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An approximate dual subgradient algorithm for

multi-agent non-convex optimization
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Abstract

We consider a multi-agent optimization problem where agsobject to local, intermittent inter-
actions aim to minimize a sum of local objective function®jeat to a global inequality constraint
and a global state constraint set. In contrast to previoukwwe do not require that the objective,
constraint functions, and state constraint sets to be somweorder to deal with time-varying network
topologies satisfying a standard connectivity assumptiom resort to consensus algorithm techniques
and the Lagrangian duality method. We slightly relax theumegment of exact consensus, and propose
a distributed approximate dual subgradient algorithm tabém agents to asymptotically converge to a
pair of primal-dual solutions to an approximate problemgi@arantee convergence, we assume that the
Slater’'s condition is satisfied and the optimal solutioncfethe dual limit is singleton. We implement

our algorithm over a source localization problem and compiae performance with existing algorithms.

. INTRODUCTION

Recent advances in computation, communication, sensidgaatuation have stimulated an
intensive research in networked multi-agent systems. énsiystems and controls community,
this has translated into how to solve global control proldgexpressed by global objective
functions, by means of local agent actions. Problems censidinclude multi-agent consensus
or agreement([14],[[21], coverage control [6], [9], fornoati control [10], [26] and sensor
fusion [29].
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The seminal work[[3] provides a framework to tackle optimgia global objective function
among different processors where each processor knowddhal gbjective function. In multi-
agent environments, a problem of focus is to minimize a surfocdl objective functions by
a group of agents, where each function depends on a commabalglecision vector and is
only known to a specific agent. This problem is motivated blyecd in distributed estima-
tion [19] [28], distributed source localization [25], andtwork utility maximization[[15]. More
recently, consensus techniques have been proposed tesaddesssues of switching topologies,
asynchronous computation and coupling in objective fumstj see for instance [17], [18], [32].
More specifically, the papelr [17] presents the first analgben algorithm that combines average
consensus schemes with subgradient methods. Using poojaat the algorithm of [[17], the
authors in [[18] further address a more general scenariotttkats local state constraint sets
into account. Further, in_[32] we develop two distributednal-dual subgradient algorithms,
which are based on saddle-point theorems, to analyze a neoexa situation that incorporates
global inequality and equality constraints. The aforenoer®d algorithms are extensions of
classic (primal or primal-dual) subgradient methods wigeheralize gradient-based methods to
minimize non-smooth functions. This requires the optimia@aproblems under consideration to
be convex in order to determine a global optimum.

The focus of the current paper is to relax the convexity agpgiom in [32]. In order to
deal with all aspects of our multi-agent setting, our metimddgrates Lagrangian dualization,
subgradient schemes, and average consensus algorithstisbied function computation by a
group of anonymous agents interacting intermittently cardbne via agreement algorithms [6].
However, agreement algorithms are essentially convexsande are led to the investigation of
nonconvex optimization solutions via dualization. Thehteiques of dualization and subgradient
schemes have been popular and efficient approaches to silvednvex programs (e.g., inl[4])
and nonconvex programs (e.g., in [7]] [8]).

Statement of Contributionsdere, we investigate a multi-agent optimization problemereh
agents desire to agree upon a global decision vector mimgithe sum of local objective
functions in the presence of a global inequality constraimtt a global state constraint set. Agent
interactions are changing with time. The objective, castrfunctions, as well as the state-
constraint set, can be nonconvex. To deal with both noncatyvend time-varying interactions,

we first define an approximated problem where the exact censdn slightly relaxed. We then
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propose a distributed dual subgradient algorithm to sdlwehere the update rule for local dual
estimates combines a dual subgradient scheme with avemggermsus algorithms, and local
primal estimates are generated from local dual optimaltswisets. This algorithm is shown to
asymptotically converge to a pair of primal-dual solutidbdshe approximate problem under the
following assumptions: firstly, the Slater’s condition &tisfied; secondly, the optimal solution
set of the dual limit is singleton; thirdly, dynamically aiging network topologies satisfy some
standard connectivity condition.

A conference version of this manuscript was published[ir].[84ain differences are the
following: (i) by assuming that the optimal solution set dietdual limit is a singleton, and
changing the update rule in the dual estimates, we are ablietermine a global solution in
contrast to an approximate solution in [31]; (ii) we presargimple criterion to check the new
sufficient condition for nonconvex quadratic programmigg) new simulation results of our
algorithm on a source localization example and a compardats performance with existing

algorithms are performed.

[I. PROBLEM FORMULATION AND PRELIMINARIES

Consider a networked multi-agent system where agents bedelhby: ¢ V .= {1,... N}.
The multi-agent system operates in a synchronous way atitistantsk € N U {0}, and its
topology will be represented by a directed weighted gréph) = (V, E(k), A(k)), for k£ > 0.
Here, A(k) := [a}(k)] € RV*V is the adjacency matrix, where the scalafk) > 0 is the weight
assigned to the edgg,:) pointing from agentj to agenti, and E(k) C V x V' \ diag(V) is
the set of edges with non-zero weights. The set of in-neighbbagent; at timek is denoted
by Ni(k) ={j € V| (j,i) € E(k) andj # i}. Similarly, we define the set of out-neighbors of
agenti at timek asN™ (k) ={j € V| (i,5) € E(k) andj # i}. We here make the following
assumptions on network communication graphs:

Assumption 2.1 (Non-degeneracy)There exists a constant > 0 such thata!(k) > «, and
a’(k), for i # j, satisfiesa’ (k) € {0} U [, 1], for all k> 0.

Assumption 2.2 (Balanced Communication):It holds that}" . ai(k) = 1 for all i € V
andk >0, and}_, . a’(k) =1 for all j € V andk > 0.

Assumption 2.3 (Periodical Strong Connectivity): There is a positive integeB such that,

for all ky > 0, the directed graphiV, Uf;ol E(ky + k)) is strongly connected.
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The above network model is standard to characterize a nkdd@omulti-agent system, and
has been widely used in the analysis of average consensustlaigs; e.g., see [21], [22], and
distributed optimization in [18]/[32]. Recently, an algbm is given in [12] which allows agents
to construct a balanced graph out of a non-balanced one wed&in assumptions.

The objective of the agents is to cooperatively solve thiowhg primal problem p):
miani(z), st. g(2) <0, zelX, Q)

where z € R" is the global decision vector. The functiofy : R* — R is only known to
agents, continuous, and referred to as the objective function @nag The setX C R", the
state constraint set, is compact. The functionR” — R™ are continuous, and the inequality
g(z) < 0 is understood component-wise; i.e:«(z) < 0, for all £ € {1,...,m}, and represents a
global inequality constraint. We will denot&z) := > .., fi(z) andY := {z € R" | g(z) < 0}.
We will assume that the set of feasible points is non-empy, X NY # (). SinceX is compact
andY is closed, then we can deduce tat Y is compact. The continuity of follows from
that of f;. In this way, the optimal valug* of the problem P) is finite and.X*, the set of primal
optimal points, is non-empty. We will also assume the follaySlater’s condition holds:

Assumption 2.4 (Slater’s Condition): There exists a vectar € X such thaty(z) < 0. Such
z is referred to as a Slater vector of the probleR).(

Remark 2.1: All the agents can agree upon a common Slater vectbrough a maximum-
consensus scheme. This can be easily implemented as partimtialization step, and thus the
assumption that the Slater vector is known to all agents doedimit the applicability of our
algorithm. Specifically, the maximum-consensus algoriterdescribed as follows:

Initially, each agent chooses a Slater vectey(0) € X such thaty(z;(0)) < 0. At every time
k > 0, each agent updates its estimates by using the rulezgk + 1) = max;cn;wug 25 (k).
where we use the following relation for vectors: o € R"™, a < b if and only if there is some
¢e{l1,...,n—1} such thata, = b, for all kK < ¢ anda, < by.

The periodical strong connectivity assumption| 2.3 enstlrasafter at mostN — 1) B steps,
all the agents reach the consensus; k%) = max;cy 2,;(0) for all k& > (N — 1)B. In the
remainder of this paper, we assume that the Slater vect®iknown to all the agents. o

In [32], in order to solve the convex case of the probldt (i.e.; /; andg are convex functions

and X is a convex set), we propose two distributed primal-duagsadhient algorithms where
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primal (resp. dual) estimates move along subgradientp.(goergradients) and are projected
onto convex sets. The absence of convexity impedes the ufieedadigorithms in[[32] since,
on the one hand, (primal) gradient-based algorithms ardyeimapped in local minima; on
the other hand, projection maps may not be well-defined wipeimél) state constraint sets
are nonconvex. In the sequel, we will employ Lagrangian idatibn, subgradient methods and
average consensus schemes to design a distributed afgevhich is able to find an approximate
solution to the problemK).

Towards this end, we construct a directed cyclic grégh:= (V, E¢,c) Where|Eqy = N. We
assume that each agent has a unique in-neighbor (and gtbog). The out-neighbor (resp.
in-neighbor) of agent is denoted byip (resp.iy). With the graphGe., we will study the

following approximate problem of problenPy:

st g(x;) <0, —zi4x, —A<L0, x—x,-A<0, z,€X, VieV, (2)

where A := §1, with § a small positive scalar, antl is the column vector of. ones. The
problem [2) provides an approximation of the problefR),(and will be referred to as problem
(Pa). In particular, the approximate problem (2) reduces togheblem ) whend = 0. Its
optimal value and the set of optimal solutions will be dedoby p}, and X3, respectively.
Similarly to the problem P), p4 is finite and X} # 0.

Remark 2.2: The cyclic graphfe,c can be replaced by any strongly connected gi@pGiven
g, each agentis endowed with two inequality constraintg—z,—A < 0 and—z;+xz;,—A <0,
for each out-neighboj. This set of inequalities implies that any feasible solutio= (x;);c of
problem (P») satisfies the approximate consensus; irex; ey ||z; — ;|| < Nd. For simplicity,

we will use the cyclic grapltc,, with a minimum number of constraints, as the initial graph.

A. Dual problems
Before introducing dual problems, let us denotedy:= R x RL{ x RLY, = := RZ} x

RLY x RLY, & = (i, A\, w) € 2, & := (u,\,w) € Z andz := (z;) € X". The dual problem
(Da) associated with{PA) is given by

mex@(u,)\,w), st. o, A\ w >0, 3)
Ly A, W
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where ;i := () € R™, X\ = (\;) € R™ andw := (w;) € R™™. Here, the dual function

Q: = — Ris given asQ(¢) = Q(u, A\, w) := infexn L(z, u, A\, w), whereL : R"™V x Z — R

is the Lagrangian function

L(x,8) =Lz, A w) =Y (filas) + (a, g(2:)) + Moy =21 + 2i, — A) + (wy, 25 — 23, — A)).
eV

We denote the dual optimal value of the problem,( by 4% and the set of dual optimal

solutions byD}%. We endow each agentwith the local Lagrangian functioff; : R* x 2 — R

and the local dual functio); : = — R defined by
Li(25,&) = filws) + (i g(x0)) + (=i + iy, 1) + (Wi — wiyy, 75) — (A, A) — (wi, A),
Qi(&) = xllg( Li(zi, &)
In the approximate problem#,), the introduction of-A < z; —z;,, < A, i € V, renders

the f; andg separable. As a result, the global dual functf@rtan be decomposed into a simple

sum of the local dual functiong;. More precisely, the following holds:

Q) = xg(fN (fiai) + iy () + iy =5 + iy — D) + (wi, 25 — 33, — A)).
icv

Notice that in the sum o} ., (\;, —z; + z;,, — A), eachz; for anyi € V' appears in two
terms: one iS\;, —z; + z;,, — A), and the other ig)\;,, —z;, + z; — A). With this observation,

we regroup the terms in the summation in termscgfand have the following:

Q(§) = inf (fiwi) + (s g(20)) 4+ (=i + Xy ) + (wi — Wiy, 23) — (N, A) = (w;, A))

mGXN

- Zmlrelg( fz ZL’, :uwg(xi» < )‘ + )‘ZUv > <’LU,' - wiU7xi> - <)\,,A> - <wZ>A>)
=) Q&%) 4)

eV
Note that) . ., Q;(&) is not separable sina®; depends on neighbor’s multipliess,,, w;, .
B. Dual solution sets

The Slater’s condition ensures the boundedness of duai@olsets for convex optimization;
g., [13], [16]. We will shortly see that the Slater’s cai@h plays the same role in nonconvex

optimization. To achieve this, we define the functign: RZ, x RZ; x RY; — R as follows:
Qi(pis Niyw;) = inf (filws) + (i 9(@2)) + (Nis =i + @3, — A) + (Wi, 2 — 23, — A)).

:ciEX,:L‘Z-D exX
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Let z be a Slater vector for problenPj. Thenz = (z;) € X" with z; = z is a Slater vector
of the problem £4). Similarly to (3) and (4) in[[32], which make use of Lemma 32the
same paper, we have that for any \;, w; > 0, it holds that
£i(2) — Qilpi, Moy wy)

B(z) ’

(5)

max ||£|| < N max
Dx ieV

-----

following upper bound oD} :

fi(2) — Q:(0,0,0)

<
max I€ll = N max 5 , (6)
where@i(o, 0,0) = inf,,cx fi(x;) and it can be computed locally. We denote
o fi(2) —Q4(0,0,0
3(z) = HEZC0.0.0) @

B(2)
Sincef; andg are continuous and is compact, then thap; is continuous; e.g., see Theorem
1.4.16 in [2]. Similarly,@ is continuous. Sincé®3 is also bounded, then we have thax # 0.
Remark 2.3: The requirement of exact agreement om the problemP is slightly relaxed
in the problemP, by introducing a small positive scalar In this way, the global dual function
@ is a sum of the local dual function@;, as in [(4); D} is non-empty and uniformly bounded.

These two properties play important roles in the devise ofsabsequent algorithm. °

C. Other notation

Define the set-valued map; : &' — 2% asQ;(&) = argmin, oy Li(7;,&;); i.e., giveng;, the

set(;(&;) is the collection of solutions to the following local optiaition problem:

z;€X
Here, €); is referred to as thenarginal mapof agenti. Since X is compact andf;, g are
continuous, ther2;(&;) # 0 in (8) for any&; € Z'. In the algorithm we will develop in next
section, each agent is required to obtaire (globally) optimal solution and the optimal value the
local optimization probleni(8) at each iterate. We assuraetthis can be easily solved, and this
is the case for problems of = 1, or f; and g being smooth (the extremum candidates are the
critical points of the objective function and isolated cens of the boundaries of the constraint
regions) or having some specific structure which allows the af global optimization methods

such as branch and bound algorithms.
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In the spaceR”, we define the distance between a pointc R" to a setA C R" as
dist(z, A) := inf,ca |z — y||, and the Hausdorff distance between two séts3 C R" as
dist(A, B) := max{sup,, dist(z, B),sup, . dist(A,y)}. We denote byBy,(A,r) := {u €
U | dist(u, A) < r} and Bu (A, r) := {U € 24 | dist(U, A) < r} whereld C R™.

[1l. DISTRIBUTED APPROXIMATE DUAL SUBGRADIENT ALGORITHM

In this section, we devise a distributed approximate dubbsdient algorithm which aims
to find a pair of primal-dual solutions to the approximatelpeon (P,).

For each agent, let z;(k) € R™ be the estimate of the primal solutiof to the approximate
problem (°») at timek > 0, (k) € RZ, be the estimate of the multiplier on the inequality
constraintg(z;) < 0, A'(k) € Ry (resp.w'(k) € ]R%V)H be the estimate of the multiplier
associated with the collection of the local inequality doaists —z; + z;, — A < 0 (resp.
r;j—xzj,—A <0), forall j € V. We leté; (k) := (ui(k), X(k)", wi(k)T)T € =/, fori € V to be
the collection of dual estimates of agentAnd denotev;(k) := (u;(k)7, vi (k)T vl (B)1)T € &
where vj (k) := >, aj(k)N (k) € RLY and vy, (k) := 3,y af(k)w! (k) € R are convex
combinations of dual estimates of ageérdnd its neighbors at time.

At time k, we associate each agend supergradient vectdp;(k) defined as
Di(k) == (D, (k)", Dy(k)", D;,(k)")", whereD;, (k) := g(z;(k)) € R™, Dj(k) has components
Di(k); = —A—x;(k) € R™, Di(k)y, := x;i(k) € R*, andDi(k); =0 € R™ for j € V\ {4, iy},
while the components oD: (k) are given by:D: (k); := —A + z;(k) € R*, D (k);, =
—z;(k) € R*, andDi (k); = 0 € R, for j € V' \ {4,iy}. For each agent, we define the set
M; :={& € Z' | |&]] < v+ 6;} for somed; > 0 wherev := N max;cy 7;(Z). Let Py, to be
the projection onto the set/;. It is easy to check that/; is closed and convex, and thus the
projection mapP,,, is well-defined.

The Distributed Approximate Dual Subgradient (DADSIgorithm is described in Tablel 1.

Remark 3.1: The DADS algorithm is an extension of the classical dual @ilgm, e.g., in[24]
and [4] to the multi-agent setting and nonconvex case. liritialization of the DADS algorithm,
the valuey serves as an upper bound é¥,. In Step1, one solutionin Q;(v;(k)) is needed,

and it is unnecessary to compute the whole(sgv;(k)). o

"We will use the superscrigtto indicate that\’(k) andw’ (k) are estimates of some global variables.
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Algorithm 1 The Distributed Approximate Dual Subgradient Algorithm
Initialization: Initially, all the agents agree upon some> 0 in the approximate problem

(Pa). Each agenti chooses a common Slater vectar computesy;(z) and obtainsy =
N max;cy v;(Z) through a max-consensus algorithm wheré) is given in [T). After that,
each agent chooses initial states;(0) € X and¢;(0) € Z'.

Iteration: At each timek, each agent executes the following steps:
1: For eachk > 1, givenv;(k), solve the local optimization problerql (8), obtain a solatio
z;(k) € Q;(v;(k)) and the dual optimal valu@;(v;(k)).
2: For eachk > 0, generate the dual estimatgk + 1) according to the following rule:

§ilk +1) = Py [vi(k) + a(k)Di(k)], (9)

where the scalan(k) > 0 is a step-size.
3: Repeat fork = k + 1.

In order to assure the primal convergence, we will assumethigadual estimates converge
to the set where each has a single optimal solution.

Definition 3.1 (Singleton optimal dual solution set): The set of D; C R™*2WN s the
collection of ¢ such that the se®;(¢;) is a singleton, wherg€; = (u;, A\, w) for eachi € V. e

The primal and dual estimates in the DADS algorithm will beowsh to asymptotically
converge to a pair of primal-dual solutions to the approxenproblem £,). We formally
state this in the following theorem:

Theorem 3.1 (Convergence properties of the DADS algorithm) Consider the problemK)
and the corresponding approximate problefi X with someéd > 0. We let the non-degeneracy
assumptiof 211, the balanced communication assuniptitan? 2he periodic strong connectivity
assumptio_2]3 hold. In addition, suppose the Slater’s itiond2.4 holds for the problemK).
Consider the dual sequences{ef (k)}, {\'(k)}, {w*(k)} and the primal sequence f;(k)} of
the distributed approximate dual subgradient algorithrh Wix(%)} satisfyingkgrfooa(k) =0,

“+00 “+00
> a(k) =+o0, Y a(k)® < +oc.
k=0 k=0

1) (Dual estimate convergence) There exists a dual solgti@n D} wheref* := (u*, \*, w*)
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and p* := (pf) such that the following holds for alle V:

i (k) = il =0, T [INOR) = X =0, Tim (k) — w] = 0.

2) (Primal estimate convergence) If the dual solution 8as* € D, i.e. Q;(&F) is a

(2

singleton for alli € V, then there isc* € X} with 2* := (z}) such that, for alk € V:

lim |2 (k) — 27| = 0.

k——4o00 v

IV. DISCUSSION

Before proceeding with the technical proofs for Theoiren, 8v& would like to make the
following observations. First, our methodology is mote@iby the need of solving a nonconvex
problem in a distributed way by a group of agents whose intenas change with time. This
places a number of restrictions on the type of solutions dhatcan find. Time-varying interac-
tions of anonymous agents can be currently solved via agreeaigorithms; however these are
inherently convex operations, which does not work well imganvex settings. To overcome this,
one can resort to dualization. Admittedly, zero duality gaps not hold in general for nonconvex
problems. A possibility would be to resort to nonlinear aegiwed Lagrangians, for which strong
duality holds in a broad class of programs [7], [8],/[27]. Haer, we find here another problem,
as a distributed solution using agreement requires seipgradis the one ensured by the linear
Lagrangians we use here. Thus, we have looked for alteena8gumptions that can be easier
to check and allow the dualization approach to work.

More precisely, Theorem 3.1 shows that dual estimates alwayverge to a dual optimal
solution. The convergence of primal estimates requiresdalitianal assumption that the dual
limit has a single optimal solution. Let us refer to this amption asthe singleton dual optimal
solution set(SD for short). This assumption may not be easy to cheegkiori, however it is
of similar nature as existing algorithms for nonconvex myation. In [7] and([8], subgradient
methods are defined in terms of (nonlinear) augmented Lggmas, and it is shown that every
accumulation point of the primal sequence is a primal sotuprovided that the dual function
is required to be differentiable at the dual limit. An operesion is how to resolve the above
issues imposed by the multi-agent setting with less stnihgenditions on the nature of the

nonconvex optimization problem.
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In the following, we study a class of nonconvex quadraticgpams for which a sufficient
condition guarantees that the SD assumption holds. Noresoguadratic programs hold great
importance from both theoretic and practical aspects. iregd, nonconvex quadratic programs
are NP-hard, and please refer {0 [23] for detailed discussidie aforementioned sufficient
condition only requires checking the positive definitenesa matrix.

Consider the following nonconvex quadratic program:

min f(z zezvfl = ; 1213, + 2(qi, 2)),

s.t. ||Z||E§Z 0 + 2<bi7@n Z> + Ciy, <0, b= L my, (10)

where||z]|% £ 2T A;y,2 and A, ,, are real and symmetric matrices. The approximate problem

of P, is given by

mi Zfz () =3 (23, + 20ai, 22)),

rER2N pye
st Nzl , + 20, xi) +eig, <0, Li=1,-- my,
—Ii+$iD—A§0, IIZ'Z'—ZE'Z‘D—ASO, IIZ'Z'EXZ‘, 1€ V. (11)

We introduce the dual multiplier§:, A\, w) as before. The local Lagrangian functigi can

be written as follows:

Li(, €) 2 il mm ey ay, T (G0,
where the term independent of is dropped and; is a linear function of; = (u;, A, w). The
dual function and dual problem can be defined as before. @ensiny dual optimal solution
& Ifforall i € V:

(P1) P+ > )" 15y, Ai g, is positive definite;

(P2)z; = (P +E£ LM A ) C € Xi;
then the SD assumption holds. The properties (P1) and (R2¢asy to verify in a distributed
way once a dual solutiog* is obtained. We would like to remark that (P1) is usedlin [Xd] t

determine the unique global optimal solution via canondality whenX is absent.

V. CONVERGENCE ANALYSIS

This section provides a guide to the complete analysis ofoldm[3.1. Recall thay is

continuous andX is compact. Then there afé, H > 0 such thatl|g(z)|| < G and||z|| < H for
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all z € X. We start our analysis from the computation of supergrdadien();. Due to space
reasons, we will omit most technical proofs; these can bedan the enlarged version [30].
Lemma 5.1 (Supergradient computation): If z; € Q;(&;), then(g(z;)", (—A—z;)", 27, (z;—

AT, —zIT is a supergradient af); at &; i.e., the following holds for any; € =

Qi(&) — Qi(&) < (g(@i), ps — fa) + (A =Ty, X\ — Ay)

+ (Zi, Ny — 5\m> + (T — A yw; — ) + (=T, wiy, — Wy, )- (12)

Proof: The proof is based on the computation of dual subgradierds, ia [4], [5]. [ |
A direct result of Lemma5l1 is that the vectqy(z;(k))T, (—A — z;(k)T, 2 (k)T (zi(k) —
AT —x;(k)T) is a supergradient of); at v;(k); i.e., the following supergradient inequality

holds for any¢; € =

Qi(&) — Qilvi(k)) < (g(xi(k)), s — pa(k)) + (=A = 5(k), \s — v} (k):)
+(@ik), Ny — vi(R)i) + (wi(k) — A wi — vy, (k)s) + (—i(k), wiy, — v, (K)i,). (1)

Now we can see that the update ruleé (9) of dual estimates irD#WBS algorithm is a
combination of a dual subgradient scheme and average camsegorithms. The following
establishes tha); is Lipschitz continuous with some Lipschitz constadnt

Lemma 5.2 (Lipschitz continuity of @,): There is a constart > 0 such that for any;, &; €
=, it holds that]|Q; (&) — Qi(&)] < LlI& — &l-

Proof: Similarly to Lemmal 5.1, one can show thatif € €;(&), then (g(7;)7, (—A —
)7zl (z; — AT, -z is a supergradient of); at &; i.e., the following holds for any

SZ‘ e ="
Qi(&) — Qi(&) < (g(@), pi — ) + (—A = Ty, A — Ni)
+ <£f'i, )\iU — 5\1U> -+ <ZZ’Z — A, w; — wz> -+ (—ii,wm — ’LZJZ'U>.

Since ||g(z;)|| < G and||z;|| < H, there isL > 0 such thatQ;(&) — Q;(&) < L||& — &

Similarly, Q;(&) — Qi(&) < L||& — &l|. We then reach the desired result. |
In the DADS algorithm, the error induced by the projectionpnfd,, is given by:

ei(k) .= Py vi(k) + a(k)D; (k)] — vi(k).
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We next provide a basic iterate relation of dual estimatethénDADS algorithm.
Lemma 5.3 (Basic iterate relation): Under the assumptions in Theorem|3.1, for &fy), \, w) €
= with (u;, A, w) € M; for all i € V, the following estimate holds for alt > 0:

> llesk) = a(k)Di(k)[* < ak)? Y DRI+ D (I1€(k) = &GlI* = [1&(k + 1) — &)

eV eV eV
+ 2a(k Z{ (x;(k (k) = i) + (=2 = x(k), vy (k); — \)
+ <x2(k)7vi(k‘)w - )\ZU> + <[L’Z(k‘) - Avviu(k)i - wi> + <_xi(k)vviu(k)iU - wiU>}' (14)

Proof: Recall that)/; is closed and convex. The proof is a combination of the noalesion
property of projection operators inl[5] and the property afamced graphs. [ |
The lemma below shows the asymptotic convergence of duiahatsts.

Lemma 5.4 (Dual estimate convergence)tUnder the assumptions in Theoréml|3.1, there ex-
ists a dual optimal solutiog* := ((u}),\*,w*) € D} such thatklirf ||pei(k) — pil| =0,
——400
lim [|\(k) — A\ =0, and lim ||w'(k) —w*|| = 0.
k—+o00 k—+o00
Proof: By the dual decomposition propertyl (4) and the boundednfedigad optimal solution

sets, the dual pl’ObIemDA) is equivalent to the fOIIOWing:
max (Qi i), s.t. i € Mz 15

Note thatQ); is affine and)M; is convex, implying that the problern_(15) is a constrainedvex
programming where the global objective function is a simglen of local ones and the local
state constraints are convex and compact. The rest of thefspcan be finished by following
similar lines in [32], and thus omitted. [ ]

The remainder of this section is dedicated to characteyitire convergence properties of
primal estimates. Toward this end, we present some pregeofi();.

Lemma 5.5 (Properties of marginal maps): The set-valued marginal mdp; is closed. In
addition, it is upper semicontinuous gte =’; i.e., for anye’ > 0, there isd’ > 0 such that for
any &; € Bz/(&;,8), it holds thatQ;(£;) C Bax (Q(&;), €).

Proof: Consider sequencés; (k)} and{&;(k)} satisfyingkiiffOO Ei(k) = &, mi(k) € Qi(&(k))

andklim z;(k) = z;. SinceL; is continuous, then we have
—+00

Li(7,&) = lim Li(x;(k),&(k) < lim (Qi(&(k))) = Qi(&),

k——+o00 k——4o00
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where in the inequality we use the property0fk) € Q,(&;(k)), and in the last equality we
use the continuity of);. Thenz; € Q;(&;) and the closedness 6F; follows.

Note that();(&;) = Q,;(&)NX. Recall that); is closed andX is compact. Then it is a result of
Proposition 1.4.9 in [2] tha®;(¢&;) is upper semicontinuous &t € =’; i.e, for any neighborhood
U in 2% of O;(&), there isd’ > 0 such thatvé; € Bz/(¢;,d), it holds thatQ;(¢;) c U. Let
U = Byx(2;(&),€), and we obtain upper semicontinuity &t [ |
With the above results, one can show the convergence of pastimnates.

Lemma 5.6 (Primal estimate convergence)Under the assumptions in Theordm]3.1, for
eachi € V, it holds thatkgrfoo z;(k) = &; wherez; = Q;(&}).

Proof: The combination of upper semicontinuity 9f in Lemmal5.6 an%ETw &i(k) =&
with ¢ given in Lemm& 54 ensures that each accumulation poidtdfc)} is a point in the
set();(&); i.e., the convergence dfr;(k)} to the set?;(¢f) can be guaranteed. Sin€g(&;) is
singleton, thent; = Q;(&7). We arrive in the desired result. u

Now we are ready to show the main result of this paper, The@dmin particular, we will
show complementary slackness, primal feasibilityzpfand its primal optimality, respectively.

Proof for Theorem [3.1:

Claim 1: (—A —Z; + &;,, \}) =0, (A +&; — &;,,w]) = 0 and (g(z;), u) = 0.

Proof: Rearranging the terms related Xan (14) leads to the following inequality holding

for any ((u;), A\, w) € = with (u;, A\, w) € M for all i € V:

- Z 20 (k) ((=A = a;(k), v3 (k)i — i) + (i, (), UiD(k)z‘ - i)

< ok Y ID0IP + Y (I6(K) — &P = 6tk + 1) = &) (16)
+20(k) D (=) vl )iy — i)+ (k) = A, vl () = i) + (g (k). k) — )}
eV
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Sum [I86) over0, K], divide by s(K) := >~ a(k), and we have

s(i{) (k) D" 2((A + (), vi (k)i — As) + (=i, (k), vi (k); — A)) <
k=0 eV
1 2 , 2, L (0N — 12 e 2
< 30 2 0 L IPIE + g (160 = 617 — e + 1) &) (17)

M)~

20 (k) Y (g (i(k)), pa(k) = ps) + (walk) = A0y, (k)i = wi) + (=24(k), v, (k)i — wiy )}

=0 eV

o

(18)
We now proceed to show—A — z; + 7;,, Af) > 0 for eachi € V. Notice that we have shown
that lim ||z;(k) — ;|| =0 for all : € V, and it also holds thatlim |[|£;(k) —&/|| = 0 for all
k——+o00 k——+4o00
ieV.Leth =3\, A\ =\ for j # i andy; = pf, w=w* in (I7). Recall tha{«(k)} is not
summable but square summable, ¥ (%)} is uniformly bounded. Takél — +oc0, and then

it follows from Lemma 5.1 in[[3R2] that:
(A+3;, —2;,,\]) <0. (29)

On the other hand, singg € D3, we have||¢*|| < ~ given the fact thaty is an upper bound of

Di. Let¢ := (u, A\, w) whereg; := (u;, A, w). Then we could choose a sufficiently smé&lll> 0

and¢ € = in ([I7) such that|&;|| < v+ 6; whered; is given in the definition of\Z; and¢ is given

by: \i = (1+0")A;, A; = Aj for j # 4, w = w*, p = p*. Following the same lines toward (19),

it gives that—d(A + z; — 7;,,, A}) <0. Hence, it holds that—A — #; + Z;,,, AY) = 0. The rest

of the proof is analogous and thus omitted. [ |
The proofs of the following two claims are in part analogous @an be found in [30].
Claim 2: 7 is primal feasible to the approximate problefh(.

Proof: We have known that; € X. We proceed to showA—z,+z;,, < 0 by contradiction.
Since ||£*]] < ~, we could choose a sufficiently small > 0 and ¢ := (i, A\, w) whereg; :=
(i, A\, w) and||& || < v+6; in (1) as follows: if(—A —z; +Z;,)e > 0, then(\;), = () +';
otherwise,(\;), = (A\¥),, andw = w*, = p*. The rest of the proofs is analogous to Claim 1.

Similarly, one can show(z;) < 0 and—A+z; — Z;,, < 0 by applying analogous arguments.
We conclude that is primal feasible to the approximate problei|. [ |
Claim 3: 7 is a primal solution to the problenPy).

DRAFT



16

Proof: Sincez is primal feasible to the approximate problef(, then) .., f;(Z;) > pi.

On the other hand, it follows from Claim 1 that

@) =) Li#n&) <Y QilE) < pa

eV eV 9%

We then conclude tha}_,_,, fi(Z;) = p. In conjunction with the feasibility of:, this further

VI. SIMULATIONS

In the extended version [30], we examine several numeriamngles to illustrate the perfor-

mance of our algorithm. These present different cases obastasource localization example,

where (i) the SD assumption is satisfied, (ii) the SD asswmnps violated, and (iii) a comparison

with gradient-based algorithms is made. An additional gXenincludes that of a non-convex

guadratic program for which properties P1 and P2 can easilyebified.

A. Robust source localization

We consider a robust source localization problem where thjectve function is adopted

from [1], [20]. In particular, consider a network of four ageV = {1,---,4}. The objective

functions of agents are piecewise linear and giverfioy) = |||z —a;|| —r|. The local inequality

functions are given by:

[ 21—8 | [ 21—9 | [ 21—8.5 ]
—Z1 — 8 —Z1 — 9 —Z1 — 8.5
91(2) = . g2(2) = . g3(2) = 5
22—8 22—9 22—8.5
_—2’2—8_ _—22—9_ _—22—8.5_

and, the local constraint sets are given by
X;={z€eR?*| —10< 2 <10, —10 < 2, < 10},
Xy, ={zeR*| —105< 2 <10.5, —10.5 < z, < 10.5},
Xs={2z€R*| —9<2 <9, —10< 2z <10},

Xy={2€R?*| =11 <2 <11, —9< 2 <9}

94(2)

| —2Z9 —9.5 i

Z1 — 9.5
—Z21 — 9.5
9 — 9.5

In the simulation, we choose the paramefer 0.1. The local Lagrangian function can be

written as’;(x;, &) = fi(z;) + (¢, x;) by dropping the terms independentafand(; is linear
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in &. Figure[3 shows the sectional plot ¢fz) £ > ey fi(2) along z;-axle, demonstrating that
f is nonconvex and has local minima.

The inter-agent topologie§(k) are given by:G(k) is 1 «» 2 <+ 3 <» 4 when k is odd, and
Gk)is1l—2+ 3+ 4—1whenk is even. It is easy to see th@tk) satisfies the periodical
strong connectivity assumption 2.3.

1) Simulation 1; the assumption of SD is satisfi€dr this numerical simulation, we consider
the set of parameters = 0.75, a; = [0 0]7, a; = [0 1%, a3 = [1 0T anday = [1 1]T.
Figure[1 shows the surface of the global objective functigm) = .., fi(x). The contour,
Figure[2, indicates that the set of optimal solutions is doeground[0.5 0.5]7. Figure[4 is
the sectional plot off; along z;-axle.

From Figure$ 548, one can see thatk) converges to some poifd, 0.05] x (0, 0.05]. Hence,
¢ e D e, the assumption of SD is satisfied.

The simulation results are shown in Figurés 9 16 10. In palaic Figure 9 (resp. Figuife 110)
shows the evolution of primal estimates of the primal soluti*(1) (resp.z*(2)). After about
25 iterates, the primal estimates oscillate within a vengalémegion and eventually agree upon
the point[0.4697 0.472]7 which coincides with a global optimal solution.

2) Simulation 2; the assumption of SD is violate@onsider the same problem as Simulation
1 with r = 0.75 anda; = [0 0]” for i € V. From Figures 11 and 12, one can see thét)
converges td0 0]%. Hence,£* ¢ D and the assumption of SD is not satisfied. Figlirés 13
and[14 confirms that primal estimates fail to converge in thaise.

3) Simulation 3; comparison with gradient-based algorithr@onsider the same set of param-
eters as in Simulation 1 without including the inequalitystaints. The multi-agent interaction
topologies are the same. We implement the diffusion gradikgorithm in [18] for this problem.
Figured 15 and16 show that the primal estimates reach theensus value df-0.65 —0.38]7
after 40000 iterates. From Figurgl 2, it is clear thgt0.65 — 0.38]" is not a global optimum.
By comparing Figure§19[ 10, 115 and]l 16, one can see that ourithlgois much faster than
the diffusion gradient method at the expense of solving daloptimization problem at each
iterate.

We also implement the incremental gradient algorithmi_ir] f28 the same set of parameters
in Simulation 1 without including inequality constraintSgure[17 demonstrates that the perfor-

mance of the incremental gradient method is analogous tdiffaesion gradient algorithm; i.e.,
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the estimates are trapped in some local minimum, and theecgewmce rate is slower than our
algorithm.

B. Nonconvex quadratic programming

Consider a network of four agents where the topologies azestime as before. The local
objective function isf;(z) = ||z

 + (¢, z) and the local constraint function ig(z) = ||z||%, +

(bi, z) + ¢; < 0. In particular, we use the following parameters:

0 1
P1:P2:P3: ) P4— )
1 1 10
18 0
A=Ay = ) 51254:[2 0], ¢ =c = —1,
0 8
13 -2
A2: ) bQ == [O 4]7 Co = _17
-2 8
5 =5
Agz y 63:[10 10], 03:—1.
-5 5

And the local constrain-t sets are given by
X, ={2€R?| —10< 2 <10, —10 < 2z < 10},
Xo={2€R*| —105< 2 <10.5, —10.5 < 2z, < 10.5},
Xs={2z€R?*| —9<2 <9, —10< 2 <10},
Xy={zeR?*| —11 <2z <11, —9< 2 <9}

One can see that the sum Bf is
0 4

4
P=S P =

which is indefinite. We choosé = 0.3 for the simulation.
The dual estimates associated with the inequality comésr@onverge tq:; = 0.5027, u; =

3.1061, pi = 1.8792 and u; = 2.2910 in Figure[20. One can verify that properties P1 and P2
hold in this case:

Pi+piA >0, (P+uA)'¢eX;, ieV.
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The primal estimates converge [60.1933 — 0.3005]7, [—0.2621 — 0.5360]7, [-0.1013 —
0.0116]" and [-0.2144 — 0.2667]7 in Figures[I8 and 19, and the collection of these points
consists of a global optimal solution to the approximateofam.

VIlI. CONCLUSIONS

We have studied a distributed dual algorithm for a class dfiragent nonconvex optimization
problems. The convergence of the algorithm has been proveéeruhe assumptions that (i) the
Slater’s condition holds; (ii) the optimal solution set d¢fetdual limit is singleton; (iii) the
network topologies are strongly connected over any givambed period. An open question is

how to address the shortcomings imposed by nonconvexityrantiagent interactions settings.
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Fig. 1. The3 — D plot of the global objective function
3

Fig. 2. The contour of the global objective function
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Fig. 3. The sectional plot of the global objective functidorey z;-axle
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Fig. 4. The sectional plot of; along z;-axle
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Fig. 6. A portion of the evolution of;
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Fig. 11. The evolution of;
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Fig. 12. The evolution of; »
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Fig. 13. The primal estimates of*(1)
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Fig. 14. The primal estimates of*(2)
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Fig. 15. The primal estimates of*(1) of the diffusion gradient method
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Fig. 16. The primal estimates of*(2) of the diffusion gradient method
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Fig. 17. The primal estimates of*(1) of the incremental gradient method
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Fig. 18. The primal estimates of*(1) of quadratic programming
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Fig. 19. The primal estimates of*(2) of quadratic programming
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Fig. 20. The dual estimates @f of quadratic programming
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