arxiv:1201.4469v2 [cs.SY] 15 Sep 2012

Uncertainty Bounds for Spectral Estimation

Johan Karlsson and Tryphon T. Georgiou

Abstract—The purpose of this paper is to study metrics suitable spectral uncertainty is by bounding the power on (measejabl
for assessing uncertainty of power spectra when these are ded  subsets of the frequency band. Therefore, the goal of tiispa
on finite second-order statistics. The family of power speca is to consider the appropriate topology—the so-called weak

which is consistent with a given range of values for the estiated ¢ | d to d | itabl trics that b d
statistics represents theuncertainty set about the “true” power ~OP0I0GY, and to develop suitable metrics that can be use

spectrum. Our aim is to quantify the size of this uncertaintyset 0 quantify and measure power spectral uncertainty.
using suitable notions of distance, and in particular, to conpute Throughout, we consider stochastic processgs: ¢ € Z}

the diameter of the set since this represents an upper bound which are discrete-time, zero-mean, and second-ordéorstat
on the distance between any choice of a nominal element in the ary. A typical set of statistics for a stationary stochagticess

set and the *true” power spectrum. Since the uncertainty set is a finite set of covariance (or, autocorrelation) samplée
may contain power spectra with lines and discontinuities, ti is (or, ) P

natural to quantify distances in the weak topology—the toptogy ~ Covariance samples
defined by continuity of moments. We provide examples of _
such weakly-continuous metrics and focus on particular metcs k= E{YePr—r}, fork =0,£1,£2,... +n,

for which we can explicitly quantify spectral uncertainty. We ) : .
then consider certain high resolution techniques which utize where€{-} denotes the expectation operator, provide moment

filter-banks for pre-processing, and compute worst-casa priori constraints for the power spectruip of the process:

uncertainty bounds solely on the basis of the filter dynamics 1 [~
This allows the a priori tuning of the filter-banks for improved cp = — e*”“’du(e) fork=0,+1,+2...,+n. (1)
resolution over selected frequency bands. 2m ) 4

Index Terms—Robust spectral estimation, uncertainty set, The power spectrum is thought of as a non-negative measure
spectral distances, geometry of spectral measures, THREBtér on the unit circleT = {z = ¢ : 6 € (—m, ]} (for
design. notational simplicity also identified with the intervighr, ).

We use the symbdi to denote the class of such measures
and the problem of determining: € 9t from the covariance
samples (finitely or infinitely many) is known as the trigono-
N practice, the estimation of power spectra in stationaffetric moment problem. Classical theory on this problem
time-series often relies on second-order statistics. Thgginates in the work of Toeplitz and Carathéodory at the
premise is that these are moments of an underlying powern of the 20" century and has evolved into a rather deep
spectral distribution —the true power spectrum. Thus, thghapter of functional analysis and of operator thebry [35]]
question arises as to how much is “knowable” about thg?], [12], [4]. The classical monograph by Geronimis![22]
distribution of power in the spectrum from such statistics. contains a wide range of results on the trigonometric moment
Asymptotically, as more data accrue the convergence geoblem, the asymptotic behavior of solutions, spectretiizs
guaranteed in a suitable sense, but the practical questiol optimal predictors, as well as explicit expressions for
remains on how to bound the error when only limited inforspectral envelops [22, Theorem7] (c.f. [8], [26], [14]).
mation is available. To this end, it is important to consideX more general form in which statistics may be available
how a finite set of statistics localizes the power spectruig. when these represent the state covariance, or the output
Traditionally, for many applications, one relies on a partar covariance, of a dynamical system driven by the stochastic
power spectrum selected out of a variety of methods thatocess of interest. Such a dynamical system may represent
lead to specific choices, all consistent (in different way#h a model of physical processing (bandpass filtering at sensor
the recorded data and the estimated moments. Historicaltycations, losses, structure of sensor array, etc.) or rfiadi
Burg’s algorithm and the maximum entropy spectrum, and tipeocessing (software-based) of the original time-sefither
Pisarenko harmonic decomposition are specific such choiegsy, covariance statistics represent (generalized) mtsnen
[26], [48] and so are the correlogram and the periodograwf. the power spectrum and a theory which is completely
Thus, in general, there exists a large family of admissibihalogous to the theory of the trigonometric moment problem
power spectra which are all consistent. Bounding the vadfiesis available and provides similar conclusions, $ee [6],[[i4],
admissible spectral density functions is an ill-posed [@wb [15], [16]. In fact, the use of generalized statistics, vihic
(see Sectiofi IV). Instead, the natural way to quantify poweslates to beamspace processing, was exploredlin [[7], [15]
as a way to improve resolution in power spectral estimation
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known with limited accuracy. Thus, in a typical experimexst, [25, page 148]. Becausé: is a real measurey, = ¢_;, for

the observation record of a time-series increases so dees#h=0, 1,..., hence we use only positive indices and refer by
accuracy and the length of the estimated partial covariance
sequence. Our goal is to develop metrics that can be used to Co:n := (Co, €15+ -+ Cn)

qguantify spectral uncertainty. More specifically, phrasethe _
context of the trigonometric moment problem, we seek metrit0 the vector of the firs{r + 1) moments, and by
between power spectra that have the following properties:

() given a finite set of covariance samples, the family of c:=(co, c1,---)
(i) ti]%ngilztmegtepr%\?lter:esﬁre]gterratla?r?ze? gpltce,\,\?é??e;g{}aa;grmto the infinite sequence. The sequercis said to bepositive
P P T,, > 0 for all n. Similarly cy.,, is said to bepositive if

' if
to zero as both, th_e accuracy of the covariance samp£e7:5> 0. Accordingly, the terrmon-negativés used when the
increases and their number tends to infinity.

o ) relevant Toeplitz matrices are non-negative definite.
The latter condition is dictated by the fact that the trigono a¢ oted in the introduction. the power spectrum of a

metric_ moment problem is _known to_be _determ-med, - €4iscrete-time stationary process is a bounded non-negativ
there is a unique power spectrum which is consistent wi

L ; . . easure on the unit circle. The derivative (of its absojutel
an infinite sequence of covariances. As we will explain belo

) . X ¥ontinuous part) is referred to as the spectral densitytfomc
(in SectionLIll), the proper topology which allows for thes piie the singular part typically contains jumps (spectral
properties to hold is the weak topology on measures (cg

h . . f s th b es) associated with the presence of sinusoidal comgenen
[27, pages]). There is a variety of metrics that can be use general, the singular part may have a more complicated

to metrize this topology, and thus, in principle, to quantify, ihematical structure that allocates “energy” on a set of

spectral uncertainty. A contribution of this work is t0 888 easyre zero without the need for distinct spectral liAds [2
a class of metrics for which the radius of spectral unce!ryampage 5]. From a mathematical viewpoint such spectra are

anda priori boundsare computable given a finite set of (errorTmportant as they represent limits of more palatable spectr

frele) ;tattl'StrI%T]. ow the i ¢ oroblerdNd hence, represent a form of completion.
N SecliorLl] we review Ine trigonometric moment problem o a4 topology where such limits ought to be con-

and relevant concepts in functional analysis. In Secfidh | idered is the so-calledteak topology This topology is also

we define power-spectral uncertainty sets and discuss ewn as the weaktopology in functional analysis—a term

relevance of weakly continuous metrics. In Section IV Which is less frequently used in the context of measures. The

present a collection of weakly continuous metrics that, Weak topology is defined in terms of convergence of linear

glfgecrtergt vaa%/(salct?re Su\':/aeb(l:eoErurpee:ﬂé'g?aﬂgtgfigir?ge%\?v nctionals and is explained next. We denote{") the class
P : o\ P Y real-valued continuous functions @h It is quite standard

sets, for a particular choice of a metric, and elaborate en at the space of bounded linear functionls C/(T) — R,

gl\:vgrofeesrgﬁts a?r: ?)Zrﬁnlcee[[Laall?tglSéjigg:glscatlﬂgnr'ellzggge can be identified with the space of bounded measure¥ on
P P , pager]. More specifically, any bounded function&lcan

appl|c_abll|ty of the results in practice. In Sectibn VIl Wep o represented in the form
explain how the framework applies in the context of gen-
eralized statistics. In Sectidn_ VIl we highlight the use of
this quantification of uncertainty in filter design —we show A(f) = /f(t)dﬂ(t) forall f € C(T),

how to tune a filter-bank so as limit spectral uncertaintyrove B

some frequency range of interest. In the concluding sectiaith du being the corresponding measure—this is the Riesz
(Section[IX) we summarize the results and outline possiblepresentation theorem. Continuous functions now serve as

future directions. “test functions” to differentiate between measures. Baund
on the corresponding integrals define the weak topology: a
Il. THE TRIGONOMETRIC MOMENT PROBLEM SPECTRAL  sequence of measurég,,, n = 1,2,..., converges talyu in
REPRESENTATIONS AND WEAK CONVERGENCE the weak topology if[ fdu, — [ fdu for every f € C(T).

Thus, for any two measures that are different, there exists a
random procesgy, : ¢ € Z} are the Fourier coefficients continuous function that the two measures integrate teiefft

of the spectral measuré as in [1). These are characterizeefalues' In this setting, a measure can be specified uniqyely b

by the non-neqativity of the Toeplitz matricés 1251 [26 its FOL_Jrier coefficients_. In fact, given a positive sequence
y g y P és128].126] the unigue corresponding measdyecan be determined as the

o C-1 " Cop limit in the weak topology of finite Fourier sums or Cesaro
1 Co cre Copt means|[[2l7, page 24].

: Non-negative measures are naturally associated with ana-
lytic and harmonic functions—a connection which has been
exploited in classical circuit theory in the context of peisg.
forn = 0,1,.... WhenT,, > 0 for n < k and singular Herglotz’ theorem[[ll] states that ;. is a bounded non-
for n = k + 1, then it is also singular for atlh > k and negative measure dfi, then
rank(Ty¢) = rank(Ty) = k+1 for all £ > 1. In this casedp _
is singular with respect to the Lebesgue measure and censist 1 /’T e + 2

of finitely many “spectral lines,” equal in number tenk(7},) Hldp)(z) = o7 e —z

The covariancesy, &k = 0,+1,+2,..., of a stationary

dp(0) @



is analytic inD := {z : |z| < 1} and the real part is non- Proof: This can be seen by comparing the definition of
negative. Such functions are referred to as either “pe@sitiv.r,,, ., with the definition of open sets in the weak topology.
real” or, as Caratheodory functions. Conversely, anytpesi See the appendix for a detailed proof. |

real function can be represented (modulo an imaginary con-Remark 2:Occasionally one may have additional a priori
stant) by the above formula for a suitable non-negative mdarowledge on the structure and smoothness of the power spec-
sure. The Poisson integral of a non-negative meagure trum which would further limit the uncertainty set. Quanitifg

1 [ _ such “structured” uncertainty would necessarily be proble
Pldyu)(z) == 2—/ P.(t—0)du(d), z=re"™ (3) specific and is not considered in the present work. Instead,
TJ—m we take a viewpoint that allows comparing power spectra in a

anified way, regardless smoothness, presence of speateal li

function which is non-negative i and is equal to the real partorvrvnembership "?da s%e]zcific class r?f mot(:]els].c_ i -

of H[du|(z). Given either a positive-real functiai (z), or its ¢ Now consider he case wnere the finite covarlance
real partP(z), the measurely such thatH (z) — H[du)(z) sample_cOm is known exactly. Ifcg., is positive, then the
and P(z) = P[du](z) is uniquely determined by the limit of uncertainty set

P(re'?)dd — du asr — 1 in the weak topology[[27, page o T ke B

33]. Thus, power spectra are, in a very precise sense, bounda 7 € = ) @ = 0=k = /_We dp,k=0,1,...,n

limits of the (harmonic) real parts of positive-real furocts.

2 . . . .
where P.(0) = ‘11—;@ is the Poisson kernel, is a harmoni

contains infinitely many power spectra. df.,, is only non-
negative, and henc#,, is singular, then the familyF.,.,
Ill. UNCERTAINTY OF SPECTRAL ESTIMATES consists of the single power spectruim [25, page 148]. The
We postulate a situation where covarianegs, are esti- following two results are immediate corollaries of Theofim
mated from sample of a stochastic procggs <z with power The first one treats the case where the number of covariance
spectrumdr, and where the estimation error in the entries ahgs goes to infinity, while the second, treats the case where
co.n are bounded byll. Thus, the “true” spectruniv belongs  the values of the covariance lags tend to those of a singular

to the uncertainty set sequence. In both cases the diameter of the uncertainty set
T necessarily goes to zero for a weakly continuous metric.
Feom,e = {du >0: ¢, — / e Mdu| < e, k=0,1,... ,n} . Corollary 3: Let ¢ be a non-negative sequence andlée
-

a weakly continuous metric. Then
Likewise, any choice for a “nominal” spectrud® consistent
with our assumptions will also belong &, .. Therefore,
the distance between the two will be bounded by the diameter Proof: This follows directly from Theoreni]1 and by
of the uncertainty set, noting that

05 (Feo.,,) — 0, asn — oc.

Feom C Feonie

P6(Fegn,e) = sup{d(dpo, dp1) = dpto, dpy € Fey,,e b om T com
. . . . for anye > 0. It also follows from [22,§1.16] in view of
where is a suitable metric at hand. Thus, our goal in th'éropositiorﬂb in SectioR TVAC below. =

paper is to seek metrias on the space of positive measures
M that provide a meaningful and computationally tractabﬁ

hotion of a diameter fof,,, . thereby quantifying modeling ¢on(k) (k=1,2,...) be a sequence of vectors of covariance

uncertainty in the_spectral _domaln. To narrow down the si;ear%gs tending taco.,,. If & is a weakly continuous metric then
for suitable metrics, consider the scenario when the leng

of the data increases, and hence the accuracy as well as ps(Feon(k)) — 0, @ask — oc.

the number of covariance lags increases. In the limit, as the ) .
estimation error goes to zero and the numbef covariance Proof. Follows directly from Theoreri]1. See also [31]

Corollary 4: Let cq.,, be a vector of covariance lags such
at the corresponding, is a singular Toeplitz matrix, and let

oS . . . for an independent detailed argument. ]
lags goes to infinity, the uncertainty set shrinks to thelsiog Remark 5:1t should noted that the total variatioff {dyzo —
{dv} = m Feomcns (€n — 0asn — o). du]) is not weakly continuous and therefore the conclusions

of the two corollaries would fail if this was used as the
metric. To see this, note that ., is positive, thenF,,.,

This is due to the fact that an infinite limit sequence contains infinitely many measures and among them at least

defines a unique power spectrum—the trigonometric probl : : ) : :
is determinate. The diameter should reflect this shrinkage tqsgggp(Scllzgol)ﬂrirsurgg?jglr(;s_vgtz]e Sonsg\é%asg)p |r_1|% eSnUFt)r? : rtt(,)tgle v

singleton and tend to zero. For this to happen, the undglyi{)ariation of their difference is alwayz: o
metric needs to be weakly continuous as stated next. 0

Theorem 1:Let § be a metric orDt. Then

neN

IV. WEAKLY CONTINUOUS METRICS

P5(Feoin,en) — 0 @S€, — 0 @andn — oo, (4) In general, a finite set of second-order statistics cannot
dictate the precise value of the power spectrum locallyeéat]
given any finite positive sequenes.,, and anyf, € (-, 7],
then for any valuen. > 0 there exists are > 0 and an

IThe more realistic situation, where the confidence intsragigrade with absolutely continuous measuip = fdf € F,,, such that
the order of covariance lags, can be dealt with in a similanmeg albeit with
a bit more cumbersome notation. f(@)=aforfe (6p—e by +e).

for every covariance sequenceif and only if § is weakly
continuous.



What can be said instead, is that the range of values Remark 8:A more general family of distances are of the

form
{/gdu sdp e fcom}, ®)
T §(dpo, dpr) = sup /goduo+/gldu1
for any particular test functiony € C(T), is bounded. 90(6) € Ko, 1(¢) € Ka, JT B

. 90(0) +91(¢) € K
Furthermore, as — oo, this range tends to zero. In fact, due

to weak continuity, the range of values tend to zero for any vfhere Ko, K; ¢ C(T) and K € C(T x T). By selecting the
the scenarios in Theordr 1 and its two corollaries. Findireg tSsetsKo, K1, and K properly,é (or a monotone function of)
maximum and the minimum of{5) is a linear programminwill be a weakly continuous metric. One such example is the
problem on an infinite dimensional domain. Provideds metrics based on optimal transportation treated_in [19fneh
symmetric real and the covariance sequeagg is real, the the metrics have non-local properties such as geodesichwhi
dual problems, which give the lower and upper bound§bf (F)reserve lumpedness. O
are Next we consider three ways for devising weakly continuous
metrics. The first uses smoothing of power spectra to be
}, (6) compared by suitable test functions in a way that is analo-

max { ACo.n” Z/\k cos(kl) < g(0),0 € (—m, 7]
gous to the use of classical window kernels in periodogram

k=0

n estimation [[48]. The second is based on Monge-Kantorovich

min {/\co:nT : g(0) < Z)‘k cos(k),0 € (—ﬁ,w]} , (7) optimal mass transportation where a cost is associated with
k=0 mismatch in the frequency range where power resides. In

where = (Ao, A1, ..., A) are Lagrange multipliers. this geometry, optimal-transport geodesics may be used to

Remark 6:Along these lines Lang and Marzetta in [36] model slow time-varying drift in the spectral power of non-

[37] sought to quantify the maximal and minimal spectral sna tatmnary_tlme-serleE[jLQ] — such models for non-statitya
in a specified interval given the covarianags,. To this end essen artifacts present when using ordinary interpaiggog.,

we may takey = x; the characteristic function of an intervalfadefIn fade-ou_t[BO]). Thg third IS _based on Poisson kgsrnel
I, thatis,y;(0) = 1if 0 € I and0 otherwise. Lower and upperand is more su¢a_1ble for differentiating spectra bas_ed @ir th
bounds on/, dy. are finite and are then given by (6) ard (7)cor_1tent0n specified frequency_bands. The connection ba_twee
respectively{ However, since = y; is not continuous, the Poisson kernels and the analytic and harmonic f_uncUorIH)m(
mass in an interval is not a weakly continuous quantity, a d B)_allows for.evaluatlng bounds and the dlgmetgr of the
the requirements in Corollafy} 3 does not hold. In fact, fas thuncertainty set with respect to the corre;pondlng dissance
case the gap between the upper and lower bound does }'6':5 will b_e explored in the case W_here finitely many error-
necessarily converge to zeroagoes to infinity. This occurs, ree covariances are known in Sectiéns \(Io Mill.
e.g., in the case when the true spectrum has a spectral line at
an end point of the interval. O A. Metrics based on smoothing

A class of weakly continuous metrics can be sought in the
form

A simple way to devise weakly continuous metrics which
has a classical flavor is to first smoothing the measures via
5 (8) convolution with a fixed suitable continuous function, and
then to compare the smoothed spectral densities. This schoe
for {g¢}eex € C(T), provided the family{g.}ccx Of test the use of windowing Fourier techniques in the time domain
functions is sufficiently rich to distinguish between measu [48] where a suitable choice of a window is used to trade-off
and yet, small enough so that continuity is ensured. Thesgecresolution and variance of the estimator. Likewise here, th
conditions are given next. choice of a windowing function determines the resolution of
Proposition 7: The functionald(dyo, dp1) defined in[(8) is the metric.
a weakly continuous metric if and only if the following two Thus, letg € C(T) be such a windowing function, and
conditions hold: define
(a) for any two measuredg, diuy € M, there is a¢ € K
such thath gfd/LO 7§ f’Il' g{d,uln and (Ssmooth,g(dMOa dﬂl) = ||g * (d,uo - d,ul)Hoo
(b) the set{ge¢}ecr in C(T) is equicontinuois and uni- Here,
formly bounded.
Proof: See the appendix. n (g*dp)(€) = / 9(& — 0)du(0)

d(dpo, dpr) = sup ‘/gs(duo —duy)
¢ek |JT

T

In essence, condition (a) ensures positivity while condi{ib) ) 77.7
ensures weak continuity. The triangle inequality and syimne denotes the circular convolution arid || the Lo, norm. In
always hold for sucid. The total variation norm is an examplethe view of Propositiofl7gsmootn,¢ is of the form
of why (b) is needed—it is a norm of the forif (8) where the ™
set of test function are th€'(T) unit ball, {g : ||gllcc < 1}, |lg*(dpo—dp)|jec = sup / g(& — 0)(dpo(0) — dus ()],
but it is not weakly continuous. This is due to the fact that th ge(=mm] |/ —m
unit ball in C(T) is not equicontinuous. and hence, condition (b) of the proposition holds. In additi
2 . , o _— _ the chosen convolution-kernel functions must not have any
A family of functions {g¢ }¢c x C C(T) is said to be equicontinuous if Fouri ffici h . h h will fail
for any e there exists a such that|ge (01) — ge(02)| < e if |01 — 2] < v Zero kourner coe icient, OF erwise the approac will Ta t
for all 61,602 € T, and¢ € K. differentiate between certain measures. To see thig,(#9t=



Yo gre™™® and let(...,a_1,a0,,a1,...) be the Fourier have equal mass. Then, the cost of transporting and dy.;

coefficients ofduo(6) — duq1(#), then to one another can be thought of as the cost of transporting
oo dvy anddvq, to one another, plus the size of their respective
g (dpo — dpy)(€) = Z g_raxe*€. perturbations fromdp, and dpq. This is introduced in[[19]
oo and this metric admits a dual formulation
!f gk .;é 0 for all k € Z, the above exp.ressi(_)n cannot vanish 1.0 (dpo, dpy) = max /g(duo —duy),
identically unless all the:,'s are zero, in which caséu, = lgllco < K
dyuy. In this case (a) holds and it follows from Proposit[dn 7 llgll <1

that dsmootn,¢ (dito, die1) is @ weakly continuous metric. This
leads to the next proposition.

Proposition 9: Let g € C(T) be a windowing function with
non-vanishing Fourier coefficients. Théfooth,g(dito, di1)
is a weakly continuous metric.

which is in the form of the Proposition] 7. Various other
generalizations of the transportation distance that apply
power spectra are also being proposed and studied In [19].

C. Metrics based on the Poisson kernel

B. Metrics based on optimal transportation Power spectra are weak limits of the real part of analytic

. . . . functions on the unit disc, as indicated earlier. Compariso
A rapidly growing literature[[50] on a classical problemgf these functions induces weakly continuous metrics which

known as the Monge-Kantorovich transportation problens, hreadily fall under the framework of¥8). Interestingly, ghi

impacted a wide range of disciplines, from probability theo X e
: : . - approach allows for both the computation of explicit/atialy
to fluid dynamics and economy [42]. Optimal transportatlogOunds on uncertainty sets (see Sedi®n V) and for spegifyin

refers to the correspondence between distributions of ®BASS ¢ L Lency dependent resolution of a metric (see Remark 11
that induce the least amount of transportationf:oBe opti- q y deper . -
and the example in Sectign VII).

_mal transportation cost between two probability distrityas . Recall from Sectiofi]l that the harmonic function assodate
induces weakly continuous metrics, known as Wasserstelr.} . . . !

: : . . o with a measure is the Poisson integral, defined as
metrics, which are extensively used in probability thedny.
order to handle more general distributions we need a seitabl 1" o
modification to compare unequal masses. This we do next and ldp)(2) = o Pr(t = 0)du(0), 2 =re".
connect with the formalism iri 18). . . .

Weak convergence of measures is equivalent to certain types

The Monge-Kantorovich transportation problem amounts t(} . .
of convergence of their harmonic counterpart.

minimizing the cost of transportation between two distribu Proposition 10: Let {dju;}> , be a sequence of uniformly

tions of equal mass, e.@lyo anddu, where [; duo = [ dps. b .
: ) . . ounded signed measures nlet du be a bounded measure
In this, a transportation plasir (¢, ) is sought which corre- J 5" ¢ letu(z) = Pldu](2), uk(z) = Pldu](z) be their

sponds to a non-negative distribution @hx T and is such corresponding Poisson integrals. The following statesmang

—T

that . )
equivalent:
/ dm(0, ¢) = duo(¢) and dm(0,¢) = dui(0). (9) (@) dupy — du weakly,
0€T pET (b) ur(z) = u(z) pointwiseVz € D,
Then, the minimal cost (€) ur(z) = u(z) in Ly(D),
(d) ug(z) — u(z) uniformly on every compact subset bf
min {/ |0 — ¢|dm(0,¢) : dr satisfiesIID} Proof: The proof is given in the appendix. |
TxT

Each of the statement®), (¢), and (d) may be used for
is the Wasserstein-1 distance betwegn, and dju;,, and is devising weakly continuous metrics. We shall focus on the
a weakly continuous metric (see, e.g../[50, chapigr This statementd), indicating that weakly continuous metrics can
problem admits a dual formulation, known as the Kantorovidbe constructed by comparing the harmonic functions on a sub-

duality: set of D. In fact, the maximal distance between the harmonic
functions on a closed non-finite s& C D gives rise to a
Wi(dpo,dpr) = Hnllla)él/g(d,uo —du), weakly continuous metric
gliL>
. Or (dpg, dpy) = max |P(dug — d z)|. 11
where||f||z = supww denotes the Lipschitz norm. < (dpio, dp) zeK| (dpto = dyua) () D

Power spectra, in general, cannot be expected to have thss is true, since the resulting family of the Poisson kirne
same total mass. In this cas®,.(duo, du1) defined by satisfies the properties in Propositidn 7. To see this, fiog n
1 that any two harmonic functions which coincides &h a
inf Wi (dvo,d) + “Z/ \dp; — dvi, (10) closed non-finite set insid®, must be identical, hende) is
Jdvo=/dn = /T satisfied. Further more, sind€ C D for somey < 1, the
magnitude and derivative aP.(t — ) is uniformly bounded
whenre® € K, hence(b) holds.
Remark 11:In practice, it is often the case that one is
interested in comparing spectra over selected frequenuysha
3L. Kantorovich received th@975 Nobel Prize for the impact of this theory To this end, various schemes have been considered which
on allocation of economic resources. rely on pre-processing with a choice of “weighting” filters

is a weakly continuous metric for an arbitrary but fixed- 0.
The interpretation is thatl;y and du, are perturbations of
the two underlying measurels, anddv,, respectively, which



and filter banks (see e.g.][8]._[49], and! [6]._[16]). The
choice of the point-setX in (1) can be used to dictate

the resolution of the metric over such frequency bands. To °’
see how this can be done, consid€rto designate an arc 0s
{€ =re? . 0 €0y —e¢ 00+ ¢]}. This satisfies the conditions ~ os
of Propositior[ ¥ and thusi is a weakly continuous metric.

At the same time, the valug®[du](€), with £ € K, represent
the variance at the output of a filter with transfer function
z/(z — &£). These are bandpass filters with a center frequency
arg(¢) and bandwidth which depends on the choice.ofhus,

in essence, the metric compares the respective varianee aft
the spectra have been weighted by a continuum {fer K)

of such frequency-selective bank of filters. O

0.4
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Second Schur parameter First Schur parameter

V. THE SIZE OF THE UNCERTAINTY SET

The diameter of the uncertainty set with respect to ttry. 1. The uncertainty diametess,. as a function ofy:, v2 whenco = 1
distancedx turns out to be especially easy to compute — it @d K = {z : [z <0.5}.
realized as the distance between two “diametrically ofgpbdsi
measures with only: + 1 spectral lines each (i.e., measures
having compact support). This is the content of the follayvin
proposition. as a function of the correspondipagrtial autocorrelation co-
Proposition 12: Let c,.,, be a positive covariance sequencéfficients also known asSchur parameter¢see the appendix),
and letK c D be closed. Then

-1< Y1 i=C <1,
Poxc (Feon) = dct( 1 C2 )
1 1
2 2 —1 < = <
1325 + <bzadz>T*1 <dz,dz>T71 1 2 ( 1 c1 > — 1’
max { 2 — , det| _
zeK <b27 bz>T*1 <bz, bz>T*1 C1 1
and K is taken as{z : |z| < 0.5} C D.
where The plot confirms that the diameter decreases to zero as the
271 27 (eo) parameters or, alternatively, the covarianegsand c., tend
272 272(co + 2¢12) to the boundary of the “positive” region (which in the Schur
b. = : ,dy = : , coordinates corresponds to the unit square). However, it is
i S . interesting to note that the diameter &§,,, as a function of
z z (co+2c1z + -+ 2cp2") co:n has several local maxima. This maximal diameter may
and (z,y)p—1 denotes the inner product be explicitly calculated, hence provides arpriori bound on
. the uncertainty.
(@, y)r— =y"T, . Theorem 13:Let r = max(|z| : z € K). Then
Furthermore ps, (Fe,.,) is attained as the distance between 4eg|r|ntt
two elements ofF.,,, which are both singular with support Por (Fean) < 1|2 (13)
containing at most: + 1 points. ) o )
Proof: The proof is given in the appendix. m Further, @) holds with equality if and only i€y, =
Both claims in Propositiof 12 can be used separate@(}ovcoacha ;-5 coa") for somea € K with o] = r.
for computing ps, (Fe,.). The first one suggests finding Proof: The proof is given in the appendix. [ |

a maximum of a real-valued function ovéf. The second Remark 14:Computation of the diameter; (7c,,,) of the

claim suggests a search for a maximum &f(du,,dus) UNCertainty set amounts to solving the infinite-dimensiona

over a rather small subset oft(F., ), namely nonnegative OPtimization problem

sequences.,+1) parametrized by, ,1; i.e., solutions of the sun! 5(du - d - dur.dus € F. _ 14

quadratic equation p{d(dpr, dp2) = dpn, dps € Fey,, } (14)

det(T —0 12 If 0 is a weakly continuous and jointly convex function, then
et(Tny1) = 0. (12) the diameter is attained as the precise distance between two

The (complex) values for,; satisfying [I2), lie on a circle elements which are extreme points, . Extreme points are

in the complex plane, and hence, computationgf (Fe,...) the points wrgh the property that they t_hemselves are not a
requires search on a torus (each of the two extretna) du, CONvex combination of other elements in the set; the set of
where the diameter is attained can be thought of as points &fireme points is denoted hyt(-). Then,du € ext(Fe,.,)

the circle). if and only if diw € F¢,.,, and the support oflu consists of
We elucidate this with an example. Figufé 1 show@&! most2n + 1 points (seel[31]). Thusxt(Fe,,,) admits a
o (Feq., ) for finite dimensional characterization adl(14) reduces toitefin

co2 = (1, c1, ) dimensional problem. O
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Fig. 2. The “true” power spectruniv. Fig. 3. Subplot 1: The power spectrudw (solid), dy5 (dashed). Subplot 2:
P[du](0.9¢%%) (solid), P[dus](0.9¢%?) (dashed), along with bounds based
on co:s.

VI. | DENTIFICATION IN A WEAK SENSE

In this section we elucidate how the uncertainty set is
affected by the number of moments and show that spectra may — 1 this corresponds to a deterministic process (having
be close in the weak sense even though they are qualitativgffy spectral lines) and is depicted in Figute 5. Subglot
very dlfferent. ) showsP[duine] (0.9¢?) and how it “sits” within the respective
Consider the stochastic process bounds. In the absence of additional informatiahyye,
dusog, or any other power spectrum i, ,, iS admissible.
The “worst case” distance between any two is the diameter
; ; : ted above.
where w; is a white noise process angh, p, are random compu -
variables with uniform distribution or{—=,n]. The power Remr?rk 1%.E\{t_en IthOUQh the thre?hspecuia, .‘f“?é).’ﬁandt
spectrumdy is depicted in Figuré]2 and the spectrum hal 1;“0’ avef|tr?n. Ica covatr_lance_:ggoi ey ‘;"jre qwt.e eren ;
both an absolutely continuous part as well as a singulat p fy terms of heir respective singular and continuous parts.

We would like to identify this spectrum relying on covarianc owever, they are S|m|Iar in their distribution of specinadss
data and derive bounds on the estimation error. We will u§ethey have most of their mass located around the frequency

1
yr = c08(0.5t + ¢1) + cos(t + ¢2) + wy + gwt—l

the metricdx where K = {z : |z| = 0.9}, i.e., Eg'prlhsrzsz 0.5 and¢ = 1, and this is what the weak topology
Orc (dug,dpr) = sup | P(dpo — dur)(2)]. Remark 16:Standard pointwise distances betweédmn,
|z]=0.9

duso, andd iy, do not provide a meaningful comparison. For
Let ¢ be the covariance sequence &f and letdus and instance, the Itakura-Saito distantel[23], the Kullbaekbler
duzo be the power spectra with highest entropy in the sefévergencel[20], and the Cepstral distarice [24], becausg th
Feos andFe, ., respectively. Figurl3 comparég; anddy contain a logarithmic term, give the value ef when com-
where the estimation error and the uncertainty diameter ar@aring duzo and dpine. On the other hand, thé, metric
does not apply to the present context because spectral lines
Ok (dv,dps) = 5.66,  psy (Feos) = 20.79. cannot be viewed asL; functions” and if approximated the
The first subplot shows and compares these two power speci@m diverges to infinity. Finally, the total variation doest
The second subplot displayB[dv](0.9¢%), P[dyus](0.9¢), differentiate when spectral lines are nearby or far apaft, (c
along with bounds o®[dy(0.9¢%) wheny € Fe, .. Itis seen Remark).
that the spectrumdu; does not distinguish the two peaks. In
order to distinguish the two spectral lines, the informatio VIl. GENERALIZED STATISTICS
co:5 is clearly not sufficient as théx-bounds are substantial. Our analysis extends readily to the case of generalized
Figure[4 now comparesyz anddv in a similar manner. statistics[[7], [15],[6], [14]. The formalism in these redaces,
The estimation error and the uncertainty diameter are nicknamed THREE (for “tunable high resolution estimatipn”
_ _ allows for the possibility of tunable filter-banks and was
Ok (v, dpizo) = 029, porc(Feoa) = 2.52. shown to provide improved resolution, albeit, quanti&tiv
Here, dusg has two peaks close to the spectral lines aramksessments of the benefits exist only in special cases [2].
P[dp20](0.9¢%?) resemblesP[dv](0.9¢%) quite closely. In We briefly sketch the formalism here, for lack of space, and
fact, the bounds/envelops already reflect the presenceeof e refer to the aforementioned references for more detailed
two peaks. accounts.
To amplify the point made above, considar;,. to be the ~ We explain the formalism of generalized statistics in the
(unique) power spectrum itF.,.,, having Schur parametersetting of “filter-banks”, i.e., we consider the stochagtio-
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(see [T, Equations (2.8), (2.10)] arid [15, page 783, Eqnatio

(7). The matrix P replaces the ordinary Toeplitz covariance

in the previous sections. Certain observations are in place
given the filter-bank dynamics, i.e., thg's, i) P depends only

1 15 2 25 s on the valuesuy, and ii) the cross-covariances between filter-
Angle (6) .
bank elements can be computed from the output covariances
of all elements individually, that is, from the;'s.

Fig. 4. Subplot 1: Power spectrury (solid), duzo (dashed). Subplot 2: :
P[dp](0.9¢%%) for the true spectrum (solid)P[dp20](0.9¢%) for duso A rather complete theory has been developed to Cll‘laracter]ze
(dashed), along with bounds based @no. power spectra for the input process that are consistent with

output-covariance (more generally, state-covarianegissits.
This theory provides among other things a construction ef th

o o
» o
T

o
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Magnitude of spectal lines

unigue input spectrum of maximal entropy, spectral envelop
that are reminiscent of the Capon pseudo-spectra, and the

o
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N
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identification of spectral lines with techniques analogtmus
] the theory of the Pisarenko Harmonic Decomposition, MUSIC,
t ‘ A A & A A A ESPRIT, etc., and has been worked out in detail for matrix-
05 ! ey - 25 3 valued power spectra as well (see e.g.] [15]] [16]] [17]],[18
[43], [44)).

We restrict our attention to the present setting wHeg@ 1<z
is scalar as before and so are the filters. We assume estimates
for the output covariances, hence, the valug$s. Like before,
we now denote byF, , the family of power spectra for the

Deterministic spectrul
Bound E

L - . - . process y; }ez Which are consistent with these values and we
Angle (6) are interested in assessing the size of this family as a measu
of our spectral uncertainty.

]nggd 5. OSgbgotf 1:t|’|130\llyer Specttrumﬁunlnc (lin?—thsgectrélm%- Subplot 22 The following proposition can be derived almost verbatim
[dp1ine] (0-9¢') for the line spectrum, along with bounds basedearto. 55 propositiof 2. Se& [32] for an independent proof.

Proposition 17:Let z, ..., z, andwy, . . ., w, be such that
- ' . .the Pick matrixP in is positive and leK D be closed.
cessy; as driving a bank of first-order dynamical systems wit hen @3 isp
transfer functions
. -7:Z w) —
Gi(z) == L, for k=0,1,...,n, with |z;] <1 Porc (Faiw) .
zZ— Zk 2 )
. . .. . . . é+<bzvdz>P*1 <dz,dz>p71
as shown in Figurgl6. The joint covariance matrix of the filter max 2 D b ,
bank outputs is € bz, b2) p-1 (b2, b2) p-1
P = E{u(t)u(t)"},
where
whereu := (ug(t), ui(t), ...,u,(t))? . As indicated earlier 1 wo
t € Z is the time index. The covariance matrix takes the form 1-202 1- 202
bz _ .1—212 : dz _ .1—z12 ’
Uo 1—22 1—sz;2

Y

Go(z) —>

and (z,y)p-1 denote the inner product

Y

Gl(z) > (x,y)p—1 = y*P_lx.

U, As before, ps, (F2w) IS attained as the distance between

Fig. 6. Bank of filters.

> Gn(z) —> two elements ofF, , which are both singular with support
containing at mosh + 1 points.

As in the covariance casepriori bounds on the uncertainty
may be calculated.




Theorem 18:Following the notation of Propositidn 117, let 10

20 = O and i ' lll - —‘-(;Irveafﬂ:?emb:sed estimate
n 5 — Zk 1) "{ = = = THREE-estimate
“ kl;[o 1—ZzZpz R
Then swolBu(2) g
wo | Dz 2 %
Porx (Fzw) < max TP (16) £ ol
Further, [I6) holds with equality if and only if
wr =wo(1+ zx@)/(1 —2zxa) fork=1,....,n 'l 1 | - . . .

Angle (6)

for somea € K maximizing|B,(a)|/(1 — |a|?).
Proof: The proof is given in the appendix. B Fig. 7. True spectrunay (solid) and estimated spectti. ., (dashed-
Here thea priori bound depends on the interpolation poiats dotted) anddume (dashed).
in addition toK, the model orden, and the total spectral mass
wg. Therefore, by minimizing the right hand side bf{16) with
respect to thex, one can find the filter bank with the smallest
a priori uncertainty in the metriéx. This will be exploited
in the following example to tune the filter-bank poles.

VIII. UNCERTAINTY IN THE THREE FRAMEWORK WITH ol
OPTIMAL FILTER SELECTION o2l

From this vantage point we now take up an example -o4r
as before, with closely spaced sinusoids, and compare two -osp
alternative formalisms, one based on Toeplitz covariaacels -o8p
the other based on generalized statistics. -1

Consider the stochastic process

cos(0.5t + + cos(0.6t + 1 Fig. 8. SetK (solid red) and points in blue).
= ( ©1) ! ( ‘P2)+cos(t+<p3)+wt+§wt,1, g ( ) and pointsy, (x )

with two closely-spaced spectral linesad rad/s and).6 rad/s
superimposed with a spectral line inand colored noise. We
choose as metriéyx, with K C ID proximal to the region
where high resolution is desired — i.e., n€a5 rad/s where
the two closely-spaced sinusoids reside. More specificaly ~ The a priori bounds on the uncertainty provided by Theo-
takél rems I8 and 18 are
K = {0.65¢=%5" + 0.25T}.

s (Faw) < 0.151wg = 0.468 and

This is depicted by the two circles in Figure 8. pos (Fon. ) < 2.304¢o = 7.167,

We compare the maximum entropy spectral estindatgr
constructed using the covarianceg, ¢y, ..., co, With the
spectral estimatedy..,, .., Which is based on the output
statistics of the filter bank of7(z)’s. We select» = 10 and

respectively. In our example, = ¢y = 28/9. This shows that
the a priori bound on the uncertainty set with respecttois
i inimiBet L . considerably smaller when the THREE formalism is applied.
fllter—bTahnkf;_:ioIes tr;atmlrgm geba Q’n_onFL.mcer'tslnty bound The two spectral estimates together with the true power
(I8). The filter poles, indicated byx" in Figure[8, are spectrum are depicted in Figurk 7. It can be seen that the two
2 €40, 0.581 £ 0.480i, 0.681 + 0.4704, closely-spaced Iings are not d_ispern_ibled'mE. _On the other _
0.738 + 0.422i, 0.755 + 0.2714, 0.765 + 0.357i ). hand, they are quite clearly dlstlng_wshable via THREE SThi
is due to the choice of the dynamizsAs can be seen from
The THREE-spectrum is a “maximum entropy” distributiothe figure, the resolution ofji,,,,., is substantially higher
which is now consistent with statistics other than the usutilan that ofdu\g in the vicinity of 0.5 rad/s. We would also
autocorrelation onesifi.,.. is the so called “central solu- like to compare the size of the uncertainty set for the two
tion” of the Nevanlinna-Pick analytic interpolation thglito ~scenarios. The size of the respective diameters are
distributions inF, ).
Pox (Fow) = 0.194 and ps,. (Fe,.,,) = 2.831.
4T denotes as before the unit circle.
®The polezo = 0 and total spectral masso = 1 are assumed fixed. Thus, when measured usidg, the uncertainty set using the
The bound in[(IF) is then minimized ovey, ..., zn. Since RHS of[(I6) is THREE formalism is considerably smaller. Figlile 9 displays
nonconvex inz only local minimum is guaranteed. - .
6Software is available at the Poisson integral of the true power spectrum evaluate on
http://www.ece.umn.edu/~georgiou/code/spec_analysis.tanX, and the corresponding bOUEdS
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whereg; are continuous functions dfi for k = 0,...,n. To

establish the theorem we prove that the neighbourhood basis
N(dv) = {N(dv,{gr}}_o.€) : €>0,neN{gr}i_, C C(T)}

is equivalent to the basis

N
=5

Magnitude at K

0 o5 1 15 2 25 B
Angle (6)
—_— F(dv) = {f te>0,n€N, ¢ = / 2 Rdvk=0,... n}
| :
10| i
/\ First note thatt(dv) D §(dv), and hence the weak topology
is at least as strong as the topology induceddfyr). To
: o n v A v A establish the other direction, 18t be an arbitrary set ifit(dv).
Angee ©) To show the equivalence, it is enough to show that theresexist
) ) i n € N such thatF.,  ,-1 C N.
Fig. 9. Bounds on estimates @0 based on covariances (top) and the THREE Lets be a Weaklynéontinuous metric féit and choose so

formalism (bottom), tively.
ormalism (botiom). respecively that the Bs(dv,¢) = {dp > 0 : d(dp,dv) < e} C N. Next,
takedy, € Fe,,, -1 With

Magnitude at K

IX. CONCLUSIONS AND FUTURE DIRECTIONS 1
_ o e o (dpy,dv) > Zsup{o(du,dv) = dp € Fe,, -1} (17)
The choice of a metric is key to any quantitative scientific 2
theory. Identification of power spectra is often based dor ¢ > 1. Since 7., -1 C {dp : p(T) < v(T) + 1),
second-order statistics (moments), and therefore, it israb which is weakly compact, there is a convergent subsequence o
to metrize the space of power spectra in a way that respegts, that converges td;i (by Banach-Alaoglu[45]). Note that
continuity of moments. There is a variety of such weakly, , 1+ O closure(Fe,,,, (1+1)-1) D Fegiy,(6+1)-1» NENCE
continuous metrics —metrics which localize “spectral massdj € F.,, -1 for any Z. It then follows thatdi = dv since
We presented various choices and focused on a particulae trigonometric moment problem is determinate (by Riesz-
metric, dx, which is amenable to quantifying the size of thélerglotz, seel[1]). Let: be such thab(du,,dv) < /2, then
uncertainty set. We envision that this, and similar mefiies by (I7) we have thaf, ,-1 C Bs(dv,e) C N. We have
be used as tools for assessing uncertainty and robustnesthirs shown that the topology induced by the neighbourhood
modeling and spectral analysis. We further expect that tbasis F(dv) is the weak topology, and hendeis weakly
theory will be of use in filter design and in quantifying thecontinuous if and only if[{(4) holds. [ ]
notion of resolution—as this is naturally connected to tize s Proof: [Proposition[T]
of the spectral uncertainty set. Finally, we expect thasehelt is clear that condition (a) holds if and only #f(d o, dp1)
metrics will conform with other subjective measures rodted is positive whenevedy # dui. The triangle inequality and
perceptual qualities of signals (cf._]19, Example 10]). symmetry always holds for sueh) so we only need to show
Interest in weak continuity is not new. Indeed, a classic#iat condition (b) holds if and only i§ is weakly continuous.
weakly continuous metric is the Lévy-Prokhorov metfic][41 We will show that condition (b) implies that is weakly
and it is well known that the periodogram converges weakbontinuous by contradiction. Assume therefore that caorlit
as the sample size goes to infinity (see, e.g.] [39]). Yé&h) holds, but that is not weakly continuous. Then there exists
appropriate weakly continuous metrics that can be used dp;, — du weakly such thad (duy,dp) > €, k = 1,2,. ..,
quantify uncertainty have not received much attention -and hence there existg, , {; € K, such that
the commonly used “total variation,” Itakura-Saito, anteot
distance measures are not weakly continuous. Besides the €< /ggk (dpg —dﬂ)‘, E=1,2,....
relevance in uncertainty quantification and in filter design T
(cf. SectionVIIl), computationally amenable and easy$® To this end we use the Arzela-Ascoli theorem (see €.a], [33,
metrics may provide a useful geometric setting for modelingage 102]) which states that a set of functions is relatively
slowly time-varying processes and for integrating datanfrocompad in C(T) if and only if the set of functions is
disparate sources (see, e.q..|[2B].|[20]. [30]. [46]] [47]) uniformly bounded and equicontinuous. Therefore, singe (b
holds, the set{g¢}cck is relatively compact inC(T), and
APPENDIX there is a subsequendgy, dus) of (ge,,dur) such that
ge — g € C(T). A contradiction follows, since
Proof: [Theoren(1L]

The canonical neighborhood basis for a paintin the weak € < /ge(dﬂé - dﬂ)‘
topology ont consists of sets of the type T
N(dv, {gu}ions) < o=l [l = dol + | [ ot )
—{duZO:‘/gk(du—du)‘<€,k—0,1,...,n}, — 0 asl — oo,
T

and hences is weakly continuous whenever condition (b)

“SinceK is formed out of two circles symmetrically located with respto holds.
the real axis of the complex plane, plots are identical ferttho components
of K. 8A set is relatively compact if its closure is compact.
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Next, we show that (b) holds if is weakly continuous, and For anyz, € K the difference between the harmonic functions
once again we use contradiction. That is, we show that if (k5 bounded by

fails to be true therd is not weakly continuous. Ifg¢}ecx 1
is not equicontinuous, then there existsean 0 such that for luk(z0) — u(z0)| < —5 |ug(2) — u(z)|dxdy
anyk = 1,2,... one can finddy, ¢, € T, and&;, € K, that e

Z())
satisfies /Iwc ) — u(z)|dady.

1
10 = 9l < k andlge. (Oc) = g, (91)] > €. (18) By (c) the difference goes to zero uniformly .
Let (0y, ¢¢) be a subsequence (x, ¢;) such that), — 6y € (d) = (a). Let f € C(T). For any bounded measures F
T as/ — oo, and letdy, anddv, be the measures that consisand corresponding harmonic functio(z) = P[v](z) Fubini's
of a unit mass ird, and¢,, respectively. Fron{(18) it follows theorem gives

| /\

that ¢, — 6y, and hence thatlu, — duo and dv, — dug m _

weakly, wheredy is the measure that consists of a unit mass/ f(t)v(re™)dt = / / F(t)dtdv ()
. ) _ o )

in 6y. From [I8) it follows that ™ ™ i

5(d,LLg, d/LQ) + 5(d1/4, d,LL()) > 5(d,LLg, dVg)

> 0;) — > €. ) . - . ;

2 196 (0) = ge(d0)] > € Sincef is periodic and continuous?[f (t)dt](re'?) converges
From this, it is evident thai is not weakly continuous since uniformly to f(8), hence
both §(dpe, duo) andd(dve, dug) cannot converge to. - .

Similarly, if {ge}eer is not uniformly bounded, then for ‘ Ft)w(re)dt — f(t)dy(t)‘ <
anyk =1,2,...one can findd, € T and¢, € K such that - -
|ge, (0x)| > k. (19) IP[f](re™) = F ()l o||(T)

Let dui be the measures that consist of a unit mass ] nverges to Z€ro independent c_)f the measurghis shows
0. Therefore, the metri@ is not weakly continuous since that for an arbitrary > 0 there exists ai < <1 such that

Ld 0 weakly, whiled(£dus,0) > 1 for all k. ] m . u
kb — y (£ dpr, 0) ftyw(ret)dt — [ f(t)dv(t)

| P ano).

€
Proof: [Proposition[L0] <3

(a) = (b) uk — p weakly is equivalent tof " f(t)dpk(t) —

for v € {p,p1,pe,...}. Further more, sinceu; — u
) for all periodic continuous f ncton For R
2 1) Z(, periodt inuous functiong(t). uniformly on {z : |z| < r}, it is possible to find ark, .
all z=re e D, P.(6 —t) is periodic and continuous, henceD '
e such that
1 [ ™
ur(2) = o B P (0 = t)dp(t) ‘ Ft)ug(re’)dt — f(t)u(re“)dt‘ < §
1 s - —7
- o P.(0 — t)du(t) = u(z). for all £ > k., .. By the triangle inequality we have
(b) = (c). For_r < 1, ug(re?)] < HZ{ug|(T). Since ‘ F@®)dux(t) — F@)du(t)| <e
up(re’?) — wu(re??) pointwise for all 9, it follows from - -7

bounded convergence thdt' |uy(re™) —u(rele)|d9 — 0. for al & > k... Since e was chosen arbitrarily,
Further moreYk,r, |7 |ux( (re®)—u(re®)|d8 < 2 (| (T)+ ’f F)dpt) = [T f(t) — 0 ask — oo, and weak

|£|(T)) which is uniformly bounded, hence convergence foIIows -
0 0 Proof: [Proposition[12]
/ / lug(re”) — u(re”)|dordr — 0 There exists an analytic functiofi(z) = H|du](z),du €
C 0 Feon» SUCh thatf(z) = w, if and only if its associated Pick
by dominated convergence. matrix is nonnegative [34], i.e.
(¢) = (d). Let K C D be a compact set. Then there exist
ane > 0 such thatB.(zg) = {2z : |z — 20| < €} C D for ( - Q*Tn § bzi"i; d- ) > 0. (20)
all zop € K. Now by the mean value property of harmonic b} — d? e -
functions we have By using Schur’s lemma and completing the square, we arrive
2 €
u(zo) = —/ u(zo)rdr at )
oz + (de be) -
= / / u(zo 4 re'®)dordr Wz = (b, b))
2 2
= [ ue)dudy, crtbaddra | (dddrn )
€ JBe(z0) B <bZabZ>T*1 (bz,bz)r—1

Of course the same equality holds ¢ (zo) where equality holds if and only if the Pick matrik{20) is

1 / wn(2)dzdy. singular. From this, the first part of Propositibnl 12 follows
Be(z0)

u(z0) = 5 Since the maximum is obtained when equality holdSTd (21),
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the associated Pick matrices are singular. Hence the sotuti Forn = 0, we haveg,(z) = v¢y(z) = 1. The expression in
are unique and correspond to measures with support-en  (28) is

points [15, Proposition 2]. [ 1+ s, 1+ |af? 200 —a + 81
Co = Co )
1—as; 1—]a2 1—|af?1l-—as
Background on orthogonal polynomials and Schur c:oeffisienﬁencerO = 2coa/(1 — |af?), where s, without argument
Let ¢ be a nonnegative covariance sequence with corigenotes;;(«). Next, consider the radius ¢f(P6) for=k — 1.

sponding measuréy and consider the inner product The set [(ZB) is the range of a Mobius transform applied to
1 » sr € D, and may be represented as
(@), = 5= [ ol HPdu(0). , )
21 M., —|—610k717’k711’0iiﬁ (27)
v S
The so-calledorthogonal polynomials (of the first kind) 1%k
é1(2) [22] are (uniquely defined) monic polynomials withw where M,,_; andr,_; are the center and radius of the disc,
deg ¢ (z) =k, k = 0,1..., which are orthogonal with respectreSpeCt'Vely' and Wherfk 1€ (= h ), vp—1 € D. From the
to (-,-). They are showrn [22] to satisfy the recursion recursion[(2b), is can be seen t at
( - )~ e (2)" Vk—1+ Sk _ LH3kUk—1 Mk + Sk
q?kk+l(5)* _ Z?ES* _ Z:f;ka)’ (22) L+ 0p1se 1401 1+ fpaspr’
i ’ where -
where ¢ (2)* = 2F¢(2-1) and {1}, are the so-called M = 1’“17%
Schur parameters T VU1
The orthogonal polynomials of the second kiace defined The setl(2B) fom = k is therefore
1
by 1 Mk71 + 619’“’1 + 'Yk?k lTk,1 1k —i:aSkJrl oSk+1 S D.
Yi(z) = —[(f(Z71)) ok (2)]+, D LGS

A Mbbius transformationa + bs)/(c + ds), with |c| > |d],
where[-] . denote “the polynomial part of”. They are also “or-maps the unit disc to a disc of radilis: — bd|/(|c?| — |d|?).
thogonal polynomials” but with respect to a certain “inegft Therefore, the radius

covariance (corresponding to the negative of the origical® 1 — |2 mel2(1 — |af?
arameters, cf[22]) and satisfy the recursion e = 7‘1@_1|04|7 =rp-1|af ( >
P H22) fy the. ~Tnel%laP? T
¢k+1(z)* = Zwk(Z*)Jr%lﬁk(Z)*a (23) is maximized wheny;, = 0, or equivalently wheny, =
Yry1(2)" = n(2)" + 2mdn(2). —vg—1. Hence,r, < r—1|al with equality if v, = —vg_1.
The positive-real functionf(z) = H|dy](z) may be ex- By induction, the maximal radius is given by
pressed using the orthogonal polynomials as = 1olal™ = 2¢ola|™ /(1 — |af?).
 e(2)" + zspgr(2)Un(2) o4 Furthermore;y, = —wvi_1 in the recursion[(25) correspond
f(z) = co o (2)* — zsky1(2)or(2)’ (24) to the Schur parametersy = &, and v, = 0fork =
. 2,...,n. This leads to the covariance sequencg, =
Where_sk+1(z)_ belong to the Schur clasS, i.e. the clas_s of (Co, cod, . .., coa™). Since dx is defined as the maximal
analytic functions oriD uniformly bounded byl. Equations diameter over allv € K, the inequality
(22123) lead to JafrH
o Co
1 Feo.n) = max ps. (Fep.,) < max ————
=B ) gy ) R ) S p
! ThSk+1 holds and is achieved faty.,, = (co, co@, ..., coa™) where
for k = For a complete exposition on orthogonah ¢ K maximizes|a|"t! /(1 — |a|?).
ponnomlaIs and Schur's algorithm seée [1].[22].][25]. In the Nevalinna-Pick case, the recursion is identical[ ) (2
Proof: [Theorem$ 113 and 18] except thatz is replaced by the inner factd,(z) = (2, —
Following our earlier notation, let 2)/(1— Zxz)

Pé0(Feo.n) = max{|Plduol(a)—Pldp|(a)] : dpo, dpr € Fey,,, flz) = w01+z751(z) (z) = + &k (2)sr41(2)

1- ' 147 ’
be the uncertainty diameter at the paine K. By using [24) z1(2) Tbk(2)s141(2)

- for k = 1,2,...,n [13]. The argument here is analogous
and noting that to the covariance case. The shrinkage of the radius; isc
Pldu)(a)) = ReH [dp](a) = Ref(a), rr—1|&k ()|, with equality when the parameters in the recur-

_ sion are(@, 0,...,0), as in the covariance case. The bound of
the diametenps, (Fe,,,) is equal to the diameter of the disc he uncertalnty dlameter at then becomes

Yn(@)" + asni1(a)dn(e) 5 dwolof [T0_, [€r(a)| _ 4wo|Ba(a)]
c D Spr1(a) €D, 26 < z=1 = z

(@) — s (@n(a) | ) (26) 2 < — T e @
whereg,, andy,, are specified vid(22)[(23), by the Schur sewhich is attained whenv, = wo(1 + zx@)/(1 — za) for
quence(yi, .. ., v,) corresponding ta., (see([25]). Denote k = 1,...,n. Sinceps, (Faw) = 2r,, maximizing [28) for
by r,, the radius of[(26), and hengg_ (Fc,,.) = 2r,. a € K gives the bound(16). [ |




(1]
(2]

(3]
(4]

(5]

(6]

(7]

(8]
[0

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]
[26]
[27]

(28]

REFERENCES [29]
N. I. Akhiezer, The classical moment problem,Hafner Publishing,
Translation 1965, Oliver and Boyd. (30]
A. N. Amini and T. T. Georgiou, “Tunable Line Spectral Esators
Based on State-Covariance Subspace AnalyE£E Trans. on Signal 31
Processing54(7) 2662-2671, July 2006. (31]
E. Avventi, “Spectral Moment Problems: Generalizatiptmplementa-
tions and Tuning,” PhD thesis, KTH, Stockholm, Sweden, 2011 132]

A. Ball, I. Gohberg, and L. Rodmarinterpolation of rational ma-
trix functions, Operator Theory: Advances and Applications Boston:
Birkhauser, vol. 45, 1990.

A. Blomqvist, A. Lindquist,

and R. Nagamune, “Matrixjued

Nevanlinna-Pick interpolation with complexity constriaian optimiza- (3]
tion approach,lEEE Trans. on Automatic Controfi8(12): 2172-2190, [34]
December 2003.

C. Byrnes, T. T. Georgiou, and A. Lindquist, “A generaliz entropy
criterion for Nevanlinna-Pick interpolation with degreenstraint,'IEEE  [35)
Trans. on Automatic Contrp#6(6): 822-839, June 2001.

C. I. Byrnes, T. T. Georgiou, and A. Lindquist, “A new appch to
Spectral Estimation: A tunable high-resolution spectsiineator,”|IEEE [36]
Trans. on Signal Processing8(11) 3189-3205, November 2000.

J. Capon, “High-resolution frequency-wave number spec analysis,”

IEEE Proc, 57(8) 1408-1418, August 1969. [37]
A. Ferrante, M. Pavon, and F. Ramponi, “Hellinger VersGdglback-
Leibler Multivariable Spectrum Approximation/EEE Trans. on Auto- [38]
matic Control,53(4): 954-967, May 2008.

A. Ferrante, M. Pavon, and M. Zorzi, “A Maximum Entropyfiance-

ment for a Family of High-Resolution Spectral Estimatof&EE Trans. [39]
on Automatic Control57(2): 318-329, February 2012.

A. Ferrante, F. Ramponi, and F. Ticozzi, “On the Conesige of an [40]
Efficient Algorithm for Kullback-Leibler Approximation ofSpectral
Densities,”|IEEE Trans. on Automatic Contro§6(3): 506-515, March
2011. [41]

C. Foias, A. E. FrazhoThe commutant lifting approach to interpo-
lation problems, Birkhauser Verlag, Ot 44: Advances and Applications[42]
1990.

J. B. GarnettBounded Analytic Functions Springer, San Diego, 2007.
T. T. Georgiou, “Spectral Estimation via Selective hlanic Amplifica-
tion,” IEEE Trans. on Automatic Controfi6(1): 29-42, January 2001.
T. T. Georgiou, “Spectral Estimation via Selective hlanic Ampli-
fication: MUSIC, Redux,”IEEE Trans. on Signal Processing8(3)
780-790, March 2000.

T. T. Georgiou, “Spectral analysis based on the statartance: the
maximum entropy spectrum and linear fractional parametgan,”
IEEE Trans. on Automatic Contro#7(11):1811-1823, November 2002.
T. T. Georgiou, “The Carathéodory-Fejér-Pisarerdecomposition and
its multivariable counterpart/EEE Trans. on Automatic Contrab2(2):

[43]

[44]

[45]
[46]

212-228, February 2007. (47]
T. T. Georgiou, “Relative Entropy and the multi-vari@ab multi-
dimensional Moment Problem|EEE Trans. on Information Theory 48]

52(3): 1052-1066, March 2006.
T. T. Georgiou, J. Karlsson, and M. S. Takyar, “Metriasr fpower [49]
spectra: an axiomatic approachHEEE Trans. on Signal Processing,
57(3) 859-867, March 2009.

T. T. Georgiou and A. Lindquist, “Kullback-Leibler apgpximation of
spectral density functions/EEE Trans. on Information Theor¢#9(11):
2910-2917, November 2003.

T. T. Georgiou and A. Lindquist, “A Convex OptimizatioApproach
to ARMA Modeling,” IEEE Trans. on Automatic Contro§3(5): 1108-
1119, June 2008.

Ya. L. GeronimusOrthogonal Polynomials Consultants Bureau, 210
pages, 1961.

R. Gray, A. Buzo, A. Gray Jr., and Y. Matsuyama, “Distont measures
for speech processing/EEE Trans. on Acoustics, Speech and Signal
Processing28(4): 367-376, August 1980.

A. Gray Jr. and J. Markel, “Distance measures for spg@cicessing,”
IEEE Trans. on Acoustics, Speech and Signal Procesgi): 380-
391, October 1976.

U. Grenander and G. Szegdoeplitz Forms and their Applications,
Chelsea, 1958.

S. Haykin,Nonlinear Methods of Spectral Analysis,Springer-Verlag,
New York, 247 pages, 1979.

K. Hoffman, Banach Spaces of Analytic FunctionsPover Publica-
tions, 216 pages, 1962.

X. Jiang, M. S. Takyar, and T. T. Georgiou, “Metrics an@nphing of
power spectra,” inLecture Notes in Control and Information Sciences
V. Blondel, S. Boyd, H. Kimura eds371, Springer Verlag 2008.

[50]

13

X. Jiang, J. Karlsson, and T. T. Georgiou, “Phoneme segation based
on spectral metrics,International Symposium on Mathematical Theory
of Networks and SystenBlacksburg, VA, July 2008, (abstract).

X. Jiang, Z-Q Luo, and T. T. Georgiou, “Spectral geodssiand
tracking,” Proc. IEEE Conference on Decision and Contr@ancun,
Mexico, December 2008.

J. Karlsson and T. T. Georgiou, “Signal analysis, mothy@oblems &
uncertainty measuresroc. IEEE Conference on Decision and Control,
Seville, Spain, December 2005.

J. Karlsson and T. T. Georgiou, “Metric Uncertainty f&pectral
Estimation based on Nevanlinna-Pick Interpolatidnfernational Sym-
posium on Mathematical Theory of Networks and Systéfedhourne,
Australia, July 2012.

A. N. Kolmogorov and S. V. Fomirintroductory Real Analysis, Dover
Publications, 1970.

I. V. Kovalishina and V. P. Potapovintegral Representation of
Hermitian Positive Functions, Khark’hov Railway Engineering Inst.,
Khar'’kov 2001. English translation by T. Ando, Sapporo,alapl1981.
M. G. Krein and A. A. Nudel'man;The Markov Moment Problem
and Extremal Problems, American Mathematical Society, Providence,
RI, 417 pages, 1977.

S. Lang and T. Marzetta, “A linear programming appro&etibounding
spectral power,"Proc. IEEE Conference on Acoustics, Speech, and
Signal Processingpp. 847-850, Boston, MA, April 1983.

T. Marzetta and S. Lang, “Power spectral density boyindBEE
Transactions on Information Theqrg0(1): 117-122, January 1984.

R. Nagamune, “A robust solver using a continuation rodtHor
Nevanlinna-Pick interpolation with degree constraitEEE Trans. on
Automatic Control,48(1): 113-117, January 2003.

E. Parzen, “Mathematical Considerations in the estonaof Spectra,”
Technometrics3(2): 167-190, May 1961.

M. Pavon and A. Ferrante, “On the Georgiou-Lindquispm@ach to
constrained Kullback-Leibler approximation of spectrahsities,”"I[EEE
Trans. on Automatic Controb1(4): 639-644, April 2006.

Yu. V. Prokhorov, “Convergence of random processeslianititheorems
in probability theory,”Theory Probab. Appl.1: 157-214, 1956.

S. T. Rachev and L. Riuschendoiflass Transportation Problems:
Theory, vols. | and II, Probability and its Applications. Springer: New
York, 1998.

F. Ramponi, A. Ferrante, and M. Pavon, “A Globally Comgent
Matricial Algorithm for Multivariate Spectral EstimatignlEEE Trans.
on Automatic Control54(10): 2376-2388, October 2009.

F. Ramponi, A. Ferrante, and M. Pavon, “On the well-piress of
multivariatespectrum approximation and convergence gii-nésolution
spectral estimators,System and Control Letter§9(3-4): 167-172,
March-April 2010.

W. Rudin, Functional analysis McGraw-Hill, 397 pages, 1973.

D. Rudoy, “Nonstationary Time Series Modeling with Ajoption to
Speech Processing,” Ph.D. thesis, Harvard University,eBéer 2010.
D. Rudoy and T. T. Georgiou, “Regularized Parametric dels of
Nonstationary Processesliternational Symposium on Mathematical
Theory of Networks and Systenidapest, Hungary, July 2010.

P. Stoica and R. Mosesntroduction to Spectral Analysis, Prentice
Hall, 1997.

P. P. Vaidyanathanyultirate Systems and Filter Banks, Englewood
Cliffs, NJ: Prentice-Hall, 1993.

C. Villani, Topics in Optimal Transportation, Graduate studies in
Mathematics, vol 58, AMS, 2003.



	I Introduction
	II The trigonometric moment problem, spectral representations, and weak convergence
	III Uncertainty of spectral estimates
	IV Weakly continuous metrics
	IV-A Metrics based on smoothing
	IV-B Metrics based on optimal transportation
	IV-C Metrics based on the Poisson kernel

	V The size of the uncertainty set
	VI Identification in a weak sense
	VII Generalized statistics
	VIII Uncertainty in the THREE framework with optimal filter selection
	IX Conclusions and future directions
	References

