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On the response of quantum linear systems to

single photon input fields

Guofeng Zhang Matthew R. James

Abstract

The purpose of this paper is to extend linear systems and signals theory to include single photon

quantum signals. We provide detailed results describing how quantum linear systems respond to multi-

channel single photon quantum signals. In particular, we characterize the class of states (which we call

photon-Gaussianstates) that result when multichannel photons are input to aquantum linear system.

We show that this class of quantum states is preserved by quantum linear systems. Multichannel photon-

Gaussian states are defined via the action of certain creation and annihilation operators on Gaussian

states. Our results show how the output states are determined from the input states through a pair

of transfer function relations. We also provide equations from which output signal intensities can be

computed. Examples from quantum optics are provided to illustrate the results.

Index Terms— Quantum linear systems; continuous mode single photon states; Gaussian states.
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I. INTRODUCTION

One of the most basic aspects of systems and control theory isthe study of how systems

respond to input signals. Well known tools, including transfer functions and impulse response

functions, allow engineers to determine the output signal produced by a linear system in response

to a given input signal. Such knowledge is needed for engineers to enable them to analyze and

design control systems.

As is well known, signals other than deterministic signals are important to a wide range

of applications. There is a well-developed theory of dynamical systems and non-deterministic
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signals, within which Gaussian signals play an important role. Indeed, linear systems (with Gaus-

sian states) driven by Gaussian input signals provide the foundations for Kalman filtering and

linear quadratic Gaussian (LQG) control, as well as many other developments and applications,

[1], [22], [9], [2], [21]. It is well known that for a classical linear systemG initialized in a

Gaussian state and driven by Gaussian white noise processw(t) satisfyingE[w(t)] = 0 and

E[w(t)w(t′)T ] = δ(t− t′),

ẋ(t) = Ax(t) +Bw(t), x(t0) = x, (1)

y(t) = Cx(t) +Dw(t),

whereE denote mathematical expectation, the meanx̄(t) = E[x(t)] and covarianceΣ(t) =

E
[
(x(t)− x̄(t))(x(t)− x̄(t))T

]
satisfy the differential equations

˙̄x(t) = Ax̄(t), (2)

Σ̇(t) = AΣ(t) + Σ(t)AT +BBT . (3)

These equations characterize the dynamical evolution of the Gaussian distributions of the state

variablesx(t). Expected values of quadratic forms can easily be evaluated, for instance in the

zero mean caseE[xT (t)Mx(t)] = Tr[MTΣ(t)]. In the frequency domain, the spectral density

Rout[iω] of the output processy(t) is related to the spectral densityRin[iω] of the input process

w(t) via the transfer relation

Rout[iω] = ΞG[iω]Rin[iω]ΞG[iω]
†, (4)

whereΞG is the transfer function for the systemG. Differential equations of the types (2) and

(3), and transfer relations like (4), play fundamental roles in classical linear systems and signals

theory, [1], [22], [9], [2], [21].

Quantum linear systemsare a class of open quantum systems fundamental to quantum optics

and quantum technology, [3], [20], [29], [40], [43], [30]. The equations describing quantum

linear systems (see Section II-A below) look formally like the classical equations (1), but they

are not classical equations, and in fact give the Heisenbergdynamics of a system of coupled open

quantum harmonic oscillators, [43], [19]. These quantum systems are driven by quantum fields

that describe the influence of the external environment (e.g. light beams) on the oscillators.

In quantum optics the fields play the role ofquantum signals. As pointed out in the paper
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[30], a large fraction of quantum optics literature concerns fields in coherent states (a type of

Gaussian state), and as a consequence quantum optical systems driven by coherent fields are

well understood. Indeed, when a quantum linear system, initialized in a Gaussian state, is driven

by a Gaussian field, the state of the system is Gaussian, with mean and covariance satisfying

equations of the form (2) and (3). This fact is of basic importance to Gaussian quantum systems

and signals theory, and for example has been exploited for the purpose of quantumH∞ and

LQG control design, [10], [42], [19], [31], [43], [44].

In recent years, due to their highly non-classical properties, single-photon light fields have

found important applications in quantum communication, quantum computation, quantum cryp-

tography, and quantum metrology, etc., [20], [7], [30]. Unlike Gaussian states, a light pulse in

single-photon state contains one and only one photon, and isthus highly non-classical. While

much of the optical quantum information literature deals with single modes (namely discrete

variables like polarization) of light and static devices (like beamsplitters), the importance of

continuous mode photons and dynamical devices is becoming clear, [35], [29], [30]. However,

single photon states of light are not Gaussian, and so the relatively well developed quantum

Gaussian systems and signals theory is not directly useful for quantum optical systems driven

by single photon fields.

The purpose of this paper is to extend linear systems and signals theory to include single

photon quantum signals. We build on the results in [29] to describe how quantum linear dynamical

systems respond to multichannel continuous mode photon fields from a system-theoretic point of

view. We show, for example, that when a quantum linear systemG with no scattering (equations

(14)-(15) below withS = I) is driven by multichannel photon fields, the mean¯̆a(t) = Tr[ρă(t)]

and covarianceΣ(t) = Tr[ρ(ă(t)− ¯̆a(t))(ă(t)− ¯̆a(t))†], whereρ is the initial joint system-field

density operator, satisfy the differential equations

˙̆̄a(t) = A¯̆a(t), (5)

Σ̇(t) = AΣ(t) + Σ(t)A† +BΓ†(ξ(t)) + Γ(ξ(t))B† +BFB†. (6)

In equation (6),F is a matrix depending on the Ito products of the input fields [32], [13], and

Γ(ξ(t)) is a matrix depending on the pulse shape matrixξ(t). Equation (6) is crucial to the study

of intensity of output fields, cf. Sec. III.

When multichannel photons are input to a quantum linear system, the output state can be quite
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inin R, !
G

outout R, !

Fig. 1. A quantum linear stochastic systemG driven by multichannel field in a photon-Gaussian state (Definition 1). The

multichannel input and output field states are denotedρξin,Rin
and ρξout,Rout

respectively. The systemG transfers the input

pulse shapeξin and covariance functionRin to the output pulse shapeξout and covariance functionRout respectively. In this

paper it is assumed that the system is initially isolated from the input field.

complex. To accommodate the types of states that can be produced from multichannel photon

inputs, we define a classF of quantum states, which we callphoton-Gaussianstates. A state

(density operator)ρ ∈ F is specified by a matrixξ(t) of functions (or pulses, a multichannel

generalization of wavepackets), and a Gaussian spectral density R[iω]. We sometimes express

these states asρξ,R, as in Fig. 1. Our main result, Theorem 5, states that if the photon-Gaussian

stateρξin,Rin
∈ F is input to a quantum linear systemG initialized in the vacuum state, then the

steady-state output state is also a photon-Gaussian stateρξout,Rout ∈ F . Moreover, the transfer

Rin 7→ Rout is given by the above relation (4), while the transferξin 7→ ξout is given by

ξout[s] = ΞG[s]ξin[s], (7)

whereΞG is the transfer function of the quantum linear systemG defined in Sec. II. This result

provides a natural generalization of the well-known Gaussian transfer properties of classical linear

systems to an important class of highly non-classical quantum states that includes single photon

states. Results of this type are anticipated to be of fundamental importance to the analysis and

design of quantum systems for the processing of highly non-classical quantum states. While

most of this paper is concerned with questions of analysis, we include a short section on

synthesis, generalizing the work [29]. Here, a quantum linear system is designed to manipulate

the wavepacket shape of a single photon. This is an example ofcoherent control, [29].

Notation. Given a column vector of complex numbers or operatorsx = [ x1 · · · xk ]T where

k is a positive integer, definex# = [ x∗
1 · · · x∗

k
]T , where the asterisk∗ indicates complex

conjugation or Hilbert space adjoint. Denotex† = (x#)T . Furthermore, define the doubled-up

column vector to bĕx = [ xT
(
x#
)T ]T . The matrix case can be defined analogously. LetIk be

an identity matrix and0k a zero square matrix, both of dimensionk. DefineJk = diag(Ik,−Ik)
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G

bout b

Fig. 2. A quantum linear stochastic systemG with input b and outputbout

andΘk = [ 0 Ik; −Ik 0 ] (The subscript “k” is omitted when it causes no confusion.) Then

for a matrixX ∈ C
2j×2k, defineX♭ = JkX

†Jj. ⊗c denotes the Kronecker product.m is the

number of input channels, andn is the number of degrees of freedom of a given quantum

linear stochastic system (that is, the number of oscillators). |φ〉 denotes the initial state of the

system which is always assumed to be vacuum,|0〉 denotes the vacuum state of free fields.

Given a functionf(t) in the time domain, define its two-sided Laplace transform [23, Chapter

10] to beF [s] = Lb{f(t)}(s) :=
∫∞
−∞ e−stf(t)dt. Whens = iω, we have the Fourier transform

F [iω] :=
∫∞
−∞ e−iωtf(t)dt. Given two constant matricesU , V ∈ Cr×k, a doubled-up matrix

∆(U, V ) is defined as

∆(U, V ) :=




U V

V # U#



 . (8)

Similarly, given time-domain matrix functionsE−(t) andE+(t) of compatible dimensions, define

a doubled-up matrix function

∆(E−(t), E+(t)) :=




E−(t) E+(t)

E+(t)# E−(t)#



 . (9)

Then its two-sided Laplace transform is

∆(E−[s], E+[s]) = Lb{∆(E−(t), E+(t))}(s) =




E−[s] E+[s]

E+[s∗]# E−[s∗]#



 . (10)

Finally, given two operatorsA andB, their commutator is defined to be[A,B] = AB −BA.

II. QUANTUM L INEAR SYSTEMS

In this section quantum signals and systems of interest are introduced, Fig. 2. Quantum systems

behave in accordance with the laws of quantum mechanics, andin Sec. II-A we summarize the

dynamics of a quantum linear system driven by external quantum fields. These models feature

inputs and outputs, corresponding, for example, to light incident on and reflected by the system,
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[13], [43]. In Sec. II-B we write down explicitly the input-output relations, using a notation for

the impulse response motivated by physical annihilation and creation processes. Since one of

our objectives is to study the steady-state response of the quantum linear system, we present in

Sec. II-C the steady-state versions of the input-output relations, as well as the transfer function

defined in terms of the two-sided Laplace transform. Our analysis will require the stable inversion

of the transfer function, and this is presented in Sec. II-D.Sections II-E, II-F and II-G provide

the definitions of Gaussian and photon states needed in this paper. Sec. II-H then describes how

output means and covariances are determined from the corresponding input quantities.

A. Dynamics

The open quantum linear systemG, shown in Fig. 2, is a collection ofn interacting quantum

harmonic oscillatorsa = [a1, . . . , an]
T (defined on a Hilbert spaceHG) coupled tom boson fields

b(t) = [b1(t), . . . , bm(t)]
T (defined on a Fock spaceF) [40], [43], [44]. Here,aj (j = 1, . . . , n)

is the annihilation operator of thejth quantum harmonic oscillator satisfying the canonical

commutation relations[aj , a∗k] = δjk. The vectorb(t) represents anm-channel electromagnetic

field in free space, which satisfies the singular commutationrelations

[bj(t), b
∗
k(t

′)] = δjkδ(t−t′), [bj(t), bk(t
′)] = [b∗j (t), b

∗
k(t

′)] = 0, j, k = 1, . . . , m, ∀t, t′ ∈ R. (11)

The operatorbj(t) (j = 1, . . . , m) may be regarded as a quantum stochastic process; in the case

where the field is in the vacuum state (denoted|0〉, [32], [13], [43]), this process is quantum white

noise. The integrated field operators are given byB(t) =
∫ t

t0
b(r)dr andB#(t) =

∫ t

t0
b#(r)dr,

which are quantum Wiener processes. The gauge process is given byΛ(t) =
∫ t

t0
b#(τ)bT (τ)dτ =

(Λjk(t))j,k=1,...,m with operator entriesΛjk on the Fock spaceF . Finally in this paper it is assumed

that these quantum stochastic processes arecanonical, that is, they have the following non-zero

Ito products

dBj(t)dB
∗
k(t) = δjkdt, dΛjkdB

∗
l (t) = δkldB

∗
j (t), (12)

dBj(t)dΛkl(t) = δjkdBl(t), dΛjk(t)dΛlm(t) = δkldΛjm(t), (j, k, l = 1, . . . , m).

The systemG can be parameterized by a triple(S−, L,H). In this triple,S− is a scattering

matrix (satisfyingS−S
†
− = S†

−S− = Im). The vector operatorL is defined asL = C−a+C+a
#,

whereC− andC+ ∈ C
m×n. The HamiltonianH = 1

2
ă†∆(Ω−,Ω+) ă describes the initial internal
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energy of the oscillators, whereΩ−,Ω+ ∈ Cn×n satisfyΩ− = Ω†
− andΩ+ = ΩT

+. With these

parameters, the Schrodinger’s equation for the systemG (with initial internal energyH) and

boson field is, in Ito form ([13, Chapter 11]),

dU(t, t0) =

{

Tr[(S− − Im)dΛ
T ] + dB†(t)L− L†S−dB(t)− (

1

2
L†L+ iH)dt

}

U(t, t0), t ≥ t0,

(13)

with U(t0, t0) = I (the identity operator) for allt ≤ t0. Moreover, by means of Ito rules, it can be

shown that the operatorU(t, t0) satisfiesd(U(t, t0)U
∗(t, t0)) = d(U∗(t, t0)U(t, t0)) = 0, ∀t ≥ t0,

and sinceU(t0, t0) = I we see thatU(t, t0) is unitary.

In the Heisenberg picture, the system operators evolve according to ă(t) = U(t, t0)
∗ăU(t, t0)

(componentwise on the components ofă). The output field̆bout(t) (which carries away infor-

mation about the system after interaction) is defined byb̆out(t) = U(t, t0)
∗b̆(t)U(t, t0) (compo-

nentwise on the components ofb̆(t)). Consequently, by Eq. (13), the dynamical model for the

systemG can be written as

˙̆a(t) = Aă(t) +BSb̆ (t) , ă(t0) = ă, (14)

b̆out (t) = Că(t) + Sb̆ (t) , (15)

in which system matrices are given in terms of physical parameters byS = ∆(S−, 0) , C =

∆(C−, C+) , B = −C♭, A = −1
2
C♭C − iJn∆(Ω−,Ω+).

Remark 1:Eqs. (14) and (15) are quantum linear systems, which can be obtained using the

definitions ă(t) = U∗(t, t0)ă(t0)U(t, t0) and b̆out(t) = U∗(t, t0)b̆(t)U(t, t0) and making use of

Ito rules and the commutation relations for annihilation and creation operators, [43].

The systemG is said to beasymptotically stable(equivalently,exponentially stable) if the

matrix A is Hurwitz [44, Sec. III-A]. More details on quantum linear stochastic systems can be

found in, e.g., [13], [43], [44], [46] and references therein.

Remark 2:Quantum linear systems have been widely used in quantum optics. Moreover,

They have also been used in opto-mechanical systems, e.g., Eqs. (15)-(18) in the Supplementary

Information of Reference [27] and Eqs. (9)-(10) and the linebelow Eq. (10) in Reference [39].

They also appear in circuit quantum electrodynamics (circuit QED) systems, e.g., Eqs. (18)-(21)

in Reference [28].
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B. Input-output relations

The output may be expressed in terms of the input and initial system variables

b̆out(t) = CeA(t−t0)ă+

∫ t

t0

CeA(t−r)BSb̆(r)dr + Sb̆(t), t ≥ t0. (16)

We find it convenient to express this input-output relation in terms of impulse response functions.

Define

gG−(t) :=







δ(t)S− − [ C− C+ ]eAt




C†

−

−C†
+



S−, t ≥ 0

0, t < 0

,

gG+(t) :=







−[ C− C+ ]eAt




−CT

+

CT
−



S#
− , t ≥ 0

0, t < 0

. (17)

(Later we usegjkG− and gjkG+ (j, k = 1, . . . , m) to denote the entries ofgG− and gG+ on thejth

row andkth column, respectively.) Theimpulse response functionfor the systemG is

gG(t) :=







δ(t)S − CeAtC♭S, t ≥ 0

0, t < 0
. (18)

It can be checked thatgG(t) defined in Eq. (18) is in the form of

gG(t) = ∆ (gG−(t), gG+(t)) . (19)

Therefore the input-output relation (16) may be expressed in a more compact form

b̆out(t) = CeA(t−t0)ă+

∫ t

t0

gG(t− r)b̆(r)dr. (20)

C. Steady-state input-output relations

Assume that the system (14) is asymptotically stable. Letting t0 → −∞ and noticing (18),

Eq. (20) becomes

b̆out(t) =

∫ ∞

−∞
gG(t− r)b̆(r)dr. (21)

Let ΞG[s], ΞG− [s], ΞG+ [s], b̆[s] and b̆out[s] denote the two-sided Laplace transforms ofgG(t),

gG−(t), gG+(t), b̆(t) and b̆out(t), respectively. Then by the above definitions and standard proper-

ties of the two-sided Laplace transform we have the transferfunction relation̆bout[s] = ΞG[s]b̆[s],

where

ΞG[s] = ∆(ΞG− [s],ΞG+[s]). (22)
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D. Flat-unitary property and stable inversion

For later use we record here some important inversion results for quantum linear systems.

Proposition 1: The reciprocal of the transfer functionΞG[s] is given by

ΞG[s]
−1 = ΞG[−s∗]♭ = ∆(ΞG− [−s∗]†,−ΞG+ [−s]T ). (23)

Consequently, we have the fundamental flat-unitary relation

ΞG[iω]
♭ΞG[iω] = ΞG[iω]ΞG[iω]

♭ = I2m, ∀ω ∈ R. (24)

Proof: Equation (23) follows from [16, Eq. (74)], and the flat-unitary relation (24) follows

on settings = iω.

We now apply the results and methods of [38] to find a stable inverse of the quantum linear

systemG. Define

gG−1(t) := L
−1
b {ΞG[s]

−1}(t), (25)

whereL
−1
b is the inverse two-sided Laplace transform [23, Chapter 10].

On the basis of Proposition 1, the following result can be established.

Lemma 1:Assume that the systemG (Eq. (14)) is asymptotically stable. Then the impulse

response of the stable inverse ofG is given by

gG−1(t) = ∆
(
gG−(−t)†,−gG+(−t)T

)
=







0, t > 0

S♭δ(t)− S♭Ce−A♭tC♭, t ≤ 0
. (26)

Proof: By definition of the two-sided Laplace transform, we haveLb{f(−t)∗}(s) = f [−s∗]∗

and Lb{f(−t)}(s) = f [−s]. Combining this with expression (23) in Proposition 1, we obtain

the first equality in (26). The second equality in (26) follows from the definitions of the impulse

responsesgG−(t) andgG+(t) in terms of the system matrices.

E. Gaussian system (single mode) states

A stationary Gaussian system stateρs on HG is specified by its characteristic function [14],

Tr[ρs exp(iz̆
†ă)] = exp(−1

2
z̆†Σz̆ + iz̆†β̆), ∀z ∈ C

n, (27)

whereβ̆ = ¯̆a(t) = Tr[ρsă(t)], andΣ = Tr[ρs(ă(t)− β̆)(ă(t)− β̆)†] is a non-negative Hermitian

matrix. In general,Σ has the form

Σ =




In +NT M

M † N



 . (28)
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In particular, thegroundor vacuumstate|φ〉 is specified byβ = 0 andΣφ =




In 0

0 0n



.

F. Gaussian field states

Depending on the nature of the boson fields, input signalsb(t) can be in various states. In this

section we considerm-channel Gaussian field statesρg, [14]. Given a functionf ∈ L2(R,Cm),

define an integral functionalR on the Hilbert spaceL2(R,C2m) to be

(Rf̆)(t) :=

∫ ∞

−∞
Rg(t, r)f̆(r)dr, (29)

whereRg(t, r) = Rg(r, t)
† ≥ 0. The m-channel Gaussian field state can be specified by the

characteristic function

Tr[ρg exp(i

∫ ∞

−∞
f̆(t)†b̆(t)dt)] = exp(−1

2
〈f̆ |Rf̆〉+ i〈m̆|f̆〉), (30)

wherem ∈ L2(R,Cm), and 〈·|·〉 denotes the inner product in the Hilbert spaceL2(R,C2m). It

can be checked that the mean value isTr[ρg b̆(t)] = m̆(t) and the covariance function is

Tr[ρg(b̆(t)− m̆(t))(b̆†(r)− m̆(r)†)] = Rg(t, r), ∀r, t ∈ R. (31)

In general, the covariance functionRg(t, r) has the form

Rg(t, r) =




δ(t− r) + ν(r, t)T µ(t, r)

µ(r, t)† ν(t, r)



 (32)

for real r and t. When ρg is stationary,Rg(t, r) depends on the difference betweent and r,

instead of their particular vales. In this case, we may useRg(τ) to replaceRg(t, r). In particular,

the quantumvacuumfield state|0〉 is specified by

R0(τ) = δ(τ)




Im 0

0 0m



 . (33)

G. Photon field states

Now we introduce another type of field states: the continuous-mode single photon pure states.

In the one channel case we denote it by|Ψ〉 = |1ν〉, as defined in [24, Eq. (6.3.4)], [29, Eq. (9)]

|1ν〉 = B∗(ν)|0〉, (34)
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where|0〉 is the vacuum state of the field as defined in Sec. II-F, andB∗(ν) :=
∫∞
−∞ ν(r)b∗(r)dr.

Here, ν is a complex-valued function such that
∫∞
−∞ |ν(r)|2dr = 1. Expression (34) says that

the single photon wavepacket is created from the vacuum using the field operatorB∗(ν). Using

the relationb(t)|1ν〉 = ν(t)|0〉, we see that the operatorB(ν) :=
∫∞
−∞ ν(r)∗b(r)dr annihilates a

photon, resulting in the vacuum:B(ν)|1ν〉 = |0〉.
The field operatorb(t) is a zero mean quantum stochastic process with respect to thesingle

photon state. The covariance function is given by

R(t, r) = E1ν [b̆(t)b̆
†(r)] = δ(t− r)




1 0

0 0



+




ν(r)∗ν(t) 0

0 ν(r)ν(t)∗



 . (35)

The gauge processΛ(t) (recall Section II-A) for a single photon channel takes the form

Λ(t) =
∫ t

0
n(r)dr, wheren(t) = b∗(t)b(t) is the number operator for the field. The intensity

of the field is the mean̄n(t) = 〈1ν |n(t)|1ν〉 = |ν(t)|2, an important physical quantity that

determines the probability of photodetection per unit time.

H. Mean and covariance transfer

In this section some basic covariance transfer results for the quantum linear systemG are

presented, which are the quantum counterparts of the well-known classical results, e.g. [22, Sec.

1.10.3], but adapted to take into account the non-commutingsystem and field variables.

Consider a quantum linear systemG initialized at timet0 in a stateρ = |φ〉〈φ|⊗ρfield, where

|φ〉 is the vacuum system state and the field stateρfield satisfiesTr[ρfieldb̆(t)] = 0 (particular

choices ofρfield will be made below). By taking expectations in Eq. (14), we find that the

mean¯̆a(t) = Tr[ρă(t)] satisfies Eq. (5) since the field has mean zero. Also, since thesystem is

initialized in the ground state|φ〉, we have¯̆a(t) = ¯̆a(t0) = 0 for all t ≥ t0. Define the matrix

Γ(t) = Tr[ρă(t)b̆†(t)], (36)

and a matrixF by

Fdt = Tr[ρfielddB̆(t)dB̆†(t)]. (37)

Lemma 2:The quantum linear systemG initialized in the stateρ (ground system state and

zero mean field state) has zero mean¯̆a(t) = 0 for all t ≥ t0 and the covariance matrixΣ(t) =

Tr[ρă(t)ă†(t)] satisfies the differential equation

Σ̇(t) = AΣ(t) + Σ(t)A† +BSΓ†(t) + Γ(t)S†B† +BSFS†B†, (38)
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with initial conditionΣ(t0) = Σφ, whereF is given in Eq. (37).

Proof: The proof of Eq. (38) follows by taking expectations of the differential

d(ă(t)ă†(t)) = (dă(t))ă†(t) + ă(t)dă†(t) + dă(t)dă†(t) (39)

= Aă(t)ă†(t)dt+BSdB̆(t)ă†(t) + ă(t)ă†(t)A†dt+ ă(t)dB̆†(t)S†B† +BSFS†B†dt

and noticing thatTr[ρdB̆(t)ă†(t)] = Tr[ρă(t)dB̆†(t)]†.

Note that expected values of quadratic forms may easily be evaluated in terms ofΣ(t), for

example,Tr[ρă†(t)Mă(t)] = Tr[MTΣ(t)T ]− Tr[MTJ ].

Remark 3:Further information regarding the dynamics ofΓ(t) will be given in Section III-B

for the case of multichannel photon fields.

Suppose now̆bout(t) is the steady-state output field defined by (21). Define the input and

output covariancesRin(t, r) := Tr[ρb̆(t)b̆†(r)] andRout(t, r) := Tr[ρb̆out(t)b̆
†
out(r)].

Theorem 1:Assume that the system(14) is asymptotically stable. Let the input field have

covarianceRin(t, r). Then the steady-state output covariance is given by

Rout(t, r) =

∫ ∞

−∞

∫ ∞

−∞
gG(t− τ1)Rin(τ1, τ2)gG(r − τ2)

†dτ1dτ2. (40)

Now suppose that̆b(t) is stationary with respect to the field stateρfield. Write R[iω] for the

spectral density matrix (whereR[s] is the two-sided Laplace transform ofR(τ)).

Theorem 2:Assume that the system(14) is asymptotically stable. Let the input field have

spectral density matrixRin[iω]. Then the output spectral density matrix is given by

Rout[iω] = ΞG[iω]Rin[iω]ΞG[iω]
†. (41)

If the input field state is vacuumρin = |0〉〈0|, then the steady-state output field stateρout is

a Gaussian state with covarianceRout(τ) which is in general not the vacuum state. However, if

C+ = 0 andΩ+ = 0 (passivesystems) then we have

Rout[iω] = ∆(ΞG−[iω], 0)




I 0

0 0



∆(ΞG− [iω], 0)† =




I 0

0 0



 , (42)

since for a passive systemΞG−[iω]ΞG−[iω]† = I (Eq. (24)). So in the passive case the output

state is again the vacuum state.
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III. OUTPUT INTENSITIES OF QUANTUM LINEAR SYSTEMS DRIVEN BY MULTICHANNEL

PHOTON INPUTS

We begin our study of the response of quantum linear systems to photon inputs by determining

the statistics of the output field. Specifically, we considermulti-channel input signals, each

channel with one photon, as defined in Section III-A, and thenwe find expressions for the output

intensities (transient, Section III-B, and steady state, Section III-C) and correlation, Section III-D.

A. Multichannel photon fields

We now considerm field channels each of which is in a single photon state|1νk〉, determined

by possibly distinct pulse shapesνk satisfying the normalization condition
∫∞
−∞ |νk(t)|2dt = 1,

k = 1, . . . , m. This means that the state of them-channel input is given by the tensor product

|Ψν〉 = |1ν1〉 ⊗ · · · ⊗ |1νm〉 =
m∏

k=1

B∗
k(νk)|0⊗m〉, (43)

where them-channel vacuum state is denoted|0⊗m〉 = |0〉 ⊗ · · · ⊗ |0〉. Here, B∗
k(νk) =

∫∞
−∞ νk(t)b

∗
k(t)dt is the creation operator for thek-th field channel.

For convenience, we letF0 denote the class ofm-channel photon input field states:

F0 =

{

|Ψν〉 =
m∏

k=1

B∗
k(νk)|0⊗m〉 :

∫ ∞

−∞
|νk(t)|2dt = 1, k = 1, 2, . . . , m

}

. (44)

B. Output intensity when the system is initialized at timet0

In this section, we study the intensity of output fields of thesystemG driven by them-channel

input field in the classF0 (Eq. (44)). We define this intensity to be

n̄out(t) :=
〈

φΨν|b#out(t)bTout(t)|φΨν

〉

m×m
. (45)

We first introduce some notations. For eachk = 1, . . . , m, define

|ζk〉 :=
∏

j 6=k

B∗
j (νj)|0⊗m〉 = |1ν1〉 ⊗ · · · ⊗ |1νk−1

〉 ⊗ |0〉 ⊗ |1νk+1
〉 ⊗ · · · ⊗ |1νm〉. (46)

Denote

ξ−in(t) = diag(ν1(t), . . . , νm(t)), (47)
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and

C− = [Im 0m]C, B− = BS




Im

0m



 , B+ = BS




0m

Im



 . (48)

For t ≥ t0, define classical variables

m−(t) :=








〈φΨν|ă†(t)|φζ1〉
...

〈φΨν |ă†(t)|φζm〉








m×2n

, m+(t) :=








〈φζ1|ă†(t)|φΨν〉
...

〈φζm|ă†(t)|φΨν〉








m×2n

, (49)

and

Σν(t) := 〈φΨν |ă(t)ă†(t)|φΨν〉2n×2n, t ≥ t0. (50)

We have the following result.

Theorem 3:When the systemG is driven by anm-channel photon input field|Ψν〉 in the

classF0 (Eq. (44)), the output intensitȳnout(t) is given by

n̄out(t) =C−#Σν(t)
TC−T − C−#JnC

−T + S#
− ξ

−
in(t)

†ξ−in(t)S
T
− (51)

+ S#
− ξ

−
in(t)

†m−(t)
#C−T + C−#m−(t)

T ξ−in(t)S
T
−,

wherem−(t), m+(t), and Σν(t), defined in Eqs. (49)-(50), satisfy the following differential

equations:

ṁ−(t) = m−(t)A
† + ξ−in(t)

†B−†, t ≥ t0 (52)

ṁ+(t) = m+(t)A
† + ξ−in(t)B

+†, t ≥ t0, (53)

and

Σ̇ν(t) =AΣν(t) + Σν(t)A
† +B−ξ−in(t)m−(t) +B+ξ−in(t)

†m+(t) +m−(t)
†ξ−in(t)

†B−† (54)

+m+(t)
†ξ−in(t)B

+† +BSdiag(Im, 0m)S
†B†, t ≥ t0,

respectively, with initial conditionsm−(t0) = 0, m+(t0) = 0, andΣν(t0) = diag(Im, 0m).

Proof: It is straightforward to derive Eqs. (52) and (53). To apply Lemma 2 to establish

Eq. (54), it suffices to evaluateΓ(t) andF defined in Eqs. (36) and (37) respectively. Notice

that

〈φΨν|ă(t)b†(t)|φΨν〉 = m−(t)
†ξ−in(t)

†, 〈φΨν |ă(t)bT (t)|φΨν〉 = m+(t)
†ξ−in(t). (55)
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We have

Γ(t) =
[

m−(t)
†ξ−in(t)

† m+(t)
†ξ−in(t)

]

. (56)

On the other hand, for the single-photon input field,F defined in Eq. (37) is

Fdt = 〈Ψν |dB̆(t)dB̆†(t)|Ψν〉 =




Im 0

0 0



 dt. (57)

Substitution of Eqs. (56)-(57) into Eq. (38) yields Eq. (54). Finally, note that the gauge process

of the output fieldΛout(t) satisfies, e.g. [15, Sec. IV],

dΛout(t) = S#
−dΛ(t)S

T
− + S#

−dB
#(t)LT (t) + L#(t)dBT (t)ST

− + L#(t)LT (t)dt (58)

= S#
−dΛ(t)S

T
− + S#

−dB
#(t)ăT (t)C−T + C−#ă#(t)dBT (t)ST

− + C−#ă#(t)ăT (t)C−Tdt.

Noticing that dΛout = b#out(t)b
T
out(t)dt and ă(t)ă†(t) = (ă(t)#ăT (t))T + Jn, it can be readily

shown that̄nout(t) defined in Eq. (45) satisfies Eq. (51). The proof is completed.

C. Output intensity in steady state

In this subsection, we compute the steady-state output intensity when the systemG is driven

by anm-channel photon input field|Ψν〉 in the classF0 (Eq. (44)).

The following is the main result of this subsection, whose proof is given in the Appendix.

Theorem 4:The steady-state output intensity of the output fields of thesystemG driven by

them-channel single-photon input field|Ψν〉 in the classF0 (Eq. (44)) is given by

n̄out(t) =

∫ ∞

0

gG+(r)#gG+(r)Tdr + ξ+out(t)
#ξ+out(t)

T + ξ−out(t)
#ξ−out(t)

T , (59)

where

ξ−out(t) =

∫ ∞

−∞
gG−(t− r)ξ−in(r)dr, ξ+out(t) =

∫ ∞

−∞
gG+(t− r)ξ−in(r)

#dr. (60)

In particular, the total output intensity is given by

Tr[n̄out(t)] =

m∑

j,k=1

∫ ∞

0

|gjkG+(t)|2dt+
m∑

j,k=1

|ξ+,jk
out (t)|2 +

m∑

j,k=1

|ξ−,jk
out (t)|2, (61)

wheregjkG+(t) is the element ofgG+ on thejth row andkth column. The same applies togjkG−(t),

ξ−,jk
out , andξ+,jk

out .

For the single input case, the steady-state output intensity is given by

n̄out(t) =

∫ ∞

0

|gG+(r)|2dr +
∣
∣
∣
∣

∫ ∞

−∞
gG+(t− r)ξ−in(r)

∗dr

∣
∣
∣
∣

2

+

∣
∣
∣
∣

∫ ∞

−∞
gG−(t− r)ξ−in(r)dr

∣
∣
∣
∣

2

. (62)
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Remark 4:For the single input case, ift0 = 0, in the Appendix we have shown that substi-

tution of Eqs. (121), (122), (124) and (127) into Eq. (120) yields

n̄out(t) =

∫ t

0

|gG+(r)|2 dr +
∣
∣
∣
∣

∫ t

0

(gG+(t− r)ξ−(r)∗dr

∣
∣
∣
∣

2

+

∣
∣
∣
∣

∫ t

0

gG−(t− r)ξ−(r)dr

∣
∣
∣
∣

2

. (63)

Assuming further thatC+ = Ω+ = Ω− = 0, C− =
√
κa, andξ−(t) is ν(t) in [30, Eq. (18)], then

Eq. (63) reduces to [30, Eq. (26)].

D. Output covariance function in steady state

If the input field is a multichannel photon field state|Ψν〉 as defined in Eq. (43), then it is

easy to show that the input covariance function is

Rin(t, r) = EΨν [b̆(t)b̆
†(r)] = R0(t− r) + ∆(ξ−in(t), 0)∆(ξ−in(r), 0)

†, (64)

whereξ−in(t) is given in Eq. (47) andR0 is the vacuum covariance defined by (33). According

to Theorem 1, the output covariance function is

Rout(t, r) =

∫ ∞

−∞
gG(t− τ)diag(Im, 0m)gG(r − τ)†dτ +∆(ξ−out(t), ξ

+
out(t))∆(ξ−out(r), ξ

+
out(r))

†,

(65)

with ξ−out and ξ+out given by Eq. (60). Clearly

Rin(t, r) = Rin(r, t)
†, Rout(t, r) = Rout(r, t)

†. (66)

Example 1.(Optical cavity) An optical cavityG is a single open oscillator [13], [3], [40] with

Ω− = ω ∈ R, Ω+ = 0, C− =
√
κ, C+ = 0 [16, section IV. B.]). Let the pulse shape of the

single-photon input field state|1ν〉 be given by

ν(t) =







√
2γe−γt, t ≥ 0,

0, t < 0.
(67)

The state|1ν〉 can describe a single-photon field emitted from an optical cavity with damping

rate
√
2γ. The input covariance function is given by (35). On the otherhand by Eq. (60),

ξ−out(t) =







√
2γe−γt − κ

√
2γ

κ
2
+iω−γ

(
e−γt − e−(κ

2
+iω)t

)
, t ≥ 0

0, t < 0
, ξ+out(t) ≡ 0. (68)

Write

χ(t, r) =







−κe−(κ
2
+iω)(t−r), t > r

δ(t− r), t = r

−κe−(κ
2
+iω)(r−t), t < r

. (69)
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It can be checked that the steady-state output correlation function is thus

Rout(t, r) = χ(t, r)




1 0

0 0



+∆(ξ−out(t), 0)∆(ξ−out(r), 0)
†. (70)

Clearly, the mean input intensity is̄nin(t) = |ν(t)|2. By Theorem 4, the steady-state mean output

intensity isn̄out(t) = |ξ−out(t)|2. According to Theorem 3, fort ≥ 0,

m−(t) =
−√

2κγ
k
2
− γ − iω

[

e−γt − e−(κ
2
−iω)t 0

]

, m+(t) =
−√

2κγ
k
2
− γ + iω

[

0 e−γt − e−(κ
2
+iω)t

]

.

(71)

Hence, the evolution of system variables covarianceΣν(t) given in Eq. (54) can be expressed

explicitly. In particular, whenω = 0,

Σν(t) =




1 0

0 0



+
2γκ

(κ
2
− γ)2

(e−
κ
2
t − e−γt)2I2, t ≥ 0. (72)

Example 2.(Degenerate parametric amplifier) A degenerate parametricamplifier (DPA) is an

open oscillator that is able to produce squeezed output fields [13], [3], [40]. A model for a DPA

is [13, pp. 220 and Chapter 10]

˙̆a(t) = −1

2




κ −ǫ

−ǫ κ



 ă(t)−
√
κb̆(t), ă(0) = ă,

b̆out(t) =
√
κă(t) + b̆(t), (0 < ǫ < κ). (73)

If the single-photon input|1ν〉 has the pulse shape defined in Eq. (67), then by Eq. (60),

ξ−out(t) =







√
2γe−tγ +

2κ
√
2γe−

κ
2
t

(

e−
2γ−κ

2
t(2γ−κ)−(2γ−κ) cosh tǫ

2
+ǫ sinh tǫ

2

)

(κ−2γ−ǫ)(κ−2γ+ǫ)
, t ≥ 0

0, t < 0

, (74)

ξ+out(t) =







2κ
√
2γe−

tκ
2

(

−ǫe−
2γ−κ

2
t+ǫ cosh tǫ

2
−(2γ−κ) sinh tǫ

2

)

(κ−2γ−ǫ)(κ−2γ+ǫ)
, t ≥ 0

0, t < 0

. (75)

When the system is initialized at timet0 = 0, by Eq. (63), the mean output intensity is

n̄out(t) = κ2

∫ t

0

e−κr sinh2 ǫr

2
dr + |ξ−out(t)|2 + |ξ+out(t)|2, t ≥ 0. (76)
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Since |Ψin〉 = B∗(ν)|0〉, the covariance function corresponding to|ΦRin
〉 (the vacuum field

state) isR0(τ) in Eq. (33). According to Theorem 1, the output covariance function is

Rout,g(τ) =







κRa(τ)− κeAτdiag(1, 0) + diag(1, 0)δ(τ), τ > 0

κRa(τ)− 1
2
κeAτdiag(1, 0)− 1

2
κdiag(1, 0)eA

†τ + diag(1, 0)δ(τ), τ = 0

κRa(τ)− κdiag(1, 0)e−A†τ + diag(1, 0)δ(τ), τ < 0

,

(77)

where

Ra(τ) =







eAτΥ, τ > 0

Υ, τ = 0

Υe−A†τ , τ < 0

, Υ = κ

∫ ∞

0

eAt




1 0

0 0



 eA
†tdt. (78)

As a result, according to Eq. (65), the covariance function of the output field of the DPA driven

by the single-photon input field|1ν〉 can be expressed as

Rout(t, r) = Rout,g(t− r) + ∆(ξ−out(t), ξ
+
out(t))∆(ξ−out(r), ξ

+
out(r))

†, (79)

whereRout,g(t− r) is given in Eq. (77).

Remark 5: In the cavity example, the output correlation function has the same form as the

single photon correlation function (35), while this is not the case for the degenerate parametric

amplifier. Thus the steady-state output state may in some cases be a single photon state, while

in other cases more complex states may result. A general class of output states is the subject of

the following section.

IV. PHOTON-GAUSSIAN STATES

Since the states produced as the outputs of linear quantum systems need not necessarily be

photon states, we consider a larger class of states that has the property that if a state in this

class is input to a linear quantum system, then in steady state the output state is also in this

class. This class of states is defined and studied in Section IV-B. However, the expressions for

specifying these states are quite complicated, and so in Section IV-A we consider the simpler

single channel case for pedagogical reasons. The calculations involved in determining the output

states make use of the stable, but non-causal, inversions discussed in Section II-D.
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A. The one channel case

Given an initial joint system-field stateρ0g = |φ〉 〈φ| ⊗ |0〉 〈0|, denote

ρ∞g = lim
t→∞,t0→−∞

U (t, t0) ρ0gU (t, t0)
∗ . (80)

Define

ρfield,g = Trsys[ρ∞g], (81)

where the subscript “sys” indicates that the trace operation is with respect to the system.

According to Theorem 2,ρfield,g is the steady-state output field density with covariance function

Rout[iω] given in Eq. (41).

We are in a position to prove a result concerning the output field of quantum linear systems

driven by single-photon states.

Proposition 2: Let m = 1 and suppose the input stateρin = |1ν〉〈1ν | is a single photon state.

Then the steady-state output field state for the linear quantum systemG is given by

ρout = (B∗(ξ−out)− B(ξ+out))ρfield,g(B
∗(ξ−out)− B(ξ+out))

∗ (82)

where

∆(ξ−out[s], ξ
+
out[s]) = ΞG[s]∆(ν[s], 0), (83)

andρfield,g, defined in Eq. (81), is the steady-state density operator for the output field with zero

mean and covariance function

Rout[iω] = ΞG[iω]Rin[iω]ΞG[iω]
†, (84)

whereRin[iω] is the Fourier transform ofR0(τ) defined in Eq. (33).

Proof: The initial joint system-field density is

ρ0 = |φ〉 〈φ| ⊗ |1ν〉 〈1ν | = B∗(ν)ρ0gB(ν).

The steady-state joint system-field density, denoted byρ∞, is

ρ∞ = lim
t→∞,t0→−∞

U (t, t0) ρ0U (t, t0)
∗ (85)

= lim
t→∞,t0→−∞

U (t, t0)B
∗(ν)ρ0gB(ν)U (t, t0)

∗

= lim
t→∞,t0→−∞

U (t, t0)B
∗(ν)U (t, t0)

∗ ρ∞,g lim
t→∞,t0→−∞

U (t, t0)B(ν)U (t, t0)
∗ ,
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whereρ∞,g is given in Eq. (80). Now we find expressions for the other terms.

lim
t→∞,t0→−∞

U (t, t0)B
∗(ν)U (t, t0)

∗

= lim
t→∞,t0→−∞

U (t, t0)

∫ ∞

−∞
ν(r)Isys ⊗ b∗(r)drU (t, t0)

∗

= lim
t→∞,t0→−∞

U (t, t0)

∫ t

t0

ν(r)Isys ⊗ b∗(r)drU (t, t0)
∗

= Isys ⊗
∫ ∞

−∞
ν(r)b−∗(r,−∞)dr (86)

whereb−(t, t0) = U(t, t0)b(t)U
∗(t, t0). Now

b̆out(t) = U∗(t, t0)b̆(t)U(t, t0) = CeA(t−t0)ă +

∫ t

t0

gG(t− r)b̆(r)dr (87)

and so

b̆(t) = CeA(t−t0)ă +

∫ t

t0

gG(t− r)b̆−(r, t0)dr. (88)

Now sendt0 → −∞ to obtain

b̆(t) =

∫ t

−∞
gG(t− r)b̆−(r,−∞)dr =

∫ ∞

−∞
gG(t− r)b̆−(r,−∞)dr. (89)

Next, using the stable inverse ofG (Lemma 1, Eq. (26)) this implies

b̆−(t,−∞) =

∫ ∞

−∞
gG−1(t− r)b̆(r)dr (90)

Therefore

lim
t→∞,t0→−∞

U (t, t0)B
∗(ν)U (t, t0)

∗ = Isys ⊗ (B∗(ξ−out)−B(ξ+out)), (91)

using Eq. (26) and the definitions ofξ−out(t) and ξ+out(t) in Eq. (60).

By Eqs. (85) and (91),

ρ∞ = (Isys ⊗ (B∗(ξ−out)− B(ξ+out)))ρ∞,g(Isys ⊗ (B∗(ξ−out)−B(ξ+out)))
∗ (92)

This, together with Eq. (81),

ρout = Trsys[ρ∞]

= Trsys[(Isys ⊗ (B∗(ξ−out)− B(ξ+out)))ρ∞,g(Isys ⊗ (B∗(ξ−out)−B(ξ+out)))
∗]

= (B∗(ξ−out)−B(ξ+out))ρfield,g(B
∗(ξ−out)− B(ξ+out))

∗.

Eq. (82) is thus established.

August 13, 2018 DRAFT



22

The output stateρout given by (82) is determined by a matrixξout = ∆(ξ−out, ξ
+
out) of functions

which is obtained by convolving an input matrixξin = ∆(ν, 0) with the systemG, and a Gaussian

stateρfield,g whose covarianceRout is given by the usual transfer relation (41) whereRin is the

covariance function for the vacuum field. It will be shown by Proposition 3 in Section IV that

ρfield,g in Eq. (82) is indeed normalized.

Example 3.Refer toExample 1on optical cavities. By Eq. (42),ρfield,g is a vacuum state

|0〉〈0|. By Proposition 2, the steady-state output field state is a pure state|Ψout〉 = B∗(ξ−out)|0〉,
whereξ−out is given in Eq. (68). Clearly, the output is in a single-photon state.

Example 4.Refer toExample 2on degenerate parametric amplifiers. According to Proposition

2, the steady-state output state isρout = (B∗(ξ−out)−B(ξ+out))ρfield,g(B
∗(ξ−out)−B(ξ+out))

∗, where

ξ−out, ξ
+
out are given in Eqs. (74)-(75), and the covariance functionRout of ρfield,g is given by Eq.

(77). The normalization condition forρout will be given by Eq. (100). It can be verified that

indeedTr[ρout] = 1. Clearly,ρout is not a single-photon state.

B. Photon-Gaussian States

In the previous section, in particularExample 4, we saw that a quantum linear system produces

a somewhat complicated output stateρout from a single photon input state. This output state was

determined by pulse shapes and a Gaussian state. In this section we abstract the form of this

output state and define a classF of photon-Gaussianstates. The classF contains single-photon

states studied in [29] and [45] as special cases. Furthermore, in Theorem 5 we show that this

class of states is invariant under the steady-state action of a linear quantum system, that is,

ρin ∈ F implies ρout ∈ F .

We first introduce some notations. Givent1, . . . , tj ∈ C andξ1, . . . , ξj ∈ L2(C,C2m) wherej

is an arbitrary positive integer, define

M−
ξ (t1→j) := ξ1(−t1)⊗c · · · ⊗c ξj(−tj),

Mξ(t1→j) := ξ1(t1)⊗c · · · ⊗c ξj(tj),

M+
ξ (t1→j) := ξj(t1)⊗c · · · ⊗c ξ1(tj), (93)

where⊗c is the Kronecker product. Similarly, for the operatorsb̆(t), define

Mb̆(t1→j) := b̆(t1)⊗c · · · ⊗c b̆(tj). (94)
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Finally for a matrixA, let A⊗j
c := A⊗c · · · ⊗c A be aj-way Kronecker tensor product. Clearly,

whenj = 1, A⊗1
c = A. Defineξ(t) := ∆(ξ−(t), ξ+(t)) ∈ C2m×2m with entriesξ−jk andξ+jk (j, k =

1, . . . , m) for matricesξ−(t), ξ+(t) respectively. LetρR be a zero mean stationary Gaussian field

state with correlation functionR(τ).

The following equation will be used in Definition 1.
∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

2m

(M+
ξ (t1→m)

# ⊗c Mξ(tm+1→2m))
TJ⊗m

c ⊗c Θ
⊗m

c Tr[ρRMb̆(t1→2m)]dt1 . . . dt2m = 1,

(95)

whereρR is a zero-mean Gaussian state with covariance functionR.

Definition 1: A stateρξ,R is said to be aphoton-Gaussianstate if it belongs to the set

F :=

{

ρξ,R =

m∏

k=1

m∑

j=1

(
B∗

j (ξ
−
jk)−Bj(ξ

+
jk)
)
ρR

(
m∏

k=1

m∑

j=1

(
B∗

j (ξ
−
jk)− Bj(ξ

+
jk)
)

)∗

: ξ and ρR satisfy Eq. (95)} . (96)

Proposition 3: The photon-Gaussian statesρξ,R ∈ F are normalized:Tr[ρξ,R] = 1.

Proof: Partitionξ−, ξ+, ξ to be

ξ− = [ξ−,1 · · · ξ−,m], ξ+ = [ξ+,1 · · · ξ+,m], ξ = [ξ1 · · · ξ2m]. (97)

It is not hard to show thatρξ,R ∈ F is in the form of

Tr[ρξ,R] (98)

=Tr

[
∏

k

∫ ∞

−∞
ξk(t)TΘb̆(t)dtρR

(
∏

k

∫ ∞

−∞
ξk(t)TΘb̆(t)dt

)∗]

=Tr






ρR







∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

m

M+
ξ (t1→m)

†J⊗m
c Mb̆(t1→m)dt1 · · ·dtm







∗

×
∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

m

Mξ(t1→m)
TΘ⊗m

c Mb̆(t1→m)dt1 · · · dtm







=

∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

2m

(M+
ξ (t1→m)

# ⊗c Mξ(tm+1→2m))
TJ⊗m

c ⊗c Θ
⊗m

c Tr[ρRMb̆(t1→2m)]dt1 . . . dt2m,
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whereΘ is as introduced in the Notation part of the Introduction section. Thus, thatTr[ρξ,R] = 1

is equivalent to that Eq. (95) holds. The proof is completed.

Note that whenm = 1, a stateρξ,R ∈ F is

ρξ,R = (B∗(ξ−)− B(ξ+))ρR(B
∗(ξ−)− B(ξ+))∗, (99)

and Eq. (95) reduces to

∫ ∞

−∞

∫ ∞

−∞
[ξ−(t)∗ − ξ+(t)]Tr[ρRb̆(t)b̆

†(r)]




ξ−(r)

−ξ+(r)∗



 dtdr = 1. (100)

We are now ready to state the main result of this section. The proof is given in the Appendix.

Theorem 5:Let ρξin,Rin
∈ F be a photon-Gaussian input state. Then the linear quantum

systemG produces in steady state a photon-Gaussian output stateρξout,Rout ∈ F , where

ξout[s] = ΞG[s]ξin[s], (101)

Rout[iω] = ΞG[iω]Rin[iω]ΞG[iω]
†. (102)

Without confusion, we may use the shorthandρout for ρξout,Rout.

Remark 6:When the input state is a pure state and the system is passive (e.g., an optical

cavity or a beamsplitter), it can be seen from Theorem 5 that in steady state the output field is

in a pure state. That is

ρξout,Rout = |Ψξout,Rout〉〈Ψξout,Rout|.

In this case we use|Ψξout,Rout〉 to denote the steady-state output field state. Again, without

confusion, we may use the shorthand|Ψout〉 for |Ψξout,Rout〉.
We remark that the Gaussian part of the specification of photon-Gaussian states is needed to

allow for quantum linear systems with active elements, suchas degenerate parametric amplifiers,

[13], [40], [43]. In general, while passive devices producevacuum from vacuum, active devices

produce nontrivial Gaussian states from vacuum, and photon-Gaussian states from single photon

states, as show in Example 3.

This result provides a complete description of how quantum linear systems process highly

non-classical photon-Gaussian states. In particular, theresult provides the output response to

single photon inputs. The result may be used for dynamical analysis, or for synthesis. Indeed,

one could contemplate generalizations of the synthesis results given in [29] and in Section V to

the class of photon-Gaussian states.
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1

 G out
 

Fig. 3. A quantum linear stochastic systemG driven by a single-photon state|1ν 〉 and a coherent state|α〉 simultaneously.

Example 5.(Beam splitter) Beam splitters are archetype of static and passive quantum optical

instruments [3], which can be modeled asbout(t) = S−b(t) where

S− =





√
η

√
1− η

−√
1− η

√
η



 (103)

with 0 ≤ η ≤ 1. Let ξ−in = diag(ν1, ν2), ξ+in = 0. According to Theorem 5 and Remark 6,

|Ψout〉

=
√

η(1− η)

∫ ∞

−∞
ν1(t)b

∗
1(t)dt

∫ ∞

−∞
ν2(t)b

∗
1(t)dt|01〉 ⊗ |02〉

+η

∫ ∞

−∞
ν1(t)b

∗
1(t)dt|01〉 ⊗

∫ ∞

−∞
ν2(t)b

∗
2(t)dt|02〉

−(1− η)

∫ ∞

−∞
ν2(t)b

∗
1(t)dt|01〉 ⊗

∫ ∞

−∞
ν1(t)b

∗
2(t)dt|02〉

−
√

η(1− η)|01〉 ⊗
∫ ∞

−∞
ν1(t)b

∗
2(t)dt

∫ ∞

−∞
ν2(t)b

∗
2(t)dt|02〉. (104)

In particular, whenη = 1/2 andν1(t) ≡ ν2(t), ∀t ∈ R, the steady-state output state is

|Ψout〉 =
1

2

(∫ ∞

−∞
ν1(t)b

∗
1(t)dt

)2

|01〉 ⊗ |02〉 −
1

2
|01〉 ⊗

(∫ ∞

−∞
ν1(t)b

∗
2(t)dt

)2

|02〉. (105)

In this case, the two photons can not exit from distinct output arms of the beam splitter. These

results are consistent with the results of the calculationsin [40, Sec. 16.4.2].

Example 6.(Linear quantum systems driven by both a single-photon state and a coherent state)

The methods used in this paper may easily be adapted to treat multichannel input fields where

some channels are coherent states while others are single photons. Consider a linear quantum

system driven by a single-photon state|1ν〉 (channel 1) and a coherent state|α〉 (channel 2)

simultaneously, Fig. 3.
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Denote the pure input state by|Ψ〉 = |1ν〉 ⊗ |α〉 = B∗
1(ν)|0〉 ⊗ |α〉. It is easy to show that the

correlation function for the composite state|0〉 ⊗ |α〉 is

Rin(t, r) = 〈0α|b̆(t)b̆†(r)|0α〉 =










δ(t− r) 0 0 0

0 δ(t− r) + α∗(r)α(t) 0 α(t)α(r)

0 0 0 0

0 α∗(t)α∗(r) 0 α∗(t)α(r)










. (106)

Define

ξ−,j
out (t) =

∫ ∞

−∞
gj1G−(t− r)ν(r)dr, ξ+,j

out (t) =

∫ ∞

−∞
gj1G+(t− r)ν(r)∗dr, j = 1, 2. (107)

By Theorem 5, it is not hard to show that the steady-state output state of the system driven by

|Ψ〉 is

ρout =

(
2∑

j=1

(B∗
j (ξ

−,j
out )−Bj(ξ

+,j
out ))

)

ρfield,g

(
2∑

j=1

(B∗
j (ξ

−,j
out )− Bj(ξ

+,j
out ))

)∗

, (108)

whereρfield,g has covariance functionRout given by Eq. (40).

V. PHOTON SHAPE SYNTHESIS

In this section we generalize the result of photon wavepacket shape synthesis results presented

in [29]. We consider a class of passive linear quantum systems for whichC+ = 0 andΩ+ = 0.

From Eq. (14) it is easy to see that

A† + A+ C†C = 0, S†C + (BS)† = 0. (109)

In this caseΞG[s] defined in Eq. (22) isΞG[s] = ∆(ΞG−[s], 0). By Proposition 1,

ΞG[−s∗]†ΞG[s] = I, ∀s ∈ C. (110)

That is,ΞG[s] is all-pass[47, pp. 357].

In what follows we study the followingpulse shapingproblem. Given two pulse shapesν(t)

and νout(t) satisfying
∫∞
−∞ |ν(t)|2dt =

∫∞
−∞ |νout(t)|2dt = 1, let νout[s] and ν[s] be the Laplace

transform ofνout(t) andν(t) respectively. Ifνout[s] andν[s] satisfy

|νout[iω]|2 = |ν[iω]|2, ∀ω ∈ R, (111)

we show that, under mild conditions, there is an all-pass system which maps the input state|1ν〉
to produce the output field state|1νout〉.
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Define

ΞGd
[s] =

νout[s]

ν[s]
. (112)

We make the following assumptions onΞGd
[s]:

Assumptions

1) ΞGd
[s] is real-rational and has a state-space realization [47, Chapter 3]

ΞGd
[s] =




A B

C D



 . (113)

2) ΞGd
[s] is Hurwitz stable.

3) The above state space realization is minimal.

4) D = I.

Theorem 6:If the given input and output pulse shapes satisfy Eq. (111),andΞGd
[s] satisfies

Assumptions 1) - 4), then there exists a linear quantum stochastic systemΞG[s] = ∆(ΞGd
[s], 0)

solving the pulse shaping problem:

S− = I, C− = C, C+ = 0, Ω− =
i

2

(
XA−A†X

)
, Ω+ = 0. (114)

Proof: By Assumption 2, there exits a matrixX = X† ≥ 0 such that

A†X +XA+ C†C = 0. (115)

In fact, by Assumption 3,X > 0. Consequently, by Corollary 13.30 in [47],

D†C +B†X = 0, D†D = I. (116)

Eqs. (115) and (116) can be rewritten as

X−1A† + AX−1 +BB† = 0, B = −X−1C†. (117)

Then by Theorem 5.1 in [26],ΞGd
[s] can be implemented by an all-pass linear quantum stochastic

system with parameters given in equation (114). This completes the proof.

Example 7. Consider the following two functionsν given by Eq. (67) and

νout(t) =







2
(
54+12i

5
e−3t − 5(2 + i)e−2t + 1+13i

5
e(−1−i)t

)
, t ≥ 0

0, t < 0
. (118)
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Fig. 4. The upper plot is forν(t) and the lower plot is forνout(t). The horizontal axes are timet, while the vertical axes are

|ν(t)|2 (the upper) and|νout(t)|2 (the lower) respectively.

It can be checked thatν and νout satisfy Eq. (111). The shapes ofν(t) and νout(t) are plotted

in Fig. 4. Note that
νout[s]

ν[s]
=

s− 3

s+ 3
• s− (1− i)

s+ (1 + i)
. (119)

In the language of(S−, C−, C+,Ω−,Ω+) as discussed in Sec. II-A, by Theorem 6, the transfer

function s−3
s+3

corresponds toG1 =
(
1,
√
6, 0, 0, 0

)
, while the transfer functions−(1−i)

s+(1+i)
corresponds

G2 =
(
1,
√
2, 0, 1, 0

)
. Therefore, the whole system that transfersν to νout is a cascaded system

made ofG1 andG2 [15, Definition 5.3].

VI. CONCLUSIONS

In this paper we have investigated the response of linear quantum systems driven by multi-

channel photon input fields. Results concerning the intensity and correlations and states of output

fields have been presented. In particular we have defined the class of photon-Gaussian states

which arise when quantum optical systems with active components are driven by multi-channel

photon input fields. Examples from quantum optics have been used to illustrate the results

presented. Future work will include application of the results to specific problems in quantum

technology.
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APPENDIX

PROOFS

Proof of Theorem 4:According to Eq. (20),

n̄out(t) =

〈

Ψν ,

∫ t

t0

gG+(t− τ)#b(τ)dτ

(∫ t

t0

gG−(t− τ)b(τ)dτ

)T

Ψν

〉

(120)

+

〈

Ψν ,

∫ t

t0

gG+(t− τ)#b(τ)dτ

(∫ t

t0

gG+(t− τ)b#(τ)dτ

)T

Ψν

〉

+

〈

Ψν ,

∫ t

t0

gG−(t− τ)#b#(τ)dτ

(∫ t

t0

gG−(t− τ)b(τ)dτ

)T

Ψν

〉

+

〈

Ψν ,

∫ t

t0

gG−(t− τ)#b#(τ)dτ

(∫ t

t0

gG+(t− τ)b#(τ)dτ

)T

Ψν

〉

.

In what follows we evaluate each term of the right-hand side of Eq. (120). Firstly, it is easy to

see that
〈

Ψν ,

∫ t

t0

gG+(t− τ)#b(τ)dτ

(∫ t

t0

gG−(t− τ)b(τ)dτ

)T

Ψν

〉

= 0, (121)

〈

Ψν ,

∫ t

t0

gG−(t− τ)#b#(τ)dτ

(∫ t

t0

gG+(t− τ)b#(τ)dτ

)T

Ψν

〉

= 0. (122)

Secondly, note that
〈

Ψν ,

∫ t

t0

gG+(t− τ)#b(τ)dτ

(∫ t

t0

gG+(t− τ)b#(τ)dτ

)T

Ψν

〉

(123)

=

〈

Ψν,








∑m

j=1

∫ t

t0
g
1j

G+(t− ι)∗bj(ι)dι
...

∑m

j=1

∫ t

t0
g
mj

G+(t− ι)∗bj(ι)dι








[
∑m

j=1

∫ t

t0
g
1j

G+(t− ι)b∗j (ι)dι · · · ∑m

j=1

∫ t

t0
g
mj

G+(t− ι)b∗j (ι)dι
]

Ψν

〉

.

For givenk and l (k, l = 1, . . . , m), we have
〈

Ψν ,
m∑

j=1

∫ t

t0

gkj
G+(t− r)∗bj(r)dr

m∑

j=1

∫ t

t0

glj
G+(t− r)b∗j (r)drΨν

〉

(124)

=

m∑

j=1

∫ t

t0

gkjG+(t− r)∗gljG+(t− r)dr +

m∑

j=1

∫ t

t0

gkjG+(t− r)∗νj(r)dr

∫ t

t0

gljG+(t− r)νj(r)
∗dr.
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Consequently, Sendingt0 → −∞ gives
〈

Ψν ,

∫ t

t0

gG+(t− τ)#b(τ)dτ

(∫ t

t0

gG+(t− τ)b#(τ)dτ

)T

Ψν

〉

(125)

=

∫ ∞

0

gG+(r)#gG+(r)Tdr + ξ+out(t)
#ξ+out(t)

T .

Thirdly, note that
〈

Ψν ,

∫ t

t0

gG−(t− τ)#b#(τ)dτ

(∫ t

t0

gG−(t− τ)b(τ)dτ

)T

Ψν

〉

(126)

=








∑m
j=1

∫ t

t0
g1j
G−(t− ι)∗b∗j (ι)dι

...
∑m

j=1

∫ t

t0
gmj
G−(t− ι)∗bj(ι)dι








[
∑m

j=1

∫ t

t0
g1jG−(t− ι)bj(ι)dι · · ·

∑m
j=1

∫ t

t0
gmj
G−(t− ι)bj(ι)dι

]

.

For givenk and l (k, l = 1, . . . , m), we have
〈

Ψν ,

(
m∑

j=1

∫ t

t0

gkjG−(t− r)∗b∗j (r)dr

)(
m∑

j=1

∫ t

t0

gljG−(t− r)bj(r)dr

)

Ψν

〉

=
m∑

j=1

∫ t

t0

gkj
G−(t− r)∗νj(r)

∗dr

∫ t

t0

glj
G−(t− r)νj(r)dr. (127)

As a result, sendingt0 → −∞ gives
〈

Ψν ,

∫ t

t0

gG−(t− τ)#b#(τ)dτ

(∫ t

t0

gG−(t− τ)b(τ)dτ

)T

Ψν

〉

= ξ−out(t)
#ξ−out(t)

T . (128)

Finally, substituting Eqs. (121), (122), (125), and (128) into Eq. (120) yields Eq. (59). Eq. (61)

follows immediately from Eq. (59). This completes the proof. �

Proof of Theorem 5:First we prove that the steady-state output states are indeed in the form

of Eq. (96). In analog to Eq. (85), the steady-state joint system and output field state is

ρ∞ = lim
t→∞,t0→−∞

U(t, t0) |φ〉 〈φ| ⊗ ρξin,Rin
U(t, t0)

∗ (129)

=

(

Isys ⊗
m∏

k=1

m∑

j=1

∫ ∞

−∞

{(

ξ−,jk
in (r)b−∗

j (r,−∞)dr − ξ+,jk
in (r)∗b−j (r,−∞)

)

dr
}
)

ρ∞,g

×
(

Isys ⊗
m∏

k=1

m∑

j=1

∫ ∞

−∞

{(

ξ−,jk
in (r)b−∗

j (r,−∞)dr − ξ+,jk
in (r)∗b−j (r,−∞)

)

dr
}
)∗

where

ρ∞,g = lim
t→∞,t0→−∞

U(t, t0) |φ〉 〈φ| ⊗ ρRin
U(t, t0)

∗, (130)
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and for j = 1, . . . , m,

b−j (t,−∞) = lim
t0→−∞

U(t, t0)bj(t)U
∗(t, t0), b−∗

j (t,−∞) = lim
t0→−∞

U(t, t0)b
∗
j(t)U

∗(t, t0). (131)

According to Eq. (20), for anyt ∈ R,

b̆(t) =

∫ ∞

t0

gG(t− r)U(r, t0)b̆(r)U(r, t0)
∗dr + eA(t−t0)U(t, t0)ăU(t, t0)

∗. (132)

Letting t0 → −∞ and substituting Eq. (131) into Eq. (132) yieldb̆(t) =
∫∞
−∞ gG(t−r)b̆−(r,−∞)dr.

As a result

b̆−(t,−∞) =

∫ ∞

−∞
gG−1(t− r)b̆(r)dr. (133)

PartitiongG− andgG+ as

gG−(t) =
[

g1G−(t) · · · gmG−(t)
]

, gG+(t) =
[

g1G+(t) · · · gmG+(t)
]

. (134)

According to Lemma 1, forj = 1, . . . , m,

b−∗
j (r,−∞) = −

∫ ∞

−∞
gj
G+(ι− r)†b(ι)dι+

∫ ∞

−∞
gj
G−(ι− r)T b#(ι)dι. (135)

In a similar way,

b−j (r,−∞) =

∫ ∞

−∞
gj
G−(ι− r)†b(ι)dι−

∫ ∞

−∞
gj
G+(ι− r)T b#(ι)dι. (136)

By Eqs. (135) and (136), for eachj, k = 1, . . . , m,
∫ ∞

−∞
ξ−,jk
in (r)b−∗

j (r,−∞)dr|φΦRout〉 − ξ+,jk
in (r)∗b−j (r,−∞)dr (137)

= −
∫ ∞

−∞
ξ−,jk
in (r)

∫ ∞

−∞
gj
G+(ι− r)†b(ι)dιdr +

∫ ∞

−∞
ξ−,jk
in (r)

∫ ∞

−∞
gj
G−(ι− r)T b#(ι)dιdr

−
m∑

j=1

∫ ∞

−∞
ξ+,jk
in (r)∗

∫ ∞

−∞
gj
G−(ι− r)†b(ι)dιdr +

∫ ∞

−∞
ξ+,jk
in (r)∗

∫ ∞

−∞
gj
G+(ι− r)T b#(ι)dιdr

= B∗
j (ξ

−,jk
out )− Bj(ξ

+,jk
out ).

Substituting Eq. (137) into Eq. (129) gives

ρ∞ =

(

Isys ⊗
m∏

k=1

m∑

j=1

(B∗
j (ξ

−,jk
out )− Bj(ξ

+,jk
out ))

)

ρ∞,g

(

Isys ⊗
m∏

k=1

m∑

j=1

(B∗
j (ξ

−,jk
out )− Bj(ξ

+,jk
out ))

)∗

.

Thus

ρξout,Rout = Trsys [ρ∞] =

m∏

k=1

m∑

j=1

(B∗
j (ξ

−,jk
out )−Bj(ξ

+,jk
out ))ρRout

(
m∏

k=1

m∑

j=1

(B∗
j (ξ

−,jk
out )− Bj(ξ

+,jk
out ))

)∗

,

(138)
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whereρRout = Trsys[ρ∞,g], whose covariance functionRout is given in Eq. (102). Consequently,

ρξout,Rout is exactly in the form of Eq. (96).

Next we prove thatρξout,Rout is normalized. Noticing that for a complex-valued functionη(t) ∈
C,

∫ ∞

−∞
η(t)b∗(t)dt =

∫ ∞

−∞
η[−iω]b∗[iω]dω,

∫ ∞

−∞
η(t)∗b(t)dt =

∫ ∞

−∞
η[iω]∗b[iω]dω. (139)

It is easy to show that the frequency counterpart ofρξin,Rin
in Eq. (98) is

ρξin,Rin
=

∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

m

M−
ξ (ω1→m)

TΘ⊗m
c Mb̆(ω1→m)dω1→mρRin

×
∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

m

M+
ξ (ω1→m)

†J⊗m
c Mb̆(ω1→m)dω1→m,

where the shorthanddω1→j is used to denotedω1 · · · dωj for an arbitrary positive integerj.

Consequently, similar to Eq. (98), the normalization condition (95) is equivalent to
∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

2m

(M+
ξ (ω1→m)

# ⊗c M
−
ξ (ωm+1→2m))

TJ⊗m
c ⊗c Θ

⊗m
c Tr[ρRin

Mb̆(ω1→2m)]dω1→2m = 1.

(140)

As a result, it suffices to show thatρξout,Rout has the normalization condition (140). Firstly, by

Eq. (101), we have

ξout[iω] =




ξ−out[iω] ξ+out[iω]

ξ+out[−iω]# ξ−out[−iω]#



 = ΞG[iω]ξ[iω].

Partitionξout to beξout = [ξ1out · · · ξ2mout]. Then by Eq. (138),

Tr[ρξout,Rout] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

2m

(M+
ξout

(ω1→m)
# ⊗c M

−
ξout

(ωm+1→2m))
T (141)

×J⊗m
c ⊗c Θ

⊗m
c Tr[ρRoutMb̆(ω1→2m)]dω1→2m.

Secondly, noticing thatξkout[iω] = ΞG[iω]ξ
k
in[iω], Eq. (141) becomes

Tr[ρξout,Rout] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

2m

(M+
ξin

(ω1→m)
# ⊗c M

−
ξin

(ωm+1→2m))
T (142)

× (ΞG[iω]
†J)⊗

m
c ⊗c (ΞG[−iω]TΘ)⊗

m
c Tr[ρRoutMb̆(ω1→2m)]dω1→2m,
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where slight abuse of notation is used, that is,

(ΞG[iω]
†J)⊗

m
c := (ΞG[iω1]

†J)⊗c · · · ⊗c (ΞG[iωm]
†J), (143)

and

(ΞG[−iω]TΘ)⊗
m
c := (ΞG[−iωm+1]

TΘ)⊗c · · · ⊗c (ΞG[−iω2m]
TΘ). (144)

Thirdly, denote

ΞG[iω]
⊗2m

c := ΞG[iω1]⊗c · · · ⊗c ΞG[iω2m]. (145)

Noticing

Tr[ρRoutMb̆(ω1→2m)] = ΞG[iω]
⊗2m

c Tr[ρRin
Mb̆(ω1→2m)], (146)

Eq. (142) becomes

Tr[ρξout,Rout] (147)

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
︸ ︷︷ ︸

2m

(M+
ξin

(ω1→m)
# ⊗c M

−
ξin

(ωm+1→2m))
T

× (ΞG[iω]
†JΞG[iω])

⊗m
c ⊗c (ΞG[−iω]TΘΞG[iω])

⊗m
c Tr[ρRin

Mb̆(ω1→2m)]dω1→2m,

where slight abuse of notation is used, that is,

(ΞG[iω]
†JΞG[iω])

⊗m
c := (ΞG[iω1]

†JG[iω1])⊗c · · · ⊗c (ΞG[iωm]
†JΞG[iωm]), (148)

and

(ΞG[−iω]TΘΞG[iω])
⊗m

c := (ΞG[−iωm+1]
TΘΞG[iωm+1])⊗c · · · ⊗c (ΞG[−iω2m]

TΘΞG[iω2m].

(149)

Finally, Eq. (147), together with the relations

ΞG[iωk]
†JΞG[iωk] = J, ΞG[−iωk]

TΘΞG[iωk] = Θ, (k = 1, . . . , 2m) (150)

establishes Eq.(140). The proof is completed. �
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