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Abstract

This paper considers the distributed consensus problenmsiftii-agent systems with general linear
and Lipschitz nonlinear dynamics. Distributed relatitats consensus protocols with an adaptive law
for adjusting the coupling weights between neighboringnég@re designed for both the linear and
nonlinear cases, under which consensus is reached fordilleeted connected communication graphs.
Extensions to the case with a leader-follower communicatjaph are further studied. In contrast to
the existing results in the literature, the adaptive cosssiprotocols here can be implemented by each

agent in a fully distributed fashion without using any glblsormation.
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. INTRODUCTION
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In recent years, the consensus problem for multi-agentsysthas received compelling
attention from various scientific communities, for its putel applications in such broad areas
as spacecraft formation flying, sensor networks, and catipersurveillance [1], [2]. A general

framework of the consensus problem for networks of integragents with fixed and switching
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topologies is addressed in [3]. The conditions given by [8]farther relaxed in [4]. A distributed
algorithm is proposed in_[5] to achieve consensus in finiteeti Distributed H,, consensus
and control problems are investigated in [6]] [7] for nethksorof agents subject to external
disturbances and model uncertainties. Consensus algaridine designed in [8], [9] for a group
of agents with quantized communication links and limitethdate. The authors in [10] studies
the controllability of leader-follower multi-agent syste from a graph-theoretic perspective. To
ensure that the states of a group of agents follow a refereafectory of a leader, consensus
tracking algorithms are given in_[L1], [12] for agents witkxefil and switching topologies.
A passivity-based design framework is proposedlin [13] thiee group coordination. The
consensus problems for networks of double- and high-ordegrators are studied in [14], [15],
[16]. Readers are referred to the recent surveysl[1], [2hfoelatively complete coverage of the
literature on consensus.

This paper considers the distributed consensus problenmadtii-agent systems with general
linear and Lipschitz nonlinear dynamics. Consensus of iragknt systems with general linear
dynamics was previously studied inh [17], [18], [19], [20h particular, different static and
dynamic consensus protocols are designed ih [17], [18lireq the smallest nonzero eigenvalue
of the Laplacian matrix associated with the communicaticapl to be known by each agent
to determine the bound for the coupling weight. However, ltaplacian matrix depends on the
entire communication graph and is hence global informatinrother words, these consensus
protocols in[17],[18] can not be computed and implementeddch agent in a fully distributed
fashion, i.e., using only local information of its own andgiéors. To tackle this problem, we
propose here a distributed consensus protocol based orelttere states combined with an
adaptive law for adjusting the coupling weights betweerginieoring agents, which is partly
inspired by the edge-based adaptive strategy for the sgnidation of complex networks in
[21], [22].

The proposed distributed adaptive protocols are desigesgectively, for linear and Lipschitz
nonlinear multi-agent systems, under which consensusashesl in both the linear and the
nonlinear cases for any undirected connected communicgtiph. It is shown that a sufficient
condition for the existence of such a protocol in the lineasecis that each agent is stabilizable.
Existence conditions for the adaptive protocol in the nogdr case are also discussed. It is

pointed out that the results in the nonlinear case can beceedto those in the linear case,
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when the Lipschitz nonlinearity does not exist. Extensiohshe obtained results to the case
with a leader-follower communication graph are furthercdssed. It is worth noting that the
consensus protocols in [19], [20] can also achieve consefsuall connected communication
graphs. Contrary to the general linear and Lipschitz nealiragent dynamics in this paper, the
linear agent dynamics in [19] are restricted to be neutrstiple and all the eigenvalues of the
state matrix of each agent in [20] are assumed to lie in theeddeft-half plane. In addition,
adaptive synchronization of a class of complex networks8atig a Lipschitz-type condition
is considered in[[21],[[22]. However, the results givenlid][Z22] require the inner coupling
matrix to be positive semi-definite, which is not directlypdpable to the consensus problem
under investigation here.

The rest of this paper is organized as follows. The adaptbresensus problems for multi-
agent systems with general linear and Lipschitz nonlingaathics are considered, respectively,
in Sections Il and Ill. Extensions to the case with a leaddodfver communication graph are
studied in Section IV. Simulation examples are presentetfiustrate the analytical results in
Section V. Conclusions are drawn in Section VI.

Throughout this paper, the following notations will be usket R"*" be the set of. x n real
matrices. The superscrifit means transpose for real matricés.represents the identity matrix
of dimensionN. Matrices, if not explicitly stated, are assumed to have matible dimensions.
Denote byl the column vector with all entries equal to odéag( Ay, - - - , A,,) represents a block-
diagonal matrix with matrices\;,i = 1,--- ,n, on its diagonal. For real symmetric matric&s
andY, X > (>)Y means thatX — Y is positive (semi-)definiteA ® B denotes the Kronecker
product of matricesA and B.

II. ADAPTIVE CONSENSUS FORMULTI-AGENT SYSTEMS WITH GENERAL LINEAR

DyYNAMICS

Consider a group ofV identical agents with general linear dynamics. The dynamicthe

i-th agent are described by

wherez; € R" is the statey; € R? is the control input, anti, B, are constant matrices with

compatible dimensions.
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The communication topology among the agents is represdtemh undirected grapt =
(V,€), whereV = {1,---, N} is the set of nodes (i.e., agents), afid_c V x V is the set of
edges. An edgé€, j) (i # j) means that agenisand; can obtain information from each other. A
path inG from nodes; to nodei, is a sequence of edges of the fofm, i 1), k=1,--- ,1—1.

An undirected graph is connected if there exists a path letvevery pair of distinct nodes,
otherwise is disconnected.

A variety of static and dynamic consensus protocols hava pegposed to reach consensus for
agents with dynamics given blyl(1), e.g., in[17],][18],/[1f0]. For instance, a static consensus

protocol based on the relative states between neighbogagta is given in[[17] as
N
Ui:CKzaij<$i_xj)7 i:1,~-~,N7 (2)
j=1

wherec > 0 is the coupling weight among neighboring agertsc R?*" is the feedback gain
matrix, anda;; is (7, j)-th entry of the adjacency matrid associated witl§j, defined as:; = 0,
a;; = a;; = 1if (5,7) € £ anda;; = a;; = 0 otherwise. The Laplacian matrig = (L;;) nxn Of
G is defined byL,; = Z;.V:L#i a; and Ly; = —ay; for i # j.

Lemma 1 ([[17]): Suppose thaf is connected. Thé&/ agents described blyl(1) reach consensus
(i.e., limyo ||zi(t) — z;(t)|| = 0, Vi, 5 = 1,--- , N) under the protocol{2) with{ = —B" P!
and the coupling weight > %2 where )\, is the smallest nonzero eigenvalue ©fand P > 0

is a solution to the following linear matrix inequality (LMI
AP+ PA" —2BBT <. (3)

As shown in the above lemma, the coupling weighghould be not less than the inverse of
the smallest nonzero eigenvaldg of £ to reach consensus. The design method for the dynamic
protocol in [18] depends on, also. However)\, is global information in the sense that each
agent has to know the Laplacian matrix and hence the entimgremication grapld to compute
it. Therefore, the consensus protocols given in Leniina 1 @63 dannot be implemented by
each agent in a fully distributed fashion, i.e., using orilg tocal information of its own and
neighbors.

In order to avoid the limitation stated as above, we propbeddllowing distributed consensus
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protocol with an adaptive law for adjusting the coupling g¥es:

N
U; = FZ cz-jaij(xi — l’j),
j=1

éz’j = IiijCLZ'j(.Ti — .Tj)TF(.TZ‘ — l’j), 7= 1, e ,N,

(4)

where a;; is defined as in[(2)x;,; = x;; are positive constants;; denotes the time-varying
coupling weight between agentsand j with ¢;;(0) = ¢;;(0), and F' € R?*™ andI" € R™*" are
feedback gain matrices.

We next designt” andT" in (4)) such that theV agents reach consensus.

Theorem 1: For any given connected gragh the N agents described bll(1) reach consensus
under the protocol{4) withF = —BTP~! andT' = P~'BBTP~!, whereP > 0 is a solution
to the LMI (3). Moreover, each coupling weight; converges to some finite steady-state value.

Proof: Let # = £+ ;, ¢, = 2, — 7, ande = [e],---,eX]T. Then, we gete =

((In — 117 @ I,,) z. It is easy to see thdt is a simple eigenvalue ofy — ~117 with 1 as
the corresponding right eigenvector, and 1 is the othemeaae with multiplicity NV — 1. Then,
it follows thate = 0 if and only if z; = - - - = . Therefore, the consensus problem under the
protocol [4) can be reduced to the asymptotical stability.dflsing [4) for [1), it follows that

e satisfies the following dynamics:

N
€, = Aei + Z c,-jaijBF(ei — 6j),

=1 (5)
éij = /iijaij(ei — €j>TF(€Z‘ — ej), 7= 1, cee ,N.

Consider the Lyapunov function candidate

V=Y dpigey o ©
; ; = ij

where« is a positive constant. The time derivative 16f along the trajectory of (5) is given by

V1—2ZeTP eﬁ—z Z C”_

1=1 j= 1];&2
=2 Z eZTP_1 (Aei + Z cijaij BF(e; — ej)> (7)
i1 j=1
+ Z Z Cij — azg ej)TF(ei - ej)'

i=1 j=1,j7#1
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Becausex;; = rj;, ¢;;(0) = ¢;;(0), andI' is symmetric, it follows from[() that;;(¢) = c;;(¢),

¥t > 0. Therefore, we have

Z Z (cij — a)agj(e -)TF(ei —e;)

i=1 j=1,j#i
[N (8)

=2 > (e — @)age] T(e; —¢)).

i=1 j=1
Leté; = Ple; ande = [éf - - eX]T. SubstitutingF = —BTP~! andT’ = P~!BBTP~! into
(@), we can obtain

N N N
"/1 =2 Z eZTP_lAeZ- — 20(2 ZCLZ'J'GZTP_IBBTP_I(Q — ej)

i=1 i=1 j=1

_ e 90N NS £ BT 9)
—Ze (AP + PAT)e, ZZ el BBTe
=1 j5=1

=1
=eé" (Iy ® (AP + PA") —2aL ® BB") ¢,
where L is the Laplacian matrix associated with
Becausej is connected, zero is a simple eigenvaluefond all the other eigenvalues are
positive [23]. LetU € R¥*Y be such a unitary matrix th&f” LU = A £ diag(0, Ay, - - -, An).
Because the right and left eigenvectors dfcorresponding to the zero eigenvalue arend
17, respectively, we can choodé = [ vi| and UT = [17%] with V; € R¥*(V-1) and
Yo e RWV-DXN Let¢ £ [¢] .-+ ¢0]T = (UT @ I,,)é. By the definitions ofe andé, it is easy
to see that
17 17

H=(—=®I,)e= (\/—N ® P e =0. (10)

Then, we have
Vi = €7 (Iy ® (AP + PAT) — 2aA ® BB") ¢
(11)

N
=> & (AP + PAT - 20\,BB") &
=2
By choosinga sufficiently large such that\; > 1,7 =2,---, N, it follows from (3) that

AP+ PAT —2a\;BBT < AP + PAT —2BB” <.

Therefore,V; < 0.
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SinceV; <0, Vi(t) is bounded and so is eaefy. By notingI’ > 0, it can be seen froni|5)
that c;; is monotonically increasing. Then, it follows that each @ing weightc;; converges to
some finite value. Les = {&;, ¢;;|V; = 0}. Note thatV; = 0 implies that¢; =0, i =2,--- , N,
which, by noticing that; = 0 in (10), further implies that = 0 ande = 0. Hence, by LaSalle’s
Invariance principle[24], it follows that(¢) — 0, ast — oo. That is, the consensus problem is
solved. [ |

Remark 1: Equation[(#) presents an adaptive protocol, under whiclagfemts with dynamics
given by [1) can reach consensus for all connected comntionc@pologies. In contrast to the
consensus protocols in [17], [18], the adaptive protochlc@h be computed and implemented
by each agent in a fully distributed way. As shownlinl[17], @essary and sufficient condition
for the existence of & > 0 to the LMI (3) is that(A, B) is stabilizable. Therefore, a sufficient
condition for the existence of a protoc6l (4) satisfying dtean 1 is that{ A, B) is stabilizable.

Remark 2: It is worth noting that the consensus protocols [in| [19],] [2@h also achieve
consensus for all connected communication graphs. Cgrtsdhe general linear agent dynamics
in this section, the agent dynamics in [19] are restrictecb@oneutrally stable and all the
eigenvalues of the state matrix of each agent.in [20] arenasduo lie in the closed left-half

plane.

[1l. ADAPTIVE CONSENSUS FORMULTI-AGENT SYSTEMS WITH LIPSCHITZ NONLINEARITY

In this section, we study the consensus problem for a grou§ adentical nonlinear agents,
described by
jfi :AI’Z—Fle(ZEZ)—FBUZ, = 1, ,N, (12)

wherez; € R", u; € R? are the state and the control input of théh agent, respectively,
B, D,, are constant matrices with compatible dimensions, anchtiminear functionf(z;) is

assumed to satisfy the Lipschitz condition with a Lipsclutnstanty > 0, i.e.,

1f (@) = fWll <Allz—wyll, VoyeR" (13)
Theorem 2. Solve the following LMI:

AQ + QAT —7BBT + 42D\ TDT Q@
Q -T

<0, (14)
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to get a matrix) > 0, a scalarr > 0 and a diagonal matri¥’ > 0. Then, theN agents described
by (I12) reach global consensus under the protddol (4) With —BTQ~! andl' = Q~'BBTQ!
for any connected communication graghFurthermore, each coupling weight converges to
some finite steady-state value.
Proof: Using (4) for [12), we obtain the closed-loop network dynesras
N
xTr; = AZ’Z + le(l’l) + Z CUCLUBF(.TZ‘ — .Tj),
i=1 (15)
éij = Hija,ij(l’i—l’j)TF(l‘i—Zlfj), 7, = ]_, ,N.
As argued in the Proof of Theorem 1, it follows thaf(t) = c;;(¢), Vit > 0.
Lettingz = + Z;V:l zj, ¢ = x;—%,ande = [ef ,- -+ ek]T, wegete = ((Iy — x117) @ [,) x.
By following similar steps to those in Theorem 1, we can rediie consensus problem 6f [15)
to the convergence efto the origin. It is easy to obtain thatsatisfies the following dynamics:
1 N N
¢; = Ae; + D1 f (z;) — N Z Dy f(x;) + Z(éij + B)ay; BF (e; — ¢;),
P =1 (16)
éz’j :/ﬁijaij(ei—ej)TF(ei —6]‘), 1= 1, ,N,
wherec;; = ¢;; + 8 and 3 is a positive constant.
Consider the Lyapunov function candidate

ZeTQ eZ+Z Z . (17)

i=1 j= lj;éz

The time derivative of/; along the trajectory of (16) is

V2—2ZeTQ eZ+Z Z C”éw

i=1 j= 1#2
N N
— 226?@‘1 (Aei + Dy f(z;) — %;le(xj + ; & + B)ai; BF (e; ])>
+ Z Z Gijaii(e; —e;) T (e; — e;) (18)

1=1 j=1,j7#1

—QZeTQ 1AQ—25ZZ£”6TQ 'BBTQ e,

i=1 j=1
T -1 1 o«
+2262‘Q Dy | f(x) — f(@) NZ () |,
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where we have used the fatt (8) to get the last equation.
Using the Lipschitz conditior_(13) gives

2e7 Q71D (f(w:) — £(2)) < 29]|eF Q71D T2 ||| T 2 ¢y

< e (VQTDITDIQT + T ey,

(19)

whereT is given in [1%). Becaus® ¥ = 0, we have

=1 z
N
> elo 1D< fo]>:o. (20)
=1
Lete; = Q7 te; ande = [éf,- -+, ek ™. In virtue of (19) and[(20), we can obtain from {18) that

N

V<) el ( (AQ + QAT + 42D, TDT + QT'Q)é; —2BZ£UBBT )
i=1 (22)

7j=1
=" (In ® (AQ + QA" +*DiTDT + QT7'Q) — 28L ® BB™) ¢.
Let U € RV*YN be the unitary matrix defined in the proof of Theorem 1, syitigf U7 LU =
A = diag(0, Ao, -+, Ay). Let¢ = (T, -+, (F]T = (UT @ I,)é. Clearly,(; = (%@Q‘l)e = 0.

From (21), we have

Vo < (T (In ® (AQ + QA" + 42D, TDT + QT7'Q) — 28A ® BB™) ¢
N
= ¢ (AQ+ QAT ++*DiTDf + QT™'Q — 28NBB) (; (22)
1=2

= W(Q).
By choosingg sufficiently large such th&sh;, > 7, i =2,--- , N, it follows that
AQ + QAT —28\,BB” +*D\TDT + QT'Q

< AQ+ QAT — BB ++*D,TD + QT'Q

<0, i=2,---,N,
where the last inequality follows fromi (IL4) by using the Stbomplement lemma [25]. There-
fore, W(¢) < 0.

SinceVs < 0, Vi(t) is bounded and so is each. By (16), ¢;; is monotonically increasing.

Then, it follows that eacls;; converges to some finite value. Thus the coupling weights

converge to finite steady-state values. Note thais positive definite and radically unbounded.

By LaSalle-Yoshizawa theorem [24], it follows thAtn, ... W (¢) = 0, implying that(; — 0,
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i=2,---,N, ast — oo, which, together with(; = 0, further implies that(¢) — 0, ast — oc.
This completes the proof. [ |

Remark 3: By using Finsler's Lemma_[26], it is not difficult to see thakete exist &) > 0,
aT > 0 and ar > 0 such that[(I4) holds if and only if there existsra such that(A +
BK)Q + Q(A+ BK)T +~+*D,\TDT + QT~'Q < 0, which with 7' = I is dual to the observer
design problem for a single Lipschitz systemlin![27],|[28tcArding to Theorem 2 in [28], the
LMI (L4) is feasible, and thus there exists an adaptive malt@d) reaching consensus, if the
distance to unobservability @¢fA, B) is larger thary. Besides, a diagonal scaling matfix> 0
is introduced here i (14) to reduce conservatism. If thelinear functionf(x;) = 0 in (12),
then [12) becomes§|(1). By choosifigsufficiently large and lettind; = 0 andr = 2, then [14)
becomesAQ + QAT — 2BBT < 0. Therefore, for the case without the Lipschitz nonlingarit
Theorem 2 is reduced to Theorem 1.

Remark 4: It should be mentioned that the adaptive law [ih (4) for adijigsthe coupling
weights is inspired by the edge-based adaptive strate@lin [22], where adaptive synchroniza-
tion of a class of complex network satisfying a Lipschitpéycondition is considered. However,
the results given in [21]/ [22] require the inner couplingtmato be positive semi-definite, and

are thereby not directly applicable to the consensus pmohieder investigation here.

IV. EXTENSIONS

The communication topology is assumed to be undirected enpttevious sections, where
the final consensus value reached by the agents is genedllgxplicitly known, due to the
nonlinearity in the closed-loop network dynamics. In manggtical cases, it is desirable for the
agents’ states to asymptotically approach a reference. dtathis section, we consider the case
where a network ofV + 1 agents maintains a leader-follower communication strectu

The agents’ dynamics remain the same a§lin (1). The agergsaddyl, - - - , N, are referred
to as followers, while the agent indexed by 0 is called théusairleader whose control input
ug = 0. The communication topology among tié followers is represented by an undirected
graphg. It is assumed that the leader receives no information fragnfallower and the state

of the leader is available to only a subset of the followergh@ut loss of generality, the first
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g followers). In this case, the following distributed conses protocol is proposed

(Z cijaij(x )+ cidi(x; — xo)> ,

Ciy = Rigay(x; — ) T (i — ),

é,’ = Klzdl(llfz — xo)Tf(x,- — [L'()), = ]_, s ,N,

(23)

wherea;;, ¢;;, k;; are defined as ir{4}); denotes the coupling weight between ageand the
virtual leader,x; are positive constants; € R?*" andI' € R"*" are feedback gain matrices,
andd; are constant gains, satisfying> 0,i=1,--- ,¢, andd; =0,i=¢q+1,---, N.

The objective here is to desigh € R**" andI’ € R™*" such that the states of the followers
can asymptotically approach the state of the leader in theesthatlim, .. ||z;(¢) —zo ()| = 0,
Vi=1,---,N.

Theorem 3. Assume thatg is connected and at least one follower can have access to the
leader’'s state. Then, the states of thiefollowers asymptotically approach the state of the
leader, under the protocdl (23) with = —B7P~! andI' = P~'BBTP~!, whereP > 0 is a
solution to [(8), and the coupling weights andc¢; converge to finite values.

Proof: Let e; = x; — x9, i = 1,---, N. Then, the collective network dynamics resulting

from (I) and [(2B) can be written as

N
— As; + BF (Z ciji5(€ ) + cid; €z> 5

Cij = kigaij(ei — &) T — &), &Y

¢ = /-cid,-»s?fs,-, 1=1,---,N.
Clearly, the states of the followers underl(23) can asyngatty approach the state of the leader,
if (24) is asymptotically stable.

Consider the Lyapunov function candidate

Ve — ZTP ng (Ci_5>2
S SETATES D D=l gL @

i=1 j=1,j#i 1=1

wherej is a positive constant. The rest of the proof follows simdeps to those in Theorem
1, and by further noting the fact: Suppose titat diag(d;, ds, - - ,dy) > 0 with at least one

diagonal item being positive. Thed,+ R is positive definite ifG is connected [11]. [ ]
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Remark 5: It is worth mentioning that an adaptive pinning scheme simib (23) has been
proposed in[[29]. Compared td_[29] where the inner couplirgrir is an identity matrix, the
adaptive protocol(23) here is more general.

The case with the agents described (12) can be discussddrbi, and is thus omitted

here for brevity.

V. SIMULATION EXAMPLES

In this section, a simulation example is provided to vakddie effectiveness of the theoretical

results.

@/G) @\@
I\
YA

Fig. 1: The communication topology.

Consider a network of single-link manipulators with revelyoints actuated by a DC motor.
The dynamics of the-th manipulator is described bl (12), with (s€e![28])

En [0 1 0 0] [0 ]
Lo 486 —1.25 486 0 921.6
;= A= . B= :
Lis 0 0 0 10 0
En | 195 0 —1.95 0] | 0 ]

T
D=1, f(zi)=]0 0 0 —0.333sin(z;3)

Clearly, f(z;) here satisfied (13) with a Lipschitz constant 0.333.
Solving the LMI (14) by using the LMI toolbox of Matlab givebd feedback gain matrices
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in @) as
F=1-1.8351 —0.2144 1.0309 —2.247] )
[ 33676 0.3935 —1.8917 4.1236 |
0.3935 0.046 —0.221 0.4818
—1.8917 —0.221 1.0627 —2.3164
| 4.1236 04818 —2.3164 5.0492 |

To illustrate Theorem 2, let the communication grapbe given in Fig. 1. Herg is undirected
and connected. Let;; = 1,i,5 = 1,---,8, in (4), andc;;(0) = ¢;;(0) be randomly chosen. The
states trajectories of the eight manipulators under théopod (4) are depicted in Fig. 2, from
which it can be observed that consensus is reached. Theimguwptightsc,;; are shown in Fig.

3, which converge to finite steady-state values.

Fig. 2: The states of the eight manipulators undér (4).

VI. CONCLUSION

In this paper, the distributed consensus problems have teesidered for multi-agent sys-
tems with general linear and Lipschitz nonlinear dynamiistributed relative-state consensus

protocols with an adaptive law for adjusting the couplinggh¢s between neighboring agents
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L

Fig. 3: The coupling weights;;.

are designed for both the linear and nonlinear cases, untd@hwonsensus is reached for

all undirected connected communication graphs. Extessiorthe case with a leader-follower

communication graph have also been studied.
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