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Abstract—This paper deals with the estimation of the whole
trajectory of a stochastic dynamic system with highest proba-
bility, conditionally upon the past observation process, using a
maximum Gaussian mixture. We first recall the Gaussian sum
technique applied to minimum variance filtering. It is then shown
that the same concept of Gaussian mixture can be applied in
that context, provided we replace the Sum operator by the Max
operator.

Index Terms—Filtering, Smoothing, Gaussian sum, Gaussian
mixture.

I. INTRODUCTION

The Gaussian mixture approximation introduced in [1] has

become a very popular way to approximate many filtering

issues. It is defined classically as a weighted sum of Gaussian

probability density functions (pdf) as follows:

p (x) =

m∑
i=1

ρiΓ (x− x̄i, Pi)

where x ∈ Rn, and Γ stands for the Gaussian pdf

Γ (x, P ) =
1√

(2π)
n |P |

exp

(
−1

2
xTP−1x

)
Nowadays, computation facilities are allowed to implement

algorithms based on this approximation. Indeed, in practice,

the computational load is equivalent to N Kalman Filters or

Extended Kalman Filters (EKFs) in parallel. The value of N
depends obviously on the application, but it rarely exceeds a

few hundreds. In practice, it may be more efficient than the so-

called particle filtering technique which often needs thousands

of particles [2] (convergence rate of 1/
√
N versus 1/N for

deterministic algorithms).

Classically, the Gaussian mixture approximation consists of

developing the transition or the observation pdf, or both, as

weighted sums of Gaussian densities [1]. Such an approx-

imation permits to deal, for example, with linear systems

with non-Gaussian noises and/or non-Gaussian initial pdf,

nonlinear systems with Gaussian noises but such that the

standard deviation of noises is large with respect to the field

of validity of the linearization [1], nonlinear systems with

non-Gaussian white noises and multi-modal systems with

Markovian commutations [3].

In this paper, the problem of the modal trajectory estima-

tion (MTE) [4] is addressed. The goal is to find the whole

trajectory over the horizon [0, t] with the highest probability,

conditionally upon the past observation process:

x∗0:t = arg max
x0:t

p (x0:t|y0:t)

where x0:t , {x0, . . . , xt} and y0:t , {y0, . . . , yt}. Note that

the outcome x∗t of the optimal trajectory x∗0:t is, in general,

not the same as the state obtained by maximizing the marginal

density p (xt|y0:t), the Max a posteriori (MAP) filter, except

for the linear Gaussian case (the Kalman filter).

Curiously, there are only few studies on the MTE issue

even if it is of real interest, specifically when the conditional

probability is multi-modal. In [5], the author states the gen-

eral problem and then limits itself to the Gaussian case. In

[4], the authors address the general case using the dynamic

programming approach, as we do, but limiting themselves to

the regular case (all pdf are functions but not distributions).

Our main contribution is to show that the same concept of

Gaussian mixture filters, first devoted to minimum variance

filtering, occurs in the MTE issue provided by replacing the

Sum operator by a Max operator (section III). First, we recall

in section II-A how the marginal conditional density and

in section II-B the marginal Bayesian likelihood propagate

in the general Markovian case [4]. Both minimum variance

and modal trajectory smoothers are derived using backward

computations in the general case. We then show in section

II-B that the MTE issue is in most cases ill-posed and then

we suggest a solution to regularize this.

II. GENERAL MINIMUM VARIANCE AND MODAL

TRAJECTORY ESTIMATES

The goal of general optimal filtering theory is to compute

the estimate of the internal state xt ∈ Rn of a stochastic

dynamic system partially observed by the process yt ∈ Rp
over the interval [0, t]. Generally, the Markovian system model

reduced to the transition pdf p (xt|xt−1) and the observation

pdf p (yt|xt). The optimal filtering concept refers to a par-

ticular criterion. There are two main criteria commonly used.

The first one is the "minimum variance filter". This estimate

is intended to minimize the expectation of the quadratic norm

of the error between the process and its estimate, using only

the past observations y0:t, that is

x̂t|t = arg min
F(•)

E
[
‖xt −F (y0:t)‖2

]
(1)
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where F stands for any function of the observation process.

It leads to the expectation of the conditional pdf p (xt|y0:t):

x̂t|t =

∫
xtp (xt|y0:t) dxt (2)

The second one, named MTE, is intended to maximize the

pdf of the state path x0:t conditionally upon the output past,

that is [6]:

x∗0:t = arg max
x0:t

p (x0:t|y0:t)

Note that in most cases, only the outcome of the optimal

trajectory x∗t is of interest as the computation of the whole

trajectory x∗τ , τ < t needs a backward calculation which is not

generally computable in real-time (as it is the case with the

minimum variance smoother x̂τ |t = E [xτ |y0:t] with τ < t).

A. Minimum variance estimate

The pdf p (xt|y0:t) can be propagated using the following

theorem.

Theorem 1: Beginning with the knowledge of the initial pdf

p (x0) (a measurable function), the a posteriori pdf can be

computed recursively by:

p (xt|y0:t) =
p (yt|xt)

∫
p (xt|xt−1) p (xt−1|y0:t−1) dxt−1∫
p (yt|xt) p (xt|y0:t−1) dxt

(3)

Proof: See [6].

Note that even if the transition pdf p (xt|xt−1) is a distribu-

tion, the pdf p (xt|y0:t) is in most cases a measurable function

due to the smoothing property of the integral operator. The

filter can then be computed using 2.

This means that the general solution to optimal filtering,

in the minimum variance sense, is achieved by recursively

spreading one function of the state (the a posteriori pdf of the

state) with one integration operation over the state space and

one function multiplication.

With the knowledge of the set {p (xτ |y0:t) , τ = 0, . . . , t},
the whole optimal smoother x̂τ |t = E [xτ |y0:t], τ < t can then

be computed backward using the following theorem.

Theorem 2: Beginning with the optimal filtering solution

p (xt|y0:t), the optimal smoother can be computed backward

as follows: ∀τ = t− 1, . . . , 0

p (xτ |y0:t) = p (xτ |y0:τ )

×
∫

p (xτ+1|y0:t)∫
p (xτ+1|xτ ) p (xτ |y0:τ ) dxτ

p (xτ+1|xτ ) dxτ+1

Proof: See [6].

B. Modal trajectory estimate

1) Regular case: Recall that the goal is to maximize the

pdf p (x0:t|y0:t). Assume that this pdf is a measurable function

(not a distribution). Using the Bayes rule, this density can be

rewritten as

p (x0:t|y0:t) =
p (y0:t|x0:t) p (x0:t)

p (y0:t)

As the denominator does not depend on the variable to be

optimized (x0:t), it is equivalent to maximizing the numerator

and then to compute

x∗0:t = arg max
x0:t

J (x0:t, y0:t)

where

J (x0:t, y0:t) , p (y0:t|x0:t) p (x0:t) (4)

As it is done dealing with dynamic programming, let us define

the marginal Bayesian likelihood:

J∗t (xt, y0:t) , max
x0:t−1

J (x0:t, y0:t) (5)

Again, this optimal marginal Bayesian likelihood can be

computed recursively.

Theorem 3: Beginning with the knowledge of the initial

marginal Bayesian likelihood J∗0 (x0,y0) = p (y0|x0) p (x0) (a

measurable function), the optimal marginal maximum likeli-

hood can be computed recursively by the following equation

J∗t (xt, y0:t) = max
xt−1

(
p (yt|xt) p (xt|xt−1) J∗t−1 (xt−1, y0:t−1)

)
(6)

Proof: See [4].

The outcome x∗t of the optimal trajectory x∗0:t can then be

computed by

x∗t = arg max
xt

J∗t (xt, y0:t)

This means that the general solution to optimal filtering,

in the MTE sense, is achieved recursively with one Max

operation over the state space and one function multiplication.

Note then the similarity between equations (3) and (6) where

integration operator is just replaced by a Max operator.

With the knowledge of the set {J∗τ (xτ , y0:τ ) , τ = 0, . . . , t},
the whole optimal trajectory (the MTE smoother) can then be

computed backward using the following theorem.

Theorem 4: The MTE x∗0:t can be computed backward

according to

• The outcome of the optimal trajectory is defined by

x∗t = arg max
xt

J∗t (xt, y0:t)

• The whole optimal trajectory can be computed backward

by ∀τ = t− 1, . . . , 0

x∗τ = arg max
xτ

(
p
(
x∗τ+1|xτ

)
J∗τ (xτ , y0:τ )

)
(7)

Proof: See [4].

2) Singular case: In most cases, the transition probability

measure has no measurable density. Indeed, the dynamic noise

dimension is often less than the state dimension. For example,

consider vehicle tracking model where only speed and course

are noisy when position is a deterministic function of speed

and course. In such a case, the MTE is ill-posed. Indeed,

there is no mathematical sense to consider the maximization

of measures. The problem has then to be regularized. Note

that, to the knowledge of the author, this point has never

been addressed in the literature (authors often consider, "for

simplicity", that the covariance of the dynamic noise Q is a

regular matrix [6] [5]).
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In most practical cases, the state can be split into two parts

[6]: the first one is deterministic with respect to the past

(x
(1)
t ∈ Rn1 ) and the second one is noisy (x

(2)
t ∈ Rn2 ). In

these cases, the state representation takes the following form:

x
(1)
t = f (1) (xt−1) (8a)

x
(2)
t = f (2) (xt−1, wt) (8b)

where wt is the dynamic white noise such that p
(
x
(2)
t |xt−1

)
is a measurable pdf (a function). The transition pdf is then

replaced by a transition probability measure and takes then

the following form:

P
(
dx

(1)
t |xt−1

)
= δf(1)(xt−1)

(
dx

(1)
t

)
p
(
x
(2)
t |xt−1

)
dx

(2)
t

where δa (dx) stands for the Dirac measure at a. As the cost

defined by (4) is not a function but a measure, it is equivalent

to consider the new joint likelihood as follows:

J̃ (x0:t, y0:t) , p (y0:t|x0:t)
t∏

τ=1

(
p
(
x(2)τ |xτ−1

))
p (x0) dx0

(9)

adding the constraint set

∀τ = 1, . . . t, x(1)τ = f (1) (xτ−1) (10)

This modified optimal marginal likelihood defined by 9 can

be then computed recursively using the following theorem.

Theorem 5: In the singular case, beginning with the knowl-

edge of the initial marginal likelihood

J̃∗0 (x0, y0) , p (y0|x0) p (x0)

the optimal marginal maximum likelihood can be computed

recursively by the following equation

J̃∗t (xt, y0:t) = max
xt−1, λt−1

(
p (yt|xt) p

(
x
(2)
t |xt−1

)
× exp

(
λTt−1

(
x
(1)
t − f (1) (xt−1)

))
×J̃∗t−1 (xt−1, y0:t−1)

)
(11)

where λt−1 ∈ Rn1 is a Lagrange multiplier related to the

constraint x
(1)
t = f (1) (xt−1).

Proof: It is directly derived from classical maximization

under constraints using Lagrange multipliers. See [7] for

details.

Again, with the knowledge of the set

{J∗τ (xτ , y0:τ ) , τ = 0, . . . , t}, the whole optimal trajectory

(the smoother) can then be computed backward.

Theorem 6: The whole MTE can be computed backward

according to

• The outcome of the optimal trajectory is defined by

x∗t = arg max
xt

J̃∗t (xt, y0:t)

• The whole optimal trajectory can be computed backward

by ∀τ = t− 1, . . . , 0

x∗τ = arg max
xτ , λτ

(
p
(
x
(2)∗
τ+1|xτ

)
(12)

× exp
(
λTτ

(
x
(1)∗
τ+1 − f (1) (xτ )

))
J̃∗τ (xτ , y0:τ )

)

with the constraint x
(1)
τ+1 = f (1) (xτ ).

Proof: See [7].

III. MODAL TRAJECTORY ESTIMATE USING GAUSSIAN

MIXTURE

A. Gaussian mixture definition

For simplicity of presentation, only the linear non-Gaussian

case is developed here. Moreover, we consider here the sin-

gular case as it is the most common in practice. According to

section II-B2, the state space is split into two components

x
(1)
t ∈ Rn1 and x

(2)
t ∈ Rn2 . The transition of x

(1)
t is

deterministic and the transition of x
(2)
t is defined by weighted

point-wise maximization. Indeed, if one deals with a linear

non Gaussian system, one can write

x
(1)
t = F (1)xt−1

x
(2)
t = F (2)xt−1 + wt

where the non Gaussian white noise pdf can be approximated

as follows:

p (wt) = max
i=1,...,m

ηiΓ
(
wt − w̄i, Qi

)
Indeed, it is easy to imagine that many pdf could be approx-

imated by a point-wise Max of Gaussian pdfs as it is the

case for the Sum of Gaussian pdfs [8]. As a consequence, the

transition pdf can be written as:

p
(
x
(2)
t |xt−1

)
' max
i=1,...,m

ηiΓ
(
x
(2)
t − F (2)xt−1 − w̄i, Qi

)
and where all Qi and R are assumed to be non-singular

matrices.

This choice is motivated by our estimation scheme. Indeed,

unlike the sum operator, the Max operator is distributive

with itself and associative with multiplication by positive

variable: ∀a, b, c ≥ 0, max (cmax (a, b)) = max (ac, bc) but

max (c (a+ b)) 6= max (ac, bc).

For simplicity of presentation with restrict ourselves to

Gaussian observation pdf

p (yt|xt) ' Γ (yt −Hxt, R)

In fact, it is straightforward to generalize the observation pdf

as a Gaussian mixture defined by

p (yt|xt) ' max
j=1,...,q

νjΓ
(
yt −Hxt − v̄j , Rj

)
Figure 1 shows and example of such a Gaussian mixture.

B. Spreading the optimal marginal likelihood

Recall that the MTE requires the recursive computation of

J̃∗t (xt, y0:t). We then have the following theorem:

Theorem 7: If at step t−1, the optimal marginal likelihood

can be written as a Gaussian mixture of Nt−1 terms as follows:

J∗t−1 (xt−1, y0:t−1)

= max
k=1,..,Nt−1

ρkt−1Γ
(
xt−1 − x̂kt−1|t−1, P kt−1|t−1

)
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Fig. 1. Example of Gaussian mixture. The continuous black line represents

the pointwise Max.

then, at step t, the marginal likelihood is again a Gaussian

mixture with Nt = Nt−1 ×m× q terms defined by

J∗t (xt, y0:t) = max
k=1,..,Nt−1
i=1,...,m

ρk,it Γ
(
xt − x̂k,it|t , P

k,i
t|t

)
where

ρk,it = ρkt−1

ηi
√∣∣∣F (1)Bk,it (

F (1)
)T ∣∣∣√

(2π)
n
∣∣∣Bk,it ∣∣∣ Γ

(
yt −Hx̂k,it|t−1,Σ

k,i
t|t−1

)

Bk,it = P kt−1|t−1 − S
k,i
t F (2)P kt−1|t−1

P
(2),k,i
t|t−1 = F (2)P kt−1|t−1

(
F (2)

)T
+Qi

Sk,it = P kt−1|t−1

(
F (2)

)T (
P
(2),k,i
t|t−1

)−1
x̂k,it|t−1 ,

[
F (1)x̂kt−1|t−1

F (2)x̂kt−1|t−1 + w̄i

]

P k,it|t−1 = F (1)Bk,it
(
F (1)

)T
+ F (1)Sk,it P

(2),k,i
t|t−1 Sk,it

(
F (1)Sk,it

)T
P
(2),k,i
t|t−1

(
F (1)Sk,it

)T
F (1)Sk,it P

(2),k,i
t|t−1

P
(2),k,i
t|t−1

]
(14)

x̂k,it|t = x̂k,it|t−1 +Kk,i
t

(
yt −Hx̂k,it|t−1

)
(15a)

Σk,it|t−1 = HP k,it|t−1H
T +R (15b)

Kk,i
t = P k,it|t−1H

T
(

Σk,it|t−1

)−1
(15c)

P k,it|t = P k,it|t−1 −K
k,i
t P k,it|t−1H

T (15d)

Proof: See [7].

As it was the case for minimum variance filtering, the

conditional pdf at time t is similar to those defined at t−1 but

the number of Gaussian pdfs grows exponentially with time

as Nt = Nt−1 × m × q. In practice, it is clear that such a

filtering algorithm is not tractable. Many approximations have

been proposed to reduce the exponential growing number of

Gaussian pdfs. They mainly consist of maintaining only Nmax
pdfs, Nmax being the maximum number of Kalman filters

well-matched with the computational power allocated to the

application. The most popular techniques are:

• maintaining only the Nmax pdfs with highest weights,

pruning others and then scaling [9];

• merging several Gaussian pdfs in one equivalent Gaussian

pdf, according to some distance criterion, the new pdf

having the same mean and variance as the Gaussian

subset [1] [10] [11] [12] [13] [14] [15] [16] [17] [3] [18]

[19].

If the conditional marginal likelihood is written at time t as

follows

J∗t (xt, y0:t) = max
k=1,..,Nt

ρkt Γ
(
xt − x̂kt|t, P kt|t

)
then the outcome of the maximum likelihood trajectory is

computed by first looking for the Gaussian indice that leads

the maximum value J∗t :

k∗ = arg max
k=1,..,Nt

ρkt√
(2π)

n
∣∣∣P kt|t∣∣∣ (16)

The optimal estimate is then the expectation of this Gaussian

pdf: x∗t|t = x̂k
∗

t|t. Note that in our case, the Max value of

J∗t (xt, y0:t) coincide exactly with the mean of one Gaussian

pdf (the k∗-th), unlike in the Gaussian sum approximation

scheme [20].

C. Computing the modal trajectory estimate

The whole modal trajectory can be computed backward

using the following theorem.

Theorem 8: The MTE over the interval [0, t] can be com-

puted backward as follows:

• Computation of the outcome of the optimal trajectory x∗t|t
by 16.

• Backward computation of the whole trajectory: ∀τ = t−
1, . . . , 0

(k∗τ , i
∗
τ ) = arg max

k=1,..,Nτ
i=1,...,m

ρkτ η
i

√∣∣∣F (1)Bk,iτ (
F (1)

)T ∣∣∣√∣∣∣Bk,iτ ∣∣∣
Γ
(
x
(2)∗
τ+1 − x̂

(2),k,i
τ+1|τ , P

(2),k,i
τ+1|τ

)
(17)

×Γ

(
x
(1)∗
τ+1 − F (1)ξ

k,i
τ+1|τ , F

(1)Bk,it−1

(
F (1)

)T))

x∗τ = ξ
k∗τ ,i

∗
τ

τ+1|τ +

B
k∗τ ,i

∗
τ

τ

(
F (1)

)T (
F (1)B

k∗τ ,i
∗
τ

τ

(
F (1)

)T)−1
(18)

×
(
x
(1)∗
τ+1 − F (1)ξ

k∗τ ,i
∗
τ

τ+1|τ

)
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where

x̂
(2),k,i
τ+1|τ = F (2)x̂kτ |τ + w̄i (19a)

P
(2),k,i
τ+1|τ = F (2)P kτ |τ

(
F (2)

)T
+Qi (19b)

Sk,iτ |τ = P
(2),k,i
τ |τ

(
F (2)

)T (
P
(2),k,i
τ+1|τ

)−1
(19c)

ξk,iτ+1|τ = x̂kτ |τ + Sk,iτ |τ

(
x
(2)∗
τ+1 − x̂

(2),k,i
τ+1|τ

)
(19d)

Bk,iτ = P kτ |τ − P kτ |τ
(
F (2)

)T (
P
(2),k,i
τ+1|τ

)−1
F (2)P kτ |τ

Proof: See [7].

Note that it is generally necessary to compute again x̂k,iτ+1|τ ,

P k,iτ+1|τ and Bk,iτ because the number of Gaussian pdfs is

reduced to Nτ at each step with Nτ+1 6= Nτ × m × q in

practice. Moreover, note that one may be interested only by a

sliding past horizon optimal trajectory limiting the backward

computation ∀τ = t−1, . . . , t−T where T stands for duration

of this past horizon.

Remark 9: Extension to the non linear case. Recall that

we have restricted ourselves to the linear non Gaussian case.

If the dynamic and/or observation function are not linear, it is

easy to extend this approach using classical approximations.

Indeed, all computations made in this algorithm use classical

Gaussian pdf multiplication formulae. In the non linear case,

these products may be approximated using linearization [6] or

unscented transformation [21], for example.

IV. SIMULATION RESULTS

The MTE algorithm has been tested with a simplified target

tracking issue. Consider a target, for example a boat, with

known speed (for simplicity) which can change its course at

any time with an unknown rotation speed. Assume that the

observer is static and has a remote access to the range rt (

accuracy of 10 m) and the azimuth angle θt ( accuracy of

13 ◦) of the target. The state of the target can be defined by

the vector xt = [rt, θt, ψt, ωt] where ψt stands for the target

course and ωt its rotation speed. The state equation may then

be defined as follows

rt = rt−1 + V cos (ψt − θt) ∆t

θt = θt−1 +
V

rt−1
sin (ψt − θt) ∆t

ψt = ψt−1 + ωt−1∆t

where V = 20knot stands for the target speed and ∆t = 1 s
for the sampling period. The random deviation of the rotation

speed can be depicted as a Markovian stochastic process as

follows

p (ωt|ωt−1) ∝
max (η0Γ (ωt − ωt−1, Q0) , η1Γ (ωt − ωt−1, Q1) , η2Γ (ωt, Q2))

The first Gaussian density depicts the little drift of the rotation

speed (
√
Q0 = 3 × 10−4 ◦/s), the second Gaussian density

depicts a sudden change of the rotation speed (
√
Q1 = 3 ◦/s)

and the third Gaussian density depicts the back-pulling to a

rotation speed close to zero (
√
Q2 = 3 × 10−4 ◦/s). Thus,

η1 stands for the mean of the target steerage frequency (η1 =

1/500 Hz) and 1/η2 for the mean of the steerage time (1/η2 =
60 s). In our scenario, the observer is located at the origin of a

Cartesian coordinate system. The initial location of the target

is (−1000 m, 1000 m). Its initial course is equal to 70 ◦. After

60 s, the target starts a course steering fixing the rotation speed

to 3 ◦/s. This steering stops 40 s later.

As the transition pdf is singular, we used the algorithm of

theorem 7. We have compared the MAP using a Gaussian

sum approximation and the MTE. More precisely, we have

extended both algorithms to the nonlinear case by linearization

(extended Kalman filter). Both algorithms use Nmax = 33

Gaussian pdfs to represent the a posteriori density p (xt|y0:t)
and the marginal maximum likelihood J̃∗t (xt, y0:t). An exam-

ple of target location tracking is shown on figure 2 where

the modal trajectory (the smoother) is computed backward

according to theorem ??. The course tracking is illustrated

on figure 3.
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Fig. 2. Comparizon within MAP and MTE filters - Location of the target
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Fig. 3. Comparizon within the MAP and MTE filters - Course of the target

Although it is theoretically not legitimate to compare the

mean square errors (MSE) of these filters (the only filter that

minimizes the MSE is the minimum variance filter (MVF)),

we did the comparison taking into account that neither the

MVF using weighted Gaussian sum (WGS), the MAP filter
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using WSG or MTE using weighted Gaussian Max (WGM) is

the exact filter associated to its criterion (they all use approx-

imations). We did 100 runs with different noise trajectories.

The results are illustrated on figures 4. One may conclude

that the MSE of each filter are commensurate, which is not

surprising. However, it appears that the MSE of the MTE

location filter never exceeds 25 m whereas MAP can have a

MSE greater that 45 m (see simulation number 16 and 49).

The same phenomena appears for these runs concerning the

course estimated.
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Fig. 4. Mean square errors on estimated target location

V. CONCLUSION

In many cases, the outcome of the MTE appears to be an

interesting alternative to the minimum variance estimate and

can be approximated by Gaussian mixtures in a similar way as

for the minimum variance issue. The approximation facilities

seem to be similar in both cases. As it is the case for WGS, its

implementation leads to the computation of N Kalman filters

in parallel (EKFs or UKFs in the nonlinear case). Moreover,

this approach allows backward computation of a smoothing

trajectory over any past interval under assumption that the past

optimal marginal likelihood parameters have been memorized

(Gaussian means and variances along with weights).

Note that this approach is particularly interesting when one

deals with hybrid systems, it is easy to generalize this approach

to such a case. Obviously, there is no sense to compute the

mean of symbols. But recall that the marginal conditional

pdf p (xt|y0:t) comes from the minimum variance estimator,

the conditional mean. The MTE approach allows to be more

coherent avoiding to mix means and Max.
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