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Abstract—This paper considers deployment problems where a
mobile robotic network must optimize its configuration in a dis-
tributed way in order to minimize a steady-state cost function that
depends on the spatial distribution of certain probabilistic events
of interest. Moreover, it is assumed that the event location distri-
bution is a priori unknown, and can only be progressively inferred
from the observation of the actual event occurrences. Three classes
of problems are discussed in detail: coverage control problems,
spatial partitioning problems, and dynamic vehicle routing prob-
lems. In each case, distributed stochastic gradient algorithms op-
timizing the performance objective are presented. The stochastic
gradient view simplifies and generalizes previously proposed solu-
tions, and is applicable to new complex scenarios, such as adaptive
coverage involving heterogeneous agents. Remarkably, these algo-
rithms often take the form of simple distributed rules that could be
implemented on resource-limited platforms.

Index Terms—Adaptive algorithms, coverage control problems,
dynamic vehicle routing problems, partitioning algorithms, poten-
tial field based motion planning, stochastic gradient descent algo-
rithms.

I. INTRODUCTION

HE deployment of large-scale mobile robotic networks

has been an actively investigated topic in recent years
[1]-[3]. Applications range from intelligence, surveillance and
reconnaissance missions with unmanned aerial vehicles to en-
vironmental monitoring, search and rescue missions, and trans-
portation and distribution tasks. With the increase in size of
these networks, relying on human operators to remotely pilot
each vehicle is becoming impractical. Attention is increasingly
focusing on enabling autonomous operations, so that these sys-
tems can decide online how to concentrate their activities where
they are most critical.

A mobile robotic network should have the capability of
autonomously deploying itself in a region of interest to reach
a configuration optimizing a given performance objective [3,
Chapter 5]. Such problems can be distinguished based on the
deployment objective, and among them the coverage control
problem introduced by Cortés et al. [4] has proved to be partic-
ularly important. In this problem, the quality of a given robot
configuration is measured by a multicenter function from the
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locational optimization and vector quantization literature [5],
[6]. A distributed version of the Lloyd quantization algorithm
[7] allows a robotic network to locally optimize the utility
function in a way that scales gracefully with the size of the
network [4]. The basic version of the coverage control problem
has inspired many variations, e.g., considering limited commu-
nication and sensing radii [8], [9], heterogeneous sensors [10],
obstacles and non-point robots [11], or applications to field
estimation problems [12]. It is also related to certain vehicle
routing problems, notably the Dynamic Traveling Repairman
Problem (DTRP) [13]-[15], as discussed by Frazzoli and Bullo
in [16] and several subsequent papers [17], [18]. Another
related problem is the space partitioning problem [19], [20],
where the robots must autonomously divide the environment in
order to balance the workload among themselves.

In essentially all the previously mentioned applications, the
goal of the robotic network is to respond to events appearing
in the environment. For example in the DTRP, jobs appear over
time at random spatial locations and are serviced by the mo-
bile robots traveling to these locations. The utility function op-
timized by the network invariably depends on the spatial dis-
tribution of the events, and the optimization algorithms require
the knowledge of this distribution [4], [16], [19], [20]. Hence
they are not applicable in the commonly encountered situations
where the robots do not initially have such knowledge but can
only observe the event locations over time. It is then natural to
ask how to gradually improve the spatial configuration of the
robotic network based only on these observations. Indeed, re-
cently some coverage control algorithms [12], [21] and vehicle
routing algorithms [18], [22] have been developed to work in the
absence of a priori knowledge of the event location distribution.

An essential idea of our work is that deployment problems
with stochastic uncertainty can be discussed from the unifying
point of view of stochastic gradient algorithms, thereby clari-
fying the convergence proofs and allowing to easily derive new
algorithms for complex problems. In this paper we restrict our
attention to three related classes of problems: coverage control,
spatial partitioning, and dynamic vehicle routing problems. For
these three applications, we derive distributed stochastic gra-
dient algorithms that optimize the utility functions in the ab-
sence of a priori knowledge of the event location distribution.
We call these algorithms adaptive, in analogy with the engi-
neering literature on adaptive systems [23]. Remarkably, the al-
gorithms we describe often take the form of simple rules, in
fact typically simpler than the corresponding non-adaptive al-
gorithms. Hence they are easier to implement on small plat-
forms with limited sensing, computational and communication
capabilities.

Specifically, we first discuss in Section III certain stochastic
gradient algorithms that adaptively optimize coverage control
objectives. These algorithms generalize to new complex multi-
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agent deployment problems and we justify this claim by devel-
oping solutions to coverage control problems involving Mar-
kovian event dynamics or heterogeneous robots. Additional ap-
plication examples, including deployment under realistic sto-
chastic wireless connectivity constraints, can be found in [24],
[25]. In Section IV, we describe new adaptive distributed algo-
rithms that partition the workspace between the robots in order
to balance their workload, using only the observation of the past
event locations. These algorithms exploit the link between gen-
eralized Voronoi diagrams and certain Monge-Kantorovich op-
timal transportation problems [26]-[28]. Finally in Section V
we present the first fully adaptive algorithm for the DTRP. In
light traffic conditions, the policy reduces to the coverage con-
trol algorithm of Section III, and is simpler than the previous
algorithm presented in [22]. In heavy traffic conditions, it re-
lies on the partitioning algorithm of Section I'V. This algorithm
complements the recent work of Pavone et al. [18], in which the
knowledge of the event location distribution is required in the
heavy traffic regime.

II. PRELIMINARIES

Notation

random elements are defined on a generic probability space
(Q, F, P), with the expectation operator corresponding to
P denoted E. We abbreviate “independent and identically
distributed” by iid, and “almost surely” by a.s. We denote the
Euclidean norm on R? by || - ||.

Let (X, d) be a metric space. For a set S C X, we denote
the indicator function of S by 1g, i.e., 15(z) = 1 ifz € S and
15(x) = 0 otherwise. For zzp € X, the Dirac measure at xq is
denoted by 6., and defined by &.,,(S) = 1g(xg) for all Borel
subsets S of X. We denote the distance from a pointzz € X to a
set S by d(x, S) := infes d(z, y), and we set d(z, 0) = +oo.
A sequence of points {2 } x>0 in X is said to converge to a set
S C X ifd(zg, S) — 0ask — oo. For nonempty sets B, C C
X, the Hausdorff pseudometric is defined by dg(B,C) :=
max(sup,ep d(z, C),sup,cc d(z, B)). The ball of radius r
around S C X is B(S.r) := {z € X|d(x,S) < r}. Also,
B({x},r) is just denoted B(z, 7).

A solution of a differential equation & = h{z) or of a dif-
ferential inclusion & € H(x) [29] is interpreted in the sense
of Caratheodory, i.e., as an absolutely continuous function (%)
satisfying

We denote [n] = {1,..., n}. Throughout the paper all

i
x(t) = wo—i—/ y(s)ds, for all teR, with y(s) = h(z(s))

0

or y(s) € H{x(s)) for all s.

Finally, a set I is invariant under a differential inclusion # &€
H(z) if for all zy € I, there exist some solution x(%).t €
(=00, 00), with 2(0) = xo, that lies entirely in 1.
A. Robot Network Model

We consider a group of n robots evolving in R?, for some
q > 1. We denote the robot positions at time ¢ € R> by p(1) =
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[p1(t), ..., pa(t)] € (R?)™. For simplicity, we assume that the
robots follow a simple kinematic model

Vi € [n], Yt € Rso, 5i(t) = ui; |ui(t)| < vi, @)

where v; is a positive constant and w; is a bounded control input.
However, more complex dynamics could be considered since
our analysis only involves the positions of the robots at certain
discrete times, see, e.g., (17). In addition, the robots are assumed
to perform computations and to communicate instantaneously.
Finally, we define

D, = {P = [plv S 7p’n] € (Hq)n
pi =pjfor some 1 <i<j< n}. 2)

Hence D,, is the set of configurations where at least two robots
occupy the same position.

B. Geometric Optimization

For a vector p = [p1,....pn] € (RT)™ \ Dy, we define the

Voronoi cell of the point p; by

Vilp) = {Z € R?

== pill Il = w5l V) € In]}-

That is, V; is the set of points for which robot ¢ is the closest
robot for the Euclidean distance. The Voronoi cells of the points
divide R? into closed convex polyhedra, and {V; };¢[,, is called
a Voronoi diagram [30]. Two points p; and p; or their indices
1,7 (with i # j) are called Voronoi neighbors if the boundaries
of their Voronoi cells intersect, i.e., if Vi(p) N V;(p) # 0.

Fora functionc : RIxR? — R, avectorw = [w1,...,w,] €
R™, andp = [p1....,pn] € (R9)™ \ D,,, define for all ¢ € [n]
the generalized Voronoi cell of the pair (p;, w;) with respect to
c by

Vi(p,w) = {z € R?

ez, pi) — wi < ez, pj) — wy,
RS ['rb]}. 3

We also write V(G,w) = VZ(p,w) for the set G =
{p1,...,pn}. The point p; is called the generator and w;
the weight of the cell V°(p,w), and {V }ic[n) a generalized
Voronoi diagram. Intuitively ¢(z,p) represents a distance or
cost between the points z and p, and in practice takes the
form ¢(z,p) = f(||z — p||), with f an increasing function. In
particular for f(x) = 22, the generalized Voronoi diagram is
called a power diagram [30], [31], and the generalized Voronoi
cell a power cell. Like Voronoi cells, power cells are polyhedra,
although possibly empty [31]. Notice from (3) that for a given
configuration p, the size of a generalized Voronoi cell of a pair
increases as its weight increases with respect to the weights
of the other pairs. Similarly to Voronoi neighbors, we define
generalized Voronoi neighbors and power diagram neighbors.

C. Min-Consensus

At several occasions, we need to solve the following problem
in a distributed manner in the roboticAnetwork. Robot ¢, for €
[n], is associated to a certain quantity d; € R, which can be +o0.
Each robot must decide if it belongs to the set arg min; ¢y d;.
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For simplicity, we assume that each robot can communicate with
some other robots along bidirectional links in such a way that the
global communication network is connected. We also assume
that the robots know the diameter of the network, denoted diam.
Alternatively, they know the number n of robots in the system,
in which case we take diam = 7 below.

In a synchronous network the problem can be solved by the
FloodMin algorithm [32, section 4.1.2]. Each robot maintains
arecord in a Variaple d; of the minimum number it has seen
so far, with d; = d; initially. At each round, it sends this min-
imum to all its neighbors. The algorithm terminates after diam
rounds. The agents that still have d; = 07,,,; at the end know that
they belong to arg min;e(, d;. This algorithm can also be im-
plemented in an asynchronous network by adding round num-
bers to the transmitted messages [32, section 15.2].

III. ADAPTIVE COVERAGE CONTROL ALGORITHMS

A. Coverage Control for Mobile Robotic Networks

In the standard coverage control problem [4], the goal of the
robotic network is to reach asymptotically a configuration where
the agent positions litny_,.c p;(¢),4 € [n], minimize the fol-
lowing performance measure capturing the quality of coverage
of certain events:

£utr) = B | min (I - 21)]. @

i€[n]

where f : R>g — R is an increasing continuously differen-
tiable function. The random variable Z represents the location
of an event of interest occurring in the workspace. To interpret
(4), the cost of servicing an event at location z with a robot at
location p; is measured by f(||p; — z||), and an event must be
serviced by the robot closest to the location of this event. For
example, in monitoring applications, f(||p; — z||) can measure
the degradation of the sensing performance with the distance
to the event [4]. In vehicle routing problems, this cost might
be the time it takes a robot to travel to the event location, i.e.,
flp: — #|) = llpi — #||/v:, assuming enough time between
successive events, see Section V.

For simplicity, we assume in this section that the probability
distribution P, := P o Z ! of Z has support contained in a
compact convex set Q with nonempty interior. We also generally
make the following assumption.

Assumption 1: Hyperplanes in R? have P, -measure zero.

Note that Assumption 1 implies that points also have mea-
sure zero, and in particular the support of P, is infinite. The
following result, whose proof can be found in [33, Proposition
9], [34], provides an expression for the derivatives of £,,, useful
for optimization purposes. Throughout the paper 9&,,/9p; for
p; € R? denotes the g-dimensional vector of partial derivatives
with respect to the components of p;. We also adopt the conven-
tion 0/||0]] := 0.

Proposition 1: Under Assumption 1, £, is Lipschitz contin-
uous on compact sets and continuously differentiable on (R?)™\
D,., with partial derivatives

agn / ] bi — %
: = Fllpi = 21—
Ipile Sy lpi — 2

P.(dz).  (5)
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Now let us suppose, as in [4] and most of the subsequent lit-
erature, that the event location distribution P, is known. Using
(5), one can then implement a gradient descent algorithm to lo-
cally minimize the objective (4)[4]. Assuming for simplicity
that the agents are synchronized, and a constant sampling pe-
riod 7' > 0, we denote the agents positions at time k7T by
pr = p(kT) = [p1.4,.--,Pnk|. The robots start at py =
[plj(], e p,,,,o] at ¢ = 0 and update their positions according
to

Pikt1 = ik — Y o2
ik+1 = Dik — Yk )
ket . s N

(6)

where ;. is an appropriately chosen sequence of decreasing or
small constant positive stepsizes. We ignore for the moment the
issue of non-differentiability on D,, as well as the minor mod-
ifications required to accommodate velocity constraints in (6).
The agents can implement (6) to asymptotically reach a config-
uration that is a critical point of £,,. No guarantee to reach a
global minimum is offered in general, and indeed global mini-
mization of the function (4) can be difficult [35]. Nevertheless,
an interesting property of the gradient descent algorithm (6) for
the coverage control problem is that it can be implemented in a
distributed manner by the robots, by exploiting the form of the
expression (5). In particular, each agent can update its position
at each period according to (6) by communicating only with its
current Voronoi neighbors, in order to determine the boundaries
of its own Voronoi cell V;(p) and compute the integral (5). Even
in a large network, a single robot has typically only few Voronoi
neighbors [31], which allows for a scalable and distributed im-
plementation of the gradient descent algorithm.

Remark 1: The specific case where f(x) = 2 is considered
in [4] in more details. In this case (5) gives

o0&,
i = 2P, (Vi(px))pik — /
o — Vi(pw)

zP.(dz).  (7)

Assuming that P,(V;(pg)) # 0, define the centroid of the
Voronoi region V;(py) as

1
0 = B g 0
Then control law (6), i.e.,
aE,
9pi |y,
=pik — 2P (Vi(pe))(pik — Cvipn)):

Oy

Pik+1 =Pik — Yk

®)

is essentially the well-known least-squares quantization algo-
rithm of Lloyd [7].

Note that the computation of the updates (6) requires P, to
be perfectly known. The minimization of (4) is then essentially
an open-loop optimization problem, and the network can reach
its desired configuration before any event occurs. However, the
algorithm does not provide any mechanism to adapt the con-
figuration based on the actual observations of where the events
occur, which is critical in practice as P is rarely available. In
the next section, we show how to generally address this issue by
using stochastic gradient algorithms. Section III-C applies the
method specifically to the adaptive coverage control problem.
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B. Stochastic Gradient Algorithms

Suppose that we wish to minimize a function G defined on
R™ for some m > 0, of the form

Glo) = Blg(z. )] = [ gl Z())P(d)

JQ

- [swapta) o
such as &, defined in (4) for example. The space Z in (9) is
the range of the random variable Z. In contrast to the previous
subsection, we now assume that P, is unknown, so that the ex-
pectation (9) cannot be computed directly. Suppose that g is dif-
ferentiable with respect to x, for P, -almost all 2, and denote its
gradient V,g(x. z) := 8¢g(z, z)/O0x. Finally, assume that we
can observe random variables Z;. & > 1, iid with distribution
P .. Consider then the stochastic recursive algorithm

Thgt = Tk — Y Vad(@r, Zeg1), (10)
which can be rewritten in the form

Try1 = Tk + Ve(h(xg) + Ditr), (11)
with h(z) =  —E[V.g(z,Z1)lx] and Dpyr =
—Veg(zr, Zes1) + E[Vieg(te, Zxy1)|zg]. Define for

k > 0 the filtration 7} := o(xp,D;, 1 < & < k), ie., an
increasing family 7, C F; for £ < [ of sub-c-algebras
of F. Then {Dy}r>1 is a martingale difference sequence
(MDS) with respect to {Fy } x>0, as explained in the following
definition.

Definition 1: Let {Fi}r>o be a filtration. A sequence of
random variables { Dy }1>1 is called a martingale difference se-
quence with respect to {Fy }r>o if Dy is measurable with re-
spect to Fy, E[||Dkll] < oo, and we have E[Dy|Fi_1] = 0, for
allk > 1.

Intuitively, the MDS {D;.},>1 plays the role of a zero-mean
noise. By the ODE method [36], we can expect that asymptoti-
cally, under the condition

o0 o0
Yk 207 Z”Yk:'i‘ooy Z’Y}%<+007
k=0 k=0

(12)

on the stepsizes, which holds for v;, = 1/(1 + &) for example,
the sequence {z }x>0 in (11) almost surely approaches the tra-
jectories of the ODE

& = h(x). (13)
Now assume that it is valid to exchange expectation and deriva-
tion, as follows

—VG(x) = — VEy(v. Z1)la]

= — E[V,g(x, Z1)|z] = h{z). (14)

Identity (14) can often be proved using the dominated conver-
gence theorem, see, e.g., [37, Theorem 5.1]. Then the ODE
(13) describes a gradient flow and so in fact under mild as-
sumptions the trajectories and therefore the sequence {4 }1>0
approach the critical points of G. Moreover, we can often ex-
pect convergence to the set of local minima of G almost surely
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[38, chapter 4]. In conclusion, the algorithm (11) allows us to
reach such a minimum even though P, is unknown, as long as
we have access to realizations of the random variables Z;,.

We now capture the intuition above more formally, including
the situation where the function G is not everywhere differen-
tiable, as in Proposition 1. Consider a stochastic algorithm

i1 = Tk + Ye(ht + Dieya), VE >0, (15)

where the stepsizes v satisfy (12), {Dk}k21 is an MDS with
respect to the filtration F, := {x. hy, Dy, 1 < k}, k > 0, and
hy is specified in the following theorems.

Theorem 1: Assume that G is continuously differentiable on
R™\'S, with S a set of Lebesgue measure zero. Introduce the
Filipov set-valued map [29]

{-VG(x)}, x &S,
{ Ns>0 €O (Uﬁ;eB(m,b)\S{_VG("L)}> , TES,
(16)
where T0 denotes the closed convex hull. Consider the recur-
rence (15) with hy, € H(xy), for all k > 0. Assume that for
some positive constants K1, K» we have

sup |[All < Ky (1+ l=])
heH(x)

EllDes 217 € K(1 + [aa]2), as.

Vr € R™,

VEk > 0,

and that supysg ||zk]| < oc, a.s. Then the sequence {xy } >0
converges almost surely to a connected subset of {x € R™ \
S|VG(x) = 0} US, invariant for the differential inclusion & €

Theorem 2: Assume that G is convex and admits a minimum
onR™. Consider the recurrence (15) with hy, a subgradient of G
at xy, for all k > 0. Assume that there exists a positive constant
K such that E[||hy + Dis1|?|F]) < K, for all k > 0. Then
the sequence {xy}r>0 converges almost surely to some point
minimizing G.

The proofs of these theorems are standard and not repeated
here, see [38], [39, chapter 5], [40, Proposition 8.2.6. p. 480]
and the proof of Theorem 3 in Appendix A-C. Note that in
many applications, the stepsizes 7y are chosen to converge to a
small positive constant instead of satisfying (12), which allows
tracking of the equilibria of the gradient flow if the problem pa-
rameters (e.g., P,) change with time. In this case, one typically
obtains convergence to a neighborhood of a critical point [23].
The selection of proper stepsizes is an important practical issue
that is not emphasized in this paper but is discussed at length in
references on stochastic approximation algorithms [37], [39].

C. Adaptive Coverage Control

We now consider the following modification of the coverage
control problem. The events occur randomly in the workspace,
with event £ > 1 occuring at time #;, > 0 and location 7, € Q.
We let £ := 0 denote the initial time. Assume in this subsec-
tion that the successive locations of the events Z;, k > 1, are
iid with probability distribution P, on Q. The distribution P, is
now unknown, and as a result the deterministic gradient descent
algorithm (6) cannot be implemented. We work under Assump-
tion 1, so that the gradient expression (5) holds.
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We denote the agent positions at time _, i.e., right before the
occurrence of the k" event, by pp_1 = [P1 k=1, Pnk—1] €
(R7)™, for k > 1. These positions are called reference positions
and are updated according to

Pik+1 = Dijk + Uik, |Uik| < vig, Yk € L0, Vi€ [n],

(17)
where u; , € RY is a control input for the interval [t, fi41).
For example, if the robot dynamics follow the model (1) and if
servicing the targets requires no additional travel, we can take
Vik = Vi(teg1 — tx) for all ¢ € [n]. We assume that there
exists a constant v > ( such that v, > v forallé € [n] and
k > 0, so that the robots can update their reference positions by
a non-vanishing positive distance at each period.

When the k** event occurs at time ¢, and position Z; € Q,
we assume that at least the robot closest to that event location
can observe it. This robot, say robot 7, services the target starting
from its location p; , _1, and then moves to a new reference po-
sition p; 1. The following reference position updates implement
the stochastic gradient algorithm (10) to minimize the coverage
objective (4). First, for a vector . € R? and a scalar b > 0, de-
fine the truncation [sat(u)] by

U, lf”UH S b’
[sat(w)], = {bL if ||ul| > b.

flwll?

Then consider the update rule

Pik+1
it —Dir
fla {pk +sat [ ek~ Zra D2ty ]
BN TS

if i € argminjep P50 — Zis|
otherwisc,

(18)

where 1lq is the orthogonal projection on the convex set Q.
Note that the situation where several robots are at equal distance
from Z;. and simultaneously update their reference position oc-
curs with probability zero under Assumption 1. To justify (18)
based on the discussion in the previous subsection, let g(p, z) =
mingep) f(llpe — 2||), ie., g(p,2) = f(llpi- — 2||) for 2z €
Vi (p). Then we have

200, - { Fllpi—z) 2=z, itz €Int(Vi(p)) \ {pi}
op; 0, ifz ¢ Vi(p).

Moreover let us define (3g/9p)(p, z) arbitrarily for z on the
Voronoi cell boundaries and at the points p;. These sets have
P .-measure zero under Assumption 1, and hence do not con-
tribute to the integral

£ [89 7. zﬂ _ /() Sy — Il

Ipi
08,
-~ Ip;

Pi— =2
llp: — =]l

P.(dz)

(p), forp¢ D,.

In other words, Proposition 1 precisely says that the identity (14)
is valid for &, in (R?)™ \ D,,. Note also that almost surely the
update rule (18) never results in two robots landing on the same
position as long as ¢ > 2 and the updated reference position
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before projection remains in Q, because this would require %41
to fall on the line passing through these two robot reference
positions. This can be achieved for ¢ = 1 or for a reference
position projected on the boundary of ¢ as well, by a small
random perturbation of the sequence vy [38, Chapter 2]. Hence
we can assume in the following that almost surely pr, ¢ D,
for all £ > 1. Moreover, the projection Ilg and the saturation
nonlinearity do not change the convergence properties of the
algorithm, see Appendix A. Therefore, (18) is essentially the
stochastic gradient descent update rule (10).

It is interesting to compare the implementation complexity
of algorithm (18) with that of the corresponding deterministic
gradient descent update based on (5), (6). The deterministic,
model-based algorithm requires that each agent maintains com-
munication with its Voronoi neighbors and knows their position
in order to determine the boundaries of its Voronoi cell and com-
pute the integral (5). Even in the quadratic case (8), this scheme
can be difficult to implement. In contrast, no Voronoi cell com-
putation or integration and no detailed knowledge of the posi-
tion of the neighbors is required by (18), which only needs a
distributed mechanism to find which robot is the closest to the
target when it appears. This can be done in a distributed way via
the FloodMin algorithm described in Paragraph Section II-D,
with the agents initializing their value to d; = lpik — Zisa] if
they detect the event, and to d; = +oc if they are too far away
to detect it. Clearly there are other ways to implement the rule
(18). For example, we could let all the robots travel to the event
location at the same speed, as in [22], a scheme that does not
require any coordination. Then only the first robot to reach the
target changes its reference position for the next period.

1) Special Cases: If we specialize (18) to the least-squares
coverage control problem with f(z) = 2% and ignore the satura-
tion function, we obtain the update p; x41 = pix + Vil Zpt1 —
pi ) for the closest robot. This particular adaptive algorithm
has been used extensively in various fields, from statistics to
quantization to neural networks [5], [41], [42]. If f(z) = =
and all robots travel at unit speed, the service cost for an event
appearing at 7 is the time it takes for the closest robot to
travel to the event location. In this case, the update rule (18)
is simply p; k41 = Pik + V6((Zot1 — i)/ | Zrs1 — Dikl])
for the closest robot. It is used in the vehicle routing application
discussed in Section V.

Remark 2: For certain distributions and initial robot positions
outside of the support set of the distribution P, it is possible
that by following (18), some agents never move. The issue also
arises with the deterministic algorithm, since the gradient (7)
vanishes if P.(V;(pr)) = 0. A possible solution to avoid this
phenomenon is to add an initial transient regime where for ex-
ample all agents follow the first case of the rule (18) rather than
only the closest agent. The goal of this transient modification is
to bring all the robots within the support set of the event distri-
bution. It is either stopped at some finite time or discounted by
a stepsize decreasing much faster that v, thereby not impacting
the convergence results [38].

We now state a convergence result for the update law (18) to
the set of critical points of the objective &, i.e., to
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Even though the algorithm is a stochastic gradient algorithm, the
discontinuity of V&,, on the set D,, creates technical difficulties.
To the best of our knowledge, the most thorough investigation of
the dynamics of (18) can be found in [33] and leaves open the
question of non-convergence to D,,. In contrast to that paper,
we cope with the non-differentiability on D,, by introducing the
Filippov set-valued map H,, as in (16)

{-VE&.(x)}}, x ¢ D,,
Hal®) =4 oo (Usestesno, - VE(@)}) . = €D
(20)
We also need the following definition. A Borel measure jz on R?
is said to dominate the Lebesgue measure A if A(A) = 0 for all
Borel sets A such that u(A) = 0.

Theorem 3: Let the stepsizes vy, satisfy (12), po € Q™ \ Dy,
and suppose that Assumption 1 holds. Then, by following the
algorithm (18), the sequence {pi}r>0 of robot positions con-
verges almost surely to a compact connected subset of C,, U
(D,, N Q™), invariant for the differential inclusion p € H,(p).

If in addition P, dominates the Lebesgue measure on Q, then
the sequence {py}r>0 converges almost surely to a compact
connected subset of C,,. In particular if €, has only isolated
critical points in Q™ \ D,,, the sequence {py} x>0 converges to
one of them almost surely.

The proof of Theorem 3 can be found in appendix A. The first
part of the theorem is a fairly direct application of Theorem 1,
but does not rule out asymptotic convergence to the set D,, of
aggregated configurations. This motivates the second part of the
theorem.

D. Some Extensions

Before closing this section, we briefly illustrate how the sto-
chastic gradient view leads to simple solutions for interesting
variations of the coverage control problem.

1) A Heterogenous Coverage Problem: As in Section III-C,
an event appears randomly in the environment at each period
and must be serviced. However, let us now assume that there are
two types of agents, with m 4 robots of type A and mp robots
of type I3, and three types of events: a,b, and ab. Events of
type @ must be serviced by a robot of type A, events of type
D by a robot of type &, and events of type ab by a robot of
type A and a robot of type 3. When a new event appears, it
is of type « with some unknown probability A, @ € {a,b,ab},
and the agents can observe its type. The spatial distribution
P, of events of type « is also a priori unknown, and satis-
fies Assumption 1. Finally, denote the vector of robot positions
o p,,'fm]. The asymptotic configura-
tion of the robots must now optimize the expected cost

gm‘%mB(p) = )\uE |: min J(A(Hp;l _ ZH)’O[ = (L:|

iE['m_A]
o= b}

+ A B {max {nﬁin] falllpt = 2|,
1€ M A

JE[m

IW: [ win fa(lb? - ZI)
¥

min fo(lp? - Z||>}
j€[mzB]

o= a,b] ,
(21)
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Fig. 1. Heterogeneous coverage control for a system with two types of robots,
A (green circles) and B (gray squares). Events requiring service from type
o appear with probability 30% and a distribution approximately centered at
[20;20]7 (star on Fig. 1(a)). Targets of type b appear with probability 30% and
a distribution approximately centered at [8;20]%" (cross on Fig. 1(a)). Finally
targets of type ab appear with probability 40% and a distribution approximately
centered at [20; 8]?" (triangle on Fig. 1(a)). Fig. 1(a) shows the initial robot con-
figuration and Fig. 1(b) the configuration reached after 1000 targets, together
with the history of target locations. The Voronoi cells of each robot are indi-
cated but not computed by the algorithm (separate Voronoi diagrams are drawn
for the two robot types). Note how robots of type A and B tend to pair in the
lower right corner in order to service the targets of type ab efficiently (here
fa(x) = fu(x) = ). Fig. 1(c) shows the empirical average cost incurred by
the targets of type ab, where the average is taken over all the past targets of this
type seen so far.

where f4 and fp are increasing, continuously differentiable
functions with values in R>o. Note that the cost of servicing
an event of type ab is the maximum of the costs of servicing
it with one robot of each type. This can model the time neces-
sary for one robot of each type to travel to the event location for
example.

For this problem, one can verify as before that the
stochastic gradient update rule (10) takes the following
surprisingly simple form. When an event of type a ap-
pears at location zpyi, the closest robot of type A,
say 4, services it and changes it reference position by
moving it toward 241 by a (truncated and projected) step
Pz — o D((ass — )/ lze1 — piell) asin (18),
and similarly for a target of type b and a robot of type B. If
the target is of type ab, the closest A and B robots service
it. To update their reference positions for the next period,
they first find which of the two is the farthest from the event
location. Then only this robot moves its reference position by
the same step as in (18). In view of the complicated expression
of the objective function, such a simple rule based update
law is quite appealing. We illustrate its behavior on Fig. 1 for
falz) = fp(z) = =.

2) Target Tracking With Markovian Dynamics: Suppose now
that we wish to track a single target in discrete time, whose posi-
tion at time #;, is Z},, where Z;, evolves as a Markov chain with
a unique stationary asymptotic distribution P,. The objective is
still to optimize £,, defined by (4), which represents the steady-
state tracking error. We can then use algorithm (18) to optimize
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Fig. 2. Adaptive coverage algorithm for a target with Markovian dynamics
moving on a circle. Fig. 2(a) shows the positions of the robots (blue circles)
and the target (red cross) initially and after 5000 time-steps. The stepsizes used
were v, = 1/(145 x 1077k). The curve on Fig. 2(b) shows the evolution of
the empirical average cost over time, where the average is taken over the past
1000 cost measurements.

the steady-state robotic network configuration, and a conver-
gence result similar to Theorem 3 can be proven using stochastic
approximation arguments [23, Chapter 1]. This tracking scheme
does not require the knowledge of the target dynamics nor that
of the stationary distribution P .

As an example, consider a target moving on a circle of radius
R, with dynamics

Or11 = 0950, + &,

where the variables &, are iid uniform on [—0.5,0.5] and Z;, =
[R cos 0, Rsin ;)T . The result of the adaptive coverage algo-
rithm for f(x) = 2?2 is shown on Fig. 2. Although the target dis-
tribution does not dominate the Lebesgue measure as required in
the second part of Theorem 3 , in practice we do not observe con-
vergence to an aggregated configuration. Note how the robots
position themselves in the region around the point [1, 0]7 where
the target spends most of its time.

IV. ADAPTIVE SPATIAL LOAD-BALANCING AND PARTITIONING

In this section, we design distributed adaptive algorithms that
partition the space into n cells, one for each robot, so that the
steady-state probability that an event falls into cell i has a pre-
specified value a;. Here we have a; > 0 for all 7 € [n], and
> » ,a; = 1. These algorithms allow an operator to specify
the steady state utilization of the different robots, by letting
each robot service only the events occurring in its cell. Such
spatial load balancing algorithms have important applications
in multi-robot systems and location optimization, see e.g., [19],
[20],[43]. An application to the DTRP is described in Section V.

As in Section III-C, events occur at times #; and iid loca-
tions 7, k > 1, and the unknown distribution P, has support
included in Q. In this section, Q is assumed to be compact for
simplicity, but not necessarily convex. Based on the observa-
tion of the successive event locations, we design a sequence of

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 3, MARCH 2013

partitions of Q into regions { R, k}ic[n]» & 2> 0, such that at pe-
riod & > 1, agent ¢ is responsible for servicing the event if and
only if Z;, € R, _1. Here we slightly abuse terminology and
allow our partitions to have R; , N R, # 0 for¢ # j. Our
algorithms produce regions whose intersections have P, -mea-
sure zero, hence this has no influence on the final result. After
the k' event occurs, the agents can change the boundaries of
their respective regions to form the partition { R; 1. };c[,,) used to
decide which agent services the (k£ + 1) event. Our sequence
of partitions { I2;  } ;<[] converges to a partition {12; };¢[,,), i.¢.,
dg(R; . ) — 0as k — o0, such that P,(R;) = a, for all
i € [n].

Let G = {¢1....,9.} be aset of n fixed and distinct points
in RY, with point g; associated to robot 7. We call the point g;
the generator of region /?;. Designing a partition {12;};c[,] is
equivalent to choosing an assignment of event locations to re-
gion generators, i.e., a measurable map 7' : Q — §, by taking
R; =T Y(g;),i € [n]. Let us denote the set of all such assign-
ments by 7. We then look for an assignment 7" € 7 satisfying
the constraint P (7 ~1(g;)) = a;,% € [n], and design recursive
algorithms producing such an assignment asymptotically. Now
consider the following optimization problem

inf /Q (2, T(2))P- (d) 22)
subject to  P(T (g:)) =ai, i€ [n], (23)

where ¢ : Q X G — R is a given cost function. The following
theorem gives a general way of producing assignments or par-
titions that optimize (22), (23).
Theorem 4. Consider problem (22), (23), where Q is com-

pact, and assume that

Al) For all i € [n], z — ¢(z,¢;) is lower bounded and

lower semi-continuous on Q, and z — max;e[n) (2, gi) is

P.-integrable.

A2) Foralli # j € [n], forallr € R, the set {z € Q :

e(z,9:) — c(z,9;) = r} has P.-measure zero.
Then the problem admits an assignment T' € T that attains the
infimum in (22). The value of the optimization problem is equal
to

max h(w) =
S )

/ min{c(z, g;) — w;} P.(dz) + Z a;w;,
Q i€ [n] P
24

and this maximum is attained for some w* € R"™. An optimal
assignment T’ is then given by the generalized Voronoi regions

VzeQ, T(z)=g & z€ V(G w").
The function h is concave, and a supergradient of b at w is given
by

[-P.(VHG, w) +a1,..., P (VG w) +a,]". (25)

Finally, the following supergradient optimization algorithm

wo =0,

Wi k1 = Wik + [P (VG we)) +ai], i=1,...,N,

(26)



LE NY AND PAPPAS: ADAPTIVE DEPLOYMENT OF MOBILE ROBOTIC NETWORKS

desired
utilization

agent

B A3,0:08) % X xy
%)

0%
X X
)k&

X

average utilization

0 200 100 600 500 1000 ' 200 10 600 00 1000
event number event number

Fig. 3. Partition for 10 robots after 1000 events for the quadratic cost
e(z,9;) = ||# — ¢:]|*. The partition at each step is a power diagram. The
desired utilization rates are shown for each agent on the figure. The power
diagram generators used are represented as black dots in the lower left corner.
Note that fixing their positions determines the orientation of the cell boundaries
[31]. The power cells shown in red are computed using CGAL [44], but need
not be computed by the agents running Algorithm 1. The bottom left figure
shows the evolution of the empirical utilization frequencies over the first 1000
events, and the bottom right figure the evolution of the weight vector w;.. The
chosen stepsizes were 75, = 10/(1 4+ 0.01k).

where 7y, is a sequence of stepsizes satisfying (12), converges to
an optimal set of weights maximizing h.

In other words, there is a set of weights w* € R”, maxi-
mizing the dual function defined in (24), for which the corre-
sponding generalized Voronoi cells {V,°(G,w*)};¢p, defined
in (3) satisfy the constraints of interest (23). In addition, the
assignment corresponding to these regions minimizes the ex-
pected cost (22). In practice, we make additional assumptions
on the function ¢ to obtain reasonably shaped regions. In par-
ticular, if ¢(z,¢;) = ||z — ¢:||*, then the generalized Voronoi
diagram becomes a power diagram. Because the boundaries of
the power cells are hyperplanes in R? [30], our Assumption A2
on P, in Theorem 4 is satisfied under Assumption 1. Theorem 4
generalizes some results in [19], [20], [43] by imposing weaker
conditions on P, and ¢. A proof is provided in Appendix B,
based on results from optimal transportation [26]-[28].

For our scenario where P, is unknown, we replace the gra-
dient ascent algorithm (26) by a stochastic version presented in
Algorithm 1, and whose behavior is illustrated on Fig. 3. For
simplicity, we specialize the discussion to ¢(z,¢;) = f(|lz —
9:l]), where f is increasing, and denote the generalized Voronoi
cells by Vif(g, w). If, at period %, the event is located at Z, a
possible choice for the stochastic supergradient is simply

L @ (B0) F 01 Lyt gy (Z) Faal

(27)
Computing component i of (27) relies on testing if
7, € V,l-Jc (G,wy_1), which is much easier than computing
the P, -area of the generalized Voronoi cell as in (26). For this
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test, assuming that at least the robot associated with the region
R; ,_1 where the k" event occurs detects the event, the agents
can simply run the FloodMin algorithm (see Section II-D)
with d; = f(||Zx — gill) — wir_1 (and d; = +oc if agent i
did not detect the event). The following result is now a direct
application of Theorem 2.

Theorem 5: Assume that the stepsizes vy, in Algorithm 1 sat-
isfy (12), and that Assumptions Al, A2 of Theorem 4 are sat-
isfied for ¢(z,9;) = f(||z — ¢:l|). Then the weights updated
by following Algorithm 1 converge almost surely to a maxi-
mizer w* of (24), and the resulting generalized Voronoi diagram
{VE(G, w™) Yigpn) satisfies the utilization constraints (23).

Algorithm 1 Adaptive partitioning algorithm

Require: for robot ¢: its desired utilization rate a;, and the
function f such that e(z, g;) = f(||z — ¢:]|) in (22).

Initialization: for i € [n], w; — 0.

When event & > 1 appears at location 7y :

* Run the FloodMin algorithm starting with

dj = f(1Zx = g5ll) — w;,J € [n].

« if robot 2 terminates FloodMin with d; = (Zi then
w; — w; +Yp-1(a; — 1)

* else

Wi < Wi + YVe—1;.

e end if

V. ADAPTIVE DYNAMIC VEHICLE ROUTING

We now combine the algorithms of Sections III-C and IV to
design an adaptive algorithm for the Dynamic Traveling Re-
pairman Problem (DTRP). Assume for simplicity in this section
that the environment is planar, i.e., ¢ = 2. In the DTRP [13],
events appear in the workspace Q according to a space-time
Poisson process with rate A and spatial distribution P,. We as-
sume as in Section III-C that Q is convex and compact. When
the k' event appears at time %, a robot needs to travel to its
location Z; to service it. The robots travel at velocity v ac-
cording to the kinematic model (1). The time that the k*" event
spends waiting for a robot to arrive at its location is denoted
W}. The robot then spends a random service time S at the
event location, where the variables .S}, are iid with finite first
and second moments 3, s2. The system time of event % is de-
fined as X = Wi + Sk, k > 1. The goal is to design policies
for the robots that minimize the steady-state system time of the
events ¥ = limsup, ... F[Z1]. Let p = A5/n denote the load
factor, i.e., the average fraction of time a robot spends in on-site
service [15]. Policies for the DTRP are usually analyzed in two
limiting regimes, namely in light traffic conditions (A — 07T)
and heavy traffic conditions (p — 17).

The policies for the DTRP initially proposed in [13]-[15] re-
quire the knowledge of the event distribution P .. In contrast,
[18], [22] propose algorithms for the DTRP that work without
this knowledge in the light traffic regime, but leave open the
adaptive problem in heavy traffic. The following sections make
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two contributions to the DTRP. First, in the light traffic case,
we use the adaptive coverage control algorithm of Section III-C
to obtain an adaptive policy that is simpler than the solutions
proposed so far [18], [22] and provides the same convergence
guarantees. Second, for the heavy traffic case, we present the
first fully adaptive policy for the DTRP that provably stabilizes
the system as long as it is stabilizable, in the absence of knowl-
edge of PP, This policy relies on the adaptive partitioning algo-
rithm of Section I'V.

A. Light Traffic Regime
Note first that we always have [14]

¥ > min&,(p) + 5, (28)
P

where &,,(p) is defined by (4) for f(z) = x/v. This bound is
tight in light traffic conditions [13], [15], and achieved by the
following policy. Let p* = [p},...,p;] € Q™ denote a global
minimizer of &, called a multi-median configuration. In the
absence of events, vehicle ¢ waits at the reference position p; .
When an event occurs, the agent whose reference position is
closest to the event location services it. It then travels back to
its reference position pf. As A — 07, the agents are at their
reference configuration p* when a new event occurs, and this
policy achieves the bound (28)[15].

To obtain an adaptive version of the above policy, we can use
the coverage control algorithm of Section III-C to find a local
minimizer of &, . In the absence of an event, each robot waits at
its current reference position p; . When the k'™ event occurs at
Z}, the robot whose current reference position is closest to Z,
say robot 7, services the event, updates its reference position to
Pk = Hq [pjr-1+7%(1/v)(Ze — pjx-1)/I1Zk — pjr-1lD],
and travels back toward p; . Reasoning as in [13], [15], in the
light traffic case where A — (), the agents are at their reference
positions when a new event occurs. Hence the resulting policy
achieves a steady-state system time of &,(p) + 5, where p is
a critical point of &,, to which the stochastic gradient algorithm
(18) converges under the assumptions of Theorem 3. Forn = 1,
it achieves the minimum system time since £; is convex. A sim-
ilar guarantee is provided by the adaptive light traffic policy de-
scribed in [22], at the expense of a significantly more complex
algorithm where the robots keep track of all past locations vis-
ited. Note that these policies turn out to be unstable as the load
factor p increases [15], which motivates the heavy traffic policy
of the next section.

B. A Stabilizing Adaptive Policy

Policies adequate for the heavy-traffic regime but requiring
P. to be known are described in, e.g., [15], [18], [45], [46]. The
following non-adaptive policy, although not the best available,
stabilizes the system in heavy-traffic, i.e.,as p — 17 [18], [45],
[46]. We partition the workspace Q into n regions {12 };c[n]
such that P.(R;) = 1/n,i € [n]. Robot ¢ only services the
events occurring in region fZ;. It does so by forming successive
traveling salesman tours (TSP tours) through the event locations
falling in this region, and servicing the events in the order of the
tours. Recall that a TSP tour through a set of points is the shortest
(here, for the Euclidean distance) closed tour visiting each point
in the set once. While robot ¢ services the events in a given
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tour, new events can occur in region R; and are backlogged
by the robot. Once a tour is finished, the robot forms a new
tour through the backlogged events and starts servicing them.
Assuming that P, has a density ¢., it is known that this policy
achieves the following bounds on the system time in heavy-
traffic [18, theiorems 4.2,6.4]

, g Tes
. 2
7 S Jim (1=p)® < =
2
)\(fQ rbz(z)l/zdz)

where C*=C' 5 and C=0.253. (29)
v

In addition, the right-hand side of (29) can be changed to
2C* /n? if P, is the uniform distribution on Q [18]. Now con-
sider the adaptive version of this policy described in Algorithm
2, which partitions the workspace as in Section IV, and works
without the knowledge of any event process parameter such as
AorP,.

Theorem 6. The adaptive policy of Algorithm 2 stabilizes the
system as long as p < 1 and achieves a steady-state system time
satisfying the heavy traffic performance bound (29). Moreover
if n = 1, this adaptive policy is also optimal in the light traffic
regime A — 0T,

Proof: Asp — 1, the region of each robot is never empty
and hence the robot never enters the mode in Algorithm 2 where
it goes toward its reference position p; [18]. By Theorem 5, the
space partition allocating events to robots converges as £ — oo
to a power diagram {12; };¢[,,) such that P (12;) = 1/n. Hence
the adaptive policy behaves in steady-state as the non-adaptive
policy and satisfies (29). In the light traffic regime (A — 0) and
in steady-state, each agent following Algorithm 2 is at the median
of its region I?; when a new event occurs. Indeed the updates of
the reference position p; can be viewed as a stochastic gradient
descent algorithm for the cost g;(p;) = E[||lp; — Z|||Z € RJ]
(notice here that the space partition evolves independently of the
reference locations p;,# € [n], in constrast to Section III-C). In
particular if n = 1, there is just one cell and &; is strictly con-
vex, so the policy achieves the performance bound (28). ]

Algorithm 2 Adaptive DTRP algorithm. Robot ¢ updates a
weight w; € R as in Section IV, a reference position p; € R?,
and two sets of event locations O; and P;. It is also associated
to a fixed point g; € Q, with g; # g;, fori # 7.

Initialization: for ¢ € [n], w; « 0, p; < robot #’s initial
position, O; « 0, P; «— 0.

When event & > 1 appears at location Z:

* Run the FloodMin algorithm starting with
dj = |12 — g;|I* — wj.j € [n].

« if robot 4 terminates FloodMin with d; = rii then

w; — w; + ye_1(n — 1)/n,
pi — q[pi +v-1((Zx — pi) /N Z1 — pilD)]
O, —0O;U {Zk}

* else
w; +— w; + y,—1/n, and p;, O; remain unchanged.

e end if
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In parallel, execute the following process forever for each
robot i € [n]

1) When P; = O; = §, robot i travels toward p; and stays
there if p; is reached.

2) When P; = () and O; # (), then let P; — O,, O; « 0.
Compute an Euclidean TSP tour through the points 7P;.

3) When P; # (), then service the locations in P; in the order of
the TSP tour, removing them from P; when they are serviced.
At the end of the tour, we are back in the situation P; = @. If
O; = 0, go to 1), otherwise, go to 2).

VI. CONCLUSIONS

We have discussed robot deployment algorithms for coverage
control, spatial partitioning and dynamic vehicle routing prob-
lems in the situation where the event location distribution is a
priori unknown. By adopting the unifying point of view of sto-
chastic gradient algorithms we can derive simple algorithms in
each case that locally optimize the objective function (globally
in the case of the partitioning problem). The coverage control
and space partitioning algorithms are combined to provide a
fully adaptive solution to the DTRP, with performance guaran-
tees in heavy and light traffic conditions.

Among the issues associated with stochastic gradient algo-
rithms, we point out that they can be slower than their determin-
istic counterparts and that their practical performance is sensi-
tive to the tuning of the stepsizes ;. Many guidelines are avail-
able in the literature on stochastic approximation algorithms
for the selection of good stepsizes and possibly iterate aver-
aging, see e.g., [37], [39]. In addition, if some prior knowl-
edge about the event distribution is available, it can be lever-
aged in a straightforward hybrid solution that first deploys the
robots using a deterministic gradient algorithm. Once the robots
have converged, the adaptive algorithm is used to correct for
the modeling errors and environmental uncertainty, exploiting
actual observations. Note also that the stochastic gradient algo-
rithms can still be used if the distribution P, is known, by gen-
erating random targets artificially and essentially evaluating in-
tegrals such as (5) by Monte-Carlo simulations [33]. However,
this method is generally only advantageous for dimensions ¢
sufficiently large.

APPENDIX A
CONVERGENCE OF THE COVERAGE CONTROL ALGORITHM

In this appendix we collect a number of useful properties of
the gradient system

—Véu(p), p(0) € Q"\ Dy, 30)

p=
where the distortion function &, is defined in (4), and Q C R¢
is convex and compact. As discussed below, this ODE is well
defined on Q™ \ D,,. We also consider its extension to Q™ in the
form of the differential inclusion

]) € Hﬂ(p) p(O) € an (31)
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Fig. 4. Vector field for the gradient system (30), with two agents evolving on
[0,1] and P, uniform on [0. 1]. The discontinuity on the line #1 = 72 occurs
when the two agents switch side, fromz; < 2 tox; > x2.Note that the vector
field is symmetric with respect to this line. The equilibrium occurs at a unique
geometric point on the line, namely (1/4, 3/4), corresponding to two stationary
points for the flow, one for each ordering of the robots. The differential inclusion
(31) has an additional (unstable) equilibrium at (1/2, 1/2).

where the the set-valued map H,, is defined in (20). Note that
V&, is piecewise continuous and H,, can in fact equivalently
be defined as [29, p.51]

{=Vé& ()} if p¢ Dy,
Ho(p) = ¢ @O {limp oo (—=VEL(pp))pr — pas k — oo}
if p e D,.

(32)

Following the ODE method [36], we can characterize the
asymptotic behavior of the algorithm (18) as in Theorems 1 and
3 by studying the properties of these continuous-time dynamical
systems. We assume as in Section III-C that f : R>g — Rxq is
increasing and continuously differentiable. We refer the reader
to [8], [30], [33], [47] for previous work on the gradient system
(30). In particular, [33] provides some convergence results for
algorithm (18), and points out that the non-differentiability of
&, creates technical difficulties in the convergence proofs. We
handle these issues by initially considering the differential in-
clusion (31) instead of the ODE (30). When the results pre-
sented below follow from arguments that can be found in pre-
vious work, we simply provide the reference and refer to the
detailed proofs in our technical report [34].

Differentiability Properties of £,,: Recall from Proposition
1 that &, is continuously differentiable on R™ \ D,,. In general
however, V&, is discontinuous on the set D,,, see Fig. 4. To
discuss more precisely the behavior of the gradient of £,, as we
approach the set D,,, define

N =

Note that because V&, is continuous on R™ \ D,, the two def-
initions of V in fact coincide on this set. The proof of the next
proposition follows that of [33, Lemma 30].

IVEn ()]?
liminfyepr\p, y—oe [|VE(Y)

ife e R*\ D,

|I*> ifz €D,.
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Proposition 2: Suppose that Assumption 1 holds and that
P. dominates the Lebesgue measure on Q™. Then we have
N(p) > 0 forallp € D, N Q™. Hence there exists &y > 0 such
that

x> 0.

IVE(p)I* =

inf
peQN(B(D,,NQ",50)\D,.)

Trajectories of the Gradient System: We now turn to the
study of the trajectories of the ODE (30) and the differential
inclusion (31). The following general result follows from argu-
ments as in [33, lemma 33], see also [34].

Proposition 3: Suppose that Assumption 1 holds and that
P. dominates the Lebesgue measure on Q™. If zy € Q™ \ Dy,
a trajectory t — x(t) of the ODE (30) with x(0) = ¢ remains
in Q" \ Dy, ie, forallt < oc, x(t) € Q™ \ D,,. Moreover, it
converges to a compact connected subset of {x € Q™ \ D, :
VE,.(x) = 0}. Finally, a trajectory of the differential inclusion
(31) starting from xq € Q™ remains in Q™.

Next, we show that the trajectories of the ODE never stay in
B(D,, N Q™, by) for a long time.

Corollary 1: Suppose that Assumption 1 holds and that P,
dominates the Lebesgue measure on Q™. Let 6y > 0,5 > 0 be
defined as in Proposition 2, o € Q"N (B(D,, NQ",8p)\ Dy),
and let I' = max,cqrnB(D, Q" ,8) En(T)/ . Then a trajectory
of the ODE passing through xo at time {1 must exit B(D,, N
Q™, bo) at some time ty < t1 +T.

Proof: We have, for ¢ > t; and as long as the trajectory
t — x(f) remains in B(D,, N Q™,8¢) \ Dy,

0 Sg,”(.’li() = n TO / ||V£ﬂ H dq

< Enlz) —
J,eQ"ﬁ(B(D an 509\Dn)

I (t — lLl)
Hence the trajectory must exit B(D,, NQ", é9) \ D,, at or before
the time ¢5 given in the theorem. But we know by Proposition
3 that it cannot hit D,, at 5 < oo. Hence it must in fact exit
B(D, NnQ",8). ]
The set C,, defined in (19) contains the set of limit points
of the ODE (30) by Proposition 3. From the definition of the
set-valued map H,,, the set £ of limit points of the differential
inclusion (31) consists of the set of limit points of the ODE
(30) together with the limit points of the sliding trajectories that
start and remain on D,, (since a trajectory leaving D,, does not
converge to D,, by Proposition 3). Hence £ C C,, U(D,, N Q™).
Moreover, we know by Proposition 2 that C,, C Q™ \ B(D,,, 6o)
if P, dominates the Lebesgue measure.

Convergence of the Adaptive Coverage Control Algorithm:
We now prove the main convergence theorem for the adaptive
coverage control algorithm.

Proof of Theorem 3: First, for the proof of convergence,
we can ignore the projection Ilg in (18). In general, the analysis
involves the corresponding projected ODE or projected differ-
ential inclusion, see [38], [39, chapter 5]. Note however from
Proposition 3 that at any boundary point of Q", the velocity
vector of the unprojected differential inclusion is already in the
tangent cone of Q™. Hence the projection step does not change
the continuous-time dynamics and the convergence properties
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remain the same as for the unprojected algorithm. Moreover,
the saturation function does not change the convergence prop-
erties either [39, Section 1.3.5].

Now the fact that with probability one, a sequence of iterates
of (18) converges to a compact connected invariant set of the dif-
ferential inclusion (31) is standard, see e.g., [38, chapter 5], [39,
Theorem 8.1 p. 195]. Consider a sample w such that {p;(w)}
converges to such a set, denoted S. In view of Proposition 3,
we have S C Q™. Suppose that .S is not entirely contained in
D., and take @ € S\ D,,. Then a trajectory of the differential
inclusion passing through a at# = 0 is in fact a trajectory of the
ODE (30) for ¢ > 0, by Proposition 3. Because S is invariant,
we must then have &,(a) := —||VE&,(a)||? = 0,ie,a € C,.
This proves the first part of the theorem.

If P, dominates the Lebesgue measure, then we know that
C,, and D,, are disconnected by Proposition 2, so S is contained
in one of these sets. Recall that under Assumption 1, we can
assume that almost surely, the iterates {py }x>o of (18) never
hit D,,. Choose the sample w above in this set of probability 1,
and recall the definitions of 6y and 7" from Corollary 1. Suppose
now that S C D,,. Then there exists kg such that for all & > kg,
pr € B(D,,,60/4). Forany k > 0, denote by z*(-) the solution
of the ODE (30) starting at py, (i.e., z¥(0) = p;,). Also, denote
by p the piecewise linear interpolation of the sequence p; with
stepsizes ys.

Then by [38, Chapter 2, Lemma 1], there exists k1 > kg such
that for all k > ki1, we have sup,c(;, ;,+r) [P(t) — 2 ()] <
8o/4, where t, := Z;:Ol ;. In particular, [|p(ty +T) — 2% (¢ +
T)|| € é0/4. Now remark that by Corollary 1, we must have
d(z*(tx + T).Dn) > by. By possibly increasing k1, we can
assume that there is an iterate p; with & > k such that ||p; —
p(ti + T)|| < 80/4. So we have |lp; — z*(tx + T)|| < 60/2,
hence d(p;, D,) > &0/2. But this contradicts our assumptions
that p; € B(D,,, é0/4). Hence we cannot have S C D,, and so
S C C,,. This finishes the proof of the theorem. |

APPENDIX B
SPACE PARTITIONING AND OPTIMAL TRANSPORTATION

In this section we prove Theorem 4, which forms the basis for
the stochastic gradient Algorithm 1, partitioning the workspace
between the agents. Compared to the results presented in the
recent papers [8], [19], this theorem makes weaker assumptions
on the cost function ¢(z, g) and on the target distribution P..
The main tool on which Theorem 4 relies is Kantorovich duality
[26]. See also [27], [48], [49] for related results.

Proof of Theorem 4. We start by relaxing the optimization
problem (22), (23) to the following Monge-Kantorovich optimal
transportation Problem (MKP) [26]. Let P» = 3", a;b,,, so
that (23) can be rewritten P, o T-1 = P,. We consider the
minimization problem

min clz. aVdr(z. q).
WGM(F’Z,PQ)/QXQ (2. 9)dn(z, g),

where M(P., P») is the set of measures on Q x Q with
marginals P, and P», i.e.,

7(4 x Q) = P.(A), 7(Qx B) = Px(B),
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for all Borel subsets of A, B of Q. In other words, we are con-
sidering the problem of transferring some mass from locations
distributed according to P, to locations distributed according to
P, and there is a cost ¢(z, g) for moving a unit of mass from z
to g. Then 7 is a transportation plan from the initial to the final
locations, assuming that we allow a unit of mass to be split. The
case where this splitting is not allowed, i.e., where we restrict 7
to be of the form

dn(z, 9) = dP=(2)br(:)(9),

for some measurable function 7', is a Monge Problem (MP) [50],
and is exactly our problem (22), (23). In our case where the
target distribution P is discrete, [51, Theorem 3] shows that
solving the MKP gives a solution in the form of a transference
function T, i.e., a solution to the MP, under the assumption A2
of the theorem, and assuming the infimum in (22) is attained.
This is the case if ¢ is lower bounded and lower semicontinuous
and P, is tight [26, Remark 2.1.2], and this last condition is
satisfied since we assume Q compact. Next, by Kantorovitch
duality [26], we have

1111

e dn(z,
TEM(P.,P2) /QXQ ()2 0)

/¢)(z) dP.(z) + Y aw; p, (33)
/Q i=1

where @, is the set of pairs (¢, w) with¢ : Q — Rin L}(Q, P.),
w € R™, such that

= sup
(q"),’w) cd,.

d(z) +w; <z, 9i).

for P',-almost all z in Q and for all i in [n]. Now for any w € R,
define the function w® : Q — R such that

- 'w,,-,}.

From the definition of ®., we can then without loss of generality
restrict the supremum on the right-hand side of (33) to pairs of
the form (w*, w). Combining this with the previous remark on
the Monge solution to the Monge-Kantorovitch problem, we get

}_/Q (2, T(=))P. (d2)

(34)

w®(z) = min{c(z, g;)
1€[n]

min

T Q—>{917
P.oT! _P)
= sup / min{c(z, g;) — w;} P,Z(d2)+z a;w; (35)
weRr | JQi€ln] Py

Hence the value of the optimization problem is equal to the
supremum of the function % defined in (24). The fact that the
supremum is attained in the right hand side of (35) follows from,
e.g., [26, Theorem 2.3.12] under our assumption Al for ¢.

The function A is concave since w — mingep,){c(z, gi) —w; }
is concave for all z as the minimum of affine functions, and the
integration with respect to z preserves concavity. Finally, for

w!, w? € R", we have

h(w?) — h(w!) = /Q}Iel[lrllll{ o(z,9;) — w?} P.(dz)
Z

(w? — w}).

/ mln{(’(z gi) —w}Y P.(dz)
Q

1E€[n]
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Denoting 7! an assignment that is optimal for w' (given by a
generalized Voronoi partition), we have then, for all z € Q,

min{c(z, g;) — w?} < e(z, T (2)) — w2,

1€[n]

and so

h(w?) = h{w') < - Z P.(VE(G,w'))(w] —w;)

+z (w; —wil).
But this inequality exactly says that [a; —
P.(VE(G, wh)), ... an — P.(VE(G,wh))]T is a super-

gradient of 7 at w'. For the convergence of the supergradient
algorithm, see [40, Proposition 8.2.6. p. 480]. |
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