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Consensus of Multi-Agent Systems with

General Linear and Lipschitz Nonlinear

Dynamics Using Distributed Adaptive Protocols

Zhongkui Li, Wei Ren,Member, IEEE, Xiangdong Liu, and Mengyin Fu

Abstract

This paper considers the distributed consensus problems for multi-agent systems with general linear

and Lipschitz nonlinear dynamics. Distributed relative-state consensus protocols with an adaptive law

for adjusting the coupling weights between neighboring agents are designed for both the linear and

nonlinear cases, under which consensus is reached for all undirected connected communication graphs.

Extensions to the case with a leader-follower communication graph are further studied. In contrast to

the existing results in the literature, the adaptive consensus protocols here can be implemented by each

agent in a fully distributed fashion without using any global information.

Index Terms

Multi-agent system, consensus, adaptive law, Lipschitz nonlinearity

I. INTRODUCTION

In recent years, the consensus problem for multi-agent systems has received compelling

attention from various scientific communities, for its potential applications in such broad areas

as spacecraft formation flying, sensor networks, and cooperative surveillance [1], [2]. A general

framework of the consensus problem for networks of integrator agents with fixed and switching
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topologies is addressed in [3]. The conditions given by [3] are further relaxed in [4]. A distributed

algorithm is proposed in [5] to achieve consensus in finite time. DistributedH∞ consensus

and control problems are investigated in [6], [7] for networks of agents subject to external

disturbances and model uncertainties. Consensus algorithms are designed in [8], [9] for a group

of agents with quantized communication links and limited data rate. The authors in [10] studies

the controllability of leader-follower multi-agent systems from a graph-theoretic perspective. To

ensure that the states of a group of agents follow a referencetrajectory of a leader, consensus

tracking algorithms are given in [11], [12] for agents with fixed and switching topologies.

A passivity-based design framework is proposed in [13] to achieve group coordination. The

consensus problems for networks of double- and high-order integrators are studied in [14], [15],

[16]. Readers are referred to the recent surveys [1], [2] fora relatively complete coverage of the

literature on consensus.

This paper considers the distributed consensus problems for multi-agent systems with general

linear and Lipschitz nonlinear dynamics. Consensus of multi-agent systems with general linear

dynamics was previously studied in [17], [18], [19], [20]. In particular, different static and

dynamic consensus protocols are designed in [17], [18], requiring the smallest nonzero eigenvalue

of the Laplacian matrix associated with the communication graph to be known by each agent

to determine the bound for the coupling weight. However, theLaplacian matrix depends on the

entire communication graph and is hence global information. In other words, these consensus

protocols in [17], [18] can not be computed and implemented by each agent in a fully distributed

fashion, i.e., using only local information of its own and neighbors. To tackle this problem, we

propose here a distributed consensus protocol based on the relative states combined with an

adaptive law for adjusting the coupling weights between neighboring agents, which is partly

inspired by the edge-based adaptive strategy for the synchronization of complex networks in

[21], [22].

The proposed distributed adaptive protocols are designed,respectively, for linear and Lipschitz

nonlinear multi-agent systems, under which consensus is reached in both the linear and the

nonlinear cases for any undirected connected communication graph. It is shown that a sufficient

condition for the existence of such a protocol in the linear case is that each agent is stabilizable.

Existence conditions for the adaptive protocol in the nonlinear case are also discussed. It is

pointed out that the results in the nonlinear case can be reduced to those in the linear case,
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when the Lipschitz nonlinearity does not exist. Extensionsof the obtained results to the case

with a leader-follower communication graph are further discussed. It is worth noting that the

consensus protocols in [19], [20] can also achieve consensus for all connected communication

graphs. Contrary to the general linear and Lipschitz nonlinear agent dynamics in this paper, the

linear agent dynamics in [19] are restricted to be neutrallystable and all the eigenvalues of the

state matrix of each agent in [20] are assumed to lie in the closed left-half plane. In addition,

adaptive synchronization of a class of complex network satisfying a Lipschitz-type condition

is considered in [21], [22]. However, the results given in [21], [22] require the inner coupling

matrix to be positive semi-definite, which is not directly applicable to the consensus problem

under investigation here.

The rest of this paper is organized as follows. The adaptive consensus problems for multi-

agent systems with general linear and Lipschitz nonlinear dynamics are considered, respectively,

in Sections II and III. Extensions to the case with a leader-follower communication graph are

studied in Section IV. Simulation examples are presented toillustrate the analytical results in

Section V. Conclusions are drawn in Section VI.

Throughout this paper, the following notations will be used: Let Rn×n be the set ofn×n real

matrices. The superscriptT means transpose for real matrices.IN represents the identity matrix

of dimensionN . Matrices, if not explicitly stated, are assumed to have compatible dimensions.

Denote by1 the column vector with all entries equal to one.diag(A1, · · · , An) represents a block-

diagonal matrix with matricesAi, i = 1, · · · , n, on its diagonal. For real symmetric matricesX

andY , X > (≥)Y means thatX − Y is positive (semi-)definite.A⊗B denotes the Kronecker

product of matricesA andB.

II. A DAPTIVE CONSENSUS FORMULTI -AGENT SYSTEMS WITH GENERAL L INEAR

DYNAMICS

Consider a group ofN identical agents with general linear dynamics. The dynamics of the

i-th agent are described by

ẋi = Axi +Bui, i = 1, · · · , N, (1)

wherexi ∈ R
n is the state,ui ∈ R

p is the control input, andA, B, are constant matrices with

compatible dimensions.
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The communication topology among the agents is representedby an undirected graphG =

(V, E), whereV = {1, · · · , N} is the set of nodes (i.e., agents), andE ⊂ V × V is the set of

edges. An edge(i, j) (i 6= j) means that agentsi andj can obtain information from each other. A

path inG from nodei1 to nodeil is a sequence of edges of the form(ik, ik+1), k = 1, · · · , l−1.

An undirected graph is connected if there exists a path between every pair of distinct nodes,

otherwise is disconnected.

A variety of static and dynamic consensus protocols have been proposed to reach consensus for

agents with dynamics given by (1), e.g., in [17], [18], [19],[20]. For instance, a static consensus

protocol based on the relative states between neighboring agents is given in [17] as

ui = cK

N
∑

j=1

aij(xi − xj), i = 1, · · · , N, (2)

wherec > 0 is the coupling weight among neighboring agents,K ∈ R
p×n is the feedback gain

matrix, andaij is (i, j)-th entry of the adjacency matrixA associated withG, defined asaii = 0,

aij = aji = 1 if (j, i) ∈ E andaij = aji = 0 otherwise. The Laplacian matrixL = (Lij)N×N of

G is defined byLii =
∑N

j=1,j 6=i aij andLij = −aij for i 6= j.

Lemma 1 ([17]): Suppose thatG is connected. TheN agents described by (1) reach consensus

(i.e., limt→∞ ‖xi(t)− xj(t)‖ = 0, ∀ i, j = 1, · · · , N) under the protocol (2) withK = −BTP−1

and the coupling weightc ≥ 1
λ2

, whereλ2 is the smallest nonzero eigenvalue ofL andP > 0

is a solution to the following linear matrix inequality (LMI):

AP + PAT − 2BBT < 0. (3)

As shown in the above lemma, the coupling weightc should be not less than the inverse of

the smallest nonzero eigenvalueλ2 of L to reach consensus. The design method for the dynamic

protocol in [18] depends onλ2 also. However,λ2 is global information in the sense that each

agent has to know the Laplacian matrix and hence the entire communication graphG to compute

it. Therefore, the consensus protocols given in Lemma 1 and [18] cannot be implemented by

each agent in a fully distributed fashion, i.e., using only the local information of its own and

neighbors.

In order to avoid the limitation stated as above, we propose the following distributed consensus
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protocol with an adaptive law for adjusting the coupling weights:

ui = F

N
∑

j=1

cijaij(xi − xj),

ċij = κijaij(xi − xj)
TΓ(xi − xj), i = 1, · · · , N,

(4)

where aij is defined as in (2),κij = κji are positive constants,cij denotes the time-varying

coupling weight between agentsi andj with cij(0) = cji(0), andF ∈ R
p×n andΓ ∈ R

n×n are

feedback gain matrices.

We next designF andΓ in (4) such that theN agents reach consensus.

Theorem 1: For any given connected graphG, theN agents described by (1) reach consensus

under the protocol (4) withF = −BTP−1 andΓ = P−1BBTP−1, whereP > 0 is a solution

to the LMI (3). Moreover, each coupling weightcij converges to some finite steady-state value.

Proof: Let x̄ = 1
N

∑N

j=1 xj , ei = xi − x̄, and e = [eT1 , · · · , eTN ]T . Then, we gete =
(

(IN − 1
N
11

T )⊗ In
)

x. It is easy to see that0 is a simple eigenvalue ofIN − 1
N
11

T with 1 as

the corresponding right eigenvector, and 1 is the other eigenvalue with multiplicityN −1. Then,

it follows that e = 0 if and only if x1 = · · · = xN . Therefore, the consensus problem under the

protocol (4) can be reduced to the asymptotical stability ofe. Using (4) for (1), it follows that

e satisfies the following dynamics:

ėi = Aei +

N
∑

j=1

cijaijBF (ei − ej),

ċij = κijaij(ei − ej)
TΓ(ei − ej), i = 1, · · · , N.

(5)

Consider the Lyapunov function candidate

V1 =

N
∑

i=1

eTi P
−1ei +

N
∑

i=1

N
∑

j=1,j 6=i

(cij − α)2

2κij

, (6)

whereα is a positive constant. The time derivative ofV1 along the trajectory of (5) is given by

V̇1 = 2

N
∑

i=1

eTi P
−1ėi +

N
∑

i=1

N
∑

j=1,j 6=i

cij − α

κij

ċij

= 2
N
∑

i=1

eTi P
−1

(

Aei +
N
∑

j=1

cijaijBF (ei − ej)

)

+

N
∑

i=1

N
∑

j=1,j 6=i

(cij − α)aij(ei − ej)
TΓ(ei − ej).

(7)

September 20, 2011 DRAFT
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Becauseκij = κji, cij(0) = cji(0), andΓ is symmetric, it follows from (4) thatcij(t) = cji(t),

∀ t ≥ 0. Therefore, we have
N
∑

i=1

N
∑

j=1,j 6=i

(cij − α)aij(ei − ej)
TΓ(ei − ej)

= 2

N
∑

i=1

N
∑

j=1

(cij − α)aije
T
i Γ(ei − ej).

(8)

Let ẽi = P−1ei and ẽ = [ẽT1 , · · · , ẽTN ]T . SubstitutingF = −BTP−1 andΓ = P−1BBTP−1 into

(7), we can obtain

V̇1 = 2

N
∑

i=1

eTi P
−1Aei − 2α

N
∑

i=1

N
∑

j=1

aije
T
i P

−1BBTP−1(ei − ej)

=
N
∑

i=1

ẽTi (AP + PAT )ẽi − 2α
N
∑

i=1

N
∑

j=1

Lij ẽ
T
i BBT ẽj

= ẽT
(

IN ⊗ (AP + PAT )− 2αL⊗ BBT
)

ẽ,

(9)

whereL is the Laplacian matrix associated withG.

BecauseG is connected, zero is a simple eigenvalue ofL and all the other eigenvalues are

positive [23]. LetU ∈ R
N×N be such a unitary matrix thatUTLU = Λ , diag(0, λ2, · · · , λN).

Because the right and left eigenvectors ofL corresponding to the zero eigenvalue are1 and

1
T , respectively, we can chooseU = [ 1√

N
Y1 ] and UT =

[

1
T

√
N

Y2

]

, with Y1 ∈ R
N×(N−1) and

Y2 ∈ R
(N−1)×N . Let ξ , [ξT1 , · · · , ξTN ]T = (UT ⊗ In)ẽ. By the definitions ofe and ẽ, it is easy

to see that

ξ1 = (
1
T

√
N

⊗ In)ẽ = (
1
T

√
N

⊗ P−1)e = 0. (10)

Then, we have
V̇1 = ξT

(

IN ⊗ (AP + PAT )− 2αΛ⊗BBT
)

ξ

=
N
∑

i=2

ξTi
(

AP + PAT − 2αλiBBT
)

ξi.
(11)

By choosingα sufficiently large such thatαλi ≥ 1, i = 2, · · · , N , it follows from (3) that

AP + PAT − 2αλiBBT ≤ AP + PAT − 2BBT < 0.

Therefore,V̇1 ≤ 0.

September 20, 2011 DRAFT
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SinceV̇1 ≤ 0, V1(t) is bounded and so is eachcij. By notingΓ ≥ 0, it can be seen from (5)

that cij is monotonically increasing. Then, it follows that each coupling weightcij converges to

some finite value. LetS = {ξi, cij|V̇1 = 0}. Note thatV̇1 ≡ 0 implies thatξi = 0, i = 2, · · · , N ,

which, by noticing thatξ1 ≡ 0 in (10), further implies that̃e = 0 ande = 0. Hence, by LaSalle’s

Invariance principle [24], it follows thate(t) → 0, ast → ∞. That is, the consensus problem is

solved.

Remark 1: Equation (4) presents an adaptive protocol, under which theagents with dynamics

given by (1) can reach consensus for all connected communication topologies. In contrast to the

consensus protocols in [17], [18], the adaptive protocol (4) can be computed and implemented

by each agent in a fully distributed way. As shown in [17], a necessary and sufficient condition

for the existence of aP > 0 to the LMI (3) is that(A,B) is stabilizable. Therefore, a sufficient

condition for the existence of a protocol (4) satisfying Theorem 1 is that(A,B) is stabilizable.

Remark 2: It is worth noting that the consensus protocols in [19], [20]can also achieve

consensus for all connected communication graphs. Contrary to the general linear agent dynamics

in this section, the agent dynamics in [19] are restricted tobe neutrally stable and all the

eigenvalues of the state matrix of each agent in [20] are assumed to lie in the closed left-half

plane.

III. A DAPTIVE CONSENSUS FORMULTI -AGENT SYSTEMS WITH L IPSCHITZ NONLINEARITY

In this section, we study the consensus problem for a group ofN identical nonlinear agents,

described by

ẋi = Axi +D1f(xi) + Bui, i = 1, · · · , N, (12)

wherexi ∈ R
n, ui ∈ R

p are the state and the control input of thei-th agent, respectively,A,

B, D1, are constant matrices with compatible dimensions, and thenonlinear functionf(xi) is

assumed to satisfy the Lipschitz condition with a Lipschitzconstantγ > 0, i.e.,

‖f(x)− f(y)‖ ≤ γ‖x− y‖, ∀ x, y ∈ R
n. (13)

Theorem 2: Solve the following LMI:




AQ +QAT − τBBT + γ2D1TD
T
1 Q

Q −T



 < 0, (14)

September 20, 2011 DRAFT
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to get a matrixQ > 0, a scalarτ > 0 and a diagonal matrixT > 0. Then, theN agents described

by (12) reach global consensus under the protocol (4) withF = −BTQ−1 andΓ = Q−1BBTQ−1

for any connected communication graphG. Furthermore, each coupling weightcij converges to

some finite steady-state value.

Proof: Using (4) for (12), we obtain the closed-loop network dynamics as

ẋi = Axi +D1f(xi) +
N
∑

j=1

cijaijBF (xi − xj),

ċij = κijaij(xi − xj)
TΓ(xi − xj), i = 1, · · · , N.

(15)

As argued in the Proof of Theorem 1, it follows thatcij(t) = cji(t), ∀ t ≥ 0.

Letting x̄ = 1
N

∑N

j=1 xj , ei = xi−x̄, ande = [eT1 , · · · , eTN ]T , we gete =
(

(IN − 1
N
11

T )⊗ In
)

x.

By following similar steps to those in Theorem 1, we can reduce the consensus problem of (15)

to the convergence ofe to the origin. It is easy to obtain thate satisfies the following dynamics:

ėi = Aei +D1f(xi)−
1

N

N
∑

j=1

D1f(xj) +

N
∑

j=1

(c̃ij + β)aijBF (ei − ej),

˙̃cij = κijaij(ei − ej)
TΓ(ei − ej), i = 1, · · · , N,

(16)

wherecij = c̃ij + β andβ is a positive constant.

Consider the Lyapunov function candidate

V2 =
N
∑

i=1

eTi Q
−1ei +

N
∑

i=1

N
∑

j=1,j 6=i

c̃2ij

2κij

. (17)

The time derivative ofV2 along the trajectory of (16) is

V̇2 = 2
N
∑

i=1

eTi Q
−1ėi +

N
∑

i=1

N
∑

j=1,j 6=i

c̃ij

κij

˙̃cij

= 2

N
∑

i=1

eTi Q
−1

(

Aei +D1f(xi)−
1

N

N
∑

j=1

D1f(xj) +

N
∑

j=1

(c̃ij + β)aijBF (ei − ej)

)

+
N
∑

i=1

N
∑

j=1,j 6=i

c̃ijaij(ei − ej)
TΓ(ei − ej)

= 2

N
∑

i=1

eTi Q
−1Aei − 2β

N
∑

i=1

N
∑

j=1

Lije
T
i Q

−1BBTQ−1ej

+ 2
N
∑

i=1

eTi Q
−1D1

(

f(xi)− f(x̄) + f(x̄)− 1

N

N
∑

j=1

f(xj)

)

,

(18)

September 20, 2011 DRAFT
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where we have used the fact (8) to get the last equation.

Using the Lipschitz condition (13) gives

2eTi Q
−1D1(f(xi)− f(x̄)) ≤ 2γ‖eTi Q−1D1T

1

2‖‖T− 1

2 ei‖

≤ eTi (γ
2Q−1D1TD

T
1 Q

−1 + T−1)ei,
(19)

whereT is given in (14). Because
∑N

i=1 e
T
i = 0, we have

N
∑

i=1

eTi Q
−1D1

(

f(x̄)− 1

N

N
∑

j=1

f(xj)

)

= 0. (20)

Let êi = Q−1ei and ê = [êT1 , · · · , êTN ]T . In virtue of (19) and (20), we can obtain from (18) that

V̇2 ≤
N
∑

i=1

êTi

(

(AQ +QAT + γ2D1TD
T
1 +QT−1Q)êi − 2β

N
∑

j=1

LijBBT êj

)

= êT
(

IN ⊗ (AQ+QAT + γ2D1TD
T
1 +QT−1Q)− 2βL⊗BBT

)

ê.

(21)

Let U ∈ R
N×N be the unitary matrix defined in the proof of Theorem 1, satisfying UTLU =

Λ = diag(0, λ2, · · · , λN). Let ζ , [ζT1 , · · · , ζTN ]T = (UT ⊗ In)ê. Clearly,ζ1 = ( 1
T

√
N
⊗Q−1)e = 0.

From (21), we have

V̇2 ≤ ζT
(

IN ⊗ (AQ+QAT + γ2D1TD
T
1 +QT−1Q)− 2βΛ⊗ BBT

)

ζ

=
N
∑

i=2

ζTi
(

AQ+QAT + γ2D1TD
T
1 +QT−1Q− 2βλiBB

)

ζi

, W (ζ).

(22)

By choosingβ sufficiently large such that2βλi ≥ τ , i = 2, · · · , N , it follows that

AQ+QAT − 2βλiBBT + γ2D1TD
T
1 +QT−1Q

≤ AQ +QAT − τBBT + γ2D1TD
T
1 +QT−1Q

< 0, i = 2, · · · , N,

where the last inequality follows from (14) by using the Schur complement lemma [25]. There-

fore, W (ζ) ≤ 0.

Since V̇2 ≤ 0, V2(t) is bounded and so is each̃cij . By (16), c̃ij is monotonically increasing.

Then, it follows that each̃cij converges to some finite value. Thus the coupling weightscij

converge to finite steady-state values. Note thatV2 is positive definite and radically unbounded.

By LaSalle-Yoshizawa theorem [24], it follows thatlimt→∞W (ζ) = 0, implying that ζi → 0,

September 20, 2011 DRAFT
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i = 2, · · · , N , ast → ∞, which, together withζ1 ≡ 0, further implies thate(t) → 0, ast → ∞.

This completes the proof.

Remark 3: By using Finsler’s Lemma [26], it is not difficult to see that there exist aQ > 0,

a T > 0 and aτ > 0 such that (14) holds if and only if there exists aK such that(A +

BK)Q +Q(A+ BK)T + γ2D1TD
T
1 +QT−1Q < 0, which with T = I is dual to the observer

design problem for a single Lipschitz system in [27], [28]. According to Theorem 2 in [28], the

LMI (14) is feasible, and thus there exists an adaptive protocol (4) reaching consensus, if the

distance to unobservability of(A,B) is larger thanγ. Besides, a diagonal scaling matrixT > 0

is introduced here in (14) to reduce conservatism. If the nonlinear functionf(xi) = 0 in (12),

then (12) becomes (1). By choosingT sufficiently large and lettingD1 = 0 andτ = 2, then (14)

becomesAQ + QAT − 2BBT < 0. Therefore, for the case without the Lipschitz nonlinearity,

Theorem 2 is reduced to Theorem 1.

Remark 4: It should be mentioned that the adaptive law in (4) for adjusting the coupling

weights is inspired by the edge-based adaptive strategy in [21], [22], where adaptive synchroniza-

tion of a class of complex network satisfying a Lipschitz-type condition is considered. However,

the results given in [21], [22] require the inner coupling matrix to be positive semi-definite, and

are thereby not directly applicable to the consensus problem under investigation here.

IV. EXTENSIONS

The communication topology is assumed to be undirected in the previous sections, where

the final consensus value reached by the agents is generally not explicitly known, due to the

nonlinearity in the closed-loop network dynamics. In many practical cases, it is desirable for the

agents’ states to asymptotically approach a reference state. In this section, we consider the case

where a network ofN + 1 agents maintains a leader-follower communication structure.

The agents’ dynamics remain the same as in (1). The agents indexed by1, · · · , N , are referred

to as followers, while the agent indexed by 0 is called the virtual leader whose control input

u0 = 0. The communication topology among theN followers is represented by an undirected

graphG. It is assumed that the leader receives no information from any follower and the state

of the leader is available to only a subset of the followers (without loss of generality, the first

September 20, 2011 DRAFT
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q followers). In this case, the following distributed consensus protocol is proposed

ui = F̂

(

N
∑

j=1

cijaij(xi − xj) + cidi(xi − x0)

)

,

ċij = κijaij(xi − xj)
T Γ̂(xi − xj),

ċi = κidi(xi − x0)
T Γ̂(xi − x0), i = 1, · · · , N,

(23)

whereaij, cij , κij are defined as in (4),ci denotes the coupling weight between agenti and the

virtual leader,κi are positive constants,̂F ∈ R
p×n and Γ̂ ∈ R

n×n are feedback gain matrices,

anddi are constant gains, satisfyingdi > 0, i = 1, · · · , q, anddi = 0, i = q + 1, · · · , N .

The objective here is to design̂F ∈ R
p×n and Γ̂ ∈ R

n×n such that the states of the followers

can asymptotically approach the state of the leader in the sense thatlimt→∞ ‖xi(t)−x0(t)‖ = 0,

∀ i = 1, · · · , N.

Theorem 3: Assume thatG is connected and at least one follower can have access to the

leader’s state. Then, the states of theN followers asymptotically approach the state of the

leader, under the protocol (23) witĥF = −BTP−1 and Γ̂ = P−1BBTP−1, whereP > 0 is a

solution to (3), and the coupling weightscij and ci converge to finite values.

Proof: Let εi = xi − x0, i = 1, · · · , N . Then, the collective network dynamics resulting

from (1) and (23) can be written as

ε̇i = Aεi +BF̂

(

N
∑

j=1

cijaij(εi − εj) + cidiεi

)

,

ċij = κijaij(εi − εj)
T Γ̂(εi − εj),

ċi = κidiε
T
i Γ̂εi, i = 1, · · · , N.

(24)

Clearly, the states of the followers under (23) can asymptotically approach the state of the leader,

if (24) is asymptotically stable.

Consider the Lyapunov function candidate

V3 =

N
∑

i=1

εTi P
−1εi +

N
∑

i=1

N
∑

j=1,j 6=i

(cij − β)2

2κij

+

N
∑

i=1

(ci − β)2

κi

, (25)

whereβ is a positive constant. The rest of the proof follows similarsteps to those in Theorem

1, and by further noting the fact: Suppose thatR = diag(d1, d2, · · · , dN) ≥ 0 with at least one

diagonal item being positive. Then,L+R is positive definite ifG is connected [11].
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Remark 5: It is worth mentioning that an adaptive pinning scheme similar to (23) has been

proposed in [29]. Compared to [29] where the inner coupling matrix is an identity matrix, the

adaptive protocol (23) here is more general.

The case with the agents described by (12) can be discussed similarly, and is thus omitted

here for brevity.

V. SIMULATION EXAMPLES

In this section, a simulation example is provided to validate the effectiveness of the theoretical

results.

1 8

2 7

3 6

4 5

Fig. 1: The communication topology.

Consider a network of single-link manipulators with revolute joints actuated by a DC motor.

The dynamics of thei-th manipulator is described by (12), with (see [28])

xi =















xi1

xi2

xi3

xi4















, A =















0 1 0 0

−48.6 −1.25 48.6 0

0 0 0 10

1.95 0 −1.95 0















, B =















0

21.6

0

0















,

D1 = I4, f(xi) =
[

0 0 0 −0.333sin(xi3)
]T

.

Clearly, f(xi) here satisfies (13) with a Lipschitz constantγ = 0.333.

Solving the LMI (14) by using the LMI toolbox of Matlab gives the feedback gain matrices
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in (4) as

F =
[

−1.8351 −0.2144 1.0309 −2.247
]

,

Γ =















3.3676 0.3935 −1.8917 4.1236

0.3935 0.046 −0.221 0.4818

−1.8917 −0.221 1.0627 −2.3164

4.1236 0.4818 −2.3164 5.0492















.

To illustrate Theorem 2, let the communication graphG be given in Fig. 1. HereG is undirected

and connected. Letκij = 1, i, j = 1, · · · , 8, in (4), andcij(0) = cji(0) be randomly chosen. The

states trajectories of the eight manipulators under the protocol (4) are depicted in Fig. 2, from

which it can be observed that consensus is reached. The coupling weightscij are shown in Fig.

3, which converge to finite steady-state values.

0 1 2 3 4 5 6 7 8
−5

−4

−3

−2

−1

0

1

2

3

t

x i1

0 1 2 3 4 5 6 7 8
−30

−25

−20

−15

−10

−5

0

5

10

15

t

x i2

0 1 2 3 4 5 6 7 8
−6

−5

−4

−3

−2

−1

0

1

2

3

t

x i3

0 1 2 3 4 5 6 7 8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

t

x i4

Fig. 2: The states of the eight manipulators under (4).

VI. CONCLUSION

In this paper, the distributed consensus problems have beenconsidered for multi-agent sys-

tems with general linear and Lipschitz nonlinear dynamics.Distributed relative-state consensus

protocols with an adaptive law for adjusting the coupling weights between neighboring agents
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0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

4

t
c ij

Fig. 3: The coupling weightscij.

are designed for both the linear and nonlinear cases, under which consensus is reached for

all undirected connected communication graphs. Extensions to the case with a leader-follower

communication graph have also been studied.
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