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Sufficient conditions for generic feedback stabilisability
of switching systems via Lie-algebraic solvability

Hernan Haimovich and Julio H. Braslavsky

Abstract—We address the stabilisation of switching linear systems
(SLSs) with control inputs under arbitrary switching. A sufficient
condition for the stability of autonomous (without control inputs) SLSs is
that the individual subsystems are stable and the Lie algebra generated
by their evolution matrices is solvable. This sufficient condition for
stability is known to be extremely restrictive and therefore of very
limited applicability. Our main contribution is to show that, in contrast
to the autonomous case, when control inputs are present the existence
of feedback matrices for each subsystem so that the corresponding
closed-loop matrices satisfy the aforementioned Lie-algebraic stability
condition can become a generic property, hence substantially improving
the applicability of such Lie-algebraic techniques in some cases. Since
the validity of this Lie-algebraic stability condition implies the existence
of a common quadratic Lyapunov function (CQLF) for the SLS, our
results yield an analytic sufficient condition for the generic existence of
a control CQLF for the SLS.

I. INTRODUCTION

Switched systems are dynamical systems that combine a finite
number of subsystems by means of a switching signal [1], [2].
In recent years, considerable research effort has been devoted to
studying the stability and stabilisability of switched systems [1], [3]–
[5]. In this paper, we focus on the case where each subsystem is linear
and also on stability under “arbitrary switching”, where stability holds
for every possible switching signal. We refer to the switched systems
under consideration as switching linear systems (SLSs).

A SLS may either be autonomous or have control inputs. For
autonomous SLSs, it is known that the uniform global exponential
stability (UGES, where ‘uniform’ means ‘over all switching signals’)
is equivalent to the existence of a Lyapunov function common to
all subsystems [6]. A computationally appealing stability condition,
though more restrictive, is the existence of a common quadratic
Lyapunov function (CQLF) [5, §4.2]. A CQLF may be efficiently
numerically sought for by solving linear matrix inequalities [7]. An
analytical stability condition, even more restrictive, states that a SLS
admits a CQLF (and is hence UGES) if every individual subsystem
is stable and the Lie algebra generated by their evolution matrices
is solvable. The solvability of a matrix Lie algebra is equivalent to
the existence of a single similarity transformation that transforms
each matrix into upper triangular form. This Lie-algebraic stability
condition is simple to check numerically and holds both for discrete-
time SLSs [8], [9] and continuous-time SLSs [10], [11]. These
Lie-algebraic stability conditions, although mathematically elegant
and possibly computationally advantageous (cf. [12]), have had very
limited applicability due to their restrictiveness.

The situation can be radically different for SLSs with control
inputs, where feedback may be employed to stabilise the SLS.
Indeed, the main contribution of the current paper is to establish that
the existence of feedback matrices for each subsystem so that the
closed-loop SLS satisfies the aforementioned Lie-algebraic stability
condition can become a generic property, namely, a property that is
valid for almost every set of system parameters. We give conditions
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that ensure the genericity of this property and thus may enhance
the applicability of such Lie-algebraic stabilisation techniques when
control inputs are present. These conditions depend on the number
of states, subsystems and control inputs of each subsystem. In order
to be satisfied, the given conditions require each subsystem to have a
“substantial” number of inputs, although possibly fewer inputs than
states.

Feedback control design based on Lie-algebraic solvability has
been previously pursued by the authors [13]–[16]. A central contribu-
tion in [13], [14] is an iterative design algorithm that searches for a set
of stabilising feedback matrices that attain the target simultaneously
triangularisable closed-loop structure via the application of a common
eigenvector assignment (CEA) procedure and the reduction of state
dimension at each iteration. The main theoretical result in [13], [14]
establishes that the proposed algorithm will iterate successfully until
the state dimension is reduced to 1 if and only if feedback matrices
exist so that the corresponding closed-loop subsystem matrices are
stable and simultaneously triangularisable, i.e. if and only if feedback
matrices exist so that the closed-loop system satisfies the aforemen-
tioned Lie-algebraic stability condition. A numerical implementation
for the proposed iterative design algorithm and the CEA procedure are
also provided in [14], together with a key structural condition, which,
when satisfied, guarantees a directly computable solution for the CEA
procedure. If this structural condition is not satisfied, then the required
quantities are sought by means of an optimisation problem.

In addition to its limited applicability, the aforementioned Lie-
algebraic stability condition is also non-robust, in the sense that even
if it is satisfied for a given autonomous SLS, it is almost surely
not satisfied by SLSs with parameters arbitrarily close to the given
one. The work in [15] then provides a robust result by relaxing, for
single input systems, the simultaneous triangularisation requirement
to approximate (in a specific sense) simultaneous triangularisation.
The main theoretical contribution in [15] establishes that if a single-
control-input SLS satisfying the aforementioned Lie-algebraic condi-
tion exists in a suitably small neighbourhood of the given SLS, then
the proposed algorithm is guaranteed to find feedback matrices so
that the corresponding closed-loop SLS admits a CQLF even if the
Lie-algebraic condition is not met by the given system. (Agrachev et
al. [17] have recently derived, for autonomous SLSs, robust stability
conditions related to Lie-algebraic solvability and formulated directly
in terms of Lie brackets.)

Our current main results build upon the key structural condition
provided in [14]: if such structural condition is satisfied at every
iteration of the algorithm, then the considered feedback control design
via Lie-algebraic solvability problem may be not restrictive at all for
systems with the given dimensions. In this regard, the main result in
[16] is the identification of the situation that prevents the structural
condition from being satisfied at every iteration of the algorithm.

In the present paper, we build upon the results of [16] by providing
sufficient conditions for the structural condition to hold at every
iteration of the algorithm for almost every set of system parameters
with the given dimensions. We thus provide sufficient conditions for
the genericity of the property of existence of feedback matrices so that
the closed-loop subsystem matrices are stable and generate a solvable
Lie algebra, a property which implies the existence of a CQLF
for the closed-loop system. Consequently, a side contribution of the
current paper is the derivation of an analytic condition that ensures
the genericity of the property of existence of feedback matrices so
that the corresponding closed-loop SLS admits a CQLF. Preliminary
results on this topic have been previously presented by the authors
in [18]. Even though our previous results [13]–[16], [18] focus on
discrete-time SLSs, the current results are valid for both discrete- and
continuous-time SLSs.
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Notation. The index set {1, 2, . . . , N} is denoted N . The kernel
(null space) of a matrix or linear map A : X → Y is denoted
kerA and its image (range), imgA. Given a subspace B ⊂ Y , the
subspace {v ∈ X : Av ∈ B} is denoted (A)−1B. For x ∈ Cn×m,
its transpose is denoted x′, its conjugate transpose x∗ and its Moore-
Penrose generalised inverse x†. If S, T are vector spaces, then S ⊂ T
means that S is a subspace of T , S ⊕ T denotes the direct sum of
S and T (which implies that S ∩ T = 0), and d(S) denotes the
dimension of S. If I is a finite set, then #I denotes the number of
elements in I .

II. PROBLEM FORMULATION

Consider the discrete- or continuous-time SLSs

xk+1 = Aσ(k)xk +Bσ(k)u
σ(k)
k , (1)

ẋ(t) = Aσ(t)x(t) +Bσ(t)u
σ(t)(t), (2)

where the switching function σ(·) takes values in N , x ∈ Rn and
for all i ∈ N , ui ∈ Rmi , the matrices Ai ∈ Rn×n and Bi ∈ Rn×mi

are known, and Bi have full column rank.We are interested in state-
feedback control design of the form

u
σ(k)
k = Kσ(k)xk, or uσ(t)(t) = Kσ(t)x(t) (3)

so that the resulting closed-loop system

xk+1 = ACL
σ(k)xk, or ẋ(t) = ACL

σ(t)x(t), where (4)

ACL
i = Ai +BiKi, for i ∈ N, (5)

admit a CQLF and hence be stable under arbitrary switching. Note
that at every time instant, the control law (3) requires knowledge of
the “active” subsystem given by σ(k) or σ(t).

As is well-known, ensuring that each ACL
i be stable is necessary but

not sufficient to ensure the stability of the autonomous SLS (4) under
arbitrary switching. A sufficient condition is given by the following
result [10, Theorem 2], [9, Theorem 6.18].

Lemma 1 (Lie-algebraic-solvability stability condition): If every
ACL
i is stable and the Lie algebra generated by {ACL

i : i ∈ N} is
solvable, then (4) admits a CQLF and hence is UGES.

In this paper, we specifically consider stabilising state feedback
design for the SLSs (1) and (2) based on the Lie-algebraic-solvability
condition of Lemma 1. We thus focus on the SLS class defined next.

Definition 1 (SLASF): A set Z = {(Ai ∈ Rn×n, Bi ∈ Rn×mi) :
i ∈ N} is said to be SLASF (Solvable Lie Algebra with Stability
by Feedback) if there exist Ki ∈ Rmi×n such that ACL

i as in (5)
are stable (Schur-stable for a discrete-time SLS; Hurwitz-stable for
a continuous-time SLS) and generate a solvable Lie algebra.

In matrix terms, the fact that the Lie algebra generated by the
matrices ACL

i is solvable is equivalent to the existence of an invertible
matrix T ∈ Cn×n such that T−1ACL

i T is upper triangular for all
i ∈ N . Note that even if the matrices ACL

i have real entries, those of
T may be complex [19].

III. PREVIOUS RESULTS

Control design that causes the closed-loop system to be stable by
satisfying the conditions of Lemma 1 can be performed iteratively
by seeking feedback matrices that assign a common eigenvector
with stable corresponding eigenvalues at every iteration [13], [14].
Although the latter references deal exclusively with discrete-time
SLSs, the only difference between the discrete- and continuous-time
cases is the stability region considered (the open unit disk or the open
left half-plane). The control design method of [13], [14] is represented
by Algorithm ITF (Iterative Triangularisation by Feedback), shown
in Figure 1. Algorithm ITF seeks feedback matrices Ki so that the
closed-loop matrices ACL

i given by (5) are stable and simultaneously
triangularisable.

Algorithm ITF: Iterative triangularisation by feedback

Data: Ai ∈ Rn×n, Bi ∈ Rn×mi for i ∈ N
Output: Ki for i ∈ N
Initialisation: A1

i
.
= Ai, B1

i
.
= Bi, K0

i
.
= 0, U1

.
= I, `← 0;

repeat
`← `+ 1, n` ← n− `+ 1, (6)

[v`1, {F `i }Ni=1]← CEA({A`i}Ni=1, {B`i}Ni=1), (7)

A`,CL
i

.
= A`i +B`iF

`
i , (8)

K`
i ← K`−1

i + F `i

(∏̀
r=1

U∗r

)
. (9)

if ` < n then
Construct a unitary matrix (10) and assign (11)–(13):[

v`1|v`2| · · · |v`n`

]
∈ Cn`×n` , (10)

U`+1 ← [v`2| · · · |v`n`
], (11)

A`+1
i ← U∗`+1A

`,CL
i U`+1, (12)

B`+1
i ← U∗`+1B

`
i . (13)

end if
until ` = n;
Ki ← Kn

i ;

Fig. 1. Algorithm for iterative triangularisation by feedback

A. The Algorithm for Iterative Triangularisation by Feedback

Algorithm ITF begins by setting internal matrices equal to the
subsystem matrices of the SLS to be stabilised (A1

i = Ai and B1
i =

Bi at the Initialisation step). At every iteration [` indicates iteration
number, see (6)], the algorithm executes Procedure CEA [see (7)]
on its internal system matrices A`i and B`i . Procedure CEA aims
to compute a vector, v`1, and corresponding feedback matrices, F `i ,
so that v`1 is a feedback-assignable unit eigenvector common to all
internal subsystems, with corresponding stable eigenvalues. That is,
if Procedure CEA is successful, then v`1 will satisfy ‖v`1‖ = 1 and
(A`i +B`iF

`
i )v`1 = λ`iv

`
1 for some scalars λ`i satisfying |λ`i | < 1 for

discrete-time or Re{λi} < 0 for continuous-time, for all i ∈ N .
The algorithm then computes internal closed-loop matrices [A`,CL

i

in (8)], updates internal feedback matrices [K`
i in (9)] and then

reduces the internal state dimension by 1. This reduction occurs at
(10)–(13) [n` is the internal state dimension, see (6)]. Note that v`1
is the first column of the unitary matrix (10), and considering (11)
then U∗`+1U`+1 = I and U∗`+1v

`
1 = 0.

Iterations run until the internal state reaches dimension 1. If
the given system matrices form a SLASF set (recall Definition 1),
the matrices Ki computed by Algorithm ITF will be the required
feedback matrices. In addition, for each subsystem i ∈ N , the
eigenvalues of ACL

i = Ai+BiKi will be equal to λ`i for ` = 1, . . . , n.
If the given system matrices Ai, Bi, for i ∈ N , form a SLASF

set, then at every iteration of Algorithm ITF a stable feedback-
assignable common eigenvector v`1 is ensured to exist for the internal
system with matrices A`i , B

`
i , for i ∈ N . Conversely, if a (stable)

feedback-assignable common eigenvector v`1 exists at every iteration
of Algorithm ITF, then the given system matrices form a SLASF set.
The latter constitutes the main theoretical result that underpins our
iterative control design algorithm [13], [14].

B. The Procedure for Common Eigenvector Assignment

As expressed in the previous paragraph, the existence of a
feedback-assignable common eigenvector with corresponding stable
eigenvalues is central to our development. This section recalls the
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structural condition introduced in [14] which, when satisfied, ensures
that such a vector exists and allows its computation in a straightfor-
ward and numerically efficient way.

We introduce some notation required to state this structural con-
dition. Define m`

i
.
= rank(B`i ) = d(imgB`i ), and factor B`i = b`ir

`
i ,

where r`i : Rmi → Rm
`
i has full row rank and b`i : Rm

`
i → Rn`

has full column rank. We adopt the convention that b`i is an empty
matrix if m`

i = 0. Note that imgB`i = img b`i . Let Λ` be the vector
with components λ`i , i ∈ N , i.e.

Λ`
.
= [λ`1, λ

`
2, . . . , λ

`
N ]′, (14)

and build the matrix

Q`(Λ
`)

.
= [R`(Λ

`),−B`], where (15)

R`(Λ
`)

.
=

 λ`1I −A`1
...

λ`NI −A`N

 , and B`
.
= blkdiag

[
b`1, . . . , b

`
N

]
,

where blkdiag denotes block diagonal concatenation.
Lemma 2 (Structural condition [14], [16]): Let

p`
.
= n` +

N∑
i=1

m`
i −Nn`. (16)

Then,
(a) A vector that can be assigned by feedback as a common eigen-

vector with corresponding eigenvalues λ`i for i ∈ N exists if and
only if d(kerQ`(Λ

`)) > 0.
(b) If Q`(Λ`)w = 0 with w 6= 0 partitioned as

w
.
= [v′, u′1, . . . , u

′
N ]′, then v 6= 0, and (17)

(A`i +B`iF
`
i )v = λ`iv, for i ∈ N, (18)

for every F `i satisfying r`iF
`
i v = ui. For each i ∈ N one such

F `i is F `i = (r`i )
†uiv

†.
(c) d(kerQ`(Λ

`)) ≥ p` for every choice of Λ` as in (14).
Consequently, if p` > 0, then a feedback-assignable common
eigenvector exists for every choice of corresponding eigenvalues.

Lemma 2 gives a structural condition, namely p` > 0, for a
feedback-assignable common eigenvector v to exist for each choice
of corresponding eigenvalues λ`i . This condition is structural because
the quantities involved in the computation of p` are only matrix ranks
and dimensions. If the structural condition p` > 0 is satisfied, a
feedback-assignable common eigenvector v`1, as required at iteration
` of Algorithm ITF, can be computed as follows:

1) Select the corresponding (stable) closed-loop eigenvalues λ`i for
each subsystem i ∈ N and build Λ` as in (14);

2) Find a vector w 6= 0 with components partitioned as in (17) so
that Q`(Λ`)w = 0 (namely, so that w ∈ kerQ`(Λ

`));
3) Select the first n` components of w to construct the subvector
v in (17). The feedback-assignable common eigenvector sought
is finally computed as v`1 = v/‖v‖.

Feedback matrices to assign the eigenvector v`1 with corresponding
eigenvalues λ`i can be obtained as F `i = (r`i )

†uiv
†. Procedure CEA is

thus summarised in Figure 2 for the case when the structural condition
of Lemma 2 is satisfied.

Even if the SLS matrices Ai, Bi have real entries, those of
the matrices A`i , B

`
i internal to Algorithm ITF can be complex

at some iteration `. This is so because the vector v`1 returned by
Procedure CEA (a feedback-assignable common eigenvector) can
have complex components even if A`i , B

`
i have real entries, causing

A`+1
i , B`+1

i to have complex entries. However, when the structural
condition p` > 0 is satisfied, the closed-loop eigenvalues λ`i , i.e.
the components of Λ`, can be arbitrarily selected. Hence, selecting

Procedure CEA (Common Eigenvector Assignment)

Input: A`i ∈ Rn`×n` , B`i ∈ Rn`×mi , for i ∈ N
Output: v`1, F `i for i ∈ N
Factor B`i = b`ir

`
i with b`i ∈ Rn`×m`

i and m`
i = rank(B`i ) ;

if p` = n` +
∑N
i=1 m

`
i −Nn` > 0 then

Select λ`i ∈ R stable and construct Λ` as in (14);
Find w 6= 0 such that Q`(Λ`)w = 0 ;
Partition w as in (17) ;
v`1 = v/‖v‖ ;
F `i = (r`i )

†ui v
†, for i ∈ N ;

end if

Fig. 2. Procedure CEA when the structural condition is satisfied.

λ`i ∈ R will cause the vector v`1 to be real. In the sequel, we assume
that real eigenvalues will be selected and hence all matrices internal
to Algorithm ITF will have real entries.

C. The Structural Condition

If the structural condition given by Lemma 2, namely p` > 0, holds
at iteration ` of Algorithm ITF, then Procedure CEA can compute
a feedback-assignable common eigenvector and the corresponding
feedback matrices, for every choice of corresponding (stable) closed-
loop eigenvalues. In addition, if p` > 0 the closed-loop eigenvalues
λ`i for every i ∈ N can be freely chosen. The quantity p` depends
on m`

i , the rank of B`i . At the first iteration of Algorithm ITF, i.e.
when ` = 1, the internal matrices B1

i = Bi have n = n1 rows,
mi columns, and since by assumption they have full column rank,
then m1

i = mi. At subsequent iterations, the matrices B`i have n` =
n− `+ 1 rows and mi columns. Since the matrix (10) is unitary by
construction, then according to (11) and (13) we have

m`
i − 1 ≤ m`+1

i ≤ m`
i , (19)

and moreover, m`+1
i depends on the vector v`1 returned by Proce-

dure CEA as

m`+1
i =

{
m`
i if v`1 /∈ imgB`i ,

m`
i − 1 if v`1 ∈ imgB`i .

(20)

From (20), then m`+1
i = m`

i − 1 when m`
i = n`, because v`1 ∈

Rn` = imgB`i . The following theorem and corollary follow from
(6), (16), and (20).

Theorem 1 ( [16]): Consider Algorithm ITF at iteration ` and p`
as in (16), with m`

i = rank(B`i ). Then, p`+1 ≥ p`−1, with equality
if and only if

v`1 ∈ B`, with B` .=
⋂
i∈N

B`i and B`i
.
= imgB`i . (21)

Corollary 1: Let p` > 0. Then,
(a) pq > 0 for q = `, . . . , `+ p` − 1.
(b) p`+1 > 0 if v`1 /∈ imgB`k for some k ∈ N .
(c) p`+1 6> 0 if and only if p` = 1 and (21) holds.

Corollary 1(c) identifies the condition that prevents the inductivity
of the structural condition p` > 0 from iteration ` to iteration `+ 1
of the algorithm. The following section builds on these results.

IV. MAIN RESULTS

In this section, we derive conditions to ensure that the structural
condition p` > 0 will hold at every iteration of Algorithm ITF, i.e.
for ` = 1, . . . , n. Subsequently, we will establish that, for some
state vector dimensions, n, number of subsystems, N , and number
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of control inputs, mi for i ∈ N , these conditions are valid for almost
every set of system parameters —the entries of Ai and Bi for i ∈ N .

In Section IV-A, we recall and extend the property of transversality
of subspaces (see, e.g., Chapter 0 of [20]), which is required for the
derivation of our main results. In Section IV-B, we derive conditions
that ensure the validity of the structural condition at every iteration
of Algorithm ITF. In Section IV-C, we analyse the conditions derived
in Section IV-B and relate them to the genericity of the SLASF
property (recall Definition 1). A brief numerical example is given
in Section IV-D. Proofs are provided in the Appendix.

A. Transversality of Subspaces

Definition 2 (Transverse): Two subspaces S, T of an ambient
space X are said to be transverse when the dimension of their
intersection is minimal, given the dimensions of S and T , i.e. when

d(S ∩ T ) = max{0, d(S) + d(T )− d(X )}. (22)

Equivalently, S and T are transverse when the dimension of their
sum is maximal. We extend this definition to sets of subspaces as
follows. Let S = {S1, . . . ,SN} be a set of subspaces of an ambient
space X . We say that S is transverse when both the intersection of
the subspaces in every subset of S has minimal dimension and the
sum of the subspaces in every subset of S has maximal dimension.

It is well-known [20, Ch.0] that transversality of two subspaces S
and T is a generic property, i.e. it is satisfied by almost every S and
T selected “randomly” among all subspaces of X . Also, it is evident
that the extension of this property to sets of subspaces according to
Definition 2 preserves genericity, in the sense that almost every set
containing a finite number of subspaces taken “randomly” among all
subspaces of X will be transverse according to Definition 2.

We will require the following properties related to transversality.
Lemma 3: Let S = {S1, . . . ,SN} be a set of subspaces of the

ambient space X , and define

p
.
= d(X ) +

∑
i∈N

d(Si)−Nd(X ).

Then,

(a) d(Si ∩ Sj) = d(Si) + d(Sj)− d(Si + Sj).
(b) If S is transverse, then d

(⋂
i∈N Si

)
= max {0, p}.

(c) If S is transverse and p ≥ 0, then d(Si + Sj) = d(X ) for all
i, j ∈ N with i 6= j.

(d) Let J = I ∪ {j}, with J ⊂ N and #J = #I + 1. Suppose that
p ≥ 0 and that {Si : i ∈ I} is transverse. Then, {Si : i ∈ J} is
transverse if and only if

⋂
i∈I Si + Sj = X .

B. Validity of the Structural Condition at every Iteration

The derivations of this section require deep analysis of the
condition (21). In the sequel, let S`i denote the set of vectors
v ∈ B`i = imgB`i for which there exist a matrix F `i and a stable
scalar λ so that

(A`i +B`iF
`
i )v = λv. (23)

By definition, S`i is the set of feedback-assignable stable eigen-
vectors for the internal subsystem (A`i , B

`
i ) that are contained in

B`i . Consequently, if v`1 is a stable feedback-assignable common
eigenvector, then v`1 ∈ B`i if and only if v`1 ∈ S`i . The following
result is straightforward.

Lemma 4:

(a) The set S`i is a subspace.
(b) v ∈ S`i if and only if v ∈ B`i and A`iv ∈ B`i .

Define the following quantities:

ρ`i
.
= d(S`i ), q`

.
= n` +

∑
i∈N

ρ`i −Nn`, (24)

S` .=
⋂
i∈N S

`
i , ρ`

.
= d(S`). (25)

The core technical result of the paper is given below as Theorem 2.
This result gives conditions under which the structural condition of
Lemma 2 will hold at every iteration of Algorithm ITF, irrespective
of the choice of closed-loop eigenvalues λ`i performed in Proce-
dure CEA.

Theorem 2: Let {S1
i : i ∈ N} be transverse, q1 ≥ 0, and (Ai, Bi)

be controllable for all i ∈ N . Then,

(a) p` > 0 for ` = 1, . . . , n.
(b) The set Z = {(Ai, Bi) : i ∈ N}, which identifies the given

SLS, is SLASF.

C. Genericity of the SLASF Property

Theorem 2 gives sufficient conditions under which a given SLS
will be SLASF. We next show that for some state vector dimensions,
n, number of subsystems, N , and number of control inputs, mi for
each i ∈ N , these conditions are satisfied for almost every set of
matrices Ai ∈ Rn×n and Bi ∈ Rn×mi with i ∈ N .

The three conditions required by Theorem 2 are that the set of
subspaces {S1

i : i ∈ N} be transverse, that the quantity q1 be
nonnegative and that the pairs (Ai, Bi) be controllable. It is well-
known that controllability is a generic property [20] and hence we
next focus on the first two conditions.

We show first that transversality of {S1
i : i ∈ N} is generic in

the space of parameters of the matrices Ai, Bi. From Lemma 5(b),
it follows that S1

i = B1
i ∩ (A1

i )
−1B1

i . Note that arbitrary choices
for the entries of Bi = B1

i yield arbitrary B1
i = imgB1

i , al-
though generically of dimension mi = m1

i . In addition, arbitrary
choices for the entries of Ai = A1

i yield arbitrary (A1
i )
−1B1

i ,
also generically of dimension mi. Therefore, the subspaces B1

i

and (A1
i )
−1B1

i will be transverse generically and from (22), then
d(S1

i ) = d(B1
i ∩ (A1

i )
−1B1

i ) = max{0, 2mi − n} generically. We
conclude that arbitrary choices for the entries of Ai and Bi produce
arbitrary S1

i even though subject to the constraint that

d(S1
i ) = max{0, 2mi − n}, generically. (26)

Due to the fact that arbitrary S1
i can be produced, then the set {S1

i :
i ∈ N} is transverse generically in the space of parameters of Ai, Bi.

Consider next the quantity q1. From (24) and (26) follows that
q1 = n+

∑
i∈N max{0, 2mi−n}−Nn generically. The condition

q1 ≥ 0 imposes a restriction on n, N , and mi for each i ∈ N . We
summarise our main result as Theorem 3 below, and subsequently
show that q1 ≥ 0 may hold in some non-trivial cases.

Theorem 3 (Genericity of the SLASF property): If the state di-
mension n, the number of subsystems N , and the number of control
inputs mi for each i ∈ N , are such that

n+
∑
i∈N

max{0, 2mi − n} −Nn ≥ 0, (27)

then the SLASF property holds for almost every set of system
parameters Ai ∈ Rn×n and Bi ∈ Rn×mi for all i ∈ N .

Corollary 2: Under the same conditions for n, N and mi as in
Theorem 3, the property of existence of feedback matrices so that
the closed-loop SLS admits a CQLF is generic.

We next analyse the condition (27). Note that non-trivial cases are
those for which n ≥ 2, N ≥ 2 and 1 ≤ mi ≤ n− 1 for all i ∈ N .
Combining these conditions with (27) leads to the following:
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• In order for (27) to hold in a non-trivial case, then it is necessary
that N ≤ n/2 and mi > n/2.

• Under the condition N ≤ n/2, then it is sufficient (but not
necessary) that mi = n− 1 for all i ∈ N for (27) to hold.

D. Numerical Example

Consider a discrete-time system of the form (1), with n = 4,
N = 2, m1 = m2 = 3,

A1 =

[ 3.2 −4.0 −3.4 −3.6
4.1 −2.2 4.7 −0.8
−3.7 0.5 4.6 4.2
4.1 4.6 −0.2 2.9

]
A2 =

[ 2.6 2.1 3.2 −0.6
2.4 −4.7 2.0 −1.2
−1.1 −2.2 −1.8 2.7
1.6 −4.5 4.5 3.0

]
B1 =

[−2.2 4.6 0.1
1.8 −1.6 2.0
1.6 0.9 3.9
−3.4 −2.8 4.6

]
B2 =

[−0.3 0.3 2.5
−4.9 −3.3 −0.5
−1.6 1.0 −4.2
−3.4 −2.4 −2.7

]
Each of the entries of A1, A2, B1, B2 has been generated by rounding
a random value uniformly distributed in the interval [−5, 5]. By direct
computation, it can be verified that all the eigenvalues of both A1 and
A2 are unstable and that the set {S1

1 ,S1
2} is transverse. Also, B1 and

B2 have full column rank and (A1, B1), (A2, B2) are controllable.
According to (16), we have p1 = 2 and from (24), q1 = 0. According
to Theorem 2, the given system is SLASF and p` > 0 at every
iteration of Algorithm ITF, irrespective of the choice of eigenvalues
performed in Procedure CEA. Choosing the stable eigenvalues λ`i =
0 for i = 1, 2 at every iteration `, Algorithm ITF yields

K1 =
[

6.0399 −2.4801 −0.7205 −3.4911
1.3398 0.1776 0.3202 −0.3436
0.5672 −0.5322 −0.7014 −1.0545

]
K2 =

[
1.1774 −0.1109 1.4596 0.4449
−0.6460 −1.0743 −0.6828 −0.6902
−0.7242 −0.6951 −0.7428 0.5276

]
It can be verified that all the eigenvalues of ACL

i [recall (5)] are zero
(within rounding inaccuracy) and that T−1ACL

i T is upper triangular
for i = 1, 2, with

T =

[ 0.1570 −0.9876 0 0
−0.5668 −0.0901 −0.8189 0
−0.3808 −0.0605 0.2702 0.8822
0.7135 0.1134 −0.5063 0.4709

]
See [16] for more numerical examples on cases where genericity

conditions hold at all or just some iterations of Algorithm ITF.

V. CONCLUSION

We have considered both continuous- and discrete-time SLSs with
control inputs and under arbitrary switching. A stability result for
SLSs with no control inputs states that the SLS is stable if the
subsystem A matrices are stable and generate a solvable Lie algebra.
This stability result encounters very limited applicability due to its
restrictiveness and non-robustness. However, we have established
that when control inputs are present, the property of existence of
feedback matrices so that the closed-loop SLS subsystem matrices
are stable and generate a solvable Lie algebra can become generic,
i.e. valid for almost every set of system parameters. We have derived
sufficient conditions that ensure the genericity of this property. In
order for these conditions to hold in non-trivial cases, the number of
subsystems of the SLS has to be not greater than half the number of
system states and every subsystem is required to have more control
inputs than half the number of states.

Since the aforementioned Lie-algebraic stability condition implies
the existence of a CQLF for the SLS, our results also provide an
analytic sufficient condition for the genericity of the existence of
feedback matrices so that the closed-loop SLS admits a CQLF.

APPENDIX

Proof of Lemma 3

The proof of (a)–(c) is a direct application of subspace algebra.

(d) (⇒) For a set K ⊂ N , define pK = d(X ) +
∑
i∈K d(Si) −

#Kd(X ). Since pN = p ≥ 0, then pI ≥ 0 and pJ ≥ 0 because
d(Si) ≤ d(X ) for all i ∈ N . By Lemma 3(b) and since pI ≥ 0
and pJ ≥ 0, then d(

⋂
i∈I Si) = pI and d(

⋂
i∈J Si) = pJ . By

Lemma 3(a), we have

d(
⋂
i∈J

Si) = d(
⋂
i∈I

Si) + d(Sj)− d(
⋂
i∈I

Si + Sj)

= pJ = pI + d(Sj)− d(
⋂
i∈I

Si + Sj). (28)

Necessity is established by substituting the expressions for pI and
pJ into (28) and recalling that #J = #I + 1.

(⇐) Let K ⊂ I . We have d(X ) = d(
⋂
i∈I Si + Sj) ≤

d(
⋂
i∈K Si + Sj) ≤ d(X ). Taking K = {k}, jointly with the fact

that {Si : i ∈ I} is transverse, establishes that the dimension of the
sum of the subspaces in every subset of {Si : i ∈ J} has maximum
dimension. Also, we have

d(
⋂
i∈K

Si ∩ Sj) = d(
⋂
i∈K

Si) + d(Sj)− d(
⋂
i∈K

Si + Sj)︸ ︷︷ ︸
d(X )

,

which, jointly with the fact that {Si : i ∈ I} is transverse, establishes
that the dimension of the intersection of the subspaces in every subset
of {Si : i ∈ J} has minimum dimension.

Proof of Theorem 2

The proof of Theorem 2 requires the following two lemmas.
Lemma 5: Let c`i denote the number of controllability indices of

(A`i , B
`
i ) that are equal to 1. Then, ρ`i = c`i .

Proof: According to the standard construction for the con-
trollability indices of a system (see, e.g. [20]), it follows that
c`i = 2m`

i − rank[β`i , A
`
iβ
`
i ], where β`i is any matrix satisfying

img β`i = imgB`i = B`i . Since S`i ⊂ B`i , write B`i = B̂`i ⊕ S`i
and let α = d(B̂`i ). Then, ρ`i = m`

i − α.
Let {b1, . . . , bα} be a basis for B̂`i , {bα+1, . . . , bm`

i
} be a basis

for S`i , and β`i = [b1, . . . , bm`
i
]. By Lemma 4(b), we have that

A`ibk /∈ B`i for k = 1, . . . , α and A`ibk ∈ B`i for k = α+ 1, . . . ,m`
i .

Therefore, rank[β`i , A
`
iβ
`
i ] ≤ m`

i + α.
If rank[β`i , A

`
iβ
`
i ] < m`

i+α, then
∑m`

i
j=1 cjbj+

∑α
k=1 dkA

`
ibk = 0

for some scalars cj and dk, where not all the dk are zero. Then,
A`i
∑α
k=1 dkbk ∈ B

`
i and A`i

∑α
k=1 dkbk /∈ S`i , which leads to a

contradiction. Therefore, rank[β`iA
`
iβ
`
i ] = m`

i + α and ρ`i = m`
i −

α = 2m`
i − rank[β`iA

`
iβ
`
i ].

Lemma 6: Consider Algorithm ITF at iteration `. Suppose that
(A`i , B

`
i ) is controllable and A`,CL

i v`1 = λ`iv
`
1 with v`1 6= 0 and scalar

λ`i . Then, S`+1
i ⊃ U∗`+1S`i , (A`+1

i , B`+1
i ) is controllable, and

ρ`+1
i

{
= ρ`i − 1 if v`1 ∈ S`i ,
≥ ρ`i otherwise.

(29)

Proof: Let {tj : j = 1, . . . ,m`
i} be a basis for B`i and let κ`i,j ,

for j = 1, . . . ,m`
i be the controllability indices of (A`i , B

`
i ). By (8)

and the feedback invariance of controllability indices, κ`i,j also are
the controllability indices of the pair (A`,CL

i , B`i ).
Since (A`i , B

`
i ) is controllable, then (A`,CL

i , B`i ) also is control-
lable, and D = {(A`,CL

i )ktj : j = 1, . . . ,m`
i ; k = 0, . . . , κ`i,j − 1}

is a basis for Rn` . Write v`1 with respect to the basis D: v`1 =∑
j,k cj,k(A`,CL

i )ktj , where not all the cj,k are zero. Combining the
latter with A`,CL

i v`1 = λ`iv
`
1 yields∑

j,k

cj,k(A`,CL
i )k+1tj =

∑
j,k

λ`icj,k(A`,CL
i )ktj . (30)
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From (30), it follows that cj,k 6= 0 for at least one pair of indices
(j, k) such that k = κ`i,j − 1, or otherwise the vectors in D would
be linearly dependent, a contradiction.

Let κ̄ = maxj{κ`i,j : cj,k 6= 0 with k = κ`i,j − 1}, and let
ῑ be such that cῑ,κ̄−1 6= 0. From the basis D, construct another
basis, D̄, by replacing the basis vector (A`,CL

i )κ̄−1tῑ by v`1. Note that
Span{U∗`+1t : t ∈ D̄} = Rn`−1 and U∗`+1v

`
1 = 0 (cf. Section III-A).

By (10)–(12) and the fact that A`,CL
i v`1 = λ`iv

`
1, then U∗`+1A

`,CL
i =

A`+1
i U∗`+1. Hence U∗`+1(A`,CL

i )ktj = (A`+1
i )kU∗`+1tj and

{(A`+1
i )kU∗`+1tj : j = 1, . . . ,m`

i ;

k = 0, . . . , κ`i,j − 1, (j, k) 6= (ῑ, κ̄− 1)} (31)

is a basis for Rn`−1 [recall that, by (6), n`+1 = n`− 1]. From (13),
it follows that B`+1

i = U∗`+1B`i . We have that a basis for B`+1
i , is

E = {U∗`+1tj : j = 1, . . . ,m`
i} if κ̄ > 1 or E = {U∗`+1tj : j =

1, . . . ,m`
i ; j 6= ῑ} if κ̄ = 1. The condition κ̄ = 1 hence happens if

and only if v`1 ∈ S`i .
The preceding derivations show that the controllability indices of

(A`+1
i , B`+1

i ) are given by κ`+1
i,j = κ`i,j for j = 1, . . . ,m`

i with
j 6= ῑ and κ`+1

i,ῑ = κ`i,ῑ − 1 whenever κ̄ = κ`i,ῑ > 1. From the latter
expressions, and recalling Lemma 5, (29) and the controllability of
(A`+1

i , B`+1
i ) are established.

Note that ρ`+1
i = ρ`i + 1 whenever κ̄ = 2, since then κ`+1

i,ῑ =

κ̄ − 1 = 1 and hence (A`+1
i , B`+1

i ) has one controllability index
equal to one more than (A`i , B

`
i ). The fact that S`+1

i ⊃ U∗`+1S`i
follows from the latter consideration and the basis E.

Proof of Theorem 2: (a) First, we prove that the conditions

{S`i : i ∈ N} transverse, q` ≥ 0,

(A`i , B
`
i ) controllable,

(32)

imply that p` > 0. Since S`i ⊂ B`i , then ρ`i ≤ m`
i and q` ≤ p`.

From controllability of (A`i , B
`
i ) and Lemma 5, then ρ`i = m`

i if and
only if m`

i = n`. Hence, if q` = p`, then p` = n` > 0. Otherwise,
0 ≤ q` < p`.

Next, we establish the validity of (32) for ` = 1, . . . , n. Note
that (32) hold at ` = 1 by assumption and because A1

i = Ai and
B1
i = Bi. Next, suppose that (32) hold at some 1 ≤ ` ≤ n− 1. By

the argument in the previous paragraph, then p` > 0, which ensures
the existence and computation of v`1 6= 0 such that A`,CL

i v`1 = λ`iv
`
1

with scalar λ`i for all i ∈ N . Hence, (A`+1
i , B`+1

i ) is controllable
by Lemma 6.

Also by Lemma 6, we have S`+1
i ⊃ U∗`+1S`i for all i ∈ N . Since

q` ≥ 0, by Lemma 3(b) we have that ρ` = q`, and from Lemma 3(c)
we have d(S`i + S`j ) = n` for all i, j ∈ N with i 6= j. It follows
that d(S`+1

i + S`+1
j ) ≥ d(U∗`+1(S`i + S`j )) = n` − 1 = n`+1 for all

i, j ∈ N with i 6= j. The latter fact establishes that the sum of the
sets in every subset of {S`+1

i : i ∈ N} has maximal dimension and
also that {S`+1

i ,S`+1
j } is transverse for all i, j ∈ N with i 6= j.

Let T be a subset of {S`+1
i : i ∈ N}. We proceed by induction on

the number of subspaces in T . We have already established that T
is transverse if #T = 2. Suppose next that T is transverse whenever
#T = 2, . . . , α, with α ≤ N − 1. Let T = {S`+1

i : i ∈ I}, with
I ⊂ N and #I = α, and let R = T ∪{S`+1

j } so that #R = α+ 1.
By Lemma 6 and properties of maps and subspaces, we have⋂

i∈I S
`+1
i + S`+1

j ⊃
⋂
i∈I U

∗
`+1S`i + U∗`+1S`j

⊃ U∗`+1(
⋂
i∈I S

`
i + S`j ). (33)

By (32) and since I ⊂ N , then {S`i : i ∈ I} is transverse. By
Lemma 3(d), then d(

⋂
i∈I S

`
i + S`j ) = n`. Combining the latter

equality with (33), then d(
⋂
i∈I S

`+1
i +S`+1

j ) = n`−1 = n`+1. By
Lemma 3(d) then R is transverse. We have thus established that our

induction hypothesis is valid for α+1 and we conclude that {S`+1
i :

i ∈ N} is transverse. By Lemma 3(b), then ρ`+1 = max{0, q`+1}.
From (24) and (29), it follows that the minimum value for q`+1

is q` − 1, and this happens only if ρ`+1
i = ρ`i − 1 for all i ∈ N .

However, if q` = 0, then ρ`+1
i ≥ ρ`i for at least one i ∈ N because,

since ρ` = d(S`) = q` = 0, then v`1 /∈ S`. Consequently q`+1 ≥ 0
and hence we have established (32) for ` = 1, . . . , n.

(b) By Theorem 2(a), the structural condition p` > 0 will hold at
every iteration of Algorithm ITF. Consequently, a stable feedback-
assignable common eigenvector exists and can be computed at
every iteration of the algorithm, and thus the algorithm will finish
successfully, yielding feedback matrices Ki ∈ Rmi×n so that the
system (1) or (2) is SLASF.
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