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Abstract

An epidemic spreading in a network calls for a decision on thepart of the network members: They should
decide whether to protect themselves or not. Their decisiondepends on the trade-off between their perceived risk
of being infected and the cost of being protected. The network members can make decisions repeatedly, based on
information that they receive about the changing infectionlevel in the network.

We study the equilibrium states reached by a network whose members increase (resp. decrease) their security
deployment when learning that the network infection is widespread (resp. limited). Our main finding is that the
equilibrium level of infection increases as the learning rate of the members increases. We confirm this result in three
scenarios for the behavior of the members: strictly rational cost minimizers, not strictly rational, and strictly rational
but split into two response classes. In the first two cases, wecompletely characterize the stability and the domains
of attraction of the equilibrium points, even though the first case leads to a differential inclusion. We validate our
conclusions with simulations on human mobility traces.

I. INTRODUCTION

Epidemiology research has made extensive use of disease spreading models to study how a virus propagates in
a human population [16]. Shortly after the appearance of self-replicating malicious programs in computers, aptly
namedcomputer viruses, security researchers turned to epidemic models to study the propagation of these programs
[20], [19]. More recently, the proliferation of capable mobile devices, such as smartphones, made mobile networks
a fertile ground for spreading malware [17], [1]. The propagation characteristics of malware in such networks have
been studied and countermeasures have been proposed [28], [12], [9], [33], [21], [7].

Countermeasures to an infection can be centrally enforced,or the decision for their adoption can be left to
individual agents such as individual home computer users, companies, or people in a society. Centralized enforcing
is more likely to work in tightly controlled environments, such as within a company network where the users are
obliged to abide by the company security policy. However, when it is up to individual agents to invest in protection
against infection [18], [23], [6], [27], there appear contradicting incentives. Although agents want to be safe against
real or virtual viruses, they would prefer to avoid investing in security: Security not only costs money, but it usually
also reduces the utility of the network by, for example, isolating the agent from the rest of the network, or it reduces
the utility of the device by, for example, slowing it down [32]. Another counter-incentive is that the security of a
network agent exhibitspositive externalitieswith respect to the decisions of others: If others patch their computers,
everyone becomes more secure, even those who do not patch their own computer. If others are vaccinated, everyone
becomes safer, even those who are not vaccinated. Therefore, agents have an incentive to free-ride on the security
investments of others, reaping the benefits without paying the costs. More background on computer network security
and individual incentives can be found in two recent books [5], [8].

However, to the best of our knowledge, only static incentives of agents have been studied: Users are modeled
as only making a once-and-for-all decision to install or nota security product. Herein lies our goal: Agents do
not choose only once whether they will invest in security or not. They balance between the cost and benefit of
their investment, and the cost and benefit typically change with time. Security advisories exist about current and
newly emerging threats in popular technology products [2],[1], and about current and newly emerging human
epidemics [3]. We study how changing incentives influence the security decisions and the resulting infection level
in the network.
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We model agents as more likely to invest in security when the infection level is high and as less likely to invest,
or more likely to divest, when the infection level is low. On the one hand, if people receive news of an ongoing
epidemic, they are much more willing to protect themselves:the prevalence of AIDS has been observed to increase
risk avoidance, either through increased condom use [4], orthrough behavioral risk avoidance [31].

On the other hand, when the infection has subsided and there is no clear danger, complacency may set in with a
consequent reduction in the efforts and capital expended toensure safety. Neglect of human epidemics that are at
the point of near extinction has led to their resurgence [15]. Also, companies and users are not easily convinced to
buy security products [29]. If the threat is not extremely clear or imminent (“One solution [for selling security] is to
stoke fear.” [29]), users will resist investing in security, they will divest, or they will stop renewing their investment.

In human epidemic modeling it has already been recommended [10] to incorporate into models the changing
behavior of humans towards protection against ongoing epidemics. In a recently proposed model [13], the awareness
for the epidemic spreads in parallel with the disease itself. In particular, the awareness is spread from the aware to
the unaware part of the population at some rate and then lost again or forgotten at a different rate. Aware users are
less likely to contract the disease because, for example, they choose to stay at home. Nevertheless, we note that a
user alternates between states of awareness and unawareness mechanically,without making the decision himself,
so we cannot speak of individual incentives in this case.

In this paper, we model individuals’changingresponses that depend myopically on the fluctuating infection
level in an ongoing epidemic. We combine the epidemic propagation with a game theoretic description of the user
behavior into an Ordinary Differential Equation (ODE) model.

We find that the network reaches an endemic equilibrium, thatis, an equilibrium where the infection persists.
We reach the counterintuitive conclusion that the higher the learning rate (the rate at which users learn what the
infection level is), the higher the infection level at the equilibrium. The effect of the learning rate is less pronounced
when the users are more conservative, i.e., when they are willing to invest in protection at lower infection levels.
These conclusions hold across the various user behavior functions that we model.

When users are strictly rational cost minimizers, leading to discontinuous best response dynamics, our model
turns into a system of differential inclusions, which can also be viewed as a switched nonlinear system [24]. We
prove that there can be no periodic solutions, there can onlybe equilibrium points. We characterize the domains
of attraction for these points, as well as prove (local) asymptotic stability results. These findings, presented in
Section III, might also be of theoretical interest for switched nonlinear systems, as the bulk of the research on
switched systems is focused on the linear case [25].

To account for users who are not strictly rational, we study behavior functions that are continuous. These functions
are arbitrary except for the requirement that users be more willing to become and stay protected as the current
level of infection increases. We prove system properties that are similar to those in the strictly rational case.

We use simulations on human mobility traces to confirm our main theoretical conclusion that a higher learning
rate leads to a higher infection level.

To account for heterogeneity among users, we also study a system with two classes of users (easily extensible
to more than two), each with a different sensitivity to the infection level: Users in the first class (Responsible)
become protected at lower levels of an infection, whereas users in the second class (Selfish) become protected only
at higher levels, thus in a sense free-riding on the securityinvestment of the first class. In this case, too, it holds
that a higher learning rate leads to a higher infection level, which we also confirm with simulations.

The remainder of the paper is organized as follows. In Section II we describe our model for the evolution of the
network state, comprising an epidemic propagation component and a user behavior component. We study users with
a strictly rational behavior (Section III), then users withnon-strictly rational behavior (Section IV), followed by
users with heterogeneous behavior (Section V). In Section VI we present an empirical validation of our conclusions
through simulations on human mobility traces.

II. M ODEL FOREPIDEMIC PROPAGATION AND USERBEHAVIOR

A. Epidemic Propagation

There areN users in the network. Each user can be in one of three states:

• Susceptible, denoted byS: The user does not currently deploy security and is not infected.
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Event Effect ∆x

Meeting between S and I 1

N
(−1,+1, 0)

Update of S 1

N
(−pSP (x), 0,+pSP (x))

Update of P 1

N
(+pPS(x), 0,−pPS(x))

Disinfection of I 1

N
(0,−1,+1)

TABLE I: Possible events and their effect on the network state

• Infected, denoted byI: The user is infected by the virus and will spread it to any susceptible user he makes
contact with.

• Protected, denoted byP : The user deploys security and is therefore immune to the virus.

The number and fraction of users in each state are denoted, respectively, byNS , NI , NP andS, I, P . It follows
that NS +NI +NP = N andS + I + P = 1. The state of the network isx = (S, I, P ), and the set of possible
states isX = 1

N
N
3 = {NS

N
, NI

N
, NP

N
}.

The evolution of the network statex is described as a Continuous Time Markov Process, as follows. With each
user a Poisson alarm clock of rateβ + γ + δ is associated. When the clock of useri rings – say at timet – one
of three events happens:
M With probability β

β+γ+δ
, useri has ameetingwith another user, chosen uniformly at random. If the meeting is

between a Susceptible and an Infected user, the Susceptibleuser becomes Infected. Otherwise nothing happens.
U With probability γ

β+γ+δ
, useri receives anupdateabout the network statex, and he has the opportunity to

revise his current strategy if his state isS or P . If i’s state isS, he switches toP with probability pSP (x).
If i’s state isP , he switches toS with probability pPS(x). If i is Infected, nothing happens.

D With probability δ
β+γ+δ

, useri has adisinfectionopportunity. That is, ifi is Infected, he becomes disinfected,
and we assume he becomes Protected. Ifi is not Infected, nothing happens.

Table I summarizes the possible events and their effect on the network state.
We consider the large population scenario, i.e., the limitN −→ ∞. Kurtz [22] and Ljung [26] show that, when

N −→ ∞, the Continuous Time Markov Process described previously converges to a deterministic function, which
is the solution to a system of Ordinary Differential Equations:

d

dt
S = −βSI − γSpSP (x) + γPpPS(x) (1a)

d

dt
I = βSI − δI (1b)

d

dt
P = δI + γSpSP (x)− γPpPS(x) (1c)

SinceS+ I+P = 1, we can eliminate one of the three state variables. We eliminateP , and the system becomes

d

dt
S = −βSI − γSpSP (x) + γ(1− S − I)pPS(x) (2a)

d

dt
I = βSI − δI, (2b)

together withP = 1−S−I. The state space isD = (S, I), 0 ≤ S, I ≤ 1, S+I ≤ 1, and it is bounded. This system
is two dimensional and autonomous. Note that forγ = 0, the model is identical to the standard SIR epidemic model
[16] (R stands for Recovered).

Remark:The results of Kurtz and Ljung hold when the resulting deterministic equations are continuous. As
we will see when discussing the behavior of users (Sec. II-B), the functionspPS(x) and pSP (x) can also be
discontinuous, and indeed multivalued at the discontinuity. Gast and Gaujal [14] prove a similar convergence result
for the multivalued case: the trajectory of the stochastic system converges in probability to a solution of a differential
inclusion, as opposed to a differential equation. If the solution is unique, the stochastic system converges to it so
the situation is as in the continuous case. If there are multiple solutions, then the stochastic system can converge
to any of them. In the section on the discontinuous dynamics,we will resolve the issue of uniqueness of solutions.



4

We will denote the right-hand side of the system (2) byF (x), and we will slightly abuse the notation forx to
be x = (S, I), x ∈ D. So, the system (2) will be written

d

dt
x = F (x) (3)

for the differential equation, or
d

dt
x ∈ F (x) (4)

for the differential inclusion; the one we refer to will be clear from the context.

B. User Behavior

As can be seen from the epidemic propagation model, the only point at which the users can make a choice is
at an update event. We assume that there is a costcI associated with becoming Infected, and a costcP associated
with becoming Protected. It holds thatcI > cP > 0. There is no cost for being Susceptible. Note that these costs
need not be the actual costs; what influences the decisions ofusers are the costs as perceived by the users.

If we assume that each user behaves strictly rationally, thechoice between Susceptible and Protected depends
on which state minimizes the user’s expected cost. Specifically, given the aforementioned model of random pair
meetings, a user’s expected cost at a particular network state x = (S, I) is cP if he chooses to be Protected and
IcI if he chooses to be Susceptible, thus risking infection. Therefore, the user’s decision would beS if IcI < cP ,
andP if IcI > cP . In this case, the functionspSP (x) andpPS(x) would be step functions ofI:

pSP (x) = pSP (I) = 1{IcI > cP } (5)

pPS(x) = pPS(I) = 1{IcI < cP }. (6)

If IcI = cP , then both choices are optimal, and any randomization between them is also optimal. So, when
IcI = cP , the functionspSP (I) andpPS(I) are multivalued. For convenience, we define

I∗ ≡ cP
cI

. (7)

Note that if we were to setI∗ to a value larger than 1, thenpSP would always be equal to 0,pPS would always be
equal to 1, and our model would be identical to the SIRS model [16]. We revisit this connection when discussing
equilibrium points whoseI-coordinate is less thanI∗ (Section III-C).

To account for users that cannot be assumed to be strictly rational, or their perception of the cost is not crisp (e.g.,
they are not sure about the exact values ofcI andcP ), or they take the network state report to not be completely
accurate, we consider a different scenario for the functions pSP (·) andpPS(·). We assume that they can be arbitrary
functions ofI, as long as the former is non-decreasing withI and the latter is non-increasing withI.

Finally, to account for users with different characteristics, we will consider multiple user classes, each with a
different (discontinuous) response function.

In what follows, first we will consider the case thatpSP (·) and pPS(·) are discontinuous step functions and
actually multivalued at the discontinuity. Then, we will consider the case that they are continuously differentiable.
Last, we will go into the multiple user class scenario.

III. T HE USERS ARESTRICTLY RATIONAL

The best response correspondence dictates the shape ofpSP (I) andpPS(I):

pSP (I) =











0, I < I∗

[0, 1], I = I∗

1, I > I∗
pPS(I) =











1, I < I∗

[0, 1], I = I∗

0, I > I∗
. (8)

We now have to solve the differential inclusion (recall (2) and (4))
d

dt
x ∈ F (x), x ∈ D. (9)

The vector field ofF (x) is plotted in Figure 1 for various values of the parameters.
We define a partition of the state spaceD into three domains:D− = D∩{(S, I), I < I∗}, D+ = D∩{(S, I), I >

I∗}, andL = D ∩ {(S, I) : I = I∗}. The domainL will also be referred to as the discontinuity line.
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A. Existence of Solutions

A solution for this differential inclusion [11] is an absolutely continuous vector functionx(t) defined on an
intervalJ for which d

dt
x(t) ∈ F (x(t)) almost everywhere onJ . From the theory of differential inclusions we know

that a solution of (9) exists if, for everyx ∈ D, the basic conditionsapply: The setF (x) is nonempty, bounded,
closed, convex, and the functionF is upper semi-continuous.

A set-valued functionf(x) is calledupper semi-continuousat the pointx if ρ(f(x′), f(x)) −→ 0 asx′ −→ x.
The functionρ(A,B) is one characterization of the distance between two nonempty closed setsA andB:

ρ(A,B) = sup
a∈A

inf
b∈B

d(a, b), (10)

whered(·, ·) is the Euclidean distance between two points.
The basic conditions apply in our case:
For everyx /∈ L, the setF (x) is a singleton, hence, it is nonempty, bounded, closed, and convex; additionally,

the functionF is continuous atx, hence, it is also upper semi-continuous.
At each pointx ∈ L, the setF (x) is the segment

F (S, I∗) =

(

−βSI∗ + γ[−S, 1− S − I∗]
βSI∗ − δI∗

)

, (11)

which is the smallest convex closed set containing all the limit values ofF (x′) for x′ −→ x ∈ L. Whenx′ −→ x
from D+, the limit value ofF (x) is

(

−βSI∗ − γS
βSI∗ − δI∗

)

, (12)

and whenx′ −→ x from D−, the limit value ofF (x) is
(

−βSI∗ + γ(1− S − I∗)
βSI∗ − δI∗

)

. (13)

The setF (S, I∗) is bounded and upper semi-continuous [11, Lemma 3,§6].

B. Uniqueness of Solutions

In general, because the right-hand side of (9) is multivalued, even though two solutions at timet0 are both at
the pointx0, they may not coincide on an intervalt0 ≤ t ≤ t1 for any t1 > t0. If any two solutions that coincide at
t0 also coincide until somet1 > t0, then we say thatright uniqueness holds at(t0, x0). Left uniqueness at(t0, x0)
is defined similarly (witht1 < t0), and (right and left) uniqueness in a domain holds, if it holds at each point of
the domain.

The solution is unique inD− and inD+ becauseF has continuous partial derivatives there.
We will now show when a solution of (9) lying on the line of discontinuity L can be uniquely continued in the

direction of increasingt. We will see that all solutions can be uniquely continued, except those that start at the
point (S, I) =

(

δ
β
, I∗
)

. Those latter solutions all start at the same point and then diverge, but none of them can
ever approach that point again in the positive direction of time (the proof is in Lemma 1). So, if we ignore the
initial point of those solutions, all solutions can be uniquely continued.

Formally, letF−(x) andF+(x) be the limiting values of the functionF at a pointx ∈ L asF approachesx
from D− and fromD+, respectively. Leth(x) = F+(x) − F−(x), andF−

N , F+
N , hN be the projections of the

vectorsF−, F+, h onto the vectorn = (0, 1)T , the normal toL directed fromD− to D+ at the pointx.
The values of these vectors and projections are:

F−(x) = (−βSI∗ + γ(1 − S − I∗), βSI∗ − δI∗)T (14)

F+(x) = (−βSI∗ − γS, βSI∗ − δI∗)T (15)

h(x) = (−γS − γ(1− S − I∗), 0)T (16)

F−

N = βSI∗ − δI∗ (17)

F+
N = βSI∗ − δI∗ (18)

hN = 0 (19)
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We know [11,§10, Corollary 1] that on the discontinuity lineL, at the points whereF−

N > 0, F+
N > 0 (or

F−

N < 0, F+
N < 0) the solutions pass fromD− into D+ (correspondingly, fromD+ into D−) and uniqueness is

not violated. So, at no point ofL is uniqueness violated, except at(S, I) = ( δ
β
, I∗).

A solution that passes from the point(S, I) = ( δ
β
, I∗) will either stay there (if0 ∈ F ( δ

β
, I∗), i.e., if ( δ

β
, I∗) is an

equilibrium point) or it can be continued in multiple ways, all tangent toL as d
dt
I = 0 whenS = δ

β
. Each of these

multiple solutions corresponds to a different value ofF ( δ
β
, I∗). More details on these trajectories can be found in

the proof of Lemma 1.

I

S

X0

I = I∗

0

1

1

(a) The caseδ ≥ β. The only equilibrium
point is X0 = (1, 0). It is stable and all
trajectories converge to it.

I

S

X0

X1

S = δ
β

I =
1− δ

β

1+ δ
γ

I = I∗

0

1

1

(b) The caseδ < β and I∗ >
1− δ

β

1+ δ
γ

. The

point X1 =

(

δ
β
,
1− δ

β

1+ δ
γ

)

is a stable equilib-

rium point, similarly to the SIRS model.

I

S

X0

X2

S = δ
β

I =
1− δ

β

1+ δ
γ

I = I∗

0

1

1

(c) The caseδ < β and I∗ ≤
1− δ

β

1+ δ
γ

. The

point X2 =
(

δ
β
, I∗

)

is a stable equilibrium
point.

Fig. 1: The vector field of the system and the equilibrium points for all regions of the parameter space. At the point
(S, I), an arrow parallel to(dS

dt
, dI
dt
) is plotted. In cases (b) and (c), the pointX0 = (1, 0) is also an equilibrium

point but it is unstable. All trajectories converge toX1 or X2, respectively, except those that start on the axisI = 0,
which converge toX0.

C. Stationary Points

The stationary points are found by solving forx the inclusion0 ∈ F (x).
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1) Stationary points above the discontinuity line:There can be no stationary points in the domainD+. The
system becomes

d

dt
S = −βSI − γS (20a)

d

dt
I = βSI − δI. (20b)

From the first equation, we see thatS has to be zero. But then the second equation implies thatI also has to be
zero, which is not an admissible value forI as I = 0 cannot be above the discontinuity line.

2) Stationary points below the discontinuity line:We look for stationary points in the domainD−. The system
becomes

d

dt
S = −βSI + γ(1− S − I) (21a)

d

dt
I = βSI − δI, (21b)

which is identical to the SIRS case (recall the discussion inthe User Behavior section) except that the domain is
not the whole state space, it is onlyD−.

This system has the solutions:

X0 = (S0, I0) = (1, 0) (22)

X1 = (S1, I1) =

(

δ

β
,
1− δ

β

1 + δ
γ

)

. (23)

The second solution,X1, is admissible if and only ifX1 ∈ D−, i.e.,

δ

β
≤ 1, (24)

and also
1− δ

β

1 + δ
γ

< I∗. (25)

Note that if δ
β
= 1, thenX0 andX1 coincide. Also, it is not surprising thatX1 is the equilibrium point of the

corresponding SIRS model. That is,I∗ does not play an explicit role in this case, as long as (25) holds.
3) Stationary points on the discontinuity line:We look for stationary points on the discontinuity lineI = I∗,

that is, we solve the inclusion0 ∈ F (S, I∗) for S. The system becomes

d

dt
S = −βSI∗ + [−γS, γ(1 − S − I∗)] (26a)

d

dt
I = βSI∗ − δI∗. (26b)

SinceI∗ > 0, d
dt
I is zero only whenS = δ

β
. We then have to check if it is possible to maked

dt
S equal to zero,

that is, if 0 ∈ F ( δ
β
, I∗). We find that it is possible whenI∗ is such that

I∗ ≤
1− δ

β

1 + δ
γ

. (27)

In that case, the stationary point is

X2 = (S2, I2) =

(

δ

β
, I∗
)

. (28)

In general, there are many combinations ofpSP (I
∗) andpPS(I

∗) that make d
dt
S equal to zero, but there is always

one withpSP (I∗) = 0. In that case,pPS(I
∗) = δI∗

γ(1− δ

β
−I∗)

.

To summarize,X0 exists always. Ifδ < β, one more equilibrium point exists:X1 if I∗ >
1− δ

β

1+ δ

γ

, or X2 otherwise.

In Figure 1 we can see these equilibrium points.
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D. Local Asymptotic Stability

1) Stability ofX0 and X1: We show that, whenδ
β
≥ 1, X0 is asymptotically stable. Whenδ

β
< 1, X0 is a

saddle point, and ifX1 exists it is asymptotically stable.
We now examine whetherX0 andX1 are (locally) stable equilibrium points. The Jacobian of the system is

J(S, I) =

(

−βI − γ −βS − γ
βI βS − δ

)

(29)

We evaluate the Jacobian at the pointX0:

J(X0) = J(0, 1) =

(

−γ −β − γ
0 β − δ

)

(30)

The eigenvalues ofJ(X0) are−γ andβ − δ. So,X0 is stable if and only ifβ < δ, in which case note thatX1

does not exist.
We evaluate the Jacobian at the pointX1:

J(X1) = J

(

δ

β
,
1− δ

β

1 + δ
γ

)

=





− β+γ

1+ δ

γ

−δ − γ

β−δ

1+ δ

γ

0





(31)

The eigenvalues ofJ(X1) are
a11±

√
a2

11
+4a12a21

2 , whereaij are the elements ofJ(X1) (a22 = 0). Sincea11 < 0,
the smallest eigenvalue is always negative. The largest oneis negative if and only ifa12a21 < 0 ⇔ β > δ. SoX1

is stable whenever it exists.
If we evaluate the square root

√

a211 + 4a12a21 at the pointβ = γ(1 + γ
δ
)2 − γ

2 , we see that its argument can
also take negative values. Since the eigenvalues are a continuous function ofβ, they will have an imaginary part
for β close toγ(1 + γ

δ
)2 − γ

2 , which means that the trajectoriesspiral towardsX1.
2) Stability ofX2: To show that the stationary point on the discontinuity line is asymptotically stable, we will

use Theorem 1 below [11,§19, Theorem 3]. To use this theorem we transform the system sothat the line of
discontinuity is the horizontal axis, the stationary pointis (0, 0), and the trajectories have a clockwise direction for
increasingt.

We setx = δ
β
− S and y = I − I∗. The domainsD,D−,D+ becomeG = {(x, y)|x ≤ δ

β
, y ≥ −I∗, y − x ≤

1− I∗ − δ
β
}, G− = G ∩ {(x, y)|y < 0}, andG+ = G ∩ {(x, y)|y > 0}. Then, the system can be written as

dx

dt
= P−(x, y) = −βxy − (βI∗ + γ)x+ (γ + δ)y − γ(1− I∗) + δ(I∗ +

γ

β
) (32a)

dy

dt
= Q−(x, y) = −βx(y + I∗) (32b)

for (x, y) ∈ G−, and

dx

dt
= P+(x, y) = −βxy − (βI∗ + γ)x+ δy + δ(I∗ +

γ

β
) (33a)

dy

dt
= Q+(x, y) = −βx(y + I∗) (33b)

for (x, y) ∈ G+.
The partial derivatives ofP±, that is, ofP+ and ofP−, are denoted byP±

x , P±
xx, P

±
y etc., and similarly forQ±.

We define two quantitiesA± in terms of the functionsP±, Q± and their derivatives at the point(0, 0):

A± =
2

3

(

P±
x +Q±

y

P±
− Q±

xx

2Q±
x

)

. (34)
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Theorem 1:Let the conditions

Q− = Q+ = 0, P− < 0, P+ > 0 (35)

Q−
x < 0, Q+

x < 0 (36)

be fulfilled at the point(0, 0). Then,A+ −A− < 0 implies that the zero solution is asymptotically stable, whereas
A+ −A− > 0 implies that the zero solution is unstable.

All the conditions of Theorem (1) are satisfied in our case, together withA+ −A− < 0. The conditionP− < 0
is equivalent to (27), i.e., the condition onI∗ that causes the stationary point to be on the line of discontinuity.
All the other conditions are straightforward to verify. Forexample, to prove thatA+ − A− < 0 we can quickly
establish thatA+ < 0 andA− > 0, again using (27).

Therefore, the stationary point(S, I) = ( δ
β
, I∗) is asymptotically stable.

E. Domains of Attraction

From Theorem 6,§13 [11] we know that for autonomous systems on the plane, it holds that if a half trajectory
T+ is bounded, then itsω-limit set Ω(T+) contains either a stationary point or a closed trajectory. Recall that the
ω-limit set of a half trajectoryT+(x = φ(t), t0 ≤ t < ∞) is the set of all pointsq for which there exists a sequence
t1, t2, . . . tending to∞ such thatφ(ti) −→ q as i −→ ∞.

In this section, we show that there are no solutions that are closed trajectories. So we can conclude that all
system trajectories converge to equilibrium points. When there is more than one equilibrium point, we show which
trajectories converge to which point.

The main result is that for any half trajectoryT+, its ω-limit set Ω(T ) can only contain equilibrium points, that

is, X0 = (1, 0), X1 = (S1, I1) =

(

δ
β
,
1− δ

β

1+ δ

γ

)

, or X2 = ( δ
β
, I∗).

We will find the following two functions useful:

E(S, I) = S − S1 ln(S) + I +
γ

β
ln(I), (S, I) ∈ D+ (37)

M(S, I) = S − (S1 +
γ

β
) ln(S +

γ

β
) + I − I1 ln(I), (S, I) ∈ D−. (38)

It holds thatE(S, I) is constant on trajectories in the areaD+, andM(S, I) is decreasing along trajectories in the
areaD−. Indeed, with some calculations it can be shown that

d

dt
E(S, I) =

∂E

∂S

dS

dt
+

∂E

∂I

dI

dt
= 0 (39)

d

dt
M(S, I) =

∂M

∂S

dS

dt
+

∂M

∂I

dI

dt
= −(βS − δ)2

βS + γ

1 + γ
β

1 + δ
γ

≤ 0. (40)

First of all, we prove that a trajectory converges toX0 = (1, 0) if and only if it starts on the lineI = 0: If it
starts on the line, thend

dt
I is zero, soI stays equal to 0, and the trajectory stays on the line. Andd

dt
S is positive

always except onX0, so the trajectory converges toX0.
If the trajectory starts at a point(S0, I0), I0 > 0, then letM(S0, I0) = M0. We can see that, for anyS it holds

that limI→0M(S, I) = ∞. So, if the trajectory comes close enough to the lineI = 0, the functionM(S, I) will
have to increase aboveM0, which is a contradiction. Therefore, the trajectory cannot converge toX0 = (1, 0).

From now on, we assume that on all points of a trajectory it holds thatI > 0.
Assume that there exists a half trajectoryT+ whose limit setΩ(T ) contains a closed trajectoryΓ. By successively

eliminating properties of such a trajectory, we will prove that it cannot exist. Note that Lemma 1 below is trivial
if ( δ

β
, I∗) is an equilibrium point.

Lemma 1:The point( δ
β
, I∗) cannot be onΓ.

Proof:
If (S, I) = ( δ

β
, I∗) is onΓ (say, at timet1), then, first of all,0 /∈ F ( δ

β
, I∗), because otherwise the point( δ

β
, I∗)

would be an equilibrium point, so it could not be part of a closed trajectory. Since0 /∈ F ( δ
β
, I∗), the pointX1 is

an equilibrium and it is distinct from( δ
β
, I∗).
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We will now reach a contradiction by proving thatΓ cannot approach(S, I) = ( δ
β
, I∗) for t > t1, thusΓ cannot

be a closed trajectory. If( δ
β
, I∗) ∈ Γ, then the trajectory would have to exit the lineL immediately after passing

through it (otherwise right uniqueness would be violated onthe points ofL contained inΓ).
Define a region∆ǫ ⊆ D− around( δ

β
, I∗) that includes all points where theM function has values at least equal

to M( δ
β
, I∗)− ǫ, for some small enoughǫ > 0 such that∆ǫ does not includeX1. SinceM is continuous andX1

is distinct from( δ
β
, I∗), ∆ǫ is well defined.

Γ, being a closed trajectory, has to encircle an equilibrium point (Thm. 7,§13 [11]). So, it would have to exit
∆ǫ and go around the pointX1. But then, asM decreases along trajectories,Γ cannot reenter∆ǫ before exiting
D−. It can only exit by crossing the lineL somewhere on the interval(( δ

β
, I∗), (1− I∗, I∗)]. However, at( δ

β
, I∗)

the functionM(S, I∗) attains a minimum overS, soΓ cannot exitD− because it cannot approachL.
If (S, I) = ( δ

β
, I∗) is not onΓ, then onΓ there holds right uniqueness. Also,Ω(Γ) = Γ.

We will continue by proving thatΓ cannot have more or fewer than two intersection points withL.
Lemma 2:A closed trajectoryΓ that does not pass through the point( δ

β
, I∗) cannot have either more than two

or fewer than two intersection points with the discontinuity line L. If it has two intersection points, they cannot be
on the same side of( δ

β
, I∗).

Proof:
Denote byΓ ∩ L = {l1, l2, l3, . . .} the common points ofΓ with L, andt1, t2, t3, . . . the corresponding times.
Γ ∩ L cannot be empty, becauseΓ cannot be completely contained within the areaD−, because the function

M is decreasing inD−, nor within the areaD+, becauseΓ has to encircle an equilibrium point, but there is no
equilibrium point inD+.

Γ ∩ L cannot be a singleton set. If there is only one point inΓ ∩ L, say l1, thenΓ has to be inD− (except
for l1) because it has to encircleX1. Then,Γ has to exitL immediately, otherwise it would have more than one
common points withL. If Γ exits anǫ-neighborhood ofl1, then, using the functionM(S, I) we can show thatΓ
cannot return in an appropriateδ-neighborhood ofl1, soΓ cannot be closed.

Let there be 3 or more distinct points inΓ ∩ L. At least two of these points are on the same side of the point
( δ
β
, I∗), assume the side on the right (S > δ

β
). Call themli andlj , and their corresponding timesti andtj . Assume

without loss of generality thatli is the one closer to( δ
β
, I∗). Sinceli is distinct from( δ

β
, I∗), there is at least one

more point onL between( δ
β
, I∗) andli. Call that pointα, and consider the line segmentLS from α to (1−I∗, I∗).

By construction, bothli and lj are onLS. The segmentLS is a transversal: it is intersected by trajectories only
in one direction, asd

dt
I > 0 for S > δ

β
. Also, right uniqueness holds on the points ofLS.

By Lemma 3§13 in [11], for a trajectoryT the setΩ(T ) can intersect the transversalLS at not more than one
point. So, sinceΓ = Ω(Γ), the setΓ ∩ LS cannot contain more than one point, so we have a contradiction. We
reach a similar contradiction if we assume thatli and lj are to the left of( δ

β
, I∗).

Lemma 3:A closed trajectoryΓ cannot intersect the discontinuity lineL on exactly two points that are on
opposite sides of the point( δ

β
, I∗).

Proof:
Call A = (SA, I

∗) the point inΓ ∩ L with SA < δ
β

, and callB = (SB, I
∗) the one withSB > δ

β
.

Let Γ be parameterized byφ(t) = (x(t), y(t)), t ∈ [0, T ]; also φ(0) = φ(T ). The functionφ(t) is a solution
of the differential inclusion, that is,̇φ(t) = (ẋ(t), ẏ(t)) ∈ F (φ(t)), t ∈ [0, T ]. Let tA, tB ∈ [0, T ] be such that
A = φ(tA) andB = φ(tB). Let αA, αB ∈ [0, 1] be such thaṫx(tA) = −βxy − γx + αAγ(1 − y) and ẋ(tB) =
−βxy − γx+ αBγ(1− y)

Define the functionsP (x, y) andQ(x, y), (x, y) ∈ D \ {y, y > 0}:

P (x, y) = −1

y
ẏ = −1

y
(βxy − δy) = δ − βx (41)

Q(x, y) =
1

y
ẋ =























1
y
(−βxy + γ(1− x− y)), y < I∗

1
y
(−βxy − γx+ αAγ(1− y)), x ≤ δ

β
, y = I∗

1
y
(−βxy − γx+ αBγ(1− y)), x > δ

β
, y = I∗

1
y
(−βxy − γx), y > I∗

(42)

We compute the integral
∮

Γ Pdx+Qdy in two ways.
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For the first computation, we use the parametrizationφ(t) = (x(t), y(t)) of Γ, so dx = ẋdt anddy = ẏdt. The
result is zero:

∮

Γ
Pdx+Qdy =

∫ T

0
−1

y
ẏẋdt+

1

y
ẋẏdt = 0. (43)

For the second computation, we splitQ(x, y) into two functions, one continuous and one discontinuous, so that
Q(x, y) = Qc(x, y) +Qd(x, y).

Qc(x, y) =
1

y
(−βxy − γx) (44)

Qd(x, y) =























1
y
γ(1− y), y < I∗

1
y
αAγ(1− y), x ≤ δ

β
, y = I∗

1
y
αBγ(1− y), x > δ

β
, y = I∗

0, y > I∗

(45)

So now the original integral can be split into two:
∮

Γ Pdx+Qdy =
∮

Γ Pdx+ (Qc +Qd)dy =
∮

Γ Pdx+Qcdy +
∮

ΓQddy. We use Green’s theorem to compute the first integral.
∮

Γ
Pdx+Qcdy =

∫∫

Γ

∂Qc

∂x
− ∂P

∂y
dxdy =

∫∫

Γ
−β − γ

y
dxdy < 0. (46)

For the second integral
∮

ΓQddy, we define the function

Qext
d (x, y) =

1

y
γ(1− y), (x, y) ∈ D \ {y, y > 0} (47)

and the curvesΓ1 andΓ2: The curveΓ1 is the trajectoryΓ restricted toy ≤ I∗. The direction ofΓ1 is from A to
B. The curveΓ2 is the line segment ofL joining B andA, with direction fromB to A.

Observe that
∮

Γ
Qddy =

∮

Γ1∪Γ2

Qext
d dy =

∫∫

Γ1∪Γ2

∂Qext
d

∂x
dxdy = 0, (48)

where the first equality follows fromQd ≡ Qext
d on Γ1 anddy = 0 on Γ2, whereas the last equality follows from

Green’s theorem, becauseQext
d is continuously differentiable.

We see that the result of (43) contradicts the result of (46) and (48). So, the trajectoryΓ with the assumed
properties cannot exist.

From the previous lemmata, we conclude that there can be no closed trajectoryΓ. Therefore, all trajectories have
to converge to equilibrium points.

F. Conclusion

In Figure 2 we see that the total fractionI =
1− δ

β

1+ δ

γ

of Infected at the system equilibrium increases with the

update rateγ, until I becomes equal to the thresholdI∗. The reason for this increase is that, when the equilibrium
value of I is belowI∗, the trajectories will eventually be completely containedin the domainD− (below I∗). In
this domain, at each time a Protected is informed about the value of I, he will choose to become Susceptible,
thus fueling the infection. In parallel, no Susceptible will choose to become Protected. The larger the value ofγ,
the shorter time a user will spend being Protected, thus the smaller the fraction of Protected. However, a smaller
fraction of Protected implies a larger fraction of Infected, as the fraction of Susceptible at equilibrium is necessarily
δ
β

, i.e., it is independent ofγ.

When the quantity
1− δ

β

1+ δ

γ

exceedsI∗, the equilibrium value ofI is limited to I∗; further increases ofγ have

no effect. The explanation is that, as soon as the instantaneous value ofI exceedsI∗, Susceptible users switch
to Protected, and Protected users stay Protected, thus bringing the infection level belowI∗. However, there is no
equilibrium point for the system in the domainD−, so the only possible equilibrium value ofI is I∗. For I = I∗

there are in general many combinations ofpSP (I
∗) and pPS(I

∗) that lead to an equilibrium, including one with



12

pSP (I
∗) = 0 and pPS(I

∗) > 0. That combination means that no Susceptible users become Protected, but some
Protected become Susceptible. Other combinations with both pSP (I

∗) > 0 and pPS(I
∗) > 0 would be harder to

justify, as they imply that at the same value ofI∗ users would switch from Susceptible to Protected and back.
A side conclusion concerns the interaction ofγ with I∗: We have seen that increasingγ will increase the

equilibrium value ofI, but I ’s maximum value will be limited toI∗, so if I∗ is low, the effect of increasingγ is
not severe.

I

γ

I∗

X1 : I(γ) =
1− δ

β

1+ δ
γ

X2 : I(γ) = I∗

Fig. 2: The total fraction of Infected as a function ofγ.

IV. T HE USERS ARE NOTSTRICTLY RATIONAL

The user behavior functionspSP (I) andpPS(I) are continuously differentiable, and we require thatd
dI
pSP (I) > 0

and d
dI
pSP (I) < 0. Other than that, the two functions are arbitrary.

A. Stationary Points

The equilibrium points of the system are found by solving forx the equationF (x) = 0:

d

dt
S = 0 = −βSI − γSpSP (I) + γ(1− S − I)pPS(I) (49a)

d

dt
I = 0 = βSI − δI (49b)

From (49b) we see that eitherI = 0 or S = δ
β

.

• Equilibrium pointX0

SubstitutingI = 0 into (49a), we have thatX0 = (S0, I0) =
(

pPS(0)
pSP (0)+pPS(0)

, 0
)

. These values of(S0, I0) are
always admissible as they are always non-negative and at most equal to 1.
Recalling the meaning ofpPS(0) and pSP (0), we can reasonably expect thatpPS(0) = 1 and pSP (0) = 0:
Protected have no reason to remain Protected, and Susceptible have no reason to become Protected, when
there is no infection in the network. In this case,X0 is the point(1, 0).

• Equilibrium pointX1

SubstitutingS = δ
β

into (49a), we see thatI has to satisfy

g(I) ≡ −δI − γδ

β
pSP (I) + γ

(

1− δ

β
− I

)

pPS(I) = 0. (50)

To solveg(I) = 0 for I we need to know the two response functionspSP (I) andpPS(I). But even without
knowing them, we can still prove thatg(I) = 0 has a unique solution forI ∈ [0, 1] under the condition that

δ

β
≤ pPS(0)

pSP (0) + pPS(0)
. (51)
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We first show thatg(I) monotonically decreases in the interval[0, 1], and then we show that, under the
condition (51),g(0)g(1) ≤ 0. We can then conclude that there is exactly one solution ofg(I) = 0 in the
interval [0, 1].

d

dI
g(I) = −δ − γδ

β

d

dI
pSP (I)− γpPS(I) + γ

(

1− δ

β
− I

)

d

dI
pPS(I) (52)

And, as d
dI
pSP (I) > 0 and d

dI
pSP (I) < 0, we can see that

dg(I)

dI
< 0,∀β, γ, δ > 0, (53)

so g(I) monotonically decreases.
Under the condition (51),g(0) is non-negative:

g(0) = −γδ

β
pSP (0) + γ

(

1− δ

β

)

pPS(0) (54)

g(0) ≥ 0 ⇔ δ

β
≤ pPS(0)

pSP (0) + pPS(0)
, (55)

which is exactly condition (51).
And now we prove thatg(1) is always negative.

g(1) = −δ − γδ

β
pSP (1)− γ

δ

β
pPS(1) (56)

Therefore:
g(1) < 0,∀β, γ, δ > 0. (57)

Denoting byI1 the solution ofg(I) = 0, we can now conclude thatX1 = (S1, I1) = ( δ
β
, I1) is uniquely

determined under (51). The valuesS1, I1 are admissible as they are both between 0 and 1. Note that if (51)
does not hold then bothg(0) < 0 andg(1) < 0, so the monotonicity ofg in [0, 1] implies thatX1 does not
exist. Consequently, (51) is both necessary and sufficient for the existence ofX1.

B. Local Asymptotic Stability

To examine the (local) stability of the equilibrium pointsX0 andX1 we compute the Jacobian of the system
(49) and evaluate it at these two points.

J(S, I) =

(

j11 j12
j21 j22

)

(58)

where

j11 =− βI − γ(pSP (I) + pPS(I)) (59a)

j12 =− βS − γS
d

dI
pSP (I)− γpPS(I) + γ(1− S − I)

d

dI
pSP (I) (59b)

j21 =βI (59c)

j22 =βS − δ (59d)

Observe that bothj11 andj12 are negative for allS andI: recall our assumption thatdpSP (I)
dI

> 0 and dpSP (I)
dI

< 0.
For the case ofX0, the Jacobian is

J(X0) =

(

−γ(pSP (0) + pPS(0)) J(X0)12

0 β pPS(0)
pSP (0)+pPS(0)

− δ

)

(60)
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where the value ofJ(X0)12 is irrelevant for the calculation of the eigenvalues. The two eigenvalues ofJ(X0) are
the two diagonal entries:

λ0
1 =− γ(pSP (0) + pPS(0)) (61)

λ0
2 =β

pPS(0)

pSP (0) + pPS(0)
− δ (62)

The first eigenvalue,λ0
1, is always negative except in the trivial case wherepSP (0) = pPS(0) = 0. The second

one is negative if and only if
δ

β
>

pPS(0)

pSP (0) + pPS(0)
, (63)

which is exactly the opposite of condition (51). So,X0 is stable whenX1 does not exist.
For the case ofX1 the Jacobian is

J(X1) =

(

J(X1)11 J(X1)12
βI1 0

)

(64)

The eigenvalues have the following form:

λ1
1, λ

1
2 =

1

2

(

J(X1)11 ±
√

J(X1)211 + 4βI1J(X1)12

)

(65)

They are both negative, sinceJ(X1)11 andJ(X1)12 are negative as mentioned before. So,X1 is stable whenever
it exists.

C. Domains of Attraction

Since the system is two-dimensional andF is continuously differentiable, we can use Dulac’s criterion to show
that the system can have no periodic trajectory.

Theorem 2 (Dulac’s criterion):Let A be a simply connected domain. If there exists a continuouslydifferentiable
function h : A −→ R such that∇ · (hF ) is continuous and non-zero onA, then no periodic trajectory can lie
entirely inA.

In our case, the domainA is the state space excluding the lineI = 0. Note that there can be no periodic trajectory
that passes from a point withI = 0. We select as functionh the functionh(S, I) = 1

I
. We compute∇ · (hF ) to be

∇ · (hF ) = −β − γ
pSP (I)

I
− γ

pPS(I)

I
< 0,∀(S, I) ∈ A, (66)

which is continuous and non-zero inA. Then, from Dulac’s criterion, no periodic trajectory liesentirely in A,
and, consequently, the system has no periodic trajectory atall. From the Poincaré-Bendixson theorem, the system
can only converge to a periodic trajectory or an equilibriumpoint; so, we can conclude that every trajectory must
converge to an equilibrium point, that is, either toX0 or X1.

More precisely, when (51) does not hold, onlyX0 exists so all trajectories converge toX0. When (51) holds,
both X0 andX1 exist, andX0 is a saddle point: Trajectories starting on the lineI = 0 approachX0 along the
line I = 0, whereas all other trajectories converge toX1. Indeed, ifI(0) > 0, then the corresponding trajectory
will have I(t) > 0,∀t > 0. The reason is that ifI(t0) = 0 for some finitet0 > 0, then the uniqueness of solutions
would be violated at(S(t0), I(t0)), because it would be a common point with the trajectories that approachX0

along the lineI = 0. If t0 = ∞, i.e., the trajectory withI(0) > 0 converges asymptotically toX0 while keeping
I(t) > 0, then close enough toX0 we reach a contradiction asd

dt
I will become positive (see (51) and (49b)).

D. Conclusion

The equilibrium pointX0 is unaffected byγ. We show now that, atX1 =
(

δ
β
, I1

)

, the equilibrium level of the

Infected increases withγ. To this end, we take the derivativedI1
dγ

and we see that is always positive.
We know thatI1 satisfiesg(I1) = 0, i.e.,

− δI1 −
γδ

β
pSP (I1) + γ(1− δ

β
− I1)pPS(I1) = 0 (67)
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Differentiating with respect toγ, then using the chain rule, and finally collecting terms, we have

dI1
dγ

(

−δ − γδ

β

dpSP (I1)

dI1
− γpPS(I1) + γ(1− δ

β
− I1)

dpPS(I1)

dI1

)

=
δ

β
pSP (I1)− (1− δ

β
− I1)pPS(I1).

(68)

The term in the parenthesis on the left-hand side is negative, and so is the right-hand side. Therefore,dI1
dγ

is positive.

The negativity of the left-hand side parenthesis is deducedfrom dpSP (I1)
dI1

> 0 and dpPS(I1)
dI1

< 0. The negativity
of δ

β
pSP (I1)− (1− δ

β
− I1)pPS(I1) is deduced from (67):δ

β
pSP (I1)− (1− δ

β
− I1)pPS(I1) = − δ

γ
I1 < 0.

V. THE USERS HAVEDIFFERENT BEHAVIOR FUNCTIONS

So far, we have assumed that all users behave in the same way, which might be unrealistic in practice. In this
section, we model the case when users are split into two classes, each with a different threshold behavior function.
Note that we choose to have two classes to keep the presentation simple, but we believe that our results carry over
to multiple user classes.

A fraction ac of users are in classc = 1, 2, anda1+a2 = 1. The fractions of Susceptible, Infected, and Protected
in classc are denoted bySc, Ic, P c, and it holds thatSc+ Ic +P c = ac. Users do not change classes, so a user in
S1 will move, if infected, toI1 and then toP 1. The total fraction of Susceptible users is denoted byS(= S1+S2),
and similarly for Infected,I(= I1 + I2), and for ProtectedP (= P 1 + P 2). Susceptible users can be infected by
an Infected userof any class, not just by an Infected of their own class.

Users in different classes differ in their response to received alerts, i.e., the functionspSP (I) andpPS(I) become
pcSP (I) andpcPS(I) for users in classc. Note that the functions depend onI, not onIc. We will study discontinuous
best response functions with a different thresholdI∗c for each class. Without loss of generality, we requireI∗1 < I∗2.

pcSP (I) =











0 I < I∗c

[0, 1] I = I∗c

1 I > I∗c
pcPS(I) =











1 I < I∗c

[0, 1] I = I∗c

0 I > I∗c
(69)

The first class of users that we will model are users with a low thresholdI∗1 = 0.1, who we call Responsible.
Because of their low threshold, these users become Protected easily, but they do not easily switch from Protected
to Susceptible. We call them Responsible because the way they behave helps reduce the infection. The second class
of users, who we call Selfish, have a high thresholdI∗1 = 0.9. This means that they hardly ever decide to switch
from Susceptible to Protected, whereas they almost always decide to leave the Protected state.

In the next section, we simulate the system on human mobilitytraces, and we confirm our previous conclusion
that the equilibrium level of infection increases with the update rateγ.

VI. SIMULATIONS ON MOBILITY TRACES

We validate our conclusions using simulations on human mobility traces. The traces that we use are Bluetooth
contacts among 41 devices given to participants in a conference [30]. The traces were collected over a period of
approximately 72 hours.

The contact rateβ is determined by the traces. Actually,β is a function of timeβ(t), since the number of contacts
per time unit fluctuates depending on the time of day. We want to establish whether the fraction of Infected indeed
increases for larger values of the update rateγ. For the simulations that follow, we setδ = (6hr)−1, and we plot
the system trajectories on theS − I plane (average of 30 simulations) for three different values of γ, (1hr)−1,
(6hr)−1, and(24hr)−1. The initial conditions for all simulations were 1 Infectedand 40 Susceptible. In the case
of two user classes, the initially Infected user is of class 2(Selfish). Each simulation runs until either there are no
Infected, or the end of the traces is reached.

For the single user class case, we use a piecewise continuousresponse function (Figure 3):

pSP (I) =











0 I < I∗ − ǫ
2

1
ǫ
(I − I∗ + ǫ

2) I∗ − ǫ
2 < I < I∗ + ǫ

2

1 I > I∗ + ǫ
2

(70)



16

0

1

S
w

it
ch

in
g

p
ro

b
ab

il
it
y

p
S

P
(I

)

0 1
Fraction I of infected users

ǫ

I∗ − ǫ

2
I∗ + ǫ

2

I∗

Fig. 3: The user response functionpSP (I) used in the simulations: The probability that a Susceptibleuser switches
to being Protected, upon learning the fractionI of Infected users in the network.

andpPS(I) = 1− pSP (I).
In Figure 4 we plot simulation results forI∗ = 0.1, 0.5, 0.9, andǫ = 0.001, omitting an initial transient phase.

Sinceβ(t) is not constant, the system state oscillates between two equilibrium points,X0 (whenβ(t) is low enough

that δ > β(t)) and eitherX1 or X2, depending on whether (25) is satisfied or not

(

1− δ

β

1+ δ

γ

< I∗
)

. Despite these

periodicities, we see that for increasing values ofγ the system trajectories go through higher values ofI, thus
confirming our main conclusion that the infection level increases with the update rate. The effect of loweringI∗ is
that it limits the maximum infection at the equilibrium, so the trajectories are capped at values ofI not far above
I∗. For lower values ofI∗, we see that the effect ofγ on the Infected is less pronounced.
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Fig. 4: The trajectory of the system (average of 30 simulations) on the SI plane, whenδ = (6hr)−1 andγ takes the
values(1hr)−1, (6hr)−1, and(24hr)−1. The thresholds areI∗ = 0.1, 0.5, 0.9. We see that the network experiences
higher numbers of Infected devices for higher values ofγ, and forI∗ = 0.1, 0.5 we also observe the limiting effect
of I∗.

For the two-user class case, we use separate piecewise continuous response functions for each class. Users of
class 1 (Responsible) have a threshold ofI∗1 = 0.1 and users of class 2 (Selfish) have a threshold ofI∗2 = 0.9.
For both classesǫ = 0.001.

In Figure 5 we plot the system trajectories, again omitting an initial transient phase, for the Susceptible and
Infected of 1) the total population (first column), 2) the Responsible subpopulation (second column), and 3)
the Selfish subpopulation (third column). Each row corresponds to a different split of the total population into
Responsible and Selfish subpopulations. In the first row, theResponsible-Selfish split is 20%-80%, in the second
row it is 50%-50%, and in the third row it is 80%-20%.
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We again confirm the conclusion that the fraction of Infectedin the total population increases for larger values of
γ. Two secondary conclusions relate to the situation within each subpopulation: The Selfish user trajectories seem
as if the Selfish were isolated. That is, their trajectories are very similar to those they would follow if they were
alone in the network (compare with the caseI∗ = 0.9 in Figure 4). The Responsible users, on the contrary, stay
mostly in the bottom left region, which means that many of them stay Protected. Comparing with the caseI∗ = 0.9
in Figure 4, we see that they now stay a bit closer to the bottomleft corner: This means that the Selfish-caused
infection keeps more of them Protected than if they were alone in the network. The observations on the Selfish and
on the Responsible are mutually compatible, as users that are Protected (here, the Responsible) do not interact with
the rest of the network, so the trajectories of the remainingusers (here, the Selfish) seem as if they were isolated.

0 10 20 30
0

5

10

15

20

25

30

Susceptible

In
fe

ct
ed

Total Population (20,80)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

Susceptible

In
fe

ct
ed

Responsible

0 10 20 30
0

5

10

15

20

25

30

Susceptible

In
fe

ct
ed

Selfish

 

 

γ=(1hr)−1

γ=(6hr)−1

γ=(24hr)−1

0 10 20 30 40
0

5

10

15

20

25
Total Population (50,50)

0 5 10 15
0

2

4

6

8

0 5 10 15 20
0

5

10

15

20

0 10 20 30 40
0

5

10

15

20
Total Population (80,20)

0 10 20 30
0

5

10

15

0 2 4 6 8
0

2

4

6

8

Fig. 5: The trajectory of the system (average of 30 simulations) on the SI plane, whenδ = (6hr)−1 andγ takes
the values(1hr)−1, (6hr)−1, and(24hr)−1. Users are split into two classes: the Responsible, withI∗ = 0.1, and
the Selfish, withI∗ = 0.9. The columns correspond to the Total Population, the Responsible subpopulation, and
the Selfish subpopulation. The rows correspond to a total population split of 20%-80%, 50%-50%, and 80%-20%
into Responsible and Selfish. We see, as in the case of a singleuser class, that the network experiences higher
numbers of Infected devices for higher values ofγ. In the current case of multiple user classes, the higher number
of Infected is mostly due to the Selfish users.

VII. C ONCLUSIONS

We have studied the effect of network users being cost-sensitive when deploying security measures. In particular,
if users increasingly deploy security upon learning that the level of network infection is higher, and retract the
deployment when the level of infection drops, then a higher learning rate leads to a higher equilibrium level of
infected users.
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We reach this same conclusion in three scenarios. Our main scenario is when users are strictly rational cost
minimizers, having a discontinuous multi-valued best response behavior. The conclusion does not change when
the response function is an arbitrary continuous single-valued function, as long as the function implies that users
increasingly choose protection as the level of infection rises. Finally, the conclusion remains valid even when there
are two classes of users, each class with a different threshold function. These scenarios are studied both theoretically,
by using a system of differential inclusions or differential equations, and also they are validated with simulations
on human mobility traces.

We use the theory of differential inclusions to prove properties (existence, uniqueness, stability) of the system
trajectories in the case of multivalued response functions. In the case of uniform user behavior, either continuous
or discontinuous, the system is two-dimensional, and we areable to exclude the existence of periodic trajectories
and to characterize the domains of attraction for each equilibrium point.
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