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Convergence of type-symmetric and cut-balanced
consensus seeking systems (extended version)

Julien M. Hendrickx and John N. Tsitsiklis

Abstract—We consider continuous-time consensus seeking sys-seem hard to verify in general. But, several important parti
tems whose time-dependent interactions are cut-balanceth the  |ar classes of consensus seeking systems automatica#ifysat
following sense: if a group of agents influences the remaing it. These include symmetric systems () = a;;(t)), type-

ones, the former group is also influenced by the remaining orse . .
by at least a proportional amount. Models involving symmetic symmetric systemsa(;(¢) < Kaj;i(t)), and, as will be seen

interconnections and models in which a weighted average ohe later, any system whose dynamics conserve a weighted averag
agent values is conserved are special cases. We prove thatlsu (with positive weights) of the agent values.

systems always converge. We give a sufficient condition ongh  Under the cut-balance conditidd (2), and without any furthe
evolving interaction topology for the limit valu_es of two agents assumptions, we prove that each valyeonverges to a limit.

to be the same. Conversely, we show that if our condition is

not satisfied, then these limits are generically differentThese Moreover, we show that; and x; converge to the same
results allow treating systems where the agent interactiomare a limit if i and j belong to the same connected component
priori unknown, e.g., random or determined endogenously bythe of the “unbounded interactions graph,” i.e., the graph whos

agent values. We also derive corresponding results for disete-  edges correspond to the pairsi) for which fo"o aij(1)dr is
time systems. unbounded. (As we will show, while this is a directed graph,
each of its weakly connected components is also strongly
connected.) Conversely, we prove thatand x; generically
converge to different limits if and; belong to different con-
We consider continuous-time consensus seeking systemsefted components of that graph. (This latter result ire®lv
the following kind: each of: agents, indexed by=1,...,n, an additional technical assumption trj'@:'f a;j(7)dr < oo for
maintains a value; (t), which is a continuous function of time every T < c0.)
and evolves according to the integral equation version of ~ Our method of proof is different from traditional conver-
n gence proofs for consensus seeking systems, which rely on
ixi(t) — Zaii(t) (z;(t) — zi(t)) . (1) either span-norm or quadratic norm contraction properties
dt = It consists of showing that for every. < n, a particular
) ) linear combination of the values of the agents with the
Throughout we assume that eae})(-) is anonnegativeand gmajjest values is nondecreasing and bounded, and thatits t
measurable function. We introduce the following assummptiq,qrease rate eventually becomes bounded below by a pesitiv
which plays a central role in this paper. number if two agents with unbounded interactions were to

Assumption 1. (Cut-balance) There exists a constafit > converge to different limits. The idea of working with these

1 such that for all¢, and any nonempty proper subsgtof linear combinations is inspired from and extends a tecteiqu
{1,...,n}, we havé used in [5] to analyze a particular average-preservingesyst
More specifically, [[5] analyses in depth a model of opinion
K™ > au(t)< > ay(t) <K > aj(t). (2) dynamics for which the order between the agents is preserved
i€S,j¢S i€S,j¢s i€S,j¢s where the coefficients switch betweerand1, are symmetric
. . . .. (a;; = aj;), and switch at most finitely often in any finite
Intuitively, if a group qf agent_s influences the remamning,ierval. Convergence is obtained by proving that the ayera
ones, the former group is also influenced by the remainin

. X . Value of them first agents is nondecreasing and bounded, for
ones by at least a proportional amount. This condition m%ym

I. INTRODUCTION

This is an extended version 6FJ15] arid16]; it includes gsoand some Motivation for our model comes from the fact that there are
additional results that were omitted from these paperss Tesearch was many systems in which an agent cannot influence the others

supported by the National Science Foundation under grait@$=0701623, \ithout being subjected to at least a fraction of the reverse

by the Concerted Research Action (ARC) “Large Graphs and/dlés” of the . s . .
French Community of Belgium, by the Belgian Programme osrlntiversity influence. This is, for example, a common assumption in

Attraction Poles initiated by the Belgian Federal Scienoticp Office, and by humerous models of social interactions and opinion dynamic
postdoctoral fellowships from the F.R.S.-FNRS (Belgiamdrdor Scientific [g], [22], or physical systems.
Research) and the B.A.E.F. (Belgian American EducatiomEation).
Université catholique de Louvain, B-1348 Louvain-la-Meu Belgium;
julien.hendrickx@uclouvain.be. This research was con-
ducted while visiting LIDS, MIT. A. BaCkgmund
Laboratory for Information and Decision Systems, Massaetis Institute ; ;
of Technology, Cambridge, MA 02139, USAnt emit . ccu, Systems of the forni{1) have atltracte(Sj conildferable abtenti
INote that the second inequality, added to emphasize the sjmyrf the [IE]' m]' @]* @]’ m] (See aso[@ ]’EB ] or Surveys

condition, is redundant. with motivation coming from decentralized coordinatioatal


http://arxiv.org/abs/1102.2361v2

fusion [6], [38], animal flocking[[P],[[117],[[36], and modetd  z(¢) itself. In the latter type of models, with endogenously
social behavior(1],14],[1b],[18], [[1R],121],122]. determined agent interconnections, it is essentially issjime
Available results impose some connectivity conditions ai check a priori the connectivity conditions imposed in
the evolution of the coefficients;;(¢), and usually guaranteeexisting results, and such results are therefore inagpécan
exponentially fast convergence of each agent's value tocantrast, our results apply as long as the cut-balance tondi
common limit (“consensus”). For example, Olfati-Saber and satisfied. The advantage of this condition is that it can be

Murray [29] consider the system often guaranteed a priori, e.g., if the system is naturgibet
d symmetric.
Exi(t) = Z (25 (t) — (1)) On the technical side, we note that similar convergence
J:(4,0) € E(t) results are available for the special case of discrete-time

with a time-varying directed grapli(t) = ({1,...,n}, E(t)); Symmetric or type-symmetric systenisl [3]. [13]. [14]. [18],
this is a special case of the modEl (1), with;(¢) equal to [20], [21], [27], though they are obtained with a different
one if (j,i) € E(t), and equal to zero otherwise. They shownethodology. I_3|screte time is mdee_d much simpler because
that if the out-degree of every node is equal to its in-degtee®n€ can exploit the following fact: either two agents intéra
all times, and if each grapi(t) is strongly connected, then©n @ S(_et of |nf|n|te. Ie.ngth or they stop mteractlng gfter e_la:er
the system is average-preserving and eagft) converges f!mte time. We will mdegd show that such existing discrete-
exponentially fast to% 5, 2;(0). They also obtain similar time results can be easily extended to the cut-balanced case
results for systems with arbitrary but fixed coefficients.

Moreau [26] establishes exponential convergence to ceasenC. Outline

under weaker conditions: he only assumes thatih¢) are  The remainder of the paper is organized as follows. We
uniformly bounded, and that there exiSt> 0 andd > 0 such  gtate and prove our main results in Sectich Il and expose
that the directed graph obtained by conneciit@j Whenever  seyera| particular classes of cut-balanced dynamics iticec

¢ aij(7)dr > & has a rooted spanning tree, for evéry [ we demonstrate the application of our results to system
Several extensions of such results, involving for examip@ t \yith randomly determined interactions in Sectlon 1V, and to
delays or imperfect communications, are also avail@ble. systems with endogenously determined interactions ini@ect

All of the above described results involve conditions tha#] we show an analogous result for discrete-time systems in

are easy to describe but difficult to ensure a priori, esfigCiagection[V]. We end with some concluding remarks and the
when the agent interactions are endogenously determimesl. Tyiscyssion of an open problem on the generalization of our
motivates the current work, which aims at an understanding@sylts to systems involving a continuum of agents in Sactio

the convergence properties of the dynamical sysiém (1)rungign The Appendix contains the proof of a technical result
minimal conditions. In the complete absence of any conaio needed in Sectiof]ll.

and especially in the absence of symmetry, it is well known
that consensus seeking systems can fail to converge; see e.g Il. MAIN CONVERGENCERESULT AND PROOF
Ch. 6 of [2]. On the other hand, it is also known that more .

predictable behavior and positive results are possiblenén t W€ now state formally our main theorem, based on an

following two cases: (i) symmetric (suitably defined) irter integral formulation of the agent dynamics. The integrat fo
tions, or (ii) average-preserving systems (e.g., in disetiene mulation avoids issues related to the existence of devasti

models that involve doubly stochastic matrices). while allowing for discontinuous coefficients; () and possi-
ble Zeno behaviors (i.e., a countable number of discorttesui

in a finite time interval).
Without loss of generality, we assume that(t) = 0 for
Our cut-balance condition subsumes the two cases discusgid. We define a directed grapt;, = ({1,...,n}, E), called

above, and allows us to obtain strong convergence resuiffe unbounded interactions graplby letting (j,i) € F if
Indeed, we prove convergence (not necessarily to cons)ensf(t)? ai;(t) dt = oo.

without any additional condition, and then provide sufintie .
and (generically) necessary conditions for the limit valoé -€Mma 1. Suppose that Assumptigh 1 (cut-balance) holds.

any two agents to agree. In contrast, existing results stew Every weakl){ connected component of t_he unbou_nded in_terac—
vergence to consensusider some fairly strong assumptiondion graph is strongly connected. Equivalently, if there is a
about persistent global connectivity, but offer no insigint directed path fromi to j, then there is also a directed path
the possible behavior when convergence to consensusdaild®™M J 10 @
hold. Proof: Consider a weakly connected componBnbf the

The fact that our convergence result requires no assungptigfiaph G. We assume, in order to derive a contradiction, that
other than the cut-balance condition is significant becatse is not strongly connected. Consider the decomposition of
allows us to study systems for which the evolutiorugf(t) is 1 into strongly connected components. More precisely, we
a priori unknown, possibly random or dependent on the vectgartition the nodes ifi” into two or more subsets,, Cs, . . .,

o _ , N so that eachC}, is strongly connected and so that any edge

It is common in the literature to treat the systdm (1) as if degvative .
existed for allt, which is not always the case. Nevertheless, such resuld W that leaves a strongly connected component leads to a
remain correct under an appropriate reinterpretatiori pf (1 component with a larger label: if € Cy, (i,j) € E, and

B. Our contribution



w

j ¢ Cy, thenj € C; for somel > k. (This decomposition order. Thus, for any € (¢, tx+1), andi > j, we haver;(t) >
is unique up to certain permutations of the subset labets.)#;(t). Also, y;(t) = z;(t), and thusS,, (¢t) = >7" | K~ 'z;(t).

particular, there is no edge froi, U C3 U -- -, that leads It follows from (@) that, fort € (5, t511),
into Cy. SinceW is weakly connected, there must therefore m
exist an edge front; into C> U C5 U ---. However, it is an — S (t) = ZKﬂ'ixi(t)
immediate consequence of the cut-balance condition @gpli dt =1 dt
to S = (1) that if there is an edge that leav€s there must m ,n
also exist an edge that entef$. This is a contradiction, and = Z K™ ( Z aij(t)(z;(t) — «Ti(t)))-
the proof is complete. [ | i=1 j=1
The following assumption will be in effect in some of therhis can be rewritten as
results. y m m
Assumption 2. (Boundedness) For evelyand j, and every Esm(t) :ZZK faij(t) (2(t) = zi(t))
T < o0, fOT a;;(t) dt < oo. izl -7':171
We now state our main result. + Z Z K aii(t) (z(t) — xi(t)) .
i=1 j=m+1

Theorem 1. Suppose that Assumptibh 1 (cut-balance) holds.
Letz : R — R" be a solution to the system of integrail he second term on the right-hand side is always nonnegative

equations because the coefficients; (¢) are nonnegative and because we
havez;(t) — x;(t) > 0 whenj > m > i. By rearranging the

zi(t) = 2:(0) + / S a0 (o) — i)y dr, (@) st term, we obtain
0

Jj=1 d m—1 m ‘ .
fori=1,...,n. Then: gom(t) = Z; X_: (K aij(t) = K7 a;i(t)) (z;(t) — 2i(t) -
(a) The limitz} = lim,, z;(t) exists, and =1 j=i @

l‘? S [minj T (0), max; & ; (O)], for all 3. Recall the aSSumptionij (t) > K_laji(t) for any i, j. It

(b) For everyi and j, [ a;(t)|z;(t) — z:i(t)] dt < oo. implies that
Furthermore, ifi and j belong to the same connected

component of7, thenz} = x%. K~aij(t) — K 7agi(t) > aji(t) (K~ — K79).

If, in addition, Assumptiofl2 (boundedness) holds, then: Whenj > i, as in [@), this quantity is nonnegative, and so is
(c) If i and j are in different connected components af;(t) — z;(t). It then follows from [@) that% S,,(t) > 0 for
G, thenz? # =7, unlessz(0) belongs to a particular all t € (¢, tkt1).
n — 1 dimensional sub-space 8", determined by the  Since our argument is valid for any interv@},, tx+1), and
functionsa; (). since the sequendasg, ti, ... diverges, this implies that,,(-)
is nondecreasing. Observe now thaft) < max; x;(0), for

W;hﬁtgéoslj:: g??gee;gsg;ﬁé:thiz;n ;?]Z:]?;t(g] ?St ig:éi?mgﬁ i andt > 0, because equatiohl(3) and the non-negativity of
9 P the a,;; imply that max; x;(¢) is nonincreasing. Thus3,, (¢)

creasing. In order to provide the intuition behind this groo.
) . “is, bounded above, and therefore convergent, for anyAs
we first sketch the argument for the special case where: [i) .
i X . . . result, ally;(t) converge, i.e., the smallest entry of(t)
the functionsz;(-) are differentiable, (ii) the ordering of the -
converges, the second smallest converges, etc. A comtinuit

components; (t) changes at most a finite number of times
. L - . argument can then be used to show the convergence of each
during any finite time-interval, and (iii) the coefficienttisfy

_ . 5 1. ZCZ(t)
Lhe(;trgr}?sr”(%pe symmetry assumption:< K~"a;i(t) < The proof for the general case relies on the following lemma
1] = g .

For any timet, let 5. () be the smallest of the com-°" the rate of change of the weighted sufs(¢), when the

ponentsz:(1), 1 (t) the second smallest, etc., and let ugoefﬂmentSaij satisfy the cut-balance assumption. We say that

define S, (t) = S, K—y;(t). Observe that the;(-) are ° vectory € R is sortedif y1 < y> < -+ < yn.

continuous. Indeed, any two componenté ) whose order is Lemma 2. Fori,j = 1,...,n, i # j, let b;; be nonnegative
reversed at some time, must be equal at that time, by cottinuioefficients that satisfy the cut-balance condition
of z(-). As a result,S,, () is also continuous. _
Since we assume that the ordering of thgt) changes K™ Zzbﬁ < Zzbij < KZZ’%
at most a finite number of times during a finite time-interval, €5 5¢s €S j¢s €5 j¢s
there exists an increasing and divergent sequéee, t2,... for someK > 1, and for every nonempty proper subseof
such that the ordering remains constant on &myt,+1): It {1,...,n}. Then,
suffices to let the; be the times at which the order changes,
and to complete the sequence by an arbitrary diverging se- L
quence if there are only finitely many order changes. We ZK Zbij(yj —ui) | 20

. . h . =1 =1
consider such an interval, on which we assume without loss of ! J

generality that ther;(¢) are already sorted, in nondecreasinfpr every sorted vectog € R™, and everym < n.



Proof: We prove the stronger result thati < j, then eitherr,, ) (t) < zp, ) (t) OF p, 1) (1) = Tp, 1) ()
S w (Z?Zl bij(y; — yi)) > 0 for any nonnegative andp;(t) < p;(t). For everyi, we then lety;(t) = x,, ) (t).
weights w; such thatw; > Kw;., for i = 1,...,n — 1. Thevectory(t) is thus sorted, so thaf (t) < y;(t) for i < j.

Observe that the expression above can be rewritten as L€t @IS0 by;(t) = ap, 1), (1) (t). (This coefficient captures
an interaction between thih smallest and thgth smallest

n n component ofz(¢).) Propositio 2, proved in the Appendix,
Z Yi Z w;bji — Z wibij | = Z Yidis states thay(t) satisfies an equation of the same form[ds (3):
S . . i—1
where the last equality serves as the definitiongpf We yi(t) = y;(0) +/ Zb” —yi(r))dr, (5)
observe that
n n no! n for i = 1,...,n. The definition of the function$;; implies
Zyi‘ﬁ =N qu' + Z ((ykﬂ ~ k) Z Qi)- that they also satisfy the cut-balance conditiph (2). We now
=1 =1 k=1 =k+1 define S, (t) to be a weighted sum of the values of the first

It follows that the desired inequality”;-, v;¢; > 0 holds for m (sorted) agents:
every sorted vectoy if and only if (i) >°1"_, ¢; = 0, and (ii)

Z?:kﬂqizo, fork=1,...,n—1. We have ZK yi(t
ZQZ’—Z ijbﬂ sz ij / ZK_ZZ[)U T) — (7)) dT.
=1 1=1 j=1

I
Mﬁ

Zw _ Zzw - It follows from Lemmal2, that the integrand is always non-
S oY negative, so thats,,(t) is nondecreasing. Moreover, since
a all b;;(t) are nonnegative, EqL](5) can be used to show that
’ y1(0) < yi(t) < yn(0), for all ¢ and¢. In particular, each
which establishes property (i). To establish property, @i S (t) is bounded above and therefore converges. This implies,

1y

.
Il

j=11i=1

observe that using induction on, that everyy, () converges to a limiy; =

lim¢ oo 4i(t) € [y1(0),yn(0)] = [min; z;(0), max; 2;(0)].

Z (Zw bji — Zwl U) - Using the continuity of: and the definition of}, it is then an
i=k+1  j=1 easy exercise to show that eaef{t) must also converge to

one of the valueg;. This concludes the proof of part (a) of

Z ijbji+ zn: zn: w;bjg the theorem.

i=k+1 j=1 i=k+1 j=k+1 We now prove part (b). Forevery = 1, ..., n, sinceS,,(t)
n ok n n converges to som#;,, we have
- Z Zwibij - Z Z w;bi;. m n
ikt =1 Rt STETY by (®) (s (8) = wi(1)) dt = 57, =S1u(0) < ox.
The second and the fourth terms cancel each other. We use i=1 J=1
the inequalityw; > wy for j < k in the first term, and the (6)

inequalityw; < wy1 for i > k+1 in the third term, to obtain The integrand in this expression can be rewritten as

S =Y (Sub, Zw ZK”(Zbij(t)(yj(t)—yl-<t>>

i=k+1 ikl \ =1 )
y + bij () (ym (t) — it
> wy, Z iji—’wk-H Z Zbiﬂ" j;ﬂ (t) (ym (t) y()))

i=k+1 j=1 i=k+1 j=1
Using the propertyw, > Kwg41, and the cut-balance as- +ZK_Z Z bi;(t) — Ym(t)) @)
sumption, we conclude that the right-hand side in the above J=m+l

inequality is nonnegative, which completes the proof ofpprolt follows from Lemmal2 applied to the coefficients; and
erty (ii). We now letw; = K~*, fori=1,...,m, andw;, =0 the sorted vectoy; (¢), y2(t), .-, Ym(t), ym(t),...,ym(t))

for ¢ > m, to obtain the desired result. B that the first term in the sum above is nonnegative, and thus
We now prove Theoreif 1. that
Proof (of Theorem 1):For everyt, we define a permuta- m n
tion p(¢) of the indices{1, .. .,n} which sorts the components STETY T bi(t) (1) — ym(t)
of the vectorz(t). (More precisely, it sorts the paifs:;(¢), ) i=1 j=m+1
in lexicographic order.) In particulap, (¢) is the index of the m T
ith smallest component af(t), with ties broken according to < Z K™ Z bij (t) (y; (t) — wi(1)) .

the original indices of the components oft). Formally, if i=1 i=1



Equation [6) then implies that that maps the indices af(¢) to the corresponding indices of

o n y(t) takes thus values smaller than or equahtdor indices
/ Z Z K7 (t) (y(t) — ym (1)) dt < 0. 1 € Vi and larger thann for indicesj € V5. As a result,
i=1 j=m+1 fz:igfﬁ,j>m[(bij(t) ]+ bjri](f)gl f= Zievfl,jew (aéj (ﬁ) +a;i(t))
) » . or all t € [ty/4,t*]. The definition oft,,, and the nonnega-
Since K™*b;;(t) = 0 and y;(t) > yn(t) for j > m, tivity of the aU( ) imply that, for allZ in that interval,
every term of the sum in the integrand above is nonnegative,
for every t. Then, the boundedness of the mtegral implies /

the boundedness of ever;V0 (1) (y; () — ym(t)) bij () + bji(7)) dr

t1/4 1= 1 Jj= m+1

Jo7 bij () [y;(t) — ym ()] dt when m < j. A symmetrl- .
cal argument shows thaff™ bi; () y; (t) — ym(t)| dt is also / (aij (1) + aji(r))dr < =. (9)
bounded wherj < m, so that t)a Z€V1,_]€V2 4
We now fix an arbitraryt € [t;4,t*], and show thag,,(t)
/ Zzb” )y (8) = yi(®)] dt < 0. ) andy,,.1(t) remain separated by at least2. Using Eq. [(5)

=t andyy, (t1,4) = 0, we see that

Because of the definitiong;(7) = x,,-)(7) and b;(1) =

ap,(+)p,(+)(7), and the fact thap(t) is a permutation, the / mej — ym(1)) dr

equality ti/a

ZZGU ) |z (t) — zi(t)] = ZZ t) [y () — vi(t)] +/t Z mi ( = Ym(7)) dr. (10)
i=1 j=1 i=1 j=1 1/4 j=m+1

holds for all ¢, which together with the nonnegativ-The first term is non-positive by the definition gf Consider
ity of all ay(t)|z;(t)—x;(t)] and [B) implies that now the second term. Singg(t,,4) € [0, 1] for all i, we obtain
7% aij(8) s (t) — 2(t)| dt < oo for all 4, ;. yi(7) € 0,1] for all t > #,,4, SO thaty; () — ym(7) < 1 for

Suppose now that the edgg,i) is in the graphG, everyj. Equations[(1I0) and19) then imply that
ie., thatfoOO a;j(t)dt = oo. From part (a), we know that t n 1
|zi(t) — ()| converges to a constant value for every. Ym(t) < / Z bpj(T)dr < 7
Assumpt|0n|]2 [0 a;;(t)dt < oo for all ¢') and the fact f/a j=m+1
that [ a;;(t) |, (t) —wz( )| dt < oo imply that the value for every t € [t,4,¢*]. A similar argument shows that
to which |z;(t) — z;(t)| converges must be 0, and thus tha,, () > 3/4 forall ¢ € [t1,4,t*]. Recalling the definition of
z; = 7. If i and;j are not directly connected, i.€;, ) is not ¢*, we have essentially proved that, after time, and as long
and edge inG, but belong to the same connected componeas y,,, (t) < y,,11(t), we must havey,, 11(t) — ym(t) > 1/2.
of G, the equalityr; = z7 follows by using transitivity along Becausey(t) is continuous, it follows easily that the inequality
a path fromi to j. Ym+1(t) — ym () > 1/2 must hold for all times. Since we

It remains to prove part (c). Consider a partition of theave seen that, fotr € [t1/4,t*] , there holdsz;(t) > 3/4
agents in two groupsl{l and Vs, that are disconnected i@, for all j € V, and z;(t) < 1/4 for all i € Vj, this
i.e., limy oo fg aij(t)dr < oo foralli € Vi andj € V2, implies thatz} = lim; o 2;(t) < 1/4 for i € V; and
and also for alli € Vg andj € Vi. Thus, there eX|sts somey’ = lim; o ;cj( ) > 3/4 for j € V.
t14 such thatft o Yievigev, (@i (T) +aji(T)) dr < 1. We Note that the function that maps the initial conditio(®) to
will first show that there exists a full-dimensional set afid 2" = limy_, z(t) is linear; letL be the matrix that represents
vectorsz(0) for which lim;_, o z;(t) # lim;—,o x;(t), when this linear mapping. We usg to denote theth unit vector in
1€Vyandj € Vs, R™. We have shown above thatifand j belong to different

Sincefot a;j(7)dr < o0, it can be proved that the system inconnected components 6f, there exists at least ong0) for
Eq. [3) admits a unique solution and that the state tramsjio  which =7 — 2% = (e; — e;)" Lz(0) # 0. Therefore, (e; —
fundamental) matrix, which maps the initial condition)) ;)7L ;é 0. In particular, the set of initial conditions(0)
to z(t), has full rank for any finite}; see [32], for example for which (e; — e;)TLz(0) = 0 is contained in am — 1
(specifically, Theorem 54, Proposition C3.8, appendix @8, adimensional subspace &f*, which establishes part (c) of the
appendix C4). In particular, we can chos€0) such that theorem. ]
zi(tyya) = 0if i € Vi, andx;(t,/4) = 1if i € V. Letm be We note that Theorefd 1 has an analog for the case where
the number of agents ii;, and lety be the sorted version of each agent’s value;(¢) is actually a multi-dimensional vector,
= as above. There holdg (1/4) = - = ym(t1/4) = 0 and obtained by applying Theorefd 1 separately to each compo-
Ymr1(ti/a) =+ =yn(tiya) = 1. nent.

Consider now at* > t;,4 such thaty,,(t) < ymi1(t) The key assumption in Theorérh 1, which allows us to prove
holds for allt € [t,4,t*]. The continuity ofz and the the convergence of the;, is that the aggregate influence of
definition of y implies that for allt < [t;,4,1*], we have a group of agents on the others remains within a constant
z;(t) < ym(t) for everyi € Vi, andz;(t) > ym41(t) for factor of the reverse aggregate influence. As we will see in
everyj € V. In the same time interval, the permutatipft) Section[ll (Propositiori]1), the cut-balance assumptior is



generalization (weaker version) of a more local type-sytnyne (e) Bounded coefficients and set-symmetry: There eXist

condition. The latter condition requires that (t) be positive and o with M > « > 0 such that for allé, j, ¢t either
if and only if a;;(¢) is positive, and that the ratio of these two a;;j(t) =0 or a;;(t) € [a, M]; and, for any subse$' of
guantities be bounded bi(. (A system satisfying the type- {1,...,n}, there existi € S andj ¢ S with a;;(t) >
symmetry condition withK automatically satisfies the cut- 0 if and only if there exist’ € S and j/ ¢ S with
balance condition with the sanf€.) The requirement that the a;i(t) > 0.

ratio be bounded is essential. To demonstrate this, we mrese
an example where;;(¢) > 0 whenevera;;(t) > 0, but for
which convergence fails to hold.

Proof: Condition (a) implies condition (b), with = 1.
If condition (b) holds, then by summing over alin some set
of nodesS and allj¢ S, we obtain the cut-balance condition.

Example 1. Let n = 3 and consider the trajectories Condition (c) implies condition (d), withu; = 1. Suppose
e(t) =34et,  ao(t) =sin(f), ws(t) = —3—e". that condition (d) holds. Then,
(11) -
These trajectories are a solution @ (1), for the case where Z wjai(t) = Z Z“’J’aﬁ(t) - Z wjayi(t)
1 1 i€S,5¢S i€S j=1 i€S,j€S
aio(t) = - ;o az(t) = - ) "
et(g - Sln(t)) +1 et(?’ + Sln(t)) +1 = Z Zwiaij (t) — Z W; Qg (t)
1 sin(t) 4 cos(t) 1 sin(t) 4 cos(t) i€S j=1 i€5,j€S
o) =5t Torger o 0= e
It follows that >, ¢ ;g wja;i(t) = > icq j¢s wiai;(t), and

and a;3(t) = a31(t) = 0. Note that the trajectoryxz{(t), in  thus that
particular) does not converge. This system satisfies a weak

min; w;
form of type-symmetry: an agent cannot influence another Z aji(t) = " Z aij(t).
without being itself influenced in return, but the ratio beem i€5,j¢5 i€5,5¢S5
these two influences can grow unbounded. O A reverse inequality follows from a symmetrical argu-

One might speculate that the failure to converge in Examgléent- Therefore, the cut-balance condition holds with=
[ is due to the exponential growth of some of the ratidgaXi wi/min; w;, which is well defined and no less than 1
ai;(t)/a;:(t), and that convergence might still be guarantedtfcauseav; > 0 for all i. N _ o
if these ratios were bounded by a slowly growing function of Finally, suppose that the condition (e) is satisfied, and
time. However, this is not the case either: an example with faConsider a set and a timet. If a;;(t) = 0 for all ¢ € .5
growing ratios is equivalent to one with slow-growing ratio @1d.J ¢ 5. then (e) implies that;;(t) = 0 for all 7 € S and
once we rescale the time axis. Jg S sothaty ;g iegaij(t) =0 =73 g q¢5a;(t), and

More concretely, ley(t) be a nonnegative increasing funcihe cut-balance condition is trivially satisfied for that Seand

tion that grows slowly to infinity, and let(t) = (g(t)), any K. If on the other. haqd there ex_isz’ts S,j‘gz Sfor’\//vhich
where z(-) is as in the preceding example. Therif) sat- %i() > 0, then (e) implies the existence &f € 5, ;" & S
isfies [1) with new coefficients,; (t) = §(t)ai; (g(t)). The Such thata;;(t) >0, anda;, ai; € [a, M]. Let|S| be the
ratio @;;(t)/a;:(t) is a slowed down version of the ratiotardinality of:s. Then,

a;j(t)/a;;i(t), and is therefore slowly growing. On the other S| (n — |S)M > Z ai;(t) > a,
hand, sincer(t) does not converge;(t) does not converge n S¢S e
either. '
and

[1l. PARTICULAR CASES OF CUFBALANCED DYNAMICS |S] (n—|S|)M > Z aji(t) > o,

The cut-balance condition is a rather weak assumption, but i€5,5¢5
may be hard to check. The next proposition provides fiv@ that the cut balance condition holds withh =
special cases of cut-balanced systems that often ariseatigtu maxg S0 =ISDM < 2 M m
It should however be understood that the class of cut-bathnc Note that condition (d) remains sufficient for cut-balance
systems is not restricted to these five particular cases. if the weightsw; change with time, provided that the ratio

(max; w;(t))/(min; w;(¢)) remains uniformly bounded (the
same proof applies). We also note that the connectivity eond
tion in (e) is equivalent to requiring every weakly connelcte
component to be strongly connected in the graph obtained by
connecting(j, ¢) if a;;(t) > 0, for everyt.

Proposition 1. A collection of nonnegative coefficients (-)
that satisfies any of the following five conditions also $iatss
the cut-balance condition (Assumptigh 1).
(a) Symmetrya;;(t) = a;:(t), for all ¢, 7, t.
(b) Type-symmetry: There exisi§ > 1 such that
K_laji(t) < aij(t) < Kaji(t), for all 1,7,t.
(c) Average-preserving dynamicgj aij(t) = Zj aji(t), IV. APPLICATION TO SYSTEMS WITH RANDOM
for all i, 1. INTERACTIONS
(d) Weighted average-preserving dynamics: There existWe give a brief discussion of systems with random interac-
w; > 0 such thaty_; wia;;(t) = >, wjai(t), for all  tions. Consensus seeking systems where interactions are de
i,t. termined by a random process have been the object of several



recent studies. For example, Matei et al.1[24] consider the Proof: Let us fix a solutionz to Eq. [12). For this
case where the matrix of coefficienis;(¢) follows a (finite- particular functionz, and for everyi, j, we define a (nec-
state) irreducible Markov process, and is always averagessarily measurable) functioi;; : ®* — R* by letting
preserving. They prove that the system converges almaalysuia,; (t) = a;; (¢, z(t)). By the assumptions of the corollary, the
to consensus for all initial conditions if and only if the ani functions a;; satisfy the cut-balance condition (Assumption
of the graphs corresponding to each of the states of g Furthermorey is also a solution to the system of (linear)
Markov chain is strongly connected. This result is extenided integral equations

continuous-time systems in_[23]. 10_[33], Tahbaz-Salehi an .

Jadbabaie _conS|der d|s_cret(_e-t|me consensus—seekmgrrg/st zi(t) = ;(0) +/ i (1) (z; (1) — zi(7)) dr,

where the interconnection is generated by an ergodic and 0

stationary random process, without assuming that the geer .
is preseK/ed. Theyp prove that the system ?:onvergesgalm yi =1,...,m. The result follows by applying Theorefd 1

surely to consensus if and only if an associated averagmgre!l?) the [atter system. . . . -
contains a directed spanning tree. Note that the nonlinear system of integral equatidns (12)

It turns out that convergence for the case of random inte(i‘-)nSIdered in Corollari1 may have Z€ro, one, or multiple-sol
actions is a simple consequence of deterministic convee;]ertl'ons'_ Our result dqes not have any |mpI|cat|on on the proble
results: Theoreril1 can be directly applied to systems Whé}%exlstence or uniqueness of a solution, but applies tqyever
the coefficients:;; (-) are modeled as a random process Who§8|Ut'_0,r" if one exists. Naturally, Corollaﬂul also holéishe
sample path satisfies the cut-balance condition with pritiyab coefficientsa;;(z, t) sat!gfy stronger conditions such as type-
1 (possibly with a different constarit’ for different sample SYMMety or the condition_; wja;i(t, z) = 3, wiai;(t,z)
paths, and even in the absence of global upper bound '8 Some positive coefficients;, as in Propositiofi]1.

K). Indeed, if this is the case, Theorelh 1 implies that We note that part (c) of Theorefih 1 does not extend to the
each z;(t) converges, with probability 1. Furthermore, iffonlinear case where the coefficients also depend on-.
P(fooo 0 (H)dt = 00) = 1, thena = o, with probability 1. Indggd, the proof of Corollari] 1 apphes Thgorﬂn 1to an
auxiliary linear system, and the choice of this linear sysie
based on the actual solutiari-). Part (c) of Theoreral1 does
V. APPLICATION TO SYSTEMS WITH ENDOGENOUS apply to this particular linear system, and implies thatis
CONNECTIVITY indeed different from: wheneveri and;j belong to different

TheorenflL dealt with the case where the coefficientg) connected components of the associated gtaphnlessz(0)
are given functions of time; in particular(t) was generated belongs to a lower-dimensional exceptional set. Howewés, t

by alinear, albeit time-varying, differential or integral equa_exceptional set is associated with the particular lineatesy,

tion. We now show that Theorefd 1 also appliestmlinear Which is in turn determined by:(0); different(0) can be
systems where the coefficients (and the interaction topdlogiSSociated with different exceptional séigx(0)). So, it is in
are endogenously determined by the vectdt) of agent principle possible that every(0) in a full-dimensional set falls
values. This is possible because Theaém 1 allows for arpitr N the exceptional seD(x(0)). This is not just a theoretical
variations of the coefficients;;(t), thus encompassing thep055|blllty, as illustrated by the four-dimensional exdenjhat
follows.

endogenous case.

Corollary 1. For everyi and j, we are given a nonnegativeExample 2. Let n = 4. Consider a sorted initial vector,
measurable function,; : R x ®" — R*. Letz : R — ®r SO thata1(0) < 2(0) < 23(0) < x4(0). Suppose that

be a measurable function that satisfies the system of irltegf€ Coefficientsa;; have no explicit dependence on time,
equations but are functions ofr, with ai5(z) = aszi(x) = 1 and

a4(z) = ase(x) = 1 as longz; < z9 < x3 < z4. Otherwise,
t
) o 3 ) o a13(x) = asi (:v) = a24(:v) = 042(.%‘) = 0. All other
zit) = xl(OH/O Za” (7, 2(7)) (5 (7) = (7)) dr, (12) coefficients are 0. These coefficients are symmetric, ansl thu
/ cut-balanced. The corresponding system has a solutioneof th

fori=1,...,n. Suppose that there exisk§ > 1 such that for following form: z1(t), z2(t) keep increasing ands(t), x4(t)
all z, and¢, and any nonempty proper subsebf {1,...,n}, keep decreasing, until some timé at which agents 2 and 3
we have hold the same value; after that time, all values remain emtst

. Thus, there is at-dimensional set of initial conditions for
K'Y au(tba)< Y ai(t,e) <K Y aj(t,z). which the resulting limits satisfy:; = 2%. Note that
i€S,5¢S i€S,j¢S i€S,j¢S

00 t*

(@) The limit z7 = lim,_, z;(t) exists, andz; € / a;;(t)dt :/ a;j(t) dt < oo, for all 4, j,
[min, z;(0), max; z;(0)]. 0 0

(b) If < andj belong to the same connected componeiof 4ng the unbounded interactions graphhas no edges. Yet,
thenzj = 27, where the unbounded interactions grapRjespite the fact that nodes 2 and 3 belong to different
G is defined for each trajectory by letting,7) € Eif  srongly connected components; and = are equal on a
Jo aij(t,2(t)) dt = co. 4-dimensional set of initial conditionsJ



Finally, we note that the structure of the grapgh in when studying discrete-agent models in the limit of a large
Corollary[d can be hard to determine, becaGsdepends on number of agents). The system](14) is of the foknd (12), with
the evolution ofz via thea;; (¢, z(t)), and the evolution o a,;(z) = f(z; — x;). It satisfies a type-symmetry condition,
is a priori unknown. In particular, it may be hard to detereninwith K = 1, and Corollary L implies convergence. Moreover,
whether G will be connected, thus guaranteeing consensus.f is bounded and is continuous except on a finite set, then
However, as will be illustrated in the application belowe thfor anyi, j, eitherz; = z7, or x7 —z; belongs to the closure
first part of the Corollary guarantees the convergence of aafythe set{z : f(z) = 0} of roots of f. To see this, Corollary
system satisfying the cut-balance condition. One can tisen { asserts that i} # =7, then IS f(@i(t) — z;(t)) dt < oo,
additional information on the grapl to characterize the which implies thatx;(t) — z;(t) cannot stay forever in a set

possible limiting states*. on which f admits a positive lower bound.
We now apply CorollarZ]1 to a nonlinear multi-agent system
of a form studied in[[1], [[5], [[7], [[10], [[12], [[19],122],[[2b VI. DISCRETETIME SYSTEMS

(often in the context of bounded confidence models) in which

the agent values evolve according to the integral equati%)n'vIUCh of th_e Ilteratl_Jre on consensusjseekmg Processes s
version of ocused on discrete-time systems. Typical results gueeant

convergence to consensus under the assumption that the sys-
ixi (t) = Z (z;(t) — zi(t)) . (13) temis “sufficiently connected” on any time interval of a eént
length [17], [27], [35] and sometimes provide bounds on
_ . _ _ the convergence rate. When interactions are type-synunetri
The evolution of the interaction topology for this systemgnyergence to consensus is guaranteed under the weaker
is a priori unknown, because it depends on the a priofisymption that the system remains “sufficiently connécted
unknown evolution ofr. In addition, the interaction topology ,¢ter any finite time[3],T18],127] and results 2.5.9 and.2.&
can, .in principle, change an ir_n‘i.nite number of times durin@]' One can then easily deduce that type-symmetric system
a finite time interval. Determining whether such a syste,ays converge to a limit, at which we have consensus within
converges can b_e complicated. And indeed, t_he CONVergeReey of possibly many agent clusters][13] [14]] [21].
of an asymmetric counterpart of {13) remains openl [25]. |, this section, we show that the convergence proofin [3],
Observe now that (13) is of the for {12), with; (x) = 1if 73] can be extended easily to prove that cut-balance isalso
|zi — ;] <1, anda;;(z) = 0 otherwise. The coefficients;; g fficient condition for convergence in the discrete-tinase;
are symmetric and therefore satisfy the cut-balance dondit ;5 i, Theorenf]1. A special case of this result asserts the
in Corollary[1. Part (a) of the corollary implies that the #im ¢, ergence of systems that preserve some weighted average
aj = limg o0 (1) exists for everyi. Suppose now that for ¢ e states, and thus includes a sample path version aftrece
somei, j, we have|z} — o3| < 1. Then, there exists a time o its of [34] on stochastic consensus-seeking systems.
after which |z;(t) — {fg(t” < 1 and thereforeu;; (x(1)) = 1. Discrete-time systems are in some sense simpler because
As a consequencel,” ai;(z(t)) di = oo, and CorollanflL(c) of the absence of Zeno behaviors or unbounded sets of
implies thatz; = 2. This proves that the system CONVergesy,iso measure. However, discrete-time systems allow figela
and that the limiting values of any two agents are either bqqﬁstantaneous variations of the agents’ values. In paaticu
or separated by at Iea_lst 1, a result which had been obtaingd agent could entirely “forget” its value at timewhen
by ad hoc arguments i [13]. computing its value at time¢ + 1, leading to instabilities
Exactly the same argument can be made for a system tjgfore agents keep switching their values. For this reasen, w
evolves according to the integral equation version of introduce two additional assumptions: each agent is infleen
d Zj: (s (8) 2, (1)) <1 (z;(t) — z;(t)) by i_t$ own valu_e when computing its new valug, and every
E«Ti(t) = : positive coefficient must be larger than some fixed positive
lower bound.
(We leti;(t) = 0 whenever the denominator on the right'hanﬁiheorem 2 Letz: N — Rn
side is zero.) This system satisfies a type-symmetry camditi ' '
with K = N. A variant of such a system, with a different i )
interaction radiusr; for eachi, has been studied iri_[19] it +1) = Zaij(t)zi(t)’ i=1,...
under the assumption that the graph of interactions is glyon =1
connected at every. wherea;;(t) > 0 for all i, j, and¢, and 2?21 a;;(t) =1 for
A further variation of [(IB) is of the form all i andt. Assume that the following three conditions hold.
d a) Lower bound on positive coefficients: there exists some
0 =D f(ei®) = ilt) (25() —w(),  (14) @ a > 0 such that ifsij (t) > 0, thenay; (t) > a, for all 7,
J j, andt.
where f is an even nonnegative function. A multidimensiona(b) Positive diagonal coefficients: we hawg(t) > «, for all
version of [I#), where each; is a vector, is studied i [7], 1 andt.
for the special case of a radially decreasing functfothat (c) Cut-balance: for any nonempty proper subsgt of
becomes zero beyond a certain threshold. (The resulfs in [7] {1,...,n}, there exist € S andj ¢ S with a;;(t) > 0 if
also allow for a continuum of agents, which arise for example and only if there exist € S andj’ ¢ S with a;;/ () > 0.

gilazi(t)—x;(t)| <1

Zj: lzi(t)—z;(t)|<r 1

satisfy



Then, the limitz; = lim,. z;(t) exists, andz} € atand somei € S, j € S\ C, such thataij(f) > 0.
[min; z;(0), max; z;(0)]. Furthermore, consider the directedThen, a straightforward inductive argument based on theebo
graph G = ({1,...,n}, E) in which (j,7) € E if a;;(t) >0 two cases shows the existence of a tinfe> t' at which
infinitely often. Then, every weakly connected component@t_,(t”) = C, i.e., a timet” at which min;cc ;(t") >
G is strongly connected, and if and j belong to the same o/“/~!. Sincez;(t) remains less than or equal to 1 foe C

connected component 6f, thenz; = z7. andt > t/, we conclude thamax;cc x; (") — minec z; (t”)

Proof: The fact that every weakly connected componer'ﬁ bounded by
of G is strongly connected is proved exactly as in Thedrém 1. (1- a‘c‘*l)
Consider such a connected componéntlt follows from

the de_f|n|t|on Sfo that thereCeX|sdt§ aélmeh aftir wh||ch This inequality, together with the fact thatax;cc z;(¢) and
ai;j(t) = a;i(t) = 0 foranyi € C'andj ¢ C. Thus, the values ;- x;(t) are respectively nonincreasing and nondecreas-
x;(t) with ¢ € C do not influence and are not influenced ang after timet*, implies the convergence of;(t), for all
the remaining values after timé. In particular, ift* <t < i € C. to a common limit -

in - (! . . (! ! ) )
t, thenminjec z;(t') < i(t) < maxjeca;(t') holds for — qpeone that part (c) of Theordm 1, convergence to generi-

all i e ¢ f“rthermore,mgxiec xé(t) a(;\d minjec i(t) &€ o different values for the different components@fhas no
monotonically nonincreasing and nondecreasing, res@eli ¢, herpart for the discrete-time case. Indeed, jf1) = 1/n

We now show that there exists a constant 0 such thatfor ¢, 5y ; ' 'the system reaches global consensus after one time

any t'> t*,/’fhere exists & > 1 fo/r WhiCh. maXiec Cfi(t//) —  step, irrespective of the connectivity propertiestaf

minjec 2;(t") < vy(maxiec z;(t) — Mibiec xi_(t )) We Condition (c) in Theorerll2 has a graph-theoretic interpre-
assume thalC| > 2, because otherwise the claim is trivially;aion For every, let G, be the graph om nodes obtained by
true. connectingj to ¢ if a;;(t) is positive. Condition (c) is satisfied

N — in. () — . .
Suppose thatmaxiec «;(t') = 1 and miniec (') = 0. it and only if for everyt, every weakly connected component
This is not a loss of generality; the argument can be carrigg G, is strongly connected.

out for any other values by appropriate scaling and traioslat
For anyt, let C(t) be the set of indices € C for which
z;(t) > oF. Clearly,Cy(t') is nonempty. Consider someand
k such that) # Cy(t) # C. We distinguish two cases.

(i) Suppose tha;;(t) = 0 for all i« € Ci(t) andj €
C'\ Ck(t). Then, for anyi € Cy(t), we have

NAYE . (4!
I}leacg(a:l(t ) rirélélxz(t )) .

Finally, note that convergence results for discrete-time
consensus seeking systems with random or endogenously
determined interactions can be derived from Thedrém 2 in a
straightforward manner, exactly as in Secfioh IV and Cargll
[, respectively.

n VII. CONCLUDING REMARKS
zi(t +1) = Z aij(t)z;(t) = . Z aij (t)z;(t) In this paper, we introduced a cut-balance condition, which
=1 JECK() is a natural and perhaps the broadest possible symmegry-lik
> Z aij(t)o/“ > oF. assumption for consensus seeking systems. This assumption
FECK() is satisfied, in particular, if the dynamics preserve a wieidh

average, or if no agent can influence another without inagrri

a proportional reverse influence. We proved that the cut-

balance assumption is a sufficient condition for the conver-

gence of continuous-time consensus seeking systems, and
rovided a characterization of the resulting local conssnis

erms of the evolution of the interaction coefficients. Werth

applied our results to systems with endogenously detenine

connectivity. Related results were also obtained for tkerdie

(We have used here the facts thaj(t) = 0 for everyj ¢
Ci(t), and)_; a;;(t) = 1.) Therefore; belongs toCy (¢ + 1)
as well. So, in this case we hae#.(t) C Ci(t + 1).

(if) Suppose now thati;;(t) > 0 for somei € Cy(¢) and
j € C'\ Ck(t). Then the cut-balance condition, together wit
t > t*, implies thata; ;; > 0 for at least ong’ € C'\ Cy(¢)
andj’ € Cy(t). For thisi’, we have

n time case. We also showed that our result fails to hold if the
zy(t+1) = Z ayj(t)z;(t) = Z ayj(t)a;(t) proportionality constanf in the cut-balance assumption can
j=1 jeC grow with time, without bound.
> apj ()i (t) > a- o = aftt We end by discussing the possibility of extending our result

) to models involving a continuum of agents. Such models

where we have used the fact thg{(t) > minjec (') > 0, gppear naturally when studying discrete-agent modelshén t
forall j € C‘andt > t'. Therefore;i’ € Cpy1(t +1). More- |imit of a large number of agentsI[1[5[[7]-L1].[22]. Le
over, for anyi € Ci.(t), we haver;(t) = > jcc aij(1)2;(1) = 4, (a) be the value of agent € [0, 1] at timet. Consider then
aii(t)zi(t) > a-a® = o**!, because;(t) > aforalliandt. 4 functions : [0,1] x R+ — R : (o, £) — 74 (t) that satisfies
Thus, ifa;;(t) > 0 for somei € C(t) andj € C\ Ci(t), then d
the setCy11 (¢t + 1) containsCy(¢) and at least one additional E%‘(t) - /aa,g (25(t) — zo(t)) dB, (15)
node.

Recall now thatCy(t') is nonempty. Moreover, the defini-for some measurable nonnegative function[0, 1] x [0, 1] x
tion of C' as a strongly connected component®@fimplies R* — R* : (a,8,t) — aq g(t). The extent to which our
that for any¢ and any nonempty se$ C C, there exists discrete-agent convergence result can be generalizedeto th
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model [I%) is an open problem, and the same is true in the] J.M. Hendrickx and V.D. Blondel. Convergence of diéet linear and
discrete time-case.

In addition to some technical difficulties inherent to tiegt
a continuum of agents, the main reason that our approach dpep J.M. Hendrickx and J.N. Tsitsiklis A new condition foorvergence in
not apply directly to such systems is the following. Our ggoo
of Theoren{dl and Lemnid 2 rely on a collection of functions

S of the vector of agent states, with the property thee >

[16]

Kasm > 0if j > i, whereK > 1 is the constant from the
cut balance assumption. Finding nontrivial functionsihgv [17]
that property seems impossible in the case of a continuum of
agents wherkK > 1. Suppose indeed that we have a functioHS]
S of the configuration of agent values such that

[19]
dS a8

Z S>SK= >

o 2 Ky 20 (16)

[20]

wheng > «. For two agentsy < /3, take now a sequencee <

<72 <
we obtalnasm > K125 Since this is true for arbitrary,

- < v, < (. By a repeated application dEle)[21]

g

the derlvatlve ofS with respect to the agent state would eithep?]
be 0 everywhere or unbounded almost everywhere. Whether
an alternative approach can be used to establish uncomalitiq,
convergence is an open problem.

Let us also note that some convergence results for the
continuum model are available for some special cases wijth
K =1, for example because of symmetric interactions, i.e.,

at(e, B) = a:(B, @); see 3], [7]).
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on Information Processing in Sensor Networks (IPSN 2063)-70, intervals (ax, bx), With 0 < ap < by < t, x2(ar) = x1(ag),

2005. and o (by,) = z1(by). For every such interval, we have
by
APPENDIX / v1(7)dr = 21 (b)) — 21 (ag)
In this appendix we prove that if we sort the components ak
of the vectorz, the resulting vector satisfies essentially the = 22(br) — 22(ax)
same evolution equation as the original system, even though B b d
the required permutation can change with time as the relativ o a va(7) dr
order of different components changes. The result appears b
elementary (if not obvious), yet we are not aware of a simple = Vp, ()(T) d,
proof. Ok

. _ . which implies that
Proposition 2. Let z : ®" — R™ be a continuous function

L by
that satisfies / o(rydr =Y </ o (7) d7>
Tl ak

¢
xi(t):xi(O)—i-/O v (T) dr, i=1,...,n. a7)

b
. = / Vp, (7 (T) dT
For any ¢t > 0, let p(t) be the permutation of1,...,n} . ax
defined by the following lexicographic rule: if < j, then,
either (i) z,, (1) (t) < @, () (), OF (i) @, () (t) = 2, 1) (1) = / . Upy (r)(T) dT.
andp;(t) < p,(t). Then, T
Pilt) <p;(t) t It follows that
Tp, (1) (1) = Tp,0)(0) + /0 Up(r) (7) dT. (18) @y, (1 (1) = 21(t)

Note thatz,, ;(¢) is a sorted version af(t), with lexico- = 21(0) +/ Upy (r)(T) dT +/ Upy (r)(T) dT
graphic tie breaking. Observe that when &l(t) are smooth Tle TET
and the order of: changes only a finite number of times within — + | v dr

. - . p1(0) p1(7) &7
a bounded interval, the result follows immediately from the 0

continuity of z,, ) (t) and the fact thatk z,,. ) (t) = v,,;)(t) as claimed.

on every interval on which; (¢) is constant. The proof that we Suppose now thap,(t) = 2. Let t* = max{r < ¢ :
present here is more general, and only assumes measyrabilit(7) < z2(7)}; the maximum is attained because(0) <
In particular, it allows for infinitely many discontinuieor x5(0) andz is continuous. Furthermore; (t*) = z»(t*), and
order changes in finite time, something that cannot be rulgd(r) = 2 for 7 € (¢*, t]. We havep; (t*) = 1, so applying the
out, in general. result we have proved above, with the interjalt*] replacing

Our proof uses induction on, starting with the particular [0,¢], in the fourth equality below, we obtain
cases where, = 2 orn = 3.

Ty () = wa(t)
Lemma 3. Proposition2 holds when = 2. t
, . . = xz(t*)‘i‘/ ve(7) dr
Proof: Let us fix a timet > 0. We only give the proof t*
for the case where:; (0) < z2(0), so thatp;(0) = 1. (The . t
proof for the case where; (0) > x2(0) is almost the same.) = Tp e (t7) + /t v2(7) dr
We start by considering the case whekét) = 1. Equation t* t
(17), applied toi = 1, yields = Tp,00)(0) +/ Up, (7)(T) dT +/ Vpy (r) (T) dT
0 t*
t t
x1(t) = 21(0) + /0 vi(T)dr. — 2y o(0) + /0 Uy () (7) AT,
We defineTy = {r € [0,t] : z1(r) < z2(7)} and as desired.

Ty = {7 € [0,t] : a1(7) > @2(7)}. Thus,pi(r) = 1 for  This concludes the proof regarding, (,(t). The result for
all 7 € Ty (including = 0), andp:(r) = 2 for all 7 € T>. =z, 4(¢) is obtained from a symmetrical argument. ]
Moreover, sincer is continuous,7; and 7, are measurable

sets. Therefore, Lemma 4. Proposition2 holds when = 3.

Proof: The main idea of the proof is to note that
1 (t) = 1(0) +/ vi(7) dr +/ vi(7) dr min;—1 2 3 2;(t) = min{z; (¢), min{x2(t), z3(t)}} and to use
Teh TET Lemmal3 twice.
= Zp,(0)(0) +/ Up, (7)(T) dT +/ v (7)dr Let I(t) = 2 if z2(t) < x3(t), and leti(t) = 3 otherwise.
T TET: Let alsozy(t) = a4 (t) andwsa(t) = vy (). It follows from

The continuity ofr, and a fortiori ofz; — 5, implies that7, Lemmal3, applied tas, () and z3(t) that z2(t) = 22(0) +
is the union of an at most countable collection of disjoin¢iop f(f wo () dT.
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We letz; (t) = 1 (t) andw, () = vi(t). We thenlet\(t) =  z2(t) = z4,1)(t), walt) = v, 1)(t), 23(t) = w,(t), and
1if y1(t) < y2(t), and \(t) = 2 otherwise. Using Lemm@l 3 w3(t) = v, (). Let thenr(t) be a permutation o1, 2,3}
once more, or (t) andz(t), we havezy ) (t) = zx0)(0) + that sorts the components of(t) according to the same
f(f wy (- () dr. Observe now thain; z;(t) = min; z(t), lexicographic rules used earlier fgrand p. It follows from
so thatp(t) = 1 when \(t) = 1, and pi(t) = I(t) when (@9) and the definition o, w,r, that z,,;) = p, ) (t) and

A(t) = 2. Therefore, Wiy (1) (t) = Vp,. (1) (t). Using Lemma[}, we obtain
Ty, (1) (8) = 2a) (1) Tpi () (1) = Zra(t) t
= 2x(0)(0) + /0 t Wx(r)(T) dT = 2,(0)(0) + /0 Wy (r) (1) dT
t
= 2p1(0)(0) + /0 t Vpy (r) (T) T = 2p,(0)(0) + /0 Upy(7) (T) AT
This proves the desired result fpy(¢). A symmetrical argu- This completes the proof of the result for~ 1, n. The proof
ment shows the result fars(¢t) as well. made use of the induction hypothesis together with Lefima 4.

It remains to prove the result fgn(t). Observe that since The proof for the remaining cases £ 1 or k = n) is entirely
p is a permutation, we havg>_, z;(t) = 3°_, x,,1)(t) and similar, except that relies on Lemrha 3 instead of Leniia 4.

S22 uit) = 0 vy, (t). Therefore, n

Tp,1(t) = <Z zy(t ) pr(6) (1) — Tpy 1) (1)
<Z T; (0)) — Zp,(0) (0) — Zps(0) (0)

t 3
/ ((Z i (T)> - Upl("')(T) - Ups(f)(ﬂ) dr
0 i=1

t
= xpz(t)(t)—i—/o ’Upz(T)(T)dT.

_|_

[ |
We can now prove Propositigd 2, using induction.
Proof: Lemmag B anfll4 establish the result for= 2, 3.

Suppose that the result holds fer 1, wheren > 4; we will
show that it also holds for.

Let ¢(t) be a permutation of1,...,n — 1} such that, if
i < j then eitherz,, ) (t) < 4;() OF 7q,1)(t) = x4, and
¢i(t) < ¢;(t). (This corresponds to a sorting of the first-
1 components ofx(¢), according to the same lexicographic
rules used earlier to defingt).) It follows from our induction
hypothesis that

t
T, (1) (1) = g, (0)(0) + /0 Vg (r) (T) dT.

fori=1,...,n—1.

Let us now fix somé: # 1,n. We will prove the desired
result for z,, ). Note that the sorted version af(t) (as
captured by the coefficientg;(t)) is obtained by inserting
2, (t) into the sorted version of the first— 1 components of
x(t) (as captured by the coefficienig(t)), at the appropriate
position. In particular, there are only three possible galtor
pr(t), namelygy(t), ¢x—1(t), andn. In more detail, the value
of pr(t) is determined as follows:

Tn(t) < g, 1(t) = pr(t) = qr-1(1),
Tp(t) < g, 4)(t) = pp(t) = n,
Zn(t) = pr(t) = q(t).
(19)
In order to focus on the three possible values mpft),
we now definezi(t) = x4, (1), wi(t) = v, 1)(t),

Ly _1(t) (t)

<
Tgo(t) () <
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