and velocity feedbacks, and derive bounds
for all four possible combinations of such feedbacks.

The behavior of the asymptotic bounds has an important
dependence on the underlying spatial dimension d. For the
purpose of cross comparison, all of the upper bounds derived
in this section are summarized in Table I.

For later reference, we note that the Fourier transform of
the array O in Eq. (2) is a quantity that occurs often, and can
be easily calculated as

Ôn = −2dβ +

d∑
r=1

(
β e−i

2π
N nr + β ei

2π
N nr

)
= −2β

d∑
r=1

(
1− cos

(
2π

N
nr

))
. (32)

A. Upper bounds in the consensus case

We consider the standard consensus algorithm (1). In this
case the array a is exactly O, and thus expression (26) for the
local error immediately simplifies to

V locc =
1

4dβ

∑
n 6=0, n∈ZdN

1 =
1

4dβ
(M − 1),

which then implies the following upper bound for the individ-
ual local error at each site

V locc

M
≤ 1

4dβ
.

Thus, the individual local error measure for the standard
consensus algorithm is bounded from above for any network
size in any dimension d.

The derivation of the macroscopic error upper bounds are
a little more involved. First we observe that V lrdc ≤ 4V davc .
This is easily seen since first, the sums in (27) and (28) involve
terms that are all of the same sign (since ân ≤ 0), and second,
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that the sum in (27) is taken over a subset of the terms in (28).
It therefore suffices to derive the upper bounds for V davc .

We begin with a simplifying observation. Because the arrays
a we consider are real, their Fourier symbols â have even
symmetry about all the mid axes of ZdN . More precisely

â(n1,...,nr,...,nd) = â(n1,...,N−nr,...,nd),

for any of the dimension indices r. Assume for simplicity
that N is odd, and define N̄ := (N + 1)/2. The even
symmetry property implies that the discrete hyper-cube ZdN
can be divided into 2d hyper-cubes, each of the size of Zd

N̄
,

and over which the values of â can be generated from its
values over Zd

N̄
by appropriate reflections. Consequently, a

sum like (28) can be reduced to

V davc = − 1

2

∑
n 6=0, n∈ZdN

1

<(ân)
= − 2d

2

∑
n 6=0, n∈Zd

N̄

1

<(ân)
.

We now calculate an upper bound on the deviation from
average measure (28) for the Fourier symbol (32) of the
standard consensus algorithm

V davc =
1

4β

∑
n6=0, n∈ZdN

1∑d
r=1

(
1− cos

(
2π
N nr

))
=

2d

4β

∑
n6=0, n∈Zd

N̄

1∑d
r=1

(
1− cos

(
2π
N nr

))
≤ 2d

32β
N2

∑
n 6=0, n∈Zd

N̄

1

(n2
1 + · · ·+ n2

d)
, (33)

where the first equality follows from reflection symmetry,
and the inequality follows from (49), and noting that the
denominator is made up of d terms of the form

1 − cos

(
2π

N
nr

)
≥ 2

π2

(
2π

N
nr

)2

=
8

N2
n2
r,

where the inequality is valid in the range nr ∈ [0, (N̄ − 1)].
The asymptotics of sums in Eq. (33) are presented in Ap-

pendix B. Using those expressions, we calculate the individual
deviation from average measure at each site

V davc

Nd
≤ 2d

32β
N2−d

∑
n 6=0, n∈Zd

N̄

1

(n2
1 + · · ·+ n2

d)

≈ 2d

32β
N2−d


1
d−2 (N̄d−2 − 1) d 6= 2

log(N̄) d = 2

≤ Cd
1

β

 N d = 1
log(N) d = 2
1 d ≥ 3

, (34)

where we have used N̄ ≤ N , and Cd is a constant that depends
on the dimension d, but is independent of N or the algorithm
parameter β. We note that the upper bounds have exactly the
same form when written in terms of the network size M =
Nd.

B. Upper bounds for vehicular formations

To establish upper bounds in this case, we use a feedback
control law which is similar to (8). This law can be most
compactly written in operator notation as

u = TOx̃ + TOṽ + gox̃ + foṽ,

where TO is the operator of convolution with the array O
defined in the consensus problem (2). Note that in the multi-
dimensional case, all signals are d-vectors, and thus TO above
is our notation for a diagonal operator with TO in each entry
of the diagonal. The last two terms represent absolute position
and velocity error feedbacks respectively. The first two terms
represent a feedback where each vector component of uk
is formed by a law like (1) from the corresponding vector
components of x̃k and ṽk and all 2d immediate neighbor sites
in the lattice.

With the above feedback law, the closed loop system (7)
has the following expressions for the Fourier symbols of G
and F

ĝn = go + Ôn, f̂n = fo + Ôn, (35)

where Ô is the Fourier symbol (32). We impose the additional
conditions that go ≤ 0 and fo ≤ 0 since otherwise the
closed loop system will have an increasing number of strictly
unstable modes as N increases. When go 6= 0 (resp. fo 6= 0)
we refer to that feedback as using absolute position (resp.
velocity) feedback. There are four possible combinations of
such feedback scenarios.

We now use these expressions for the symbols ĝ and f̂ to
calculate upper bounds on performance measures (P1), (P2)
and (P3) for all four feedback scenarios. We begin with the
local error (29) which in this case is given by

V locv =
−1

4β

∑
n 6=0, n∈ZdN

Ôn

(go + Ôn)(fo + Ôn)
. (36)

In the case of relative position and velocity error feedback,
which corresponds to go = 0 and fo = 0, the sum in
Eq. (36) becomes −

∑
1/Ôn. This has the same form as

V davc in Eq. (28) for the standard consensus problem, and
thus will grow asymptotically as derived in Eq. (34). For this
scenario, the final answer is listed as V locv in Table I after
multiplying by the extra 1/β factor. In the case of relative
position and absolute velocity feedback, the sum in Eq. (36)
becomes

∑
−1/(fo+ Ôn). Each term is bounded from above

by −1/(fo + Ôn) ≤ −1/fo since fo < 0 and Ôn ≤ 0.
Thus the entire sum has an upper bound that scales like M ,
which yields a constant bound for the individual local error
once divided by the network size M . An exactly symmetric
argument applies to the case of absolute position but relative
velocity feedback. Finally, in the case of both absolute position
and velocity feedback fo < 0 and go < 0 implying a uniform
bound on each term in the sum. Similarly the entire sum scales
like M and thus is uniformly bounded upon division by the
network size. All of these four cases for the local error scalings
are summarized in Table I.
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TABLE I
Summery of asymptotic scalings of upper bounds in terms of the the total network size M and the spatial dimensions d. Performance measures are

classified as either microscopic (local error), or macroscopic (deviation from average or long range deviation). There are four possible feedback strategies in
vehicular formations depending on which combination of relative or absolute position or velocity error feedback is used. Quantities listed are up to a

multiplicative factor that is independent of M or algorithm parameter β.

Microscopic Macroscopic

Consensus 1/β 1
β

 M d = 1
log(M) d = 2
1 d ≥ 3

Vehicular Formations
Feedback type: abs. pos. & abs. vel. 1/β 1

Vehicular Formations
Feedback type: rel. pos. & abs. vel.

or abs. pos. & rel. vel.
1/β 1

β

 M d = 1
log(M) d = 2
1 d ≥ 3

Vehicular Formations
Feedback type: rel. pos. & rel. vel.

1
β2

 M d = 1
log(M) d = 2
1 d ≥ 3

1
β2


M3 d = 1
M d = 2

M1/3 d = 3
log(M) d = 4
1 d ≥ 5

We now consider the case of the deviation from average
measure (31) which for our specific algorithm is

V davv =
d

2

∑
n 6=0, n∈ZdN

1

(go + Ôn)(fo + Ôn)
.

When go < 0 and fo < 0, each term in the sum is bounded
and the entire sum scales as M . Thus, the individual deviation
from average at each site is bounded in this case. When either
fo = 0 or go = 0, then the sums scale like −

∑
1/Ôn (since

the other factor in the fraction is uniformly bounded), i.e. like
the deviation from average in the consensus case (34).

The only case that requires further examination is that of
relative position and relative velocity feedback (go = fo = 0).
In this case

V davv =
d

2

∑
n 6=0, n∈ZdN

1

Ô2
n

≤ d2d

28

1

β2
N4

∑
n6=0, n∈Zd

N̄

1

(n2
1 + · · ·+ n2

d)
2
,

where the inequality is derived by the same argument used in
deriving the inequality (33). Dividing this expression by the
network size Nd and using the asymptotic expressions (52)
yields

V davv

Nd
≤ Cd

1

β2


1
d−4 (1−N4−d) d 6= 4

log(N) d = 4
, (37)

where Cd is a constant depending on the dimension d but
independent of N or the algorithm parameter β. Rewriting
these bounds in terms of the total network size M = Nd

gives the corresponding entries in Table I, where the other
cases are also summarized.

We finally point out that V lrdv ≤ 4V davv due to an argument
identical to that employed in the consensus case. We thus
conclude that the upper bounds just derived apply to the case
of the long range deviation measure as well.

The role of viscous friction: It is interesting to observe
that in vehicular models with viscous friction (6), a certain
amount of absolute velocity feedback is inherently present in
the dynamics. The model (6) with a feedback control of the
form (8) has the following Fourier symbol for the velocity
feedback operator F

f̂n = − µ + fo + Ôn.

We conclude that even in cases of only relative velocity error
feedback (i.e. when fo = 0), the viscous friction term µ > 0
provides some amount of absolute velocity error feedback.
Thus, in an environment which has viscous damping, perfor-
mance in vehicle formation problems scale in a similar manner
to consensus problems. These comments are also applicable
to the lower bounds developed in the next section.

The role of control effort: A common feature of all the
asymptotic upper bounds of the standard algorithms just
presented is their dependence on the parameter β. If this
parameter is fixed in advance based on design considerations,
then the algorithm’s performance will scale as shown in
Table I. However, it is possible to consider the redesign of
the algorithms as the network size increases. For example,
it is possible to increase β proportionally to M in consensus
algorithms to achieve bounded macroscopic errors even for one
dimensional networks. As can be seen from (1), this has the
effect of increasing the control feedback gains unboundedly
(in M ), which would clearly be unacceptable in any realistic
control problem. Thus, any consideration of the fundamental
limits of performance of more general algorithms must account
for some notion of control effort, and we turn to this issue in
the next section.

V. LOWER BOUNDS

A natural question arises as to whether one can design
feedback controls with better asymptotic performance than
the standard algorithms presented in the previous section.
In this section we analyze the performance of any linear
static state feedback control algorithm satisfying the structural
assumptions (A1)-(A5), and subject to a constraint on control
effort. A standard measure of control effort in stochastic
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settings is the steady state variance of the control signal at
each site

E {u∗kuk} , (38)

which is independent of k due to the spatial invariance assump-
tion. We constrain this quantity and derive lower bounds on the
performance of any algorithm that respects this constraint. The
basic conclusion is that lower bounds on performance scale
like the upper bounds listed in Table I with the control effort
replacing the parameter β. In other words, any algorithm with
control effort constraints will not do better asymptotically than
the standard algorithms of section IV-B. This is somewhat
surprising given the extra degrees of freedom possible through
feedback control design, and it perhaps implies that it is
primarily the network topology and the structural constraints,
rather than the selection of the algorithm’s parameters that
determine these fundamental limitations.

We now turn to the calculation of lower bounds on both mi-
croscopic and macroscopic performance measures. For brevity,
we include only the calculations for the deviation from average
macroscopic measures. These calculations are a little more
involved than those for the upper bounds since they need
to be valid for an entire class of feedback gains. However,
the basic ideas of utilizing H2 norms are similar, and this
is what we do in the sequel. In addition, a new ingredient
appears where the control effort bound, combined with the
locality property, implies a uniform bound on the entries of
the feedback arrays. This is stated precisely in the next lemma
whose proof is found in the Appendix. These bounds then
finally impose lower bounds on the performance of control-
constrained local algorithms.

Lemma 5.1: Consider general consensus (4) and vehicular
formation (7) algorithms where the feedback arrays a, g and f
posses the locality property (A3). The following bounds hold

‖a‖∞ ≤ Ba E
{
u2
k

}
‖g‖∞ ≤ Bg

(
E
{
u2
k

})2
(39)

‖f‖∞ ≤ Bf E
{
u2
k

}
,

where Ba, Bg and Bf are constants independent of the network
size.

A. Lower bounds for consensus algorithms
We start with the deviation from average measure for a

stable consensus algorithm subject to a constraint of bounded
control variance at each site

E
{
u2
k

}
≤ W. (40)

We first observe a bound on <(ân) that can be established
from the definition of the Fourier transform

<(ân) = <

∑
k∈ZdN

ake
−i 2π

N (n.k)

 =
∑
k∈ZdN

ak cos

(
2π

N
n · k

)

=
∑
k∈ZdN

ak

[
1−

(
1− cos

(
2π

N
n · k

))]

=
∑
k∈ZdN

(−ak)

(
1− cos

(
2π

N
n · k

))

where the last equality is a consequence of the condition∑
k∈ZdN

ak = 0. For lower bounds on
∑

1/<(−ân), upper
bounds on <(−ân) are needed. Observe that

|<(−ân)| =

∣∣∣∣∣∣
∑
k∈ZdN

ak

(
1− cos

(
2π

N
n · k

))∣∣∣∣∣∣
≤

∑
k∈ZdN

|ak|
(

1− cos

(
2π

N
n · k

))

≤ 4π2

N2

∑
k∈ZdN

|ak| (n · k)2,

where the second inequality follows from (48). The last
quantity can be further bounded by recalling the locality
property (11), which has the consequence∑
k∈ZdN

|ak| (k1n1 + · · ·+ kdnd)
2

=
∑

k∈ZdN , |ki|≤q

|ak| (k1n1 + · · ·+ kdnd)
2

≤
∑

0 6=k∈ZdN , |ki|≤q

|ak| (qn1 + · · ·+ qnd)
2

= q2(n1 + · · ·+ nd)
2

∑
06=k∈ZdN , |ki|≤q

|ak|.

Now the locality property can be used again to bound the
above sum using the the control effort bounds (39) and (40)∑

0 6=k∈ZdN , |ki|≤q

|ak| ≤ (2q)d‖a‖∞ ≤ (2q)d Ba W. (41)

Putting the above together gives

V davc =
∑

n 6=0, n∈ZdN

1

−<(ân)

≥ N2

π2(2q)d+2 BaW
∑

n 6=0, n∈ZdN

1

(n1 + · · ·+ nd)2

≥ Cd
W

N2
∑

n 6=0, n∈ZdN

1

(n2
1 + · · ·+ n2

d)
,

where the last inequality follows from (50), and Cd is a
constant independent of N .

Finally, utilizing (51) and dividing by the network size M =
Nd, a lower bound on the deviation from average is obtained

V davc

Nd
≥ Cd

W
N2−d

∑
n 6=0, n∈ZdN

1

(n2
1 + · · ·+ n2

d)

≈ Cd
W


1
d−2 (1−N2−d) d 6= 2

log(N) d = 2
,

≥ Cd
1

W

 N d = 1
log(N) d = 2
1 d ≥ 3

, (42)

where by a slight abuse of notation, we use Cd to denote
different constants in the expressions above. We observe how
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the lower bounds (42) have the same asymptotic form as the
upper bounds for the standard consensus algorithm (34), but
with the control effort bound W replacing the parameter β.

B. Lower bounds for vehicular formations

We recall the development of the upper bounds for vehicular
formations in Section IV-B. The Fourier symbols of general
feedback gains G and F have a similar form to (35), and can
be written as

ĝn = go + γ̂n, f̂n = fo + φ̂n, (43)

where go, fo and γ̂, φ̂ are the absolute and relative feedback
terms respectively. As before, we impose the conditions that
go, fo ≤ 0. We assume that we have a control effort constraint
of the form (40).

The case of absolute position and absolute velocity feedback
has upper bounds which are finite, and the question of lower
bounds is moot. For the other three cases, lower bounds
on (31) are established using upper bounds on the symbols
ĝ and f̂ which can be derived as follows

‖f̂‖∞ ≤ ‖f‖1 ≤ (2q + 1) ‖f‖∞ ≤ (2q + 1)Bf W,

where the inequalities follow from (46), the locality property,
and (39) respectively. For g we similarly have

‖ĝ‖∞ ≤ (2q + 1)Bg W 2.

Consider now the case of relative position and absolute
velocity feedback. A lower bound is established by

V davv =
d

2

∑
n 6=0, n∈ZdN

1

|ĝn||f̂n|

≥ d

2(2q + 1)Bf
1

W

∑
n 6=0, n∈ZdN

1

|ĝn|
.

Now a lower bound on the sum can be established in exactly
the same manner as (42) in the consensus case since ĝ is
a symbol of a local relative feedback operator. The case of
relative velocity and absolute position feedback is similar with
the exception that the factor of 1

W is replaced by 1
W 2 .

The final case to consider is that of relative position and
relative velocity feedback. One can repeat the same arguments
made in the consensus case up to equation (41) for both ĝn
and f̂n to state∑
0 6=n∈ZdN

1

|ĝn||f̂n|
≥ c1 N4

‖g‖∞‖f‖∞

∑
06=n∈ZdN

1

(n1 + · · ·+ nd)4

≥ c2 N4

W 3

∑
06=n∈ZdN

1

(n1 + · · ·+ nd)4
,

where c1 and c2 are some constants independent of N and
W . The asymptotic behavior of this expression (divided by the
network size) was given earlier in (37). We thus conclude that
the lower bounds in this case are exactly like the upper bounds
shown in Table I for relative position and relative velocity
feedback, but with the 1

β2 term replaced by 1
W 3 .

VI. EXAMPLES AND MULTISCALE INTERPRETATION

Numerical simulations of cases where macroscopic mea-
sures grow unboundedly with network size show a particular
type of motion for the entire formation. In the one dimensional
case, it can be described as an accordion-like motion in which
large shape features in the formation fluctuate. Figure 1 shows
the results of a simulation of a 100 vehicle platoon with both
relative position and relative velocity error feedbacks. This
corresponds to a control strategy of the type for which upper
bounds were calculated in section IV-B with go = fo = 0.

M. JOVANOVIĆ, UMN 2

All vehicles subject to stochastic disturbances (N = 100)
long vs. short range deviations

Figure 2: Absolute positions of all vehicles.Fig. 1. Vehicle position trajectories (relative to vehicle number 1) of a 100
vehicle formation all of which are subjected to random disturbances. Top
graph is a “zoomed out” view exhibiting the slow accordion-like motion of
the entire formation. Bottom graph is a zoomed in view showing that vehicle-
to-vehicle distances are relatively well regulated.

An interesting feature of these plots is the phenomenon of
lack of formation coherence. This is only discernible when
one “zooms out” to view the entire formation. The length of
the formation fluctuates stochastically, but with a distinct slow
temporal and long spatial wavelength signature. In contrast,
the zoomed-in view in Figure 1 shows a relatively well
regulated vehicle-to-vehicle spacing. In general, it appears
that small scale (both temporally and spatially) disturbances
are well regulated, while large scale disturbances are not.
An intuitive interpretation of this phenomenon is that local
feedback strategies are unable to regulate against large scale
disturbances.

In this paper we have not directly analyzed the temporal
and spatial scale dependent disturbance attenuation limits of
performance. However, it appears that our microscopic and
macroscopic measures of performance do indeed correspond to
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small and large scale (both spatially and temporally) motions
respectively. We next outline a more mathematical argument
that connects these measures.

Mode shapes: To appreciate the connection between H2

norms and mode shapes in our system, consider first a general
linear system driven by a white random process

ẋ = Ax + w.

When A is a normal matrix, it is easy to show (by diagonaliz-
ing the system with the orthonormal state transformation made
up of the eigenvectors of A) that the steady state variance of
the state is

lim
t→∞

E{x∗(t)x(t)} =
∑
i

1

2 <{λi}
,

where the sum is taken over all the eigenvalues λi of A.
Thus we can say that under white disturbance excitation, the
amount of energy each mode contains is inversely proportional
to its distance from the imaginary axis. In other words, slower
modes are more energetic. Now, all the systems we consider
in this paper are diagonalizable (or block-diagonlizable) by
the spatial Discrete Fourier Transform. In addition, for the
standard algorithms, we have the situation that slow temporal
modes correspond to long spatial wavelengths. This provides
an explanation for the observation that the most energetic
motions are those that are temporally slow and have long
spatial wavelengths.

String instability: While string instability is sometimes an
issue in formation control, the phenomenon we study in this
paper is distinct from string instability. The example presented
in this section is that of a formation that does posses string
stability. For illustration, we repeat the simulation but with
disturbances acting only on the first vehicle. The resulting
vehicle trajectories are shown in Figure 2. It is interesting
to note that temporally high frequency disturbances appear
to be very well regulated, and do not propagate far into the
formation, while low temporal frequency disturbances appear
to propagate deep into the formation. What is not shown in
the figure is that low frequency disturbances are eventually
regulated for vehicles far from the first. This is consistent
with the intuitive notion discussed earlier that local feedback
is relatively unable to regulate large scale disturbances.

2

Only first vehicle subject to stochastic disturbance (N = 100)
xn(t) xn(t)

Fig. 2. Vehicle position trajectories (relative to leader) of the first few of a
100 vehicle formation. Only lead vehicle is subjected to random disturbances.
Vehicle trajectories exhibit regulation against that disturbance, indicating the
absence of string instability.

Multi-scale properties of disturbance rejection: An intrigu-
ing explanation of the above example and our scaling results
is as follows. The macroscopic error measures capture how
well the network regulates against large-scale disturbances.
In large, one dimensional networks, local feedback alone is
thus unable to regulate against these large-scale disturbances,
and global feedback is required to achieve this. This seems
rather intuitive. Perhaps surprisingly, in large networks with
higher spatial dimensionality, local feedback alone can indeed
regulate against large-scale disturbances. This follows for
networks for which the macroscopic error measure is bounded
irrespective of network size. The “critical dimension” needed
to achieve this depends on the order of the node dynamics
as well as the type of feedback strategy as shown in Table I
(e.g. dimension 3 for relative position and absolute velocity
feedback, and dimension 5 for relative position and velocity
feedback in cases of vehicular formations).

VII. DISCUSSION

A. General networks

The networks considered in this paper are ones which can
be built on top of a Torus network. Some concepts, such as
coherence and microscopic and macroscopic errors are easily
generalized to arbitrary networks. The correct generalization
of the concept of spatial dimension however is more subtle.

For any network of dynamical systems for which a distance
metric is defined between nodes (e.g. from an imbedding of
the network in Rn), the notion of long range deviation can be
defined as done in this paper. The calculation of that quantity
involves system Grammians and may even be written in
terms of the underlying system matrices for certain structures.
Thus coherence measures can be calculated numerically for
such networks. However, more explicit calculations to uncover
scaling laws as network size increases will clearly require
more analytical expressions for the system norms in such
networks.

To generalize the present results, one would require a
notion of how to grow the network size while preserving
certain topological properties such as the spatial dimension.
Preliminary results on self-similar and fractal networks have
been obtained [14]. The proper notion of spatial dimension to
capture coherence in general graphs remains a research topic
at this time.

B. Distributed estimation and resistive lattices

The results presented here have a strong resemblance to
results on performance limitations of distributed estimation
algorithms based on network topology [15], [16], where
asymptotic bounds similar to (34) first appeared in the controls
literature (see also [17] where a consensus problem with noisy
observations is analyzed yielding performance bounds like
the consensus upper bounds we have in the present paper).
In that work, the arguments are based on an analogy with
effective resistance in resistive lattices and certain imbeddings
of their graphs in d-dimensional space [18]. It is not clear
how the resistive analogy can be generalized to cover the case
of second order dynamics (i.e. vehicular formations), or the
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lower bounds on more general control laws. We have therefore
avoided the resistive network analogy in this paper by directly
using the multi-dimensional Fourier transform and reducing
all calculations to sums of the form (51) resulting in a self-
contained argument.

It is interesting to note that the original arguments for the
asymptotic behavior in resistive lattices [19] in the physics
literature are based on approximations of the Green’s function
of the diffusion operator in d-dimensions, for which the
underlying techniques are approximations like (54).

C. Order of local dynamics

We have attempted to keep the development general enough
that it is applicable to networked dynamical systems whose
dynamics are not necessarily those of vehicles in any particular
physical setting. What we refer to in this paper as consensus
and vehicular formations problems respectively represent net-
works where the local dynamics (at each site) are first and
second order chains of integrators respectively. The dynamical
models are such that the stochastic disturbance enters into
the first integrator, and the performance objectives involve
variances of the outputs of the last integrators at each site.
One generalization of this set up is where the local dynamics
is a chain of n integrators. It is then possible to show that
(by retracing the arguments for the vehicular formations case
and generalizing (52)) the cutoff dimension to have bounded
macroscopic measures with only local relative state feedback
is 1 + 2n.

D. LQR designs

It was observed in [20] that optimal LQR designs for vehic-
ular platoons suffer from a fundamental problem as the platoon
size increases to infinity. These optimal feedback laws are
almost local in a sense described by [21], where control gains
decay exponentially as a function of distance. The resulting
optimal feedbacks [20] suffer from the problem of having
underdamped slow modes with long spatial wavelengths. Thus,
the same incoherence phenomenon occurs in these optimal
LQR designs where the performance objective is composed
of sums of local relative errors (leading to feedback laws with
exponentially decaying gains on relative errors).

E. Measuring performance in large scale systems

In spatial dimensions where performance scalings are
bounded, the underlying system eigenvalues still limit towards
zero, suggesting ultimate instability in the limit as M → ∞.
However, measures of performance remain bounded in these
cases. In such cases the locations of internal eigenvalues are
not a good indication of the system’s performance in the limit
of large networks.

Take the consensus problem over ZdN as an example. The
“least damped eigenvalue” (other than zero) quantifies the
convergence time of deviation from average (in the absence
of stochastic disturbances), and it scales as

1

|λ2|
= Θ

(
N2/d

)
, (44)

as can be shown by explicit eigenvalue calculations [12],
[13]. If we use this quantity as a measure of performance,
it indicates that performance becomes arbitrarily bad (in the
limit of large N ) in any spatial dimension d. On the other
hand, consider the use of a macroscopic error measure like
the variance of the deviation from average (19) in the presence
of stochastic disturbances. That quantity can be expressed in
terms of the system eigenvalues as

V davc =
1

2Nd

∑
n6=0

1

|λn|
, (45)

where the sum is taken over all the system’s eigenvalues other
than zero. Note that this sum is just (28) rewritten to emphasize
the contrast with (44).

The important observation is that (44) indicates that as
network size increases, the system eigenvalues approach the
stability boundary, indicating an eventual catastrophic loss of
performance in any spatial dimension d. On the other hand,
(45) is uniformly bounded in dimensions d ≥ 3 (as shown
in (34)), thus implying well behaved systems as quantified by
the macroscopic performance measures. A similar point to the
above has been recently made [22].

The least damped eigenvalue is traditionally used as an
important measure of performance. The examples in this paper
demonstrate that for large scale systems, it is not a very
meaningful measure of performance, and that the general
question of how to measure performance in large scale systems
is a subtle one.

F. Detuning/mistuning designs

It is shown in [23] that spatially-invariant local controllers
for platoons have closed loop eigenvalues that approach the
origin at a rate of O( 1

N2 ). A “mistuning” design modification
is proposed [23], resulting in spatially-varying local controllers
where the closed loop eigenvalues approach the origin at
the better rate of O( 1

N ). In this paper, we have not used
the real part of the least damped eigenvalue as a measure
of performance but rather the variance of certain system
outputs. This amounts to using an H2 norm as the measure
of performance. It was shown in [21] that for spatially-
invariant plants, one can not improve H2 performance with
spatially-varying controllers. The resulting controllers however
have exponentially decaying gains rather than completely local
gains. The problem of designing optimal H2 controllers with
a prescribed neighborhood of interaction remains an open
and non-convex one. It is an interesting and open question
as to whether mistuning designs for the H2 measures we
use in this paper can yield local controllers with better
asymptotic performance than spatially-invariant ones. It was
also shown [23] that a mistuning design can improve H∞

performance for platoon problems. This shows that there
is perhaps an important distinction between H∞ and H2

measures of performance for large scale systems. A point that
is worthy of further investigation.
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APPENDIX

A. Multi-dimensional Discrete Fourier Transform

We define the Discrete Fourier Transform for functions {fk}
over ZdN by

f̂n :=
∑
k∈ZdN

fk e
−i( 2π

N n·k),

where n · k := n1k1 + · · ·+ ndkd. The inverse transform is
given by

fk :=
1

M

∑
n∈ZdN

f̂k e
i( 2π
N n·k),

where M = Nd. An immediate consequence of the definitions
are the following bounds

‖f̂‖∞ ≤ ‖f‖1, ‖f‖∞ ≤ 1

M
‖f̂‖1. (46)

Let δ be the Kronecker delta on ZdN . It’s transform is the
array 1, which is the array of all elements equal to 1. The
transform of 1 is Mδ. We use the symbol 1̄ to denote the
array of all elements equal to 1

M .
If Tf denotes the circulant operator of circular convolution

with f , then the eigenvalues of Tf are just the numbers {f̂n},
and consequently the trace of Tf is given by the sum

tr (Tf ) =
∑
n∈ZdN

f̂n. (47)

B. Bounds and asymptotics of sums

The following facts are useful in establishing asymptotic
bounds.
1) For any x ∈ R and any y ∈ [−π, π]

1− cos(x) ≤ x2, (48)

1− cos(y) ≥ 2

π2
y2. (49)

2) Given d integers n1, . . ., nd,

(n1 + · · ·+ nd)
2 ≤ (2d+ 1) (n2

1 + · · ·+ n2
d). (50)

Proof:(∑
i

ni

)2

=
∑
i

n2
i +

∑
i

∑
j 6=i

ninj .

Using ninj ≤ (max{ni, nj})2 ≤ n2
i + n2

j , we get the
bound (∑

i

ni

)2

≤
∑
i

n2
i +

d∑
i=1

∑
j 6=i

(n2
i + n2

j )

≤
∑
i

n2
i + 2d

∑
i

n2
i .

3) In the limit of large N ,

∑
n 6=0
n∈ZdN

1

(n2
1 + · · ·+ n2

d)
≈


1
d−2 (Nd−2 − 1) d 6= 2

log(N) d = 2
(51)

∑
n 6=0
n∈ZdN

1

(n2
1 + · · ·+ n2

d)
2
≈


1
d−4 (Nd−4 − 1) d 6= 4

log(N) d = 4
(52)

(53)

where f(N) ≈ g(N) is notation for

c g(N) ≤ f(N) ≤ c̄ g(N),

for some constants c̄ and c and all N ≥ N̄ for some N̄ .
Proof: We begin with (51). Upper and lower bounds on this
sum can be derived by viewing it as upper and lower Rieman
sums for the integral∫

· · ·
∫

1

x2
1 + · · ·+ x2

d

dx1 · · · dxd,

over the region ∆ ≤ r ≤ 1 for the lower bound, and ∆ ≤ r ≤√
d for the upper bound. Here ∆ = 1

N , and the asymptotic
behavior is determined by the lower limit on the integrals, so
both upper and lower bounds behave the same asymptotically.

Using the grid points x1 = n1∆, . . ., xd = nd∆, and using
the volume increment ∆d, we get∫

· · ·
∫

1

x2
1 + · · ·+ x2

d

dx1 · · · dxd

≈ ∆d
∑

n 6=0, n∈ZdN

1

((∆n1)2 + · · ·+ (∆nd)2)

= ∆d−2
∑

n 6=0, n∈ZdN

1

(n2
1 + · · ·+ n2

d)
. (54)

Now the integral can be evaluated using hyperspherical coor-
dinates by∫

1

x2
1 + · · ·+ x2

d

dx1 · · · dxd =∫ 1

∆

∫ π

0

· · ·
∫ 2π

0

1

r2
rd−1 sind−2(φ1) . . . sin(φd−2) dr dφ1 . . . dφd−1

= Cd

∫ 1

∆

rd−3dr,

where Cd is a constant that depends only on the dimension
d (and can be expressed in terms of the volume of the unit
sphere in Rd). Evaluating this integral, using ∆ = 1

N and
equation (54) gives the result (51).

The proof of (52) is very similar to the above, with the
exception that one approximates the integral of 1

(x2
1+···+x2

d)2 =
1
r4 instead. The details are omitted for brevity.

C. Proof of Lemma 3.1

For the consensus problem, the state equation is (4), and
thus the Lyapunov equation (23) becomes

â∗np̂n + p̂nân = − Ĉ∗nĈn,
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where we have used H = C (and the choice of C depends on
the particular performance measure being considered). Since
all quantities are scalars, this equation is immediately solved
for p̂n =

−Ĉ∗
nĈn

2<(ân) for n 6= 0. In the case n = 0, we look at
the integral definition (22), conclude that Ĉ0 = 0 implies that
p̂0 = 0. Thus, the sum (21) is calculated to be (24).

For the vehicular problem, the state equation is (7) with the
output equation H =

[
C 0

]
. The Lyapunov equation (23)

becomes[
0 Ĝ∗n
I F̂ ∗n

] [
X̂n Ẑn
Ẑ∗n Ŷn

]
+

[
X̂n Ẑn
Ẑ∗n Ŷn

] [
0 I

Ĝn F̂n

]
=

[
−Ĉ∗nĈn 0

0 0

]
,

where each of the submatrices is of size d×d. From the above,
we extract the following matrix equations

Ĝ∗nẐ
∗
n + ẐnĜn = −Ĉ∗nĈn (55)

Ĝ∗nŶn + X̂n + ẐnF̂n = 0

Ẑn + F̂ ∗n Ŷn + Ẑ∗n + ŶnF̂n = 0. (56)

Since we are only interested in the quantity

tr
(
B̂∗nP̂nB̂n

)
=
[

0 I
] [ X̂n Ẑn

Ẑ∗n Ŷn

] [
0
I

]
= tr

(
Ŷn

)
,

then only equations (55) and (56) are relevant. The coordinate
decoupling assumption (A5) on the operators G, F and C
implies that the matrices Ĝn, F̂n and Ĉn are all diagonal. It
follows that Ẑn, X̂n and Ŷn are also diagonal, and the above
matrix equations are trivial to solve. Ẑn has the solution

Z = − 1

2
Ĝ−1
n Ĉ∗nĈn.

Similarly, equation (56) is solved to yield

Y =
1

2
(ĜnF̂n)−1Ĉ∗nĈn,

for n 6= 0. For the unstable mode at n = 0, the integral (22)
can be easily evaluated to yield Ẑ0 = 0 (since Ĉ0 = 0 for
all the performance measures we consider). Adding in the
assumption that all matrices are diagonal with equal elements,
we obtain in summary the total H2 norm of the vehicle
formation problem (7) is given by

Vv =
d

2

∑
n 6=0 n∈ZdN

ĉ∗nĉn

ĝnf̂n
, (57)

where the multiplicative factor of d comes from taking the
trace of Ŷn.

Proof of Corollary 3.2

1) Consensus: The local error measure output operator C is
given by (15), for which C∗C = −1

2dβ O by the identity (16).
Combining this with Lemma 3.1 gives the result for V locc .

The long range deviation measure has the output operator
defined in (18), which has the Fourier symbol

ĉn = 1 − e−iπ(n1+···+nd),

from which we conclude that

ĉn =

{
0 (n1 + · · ·+ nd) even
2 (n1 + · · ·+ nd) odd .

Combining this with Lemma 3.1 gives the result for V lrdc .
The deviation from average output operator is C = I−T1,

or equivalently, the convolution operator Tδ0−1. The corre-
sponding Fourier symbol is the Fourier transform of the array
δ0 − 1, which gives

ĉn = 1n − δn =

{
0 n = 0
1 n 6= 0

.

Putting this in the general formula (24) yields the result for
V davc

2) Vehicular formations: The derivations for this case are
very similar to those for the consensus problem and are
therefore omitted for brevity.

Proof of Lemma 5.1

We rewrite the dynamics of the consensus algorithm so that
u is an output

ẋ = Tax + w

u = Tax.

The present task is then to calculate the H2 norm from w to
u. Applying formula (24) with Ta as the C operator yields∑

k∈ZdN

E
{
u2
k

}
=
−1

2

∑
n 6=0, n∈ZdN

â2
n

ân
=

1

2

∑
n∈ZdN

(−ân),

after observing that ân is real and â0 = 0. Furthermore,
our stability condition requires that for all n, (−ân) ≥ 0,
implying that the sum above is the `1-norm of {ân}. Putting
this together with the bound (46) gives

‖a‖∞ ≤ 1

M
‖â‖1 = 2 E

{
u2
k

}
. (58)

In the vehicular formations case, the dynamics are given
by (7) together with the output equation

u =
[
G F

] [ x̃
ṽ

]
.

Formula (25) is not applicable here since the output depends
on all states, but the H2 norm for this system can be calculated
in a manner similar to the proof of Lemma 3.1. They Lyapunov
equation in this case becomes[

0 Ĝ∗n
I F̂ ∗n

] [
X̂n Ẑn
Ẑ∗n Ŷn

]
+

[
X̂n Ẑn
Ẑ∗n Ŷn

] [
0 I

Ĝn F̂n

]
= −

[
Ĝ∗nĜn Ĝ∗nF̂n
F̂ ∗nĜn F̂ ∗n F̂n

]
,

from which we extract the matrix equations

Ĝ∗nẐ
∗
n + ẐnĜn = −Ĝ∗nĜn

Ĝ∗nŶn + X̂n + ẐnF̂n = −Ĝ∗nF̂n
Ẑn + F̂ ∗n Ŷn + Ẑ∗n + ŶnF̂n = −F̂ ∗n F̂n.

Only the first and last equation need be solved since we are
only interested in tr(Ŷn). All of the above are d× d diagonal
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matrices with equal entries, so we solve the equations in terms
of a single entry as

2ĝnẑn = − ĝ2
n ⇒ ẑn = − 1

2
ĝ

2f̂nŷn = − f̂2
n − 2ẑn ⇒ ŷn =

1

2

(
−f̂n +

1

f̂n
ĝn

)
.

The H2 norm of the system is then∑
06=n∈ZdN

tr(Ŷn) =
d

2

∑
06=n∈ZdN

(
−f̂n +

1

f̂n
ĝn

)

=
d

2

(
‖f̂‖1 + ‖ 1

f̂
ĝ‖1
)
,

where the last equation follows from the stability conditions
f̂n ≤ 0, ĝn ≤ 0. This inequality has two consequences after
observing that

∑
n∈ZdN

tr(Ŷn) = ME
{
u2
k

}
and using (46)

‖f‖∞ ≤ 2

d
E
{
u2
k

}
(59)

‖ 1

f̂
ĝ‖1 ≤ 2

d
M E

{
u2
k

}
. (60)

The second inequality can be used to bound ‖g‖∞ as follows.
First

‖ 1

f̂
ĝ‖1 ≥ ‖ĝ‖1 min

n
| 1

f̂n
| = ‖ĝ‖1

1

‖f̂‖∞
.

An upper bound on ‖f̂‖∞ is derived from

‖f̂‖∞ ≤ ‖f‖1 ≤ (2q)d‖f‖∞,

where the last inequality follows from the locality assumption
on f . Combining these last two bounds with (60) yields
2

d
M E

{
u2
k

}
≥ 1

(2q)d‖f‖∞
‖g‖1 ≥

1

(2q)d‖f‖∞
M‖g‖∞,

which when combined with (59) gives

‖g‖∞ ≤ 2(2q)d

d
‖f‖∞ E

{
u2
k

}
≤ Bg

(
E
{
u2
k

})2
.
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