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Abstract

This note introduces a new approach to the solution of a venegl
class of finite-horizon optimal control problems for digerime systems.
This approach provides a parametric expression for thenapttontrol se-
quences, as well as the corresponding optimal state taiest by exploit-
ing a new decomposition of the so-called extended sympl@etncil. This
decomposition provides an original strategy for a moreatliselution of the
problem with no need of the system-theoretic hypotheseti@img regular-
ity of the symplectic pencil) that have always been assumeid literature
so far.

1 Introduction

This paper focuses on a very general class of finite-horimaai-quadratic (LQ)
problems with affine constraints at the end-points. Thesblpms are not just
importantper se In fairly recent literature it has been shown that LQ prob-
lems are becoming increasingly useful as building blocksalwe complex op-
timisation problems, broken down into two or more LQ subpeois, each one
with constraints at the end-points. In particular, finitaihon LQ problems with
constraints at the end-points [13, 14] are intermediatpssie the solution of
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H, receding-horizon problems and the minimisation of regoitatransients in
switching linear plants.

The aim of this paper is to present a method to solve the mostrgkclass of
finite-horizon LQ optimal control problems in the discreted with positive semi-
definite cost index and affine constraints at the end-poitis.proposed solution
is based on a procedure for the parameterisation of the s@j@ftories generated
by the so-called extended symplectic difference equatt®DE). The idea of
solving finite-horizon LQ problems by exploiting expressoof the trajectories
generated by the ESDE originated in the papers [3] and [4hdrpast literature,
however, the problem solution was always essentially basetivo “opposite”
solutions of the associated discrete algebraic Riccataou (with some extra
tricks to deal with the case when the closed-loop matrixngiar and hence no
pairs of completely opposite solutions exist). This poihview always requires
some controllability-type assumption and the extendedpgatic pencil [17] to
be regular and devoid of generalised eigenvalues on theiwig. The goal of this
paper is to propose a hew point of view aimed at a more diretsanple solution
to this problem, without requiring system-theoretic asgtioms. The technique
presented here only requires a solution of the so-calledrgésed discrete-time
algebraic Riccati equation, which may exist even when thepgctic pencil is
not regular (in which case the standard discrete algebraicaR equation does
not admit solutions, let alone pairs of “opposite” solusprSuch solution is used
to derive a decomposition of the extended symplectic pehatlyields a natural
parameterisation of the solutions of the symplectic differe equation. Thus,
while for practical purposes our paper simply provides aegalisation (yet in
three different directions) with respect to the existingriature, its different point
of view casts a new light on the theoretical comprehensidhisfproblem and on
its connections to the classical cornerstones of lineaesystheory.

For a better description of the features and the generdlibupframework,
we illustrate all our results in a running example in which tinderlying system
is not modulus controllable, and the extended symplecticipes not regular (so
that the methods in previous literature cannot be used).

2 Statement of the problem

Consider the linear time-invariant discrete-time systewegned by the difference
equation

X(t+1) =Axt)+Bu(t), (1)

where, for alt € N, x(t) e R" is the statey(t) e R™is the control inputAc R"*"
andBeR"*™M. LetN e N\ {0} be the length of the time horizon. L, Viy e R9*"
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andveRY consider
Vox(0) +Vnx(N) =V, (2)

which represents a two-point boundary-value affine coimgtoam the states at the
end-points. With no loss of generality, we can consie® [y W] to be of
full row-rank. In the case whermg=0, the matrice¥p,Vn,V and the vectov are
considered to be void.

Letl = [§ :} =T >0 be asquarén+m)-dimensional matrix witlQ € R"*",

SeR"™M andRe R™*™M (note that we do not assume the non-singularityRpf
Hy H

We denote by the Popov triplglA,B, ). Finally, letH = [Hi Hz] =H">0
2

with Hy, Hp, H3€ R"* " andhg, hy € R".

Problem 1 Find u(t),t€{0,...,N—1} and Xt), te{0,...,N}, minimising

N—-1
o0 & 3 [ W] [’Jm

t=

SO M- RO TR @

under the constraints (1-2).

As discussed in [4], the formulation of Problem 1 is very gahesince the cost
index in (3) involves the most general type of positive segfiidte quadratic pe-
nalisation on the extreme states, and (2) represents theganeral affine con-
straint on these states. As particular cases of Problem lawelh the standard
case where(0) is assigned and(N) is weighted in (3);2) the fixed end-point
case, where the states at the end-points are sharply adgsByiee point-to-point
case, where the extreme values of an ouggtit=CXx(t) are constrained to be
equal to two assigned vectoys andyy, respectively. Further non-standard LQ
problems that can be useful in practice are particular cafdeésoblem 1: consider
for example an LQ problem in which the states at the end-paiit) andx(N)
are not assigned, but they are constrained to be equak(D&+ x(N). This case
can be obtained by Problem 1 by settWig= I, Vs = —In andv = 0.

Lemmal [4,Lemmal] If u(t) and Xt) are optimal for Problem 1, theh(t) e R",
te{0,...,N} and n € R® exist such that {t), A(t), u(t) and n satisfy the set of



equations

X(t+1) =Ax(t)+Bu(t) te{0,...,N—1}, 4)
v ;‘glﬁ’l”:v, (5)
A)=QxXt)+ATA(t+1)+Sut) te{0,...,N—1}, (6)
~A0) 7 [ x0)—h
= v g
0=S"xt)+B"A(t+1)+Rut) te{0,...,N—1}. (8)

Conversely, if equations (4-8) admit solutior(§)xu(t), A(t), n, then Xt), u(t)
minimise Jx, u) subject to the constraints (1-2).

3 Thegeneralised Riccati equation and theextended
symplectic system

Since in the present setting we are not assumingRimapositive definite, (8) can-
not be solved inu(t) to obtain a set of 2equations irx(t) andA (t). A convenient
form in which (4), (6) and (8) can be written, that does noursgjinversion ofR,
is the descriptor form

Fpt+1) =Gp(t) te{0,...,N—1}, 9)
where
lh O O A OB X(t)
F£E|O-ATO|, G2 | Q —Iy S|, pt)= | A(t) |.
O -B" O s" OR u(t)

Notice that there is a small issue in the equivalence betwgeations (4), (6) and
(8) and equation (9). In facty(N) does not appear in (4), (6) and (8). Notice,
however, that whem(N) appears in (9) it is multiplied by 0, hence its value is
irrelevant. Therefore, we can say that equations (4), (8)(8hand equation (9)
are equivalent, modulo the (arbitrary) valueuN). The matrix pencilc — zF
is known as theextended symplectic pendil1, 9], herein denoted concisely by
ESPE). In this paper we do not make the assumption of regularithisfpencil.
We will show how to obtain a decomposition of ESP(hat can be used to
solve Problem 1 by exploiting the solutions of the followiognstrained matrix
equation

X = ATXA—(ATXB+S)(R+B"XB)"(BTXA+S")+Q, (10)
ker(R+B'" X B) C kerA" XB+9S), (11)
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where (10) has been obtained from the standard discretbraigeRiccati equa-
tion (DARE) by replacing the inverse with the Moore-Penrmpseudo-inverse. Eq.
(10) is known in the literature as tlgeneralised discrete-time algebraic Riccati
equationGDARE®Z), [15, 8]. GDAREE) with the additional constraint given by
(11) is sometimes referred to asnstrained generalised discrete-time algebraic
Riccati equationCGDAREE). Clearly (10) constitutes a generalisation of the
classic DAREE), in the sense that any solution of DARE (s also a solution of
GDARE(R) — and therefore also of CGDARE)— but thevice-versas not true in
general. Results on the existence of solutions of GDARi#{ terms of deflating
subspaces of the extended symplectic pencil are given iarjé][9]. We now
introduce a standing assumption.

Assumption 3.1 Assume that CGDARE] has solutions.

Notice that Assumption 3.1 is generically satisfied. Thaatibns in which
CGDAREE) does not admit solutions happen to be extremely pathabgin-
deed, to the best of the authors’ knowledge, no necessargudficient existence
conditions expressed in terms of the problem data are &aitar CGDAREE).
There are, however, very weak sufficient conditions (seeraagulus controlla-
bility, [4]) that guarantee existence of solutions of DARIE{ and therefore also
of CGDAREE). On the other hand, CGDARE] generalises DARE{), and may
admit solutions even when DARE) does not. Thus, even in cases in which the
aforementioned weak system-theoretic conditions areatstfed, CGDAREY)
may still have solutions. Such solutions can be computedavieduction to a
reduced-order DAREY), see the MATLAB® routinerdare.m in [2], see also [7].
We now introduce some notation that will be used throughoaippaper. First, to
any matrixX = X' € R™" we associate the following matrices:

Sx
Kx

ATXB+S Rx2R+B'XB, Gx2Inh—RIR, (12)
RIS, Ax 2 A—BKy. (13)

A
A

The termR; Rx is the orthogonal projector that projects onto raIRQE# rangeRy
so thatGy is the orthogonal projector that projects ontoRgr Hence, keRy =
rangeGy.

Example 3.1 The following Popov triple is used as a running example tghmut
the paper:

11 20 00 00
a=[o) o= [15) o-[a3) s-r-oaf
The extended symplectic pencil in this case is not regulas.séch, DAREX)
does not admit solutions. On the other hand, in this case CRHE®) admits
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the solutionX = diag{0, 1}, that can be computed by resorting to the algorithm
proposed in [2]. In this cas®x = [i ﬂ andAy = diag{1,0}. Observe that the
spectrum ofAx is not unmixed, see e.g. [4]. OJ

The following result adapts [6, Lemma 2.5] to the case wBenz F may be
singular.

Lemma?2 Let X= X' be a solution of CGDAREJ. Then, two invertible matri-
ces W, Vx € R2"M exist such that

Ax — 2l 0 B
Ux (G—2zF)Vx = O Ih—zA; O |. (14)
O —-zB" Ry

Proof: By direct computation we find

Ax —zl, O B

Ux(G—ZF)Vx: =21 ||q—Z/A;<r =03
=) —zB" Rx
with
l, O O l, O O
Ux 2 |[AMX In =K | and W2 | X —Ip OF.
B'X O In —Kx O I

The term=5; is given by

Zo1 = ARXA—AXBKy +Q— X — SKy — Ky ST + Ky RKy
—Z(ATX = AfX + Ky BT X).

The term multiplyingzis zero sincédx = A— BKx. Moreover, since GDARE)
can be written aX = ATXA— SxKx + Q we find =21 = Ky (RcKx — S) =
SKRIRxRISE — S(RLS] = 0. Finally, =23 = ATXB—zX B— Ky B'XB+ S+
ZXB— KQR: Sx Gx. In view of (11), we havésy Gx = 0, so that (14) holdsH

Remark 1 It is known that the dynamics associated with a matrix pesajov-
erned by its generalised eigenvaluéslf X is a solution of CGDAREY), from
(14) we have

detG—zF) = (—1)"- det{Ax—zl,) - det{1,—zA}) - detRy. (15)

1Recall that a generalised eigenvalue of a matrix pe@eilzF is a value ofz € C for which
the rank of the matrix penc — z F is lower than its normal rank.
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WhenRy is non-singular (i.eX is also a solution of DAREY)), the generalised
eigenvalues o6 — zF are immediately seen to be given by the eigenvaluesof
the reciprocal of the non-zero eigenvalues\gf and a generalised eigenvalue at
infinity whose algebraic multiplicity is equal tm plus the algebraic multiplicity
of the eigenvalue ol at the origin. When the matriy is singular, the compu-
tation of the generalised eigenvalues®# zF is much more complex. Indeed, in
such case (15) still holds but provides no information sietRx = 0. We show
this fact with a simple example.

Example 3.2 Consider Example 3.1. MatriX = diag{0,1} is a solution of
CGDARE(), and the corresponding closed-loop matriRjs= diag{1,0}. From
Lemma 2 we find

"1-z2 0] 0 020
0 —z| 0 0|11
0 01—z 0]0 0
Ux(G=2FV=| 4 ol 0 10 0]
0 0|-2z -z|1 1
0 0| 0 -—z[11

whose normal rank (which coincides with that @f— zF) is easily seen to be
equal to 5. The eigenvalues &f are 0 and 1. However, it is not true that 1 is

a generalised eigenvalue Gf— zF. In fact, a direct check shows that the rank of
G—F is equal to % O

From these considerations, it turns out that wRgnis singular, the compu-
tation of the eigenstructure of the pen@l- zF is more difficult, and requires
a different machinery. This machinery hinges on a decontiposof the matrix
pencil G — zF for which we need to introduce the following notation. Calesi
a change of coordinates in the input sp@&®induced by then x m orthogonal
matrixT = [Ty T»] where rang&; = rangeRx and rangd, = rangeGy = kerRy.
From [5, Theorems 4.3-4.47, is independent of the solutiot of CGDARER).
ThusTTRxT = diag{Rx 0,0}, whereRy o is invertible. Its dimension is de-
noted bymy. Consider the block matrix £ diag(In, In, T). Defining the matrices
B; £ BT, andB, £ BT, we get

Ax—1zly O B: B>
O Ih-zAy O O
@) —ZB—lr Rxo O
O -zB O O

TTHUx(G—zF)W) T = (16)

2\We warn that the routineig.m of the software MATLAB® (version 7.11.0.584(R2010b))in
this case fails to provide the right answer. It indeed returras a generalised eigenvalue of the
pencilG — zF.



From kelRx = rangeGy, we obtain rangB, = rangéB Gx). Matrix B; hasm
columns. Letmp, £ m—my be the number of columns &,. Let us takeU =
[U1 Uz] such that); spans the reachable subspace associated with thg\pai; ),
denoted byZx, andU, is such that) is invertible. We have

-1 | Axa1 Axaz 15 _ | B21
U AXU—{ 3 AX,22, U By= oI

U-lgy — [Bﬂ}. 17)
Bi2

Now, we are ready to state the main result of the paper.

Theorem 1 Let Assumption 3.1 hold. Two invertible matridés and Vx exist
such that

Ux (G —Z F) \7)( =
Ax.11—2k Bz O Ax 12 O B11
O Ofi-zA O O O
O O] -zB, O O O (18)
O O O AX722—Z|n—r O 812 ’
O O|-zA1 O Ihr-2A5 O
@) O —ZBI]_ @) —Z BIZ nyo
where the pair(Ax 11,B21) is reachable and Ro is invertible. Moreover, the
Ax 22— ZIn—r O B2
matrix pencil R(z) = o Ih-r—2zAy 5, O | in (18) is regular, and the gen-
o} -zB], Rxpo

eralised eigenvalues of the pencik& F are the generalised eigenvalues ofZp.

The proof of Theorem 1 can be found in the Appendix. The deamitipn intro-
duced in Theorem 1 essentially isolates the regularfézj of the pencilG—zF.
A consequence of this fact is that, unlike the regular cagkalhthe eigenvalues
of Ax appear as generalised eigenvalues of ERPindeed, from (18) we have
the following

Corollary 1 The finite generalised eigenvalues of@F are the uncontrollable
eigenvalues of the paitAx, B2) plus the reciprocals of those eigenvalues that are
not zero.

Example 3.3 Consider Example 3.1. Using the solutir- diag{0, 1} of CGDAREE),
the null-space and image Bk are respectively spanned by the vecth%] and



m By taking T = H _11] we obtainT "Rx T = diag{4,0}. Hence, in this

casemy = mp = 1. We partitionBT asBT = B 702], so thatB; = [g} and

B, = [_02]. The normal rank of ESE] is equal to 2i+m = 5. The gener-

alised eigenvalues @& — zF are given by the uncontrollable eigenvalues of the
pair (Ax,Bz) = ([(1)8 , [‘02]) plus their reciprocals. Therefore, ESP(as a
generalised eigenvalue at the origin. Simges, = 0 andBjo = 2, it also has

an eigenvalue at infinity with multiplicities equal to the hplicities of the zero
eigenvalue of{g 8] . By writing this pencil in the form given by (18), we get

"1z -2 0 |0 0 2

0 01—z 0 0 0

o o0|l2z|0 o0 o0
PO=\—05—"0oT0 2z 0 2|

o ol olo 1 o

| 0 0|-2z[0 -2z 4]

from which we see that zero is indeed the only finite genezdlsigenvalue of
ESPE). O

4 Solution of the LQ problem

We now consider the problem in the basis constructed in theiqus section.

Let [Zgﬂ = U~1x(t) be the coordinates of the state in this basis, partitioned
conformably withU. Similarly, let [;\\;8] =UTA(t) and T Tu(t) = [328] In
this section, we show that in this basis the problem can hiyeadved in closed
form. More precisely, we first parameterise the solution@fn terms ofx; (0),
X2(0), X2(N) andA2(N). Then we parameterise the optimal valueg@0), x»(0),
x2(N) andA2(N) by imposing the boundary conditions.

In the new bases, equations (9) can be writtert 0£0,...,N— 1} as

X1(t+1) = Ax 11%1(t)+Bogug (t) +Ax 12%2(t) +B1iua(t), (19)
M(t) = Axada(t+1), (20)
0= —BJA(t+1), (21)
Xo(t+1) = Ax 20%2(t) +B1ouo(t), (22)
Aa(t) = AxopAa(t+1) +Ax A1 (t+1), (23)
Uz(t) = Ry uBipA2(t+1) + Ry oBiyAx(t+1). (24)
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AT
Since by construction the paifx 11, Bp1) is reachable, ker ;jl = {0}, which

21
means (20-21) yield(t) = 0 for allt € {0,...,N —1}. Thus, (23-24) can be
simplified as

Aa(t) = Ax p2A2(t+1), and up(t) = Ry 5BipAa(t +1). (25)

It is clear at this point that we can parameterise all theettayies generated by
the difference equations (22) and (25) in terms0) andA2(N). Indeed, the
first of (25) leads to

Ao(t) = (Ax 22V " A2(N)  Vte{0,...,N}. (26)
This expression can be plugged inkgt), and gives
Uz(t) = Ry 5B (Ax 2™ 1 A2(N). (27)
Plugging (26) and (27) into (22) gives
Xa(t) = Al 20%2(0)

t—1
_il1 B e
“‘.Z)Atx,éz B12Ry 0B12(Ax 22" T Aa(N). (28)
J:

It is worth observing that
X2(N) = AR 5o%2(0) + PA2(N), (29)

where
" AN-j-1 1aT (AT \N—j—1
N i 5 o
P= _%Ax,zz B12Ry 0B1a(Ax 22)" '
J:

Itis easy to see that matrixcan be re-written aB =N A} ,,B1oR; B, (AX ).

Therefore P satisfies the discrete Lyapunov equation
P=Ax22P A 20— Al 22 B12R>_<710|312 (Ax22" + B12R>_<710|312-

If Ax 22 has unmixed spectrum, this equation can be used to deteFhmiséead of
computing the sum in (29). At this point we can solve (19),chhéan be written
as

X1(t4+1) = Axa1x(t) +Borug(t) + & (1), (30)
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whereé (t) = Ax 12%2(t) + Bryux(t). Using (28) and (27) we find
E(t) = Ax.12A% 2o%2(0) +<511R>7<,10512(A>T<,22)N471
t—-1 .
+Ax712Z}A%JzlelzRi})sz(A;zz)N_J_1> A2(N).
]:

Let R = [Bo1 | Ax11Bo1 | A% 11B21 | --- | AX 11B21] andRe = [1 | Ax 11 | AS 14 |
.-+ | AR73]. Then, we can writeq (N) = AY 11x1(0) + Ry = + Ry Uy where= £
¢(N-1) u(N-1) . .
[ : } andU; £ [ o ].We assume tha\ is greater than the controllability

&(0) uy(0)
index of the pairfAx 11, B21). All the solutions of this equation are parameterised

by
_ Rl N = i
Up =Ry (x1(N) — Ax 11x1(0) —R2Z) + (I =Ry Ry) v, (31)

wherev, is arbitrary.

4.1 Boundary conditions

In the new basis, the state, co-state and transversalitgtiens can be writ-
ten again as in (4), (6) and (8), whefe B, Q, S V, H, hg and hy are re-

placed byA—=U-1AU,B=U"1B,0=UTQU,§=UTSV =V [‘é 8] H =

T ~ ~
[g 8] H [g 8] hg = U ~thg andhy = U hy, respectively. Now, let us con-
sider the boundary conditions.  In this basis, if we panitiy andVy con-
formably with the state vector, i.8g = [Vo1 Vo 2] andVWy = [Wn,1 W 2], (5) can
be re-written in this basis as

[ Vo1 Wi Voa+W2AR 5 Wna [x=v, (32)

wherex = [x{ (0) x{ (N) x;(0) A7 (N)]". Let us now consider (7), and let
b — [H~1 Ha X1 (t)

Hs Hy - XZ(Q
let Ko andKy be basis matrices for K&g and ke, respectively, to be used to
eliminate the multiplien). Thus, (7) can be re-written as

} be partitioned conformably witiii } whereHs = H, . Finally,

al MO07 1y [*(0) r T~ [xa(N) =

Ko |:A2(0):|_K0 Hl( [XZ(O)} hO)+K0 Hz( |:X2(N):| hN), (33)
T A1(N) T3 x1(0) ~ T x1(N) o

“ [MN)} K H [ 2(0)}_h°)+KN Ha [mm]_h’“)' (34)

11



.. ~ |:|i |:|iA ~ |:|i ~ |:|iA .
Now, definingH; = | ."** .| and alsoH! = | ."**| andHZ = | ."**| fori e
Hi21 Hi22 ! Hi 21 ! Hi 22

{1,2,3,4}, in this basis (5) and (7) can be expressed as the single Boetion

F1 _
[ﬁ} X=g, (35)

where

v
9:[ : T T [ ho ]
diag{ K, , Ky H | -
iagKg K} | |
We have just proved the following result.

Theorem 2 Under Assumption 3.1, Problem 1 admits solutions if and d1(85)
does. For any solution % [x{ (0) x{ (N) xJ(0) A;(N)]" we get an optimal
initial state X0) = [2%] and a class of optimal controls parameterised by (27)
and (31). The solutions obtained in this way are all the sohg of Problem 1.

Example 4.1 Consider a finite-horizon LQ problem in the time inter{@l. .., N},
involving the matrices given in Example 3.1. The initial ghl states are con-
strained to be equal, i.ex(0) = x(N). LetH = Iz, hg = [2;] andhy = 0. As
aforementionedX = diag{0, 1} is a solution of CGDAREY), leading toAx =
diag{1,0}. By takingT = H _11], we obtainedT "Ry T = diag{4,0}, so that

Rox =4,B1 = [ﬂ andB, = [’02]. Therefore, the reachable subspace of the

pair (Ax,B>) is spanned b){l], which means this system is already in the de-
sired basis. ThUSQ\le =1, Ax712 = Ax722 =0,B11=B1p=2 and Bo1 = —2.

In this case, (22) and (25) yiekp(t + 1) = Byouz(t), A2(t) = 0-A2(t+1), and
Up(t) = R;})BIZ)\Z(t +1). This implies thatA;(t) =0 for allt € {0,...,N—1}
and is equal to\x(N) for t = N, so thatuy(t) = 0 for all t € {0,...,N—2} and
U2(N — 1) = Ry 5BJ,A2(N). Thusxy(t) is equal taxp(0) att =0, is equal to zero
fort € {1,...,N—1} and is equal tdB{,R 5B,A2(N) = Az(N) for t = N. In
this basis, (5) gives rise tq (0) = x1(N) andxz(0) = x2(N) = A2(N), which are
linear inx,(N) andA2(N), while (33-34) can be written ag(0) +x1(N) = h; and
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X2(0) +X2(N) 4+ A2(0) — A2(N) = hy. SinceAz(0) = 0 andxz(N) = A2(N), the lat-

ter can be written a&(0) = hy. Therefore, the boundary conditions can be written
in the form (35). This linear equation admits only the s@otk;(0) = x1(N) =
h1/2 andxz(0) = A2(N) = ha. Now we can compute the optimal control law. First,
Uz(t) is zero for allt € {0,...,N—2} andua(N — 1) = Ry 5B{,A2(N) = hy/2. To
computeus, we write (19) asq(t+1) = 1-x1(t) — 2us(t) + & (t). The termé (t)

is zero for altt € {0,...,N—2} and& (N — 1) = B11 Ry % B{,A2(N) = A2(N) = hy.

We write (31) explicitly as

hy
2 N—1 0
0
U]_(N—l)
ug(N—-2
+[-2 -2 ... -2] 1(N=2)
N uy(0)
which gives
uy(N—1) 1 1_1'\' ng ‘ 8
Ul(N—Z) E 1 ) ' v
: 2N 1 1 1 |
u1(0) 1 11 1 |

wherev is arbitrary and represents the degree of freedom in theaant 0J

Remark 2 So far, we have not considered the problem of existence afieak
for Problem 1. In general, the existence of a state trajgaidy satisfying the con-
straints (1-2) for soma(t) is not ensured, since we have not assumed reachability
on (1). A necessary and sufficient condition for the existesfcoptimal solutions
is that there exist state and input trajectories satisfying) (feasible solutions).
In fact, since the optimal control problem formulated intg®t?2 involves a finite
number of variables — precisely= m- N for the control plus for the initial state
— Problem 1 can be restated as a quadratic static optimmsptablem in these
L + n variables with linear constraints. Thus, a solution to Reobl exists if and
only if a feasible solution —i.e., a state and input funcsisatisfying both (1) and
(2) — exists.
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Proof of Theorem 1

Recall that we have defined tmex m orthogonal matrixT = [T; T2] where
rang€el; = rangeRy and rangd, = rangeGy = kerRy, sothafl TRy T = diag{Rx o, O},
whereRy g is invertible. Its dimension is denoted by,. We also defineds; =S

BT, andB, = BT,. Moreover, we considerdd = [U; U,] such thatJ; spans#x,

and (17) holds. Letl = diag{U,U,Im,,Im,}. Letr denote the size ofx. Us-

ing (17) into (16), and taking into consideration and defjrtime two unimodular
matrices

I, 000 O O L 00O O O
I 80§ 8
A A r
Q1= |o,,00 00| and Q=|0000+Hh,0|:
00O0L,0 O 0000 O hy
0000 IyO Olm,0 O O O

along withUy 2 Q;U"1TTUyx andVx £ Vx TUQ,, we get (18). LetP(z) =
Ux (G — zF)Vx. Since in (18) the paifAx 11,B21) is reachable by construction,
all ther rows of the submatrixAx 11—z Bp1] are linearly independent for every
z€ CU{w}. This also means that of tme- m, columns of Ax 11—z Ba1], only

r are linearly independent, and this gives rise to the preseha null-space of
P(z) whose dimensiomy, is independent af € CU {«}. We obtairt

rankP(z) =r +
lr—2ZA 11 O O O
-zB); O O O
rank O Ax 22— Zlh—r O Bio
—ZA5T<,12 O In—r —Z&r,zz O
—Z B—lrl O —Z B—lrz nyo

oAl
Now, consider the rank oﬁ'r i%“} . Again, since the paifAx 11, B21) is reach-
- 1

able, this rank is constant and equat tor everyze CU{w}. Thus, rank(z) =
2r +rankPy(2). Since dePy(z) = det(Ax 22— ZIh—r) - del(ln_r —Z A ,,) - detRx o,
a valuez € C can be found for which d€%(z) # 0. Hence, the normal rank
of Pi(z) is equal to Zn—r)+ my, and therefore the normal rank &z) is
2r+2(n—r)+m =2n+m. The generalised eigenvalues of the pefgit)
are the valueg € C U {e} for which the rank o (z) is smaller than its normal
rank 2(n—r) +m. |

SLet= = [Eél ?2} . Observe that if eitheE 1 is full row-rank or=5, is full column-rank, then

rank= = rank=,1 + rank=,».
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