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Uncertainty Bounds for Spectral Estimation
Johan Karlsson and Tryphon T. Georgiou

Abstract—The purpose of this paper is to study metrics suitable
for assessing uncertainty of power spectra when these are based
on finite second-order statistics. The family of power spectra
which is consistent with a given range of values for the estimated
statistics represents theuncertainty set about the “true” power
spectrum. Our aim is to quantify the size of this uncertaintyset
using suitable notions of distance, and in particular, to compute
the diameter of the set since this represents an upper bound
on the distance between any choice of a nominal element in the
set and the “true” power spectrum. Since the uncertainty set
may contain power spectra with lines and discontinuities, it is
natural to quantify distances in the weak topology—the topology
defined by continuity of moments. We provide examples of
such weakly-continuous metrics and focus on particular metrics
for which we can explicitly quantify spectral uncertainty. We
then consider certain high resolution techniques which utilize
filter-banks for pre-processing, and compute worst-casea priori
uncertainty bounds solely on the basis of the filter dynamics.
This allows the a priori tuning of the filter-banks for improved
resolution over selected frequency bands.

Index Terms—Robust spectral estimation, uncertainty set,
spectral distances, geometry of spectral measures, THREE filter
design.

I. I NTRODUCTION

I N practice, the estimation of power spectra in stationary
time-series often relies on second-order statistics. The

premise is that these are moments of an underlying power
spectral distribution —the true power spectrum. Thus, the
question arises as to how much is “knowable” about the
distribution of power in the spectrum from such statistics.

Asymptotically, as more data accrue the convergence is
guaranteed in a suitable sense, but the practical question
remains on how to bound the error when only limited infor-
mation is available. To this end, it is important to consider
how a finite set of statistics localizes the power spectrum.
Traditionally, for many applications, one relies on a particular
power spectrum selected out of a variety of methods that
lead to specific choices, all consistent (in different ways)with
the recorded data and the estimated moments. Historically,
Burg’s algorithm and the maximum entropy spectrum, and the
Pisarenko harmonic decomposition are specific such choices
[26], [48] and so are the correlogram and the periodogram.
Thus, in general, there exists a large family of admissible
power spectra which are all consistent. Bounding the valuesof
admissible spectral density functions is an ill-posed problem
(see Section IV). Instead, the natural way to quantify power

Supported by Swedish Research Council, Göran Gustafsson Founda-
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spectral uncertainty is by bounding the power on (measurable)
subsets of the frequency band. Therefore, the goal of this paper
is to consider the appropriate topology–the so-called weak
topology, and to develop suitable metrics that can be used
to quantify and measure power spectral uncertainty.

Throughout, we consider stochastic processes{yt : t ∈ Z}
which are discrete-time, zero-mean, and second-order station-
ary. A typical set of statistics for a stationary stochasticprocess
is a finite set of covariance (or, autocorrelation) samples.The
covariance samples

ck := E{ytȳt−k}, for k = 0,±1,±2, . . . ,±n,

whereE{·} denotes the expectation operator, provide moment
constraints for the power spectrumdµ of the process:

ck =
1

2π

∫ π

−π

e−ikθdµ(θ) for k = 0,±1,±2 . . . ,±n. (1)

The power spectrum is thought of as a non-negative measure
on the unit circleT = {z = eiθ : θ ∈ (−π, π]} (for
notational simplicity also identified with the interval(−π, π]).
We use the symbolM to denote the class of such measures
and the problem of determiningdµ ∈ M from the covariance
samples (finitely or infinitely many) is known as the trigono-
metric moment problem. Classical theory on this problem
originates in the work of Toeplitz and Carathéodory at the
turn of the 20th century and has evolved into a rather deep
chapter of functional analysis and of operator theory [1], [35],
[22], [12], [4]. The classical monograph by Geronimus [22]
contains a wide range of results on the trigonometric moment
problem, the asymptotic behavior of solutions, spectral factors
and optimal predictors, as well as explicit expressions for
spectral envelops [22, Theorem5.7] (c.f. [8], [26], [14]).
A more general form in which statistics may be available
is when these represent the state covariance, or the output
covariance, of a dynamical system driven by the stochastic
process of interest. Such a dynamical system may represent
a model of physical processing (bandpass filtering at sensor
locations, losses, structure of sensor array, etc.) or of virtual
processing (software-based) of the original time-series.Either
way, covariance statistics represent (generalized) moments
of the power spectrum and a theory which is completely
analogous to the theory of the trigonometric moment problem
is available and provides similar conclusions, see [6], [7], [14],
[15], [16]. In fact, the use of generalized statistics, which
relates to beamspace processing, was explored in [7], [15]
as a way to improve resolution in power spectral estimation
over selected frequency bands. More recent work addresses
spectral estimation with priors, computational issues, aswell
as important multivariate generalizations [3], [5], [9], [10],
[11], [17], [18], [20], [21], [38], [40], [43], [44].

The framework of the present work involves such moment
problems specified by covariance statistics. Invariably, moment
statistics are estimated from a finite observation record and are
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known with limited accuracy. Thus, in a typical experiment,as
the observation record of a time-series increases so does the
accuracy and the length of the estimated partial covariance
sequence. Our goal is to develop metrics that can be used to
quantify spectral uncertainty. More specifically, phrasedin the
context of the trigonometric moment problem, we seek metrics
between power spectra that have the following properties:

(i) given a finite set of covariance samples, the family of
consistent power spectra has a finite diameter, and

(ii) the diameter of the uncertain set of power spectra shrinks
to zero as both, the accuracy of the covariance samples
increases and their number tends to infinity.

The latter condition is dictated by the fact that the trigono-
metric moment problem is known to be determined, i.e.,
there is a unique power spectrum which is consistent with
an infinite sequence of covariances. As we will explain below
(in Section III), the proper topology which allows for these
properties to hold is the weak topology on measures (cf.,
[27, page8]). There is a variety of metrics that can be used
to metrize this topology, and thus, in principle, to quantify
spectral uncertainty. A contribution of this work is to suggest
a class of metrics for which the radius of spectral uncertainty
anda priori boundsare computable given a finite set of (error-
free) statistics.

In Section II we review the trigonometric moment problem
and relevant concepts in functional analysis. In Section III
we define power-spectral uncertainty sets and discuss the
relevance of weakly continuous metrics. In Section IV we
present a collection of weakly continuous metrics that, in
different ways, are suitable for metrizing the space of power
spectra. In Section V we compute the diameter of uncertainty
sets, for a particular choice of a metric, and elaborate on the
limit properties of this uncertainty quantification. In Section
VI we present an example that elucidates the relevance and
applicability of the results in practice. In Section VII we
explain how the framework applies in the context of gen-
eralized statistics. In Section VIII we highlight the use of
this quantification of uncertainty in filter design —we show
how to tune a filter-bank so as limit spectral uncertainty over
some frequency range of interest. In the concluding section
(Section IX) we summarize the results and outline possible
future directions.

II. T HE TRIGONOMETRIC MOMENT PROBLEM, SPECTRAL

REPRESENTATIONS, AND WEAK CONVERGENCE

The covariancesck, k = 0,±1,±2, . . ., of a stationary
random process{yt : t ∈ Z} are the Fourier coefficients
of the spectral measuredµ as in (1). These are characterized
by the non-negativity of the Toeplitz matrices [25], [26]

Tn =











c0 c−1 · · · c−n

c1 c0 · · · c−n+1

...
...

. . .
...

cn cn−1 · · · c0











,

for n = 0, 1, . . .. When Tn > 0 for n ≤ k and singular
for n = k + 1, then it is also singular for alln > k and
rank(Tk+ℓ) = rank(Tk) = k+1 for all ℓ ≥ 1. In this case,dµ
is singular with respect to the Lebesgue measure and consists
of finitely many “spectral lines,” equal in number torank(Tn)

[25, page 148]. Becausedµ is a real measure,ck = c̄−k for
k = 0, 1, . . ., hence we use only positive indices and refer by

c0:n := (c0, c1, . . . , cn)

to the vector of the first(n+ 1) moments, and by

c := (c0, c1, . . .)

to the infinite sequence. The sequencec is said to bepositive
if Tn > 0 for all n. Similarly c0:n is said to bepositive if
Tn > 0. Accordingly, the termnon-negativeis used when the
relevant Toeplitz matrices are non-negative definite.

As noted in the introduction, the power spectrum of a
discrete-time stationary process is a bounded non-negative
measure on the unit circle. The derivative (of its absolutely
continuous part) is referred to as the spectral density function,
while the singular part typically contains jumps (spectral
lines) associated with the presence of sinusoidal components.
In general, the singular part may have a more complicated
mathematical structure that allocates “energy” on a set of
measure zero without the need for distinct spectral lines [25,
page 5]. From a mathematical viewpoint such spectra are
important as they represent limits of more palatable spectra,
and hence, represent a form of completion.

The natural topology where such limits ought to be con-
sidered is the so-calledweak topology. This topology is also
known as the weak∗ topology in functional analysis–a term
which is less frequently used in the context of measures. The
weak topology is defined in terms of convergence of linear
functionals and is explained next. We denote byC(T) the class
of real-valued continuous functions onT. It is quite standard
that the space of bounded linear functionalsΛ : C(T) → R,
can be identified with the space of bounded measures onT

[27, page7]. More specifically, any bounded functionalΛ can
be represented in the form

Λ(f) =

∫

T

f(t)dµ(t) for all f ∈ C(T),

with dµ being the corresponding measure–this is the Riesz
representation theorem. Continuous functions now serve as
“test functions” to differentiate between measures. Bounds
on the corresponding integrals define the weak topology: a
sequence of measuresdµn, n = 1, 2, . . ., converges todµ in
the weak topology if

∫

fdµn →
∫

fdµ for everyf ∈ C(T).
Thus, for any two measures that are different, there exists a
continuous function that the two measures integrate to different
values. In this setting, a measure can be specified uniquely by
its Fourier coefficients. In fact, given a positive sequencec,
the unique corresponding measuredµ can be determined as the
limit in the weak topology of finite Fourier sums or Cesaro
means [27, page 24].

Non-negative measures are naturally associated with ana-
lytic and harmonic functions—a connection which has been
exploited in classical circuit theory in the context of passivity.
Herglotz’ theorem [1] states that ifdµ is a bounded non-
negative measure onT, then

H [dµ](z) =
1

2π

∫ π

−π

eiθ + z

eiθ − z
dµ(θ) (2)
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is analytic inD := {z : |z| < 1} and the real part is non-
negative. Such functions are referred to as either “positive-
real” or, as Carathèodory functions. Conversely, any positive-
real function can be represented (modulo an imaginary con-
stant) by the above formula for a suitable non-negative mea-
sure. The Poisson integral of a non-negative measuredµ

P [dµ](z) :=
1

2π

∫ π

−π

Pr(t− θ)dµ(θ), z = reit, (3)

wherePr(θ) =
1−r2

|1−reiθ|2
is the Poisson kernel, is a harmonic

function which is non-negative inD and is equal to the real part
of H [dµ](z). Given either a positive-real functionH(z), or its
real partP (z), the measuredµ such thatH(z) = H [dµ](z)
andP (z) = P [dµ](z) is uniquely determined by the limit of
P (reiθ)dθ → dµ as r → 1 in the weak topology [27, page
33]. Thus, power spectra are, in a very precise sense, boundary
limits of the (harmonic) real parts of positive-real functions.

III. U NCERTAINTY OF SPECTRAL ESTIMATES

We postulate a situation where covariancesc0:n are esti-
mated from sample of a stochastic process{yt}t∈Z with power
spectrumdν, and where the estimation error in the entries of
c0:n are bounded byǫ1. Thus, the “true” spectrumdν belongs
to the uncertainty set

Fc0:n,ǫ :=

{

dµ ≥ 0 :

∣

∣

∣

∣

ck −

∫ π

−π

e−ikθdµ

∣

∣

∣

∣

< ǫ, k = 0, 1, . . . , n

}

.

Likewise, any choice for a “nominal” spectrumdν̂ consistent
with our assumptions will also belong toFc0:n,ǫ. Therefore,
the distance between the two will be bounded by the diameter
of the uncertainty set,

ρδ(Fc0:n,ǫ) := sup{δ(dµ0, dµ1) : dµ0, dµ1 ∈ Fc0:n,ǫ},

whereδ is a suitable metric at hand. Thus, our goal in this
paper is to seek metricsδ on the space of positive measures
M that provide a meaningful and computationally tractable
notion of a diameter forFc0:n,ǫ thereby quantifying modeling
uncertainty in the spectral domain. To narrow down the search
for suitable metrics, consider the scenario when the length
of the data increases, and hence the accuracy as well as
the number of covariance lags increases. In the limit, as the
estimation error goes to zero and the numbern of covariance
lags goes to infinity, the uncertainty set shrinks to the singleton

{dν} =
⋂

n∈N

Fc0:n,ǫn , (ǫn → 0 asn→ ∞).

This is due to the fact that an infinite limit sequencec
defines a unique power spectrum–the trigonometric problem
is determinate. The diameter should reflect this shrinkage to a
singleton and tend to zero. For this to happen, the underlying
metric needs to be weakly continuous as stated next.

Theorem 1:Let δ be a metric onM. Then

ρδ(Fc0:n,ǫn) → 0 as ǫn → 0 andn→ ∞, (4)

for every covariance sequencec if and only if δ is weakly
continuous.

1The more realistic situation, where the confidence intervals degrade with
the order of covariance lags, can be dealt with in a similar manner, albeit with
a bit more cumbersome notation.

Proof: This can be seen by comparing the definition of
Fc0:n,ǫn with the definition of open sets in the weak topology.
See the appendix for a detailed proof.

Remark 2:Occasionally one may have additional a priori
knowledge on the structure and smoothness of the power spec-
trum which would further limit the uncertainty set. Quantifying
such “structured” uncertainty would necessarily be problem-
specific and is not considered in the present work. Instead,
we take a viewpoint that allows comparing power spectra in a
unified way, regardless smoothness, presence of spectral lines,
or membership in a specific class of models. 2

We now consider the case where the finite covariance
samplec0:n is known exactly. Ifc0:n is positive, then the
uncertainty set

Fc0:n
:=

{

dµ ≥ 0 : ck =

∫ π

−π

e−ikθdµ, k = 0, 1, . . . , n

}

contains infinitely many power spectra. Ifc0:n is only non-
negative, and henceTn is singular, then the familyFc0:n

consists of the single power spectrumdν [25, page 148]. The
following two results are immediate corollaries of Theorem1.
The first one treats the case where the number of covariance
lags goes to infinity, while the second, treats the case where
the values of the covariance lags tend to those of a singular
sequence. In both cases the diameter of the uncertainty set
necessarily goes to zero for a weakly continuous metric.

Corollary 3: Let c be a non-negative sequence and letδ be
a weakly continuous metric. Then

ρδ(Fc0:n
) → 0, asn→ ∞.

Proof: This follows directly from Theorem 1 and by
noting that

Fc0:n
⊂ Fc0:n,ǫ

for any ǫ > 0. It also follows from [22,§1.16] in view of
Proposition 10 in Section IV-C below.

Corollary 4: Let c0:n be a vector of covariance lags such
that the correspondingTn is a singular Toeplitz matrix, and let
ĉ0:n(k) (k = 1, 2, . . .) be a sequence of vectors of covariance
lags tending toc0:n. If δ is a weakly continuous metric then

ρδ(Fĉ0:n(k)) → 0, ask → ∞.

Proof: Follows directly from Theorem 1. See also [31]
for an independent detailed argument.

Remark 5: It should noted that the total variation (
∫

|dµ0−
dµ1|) is not weakly continuous and therefore the conclusions
of the two corollaries would fail if this was used as the
metric. To see this, note that ifc0:n is positive, thenFc0:n

contains infinitely many measures and among them at least
two singular measures with non-overlapping support, i.e.,
supp(dµ0) ∩ supp(dµ1) = ∅ (e.g., see [35]). Then the total
variation of their difference is always2c0. 2

IV. W EAKLY CONTINUOUS METRICS

In general, a finite set of second-order statistics cannot
dictate the precise value of the power spectrum locally. Indeed,
given any finite positive sequencec0:n and anyθ0 ∈ (−π, π],
then for any valueα ≥ 0 there exists anǫ > 0 and an
absolutely continuous measuredµ = fdθ ∈ Fc0:n

such that

f(θ) = α for θ ∈ (θ0 − ǫ, θ0 + ǫ).
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What can be said instead, is that the range of values
{∫

T

gdµ : dµ ∈ Fc0:n

}

, (5)

for any particular test functiong ∈ C(T), is bounded.
Furthermore, asn→ ∞, this range tends to zero. In fact, due
to weak continuity, the range of values tend to zero for any of
the scenarios in Theorem 1 and its two corollaries. Finding the
maximum and the minimum of (5) is a linear programming
problem on an infinite dimensional domain. Providedg is
symmetric real and the covariance sequencec0:n is real, the
dual problems, which give the lower and upper bounds of (5),
are

max

{

λc0:n
T :

n
∑

k=0

λk cos(kθ) ≤ g(θ), θ ∈ (−π, π]

}

, (6)

min

{

λc0:n
T : g(θ) ≤

n
∑

k=0

λk cos(kθ), θ ∈ (−π, π]

}

, (7)

whereλ = (λ0, λ1, . . . , λn) are Lagrange multipliers.
Remark 6:Along these lines Lang and Marzetta in [36],

[37] sought to quantify the maximal and minimal spectral mass
in a specified interval given the covariancesc0:n. To this end
we may takeg = χI the characteristic function of an interval
I, that is,χI(θ) = 1 if θ ∈ I and0 otherwise. Lower and upper
bounds on

∫

I
dµ are finite and are then given by (6) and (7),

respectively. However, sinceg = χI is not continuous, the
mass in an interval is not a weakly continuous quantity, and
the requirements in Corollary 3 does not hold. In fact, for this
case the gap between the upper and lower bound does not
necessarily converge to zero asn goes to infinity. This occurs,
e.g., in the case when the true spectrum has a spectral line at
an end point of the interval. 2

A class of weakly continuous metrics can be sought in the
form

δ(dµ0, dµ1) = sup
ξ∈K

∣

∣

∣

∣

∫

T

gξ(dµ0 − dµ1)

∣

∣

∣

∣

, (8)

for {gξ}ξ∈K ⊂ C(T), provided the family{gξ}ξ∈K of test
functions is sufficiently rich to distinguish between measures
and yet, small enough so that continuity is ensured. The precise
conditions are given next.

Proposition 7: The functionalδ(dµ0, dµ1) defined in (8) is
a weakly continuous metric if and only if the following two
conditions hold:

(a) for any two measuresdµ0, dµ1 ∈ M, there is aξ ∈ K
such that

∫

T
gξdµ0 6=

∫

T
gξdµ1, and

(b) the set{gξ}ξ∈K in C(T) is equicontinuous2 and uni-
formly bounded.

Proof: See the appendix.
In essence, condition (a) ensures positivity while condition (b)
ensures weak continuity. The triangle inequality and symmetry
always hold for suchδ. The total variation norm is an example
of why (b) is needed—it is a norm of the form (8) where the
set of test function are theC(T) unit ball, {g : ‖g‖∞ ≤ 1},
but it is not weakly continuous. This is due to the fact that the
unit ball in C(T) is not equicontinuous.

2A family of functions {gξ}ξ∈K ⊂ C(T) is said to be equicontinuous if
for any ǫ there exists aγ such that|gξ(θ1)− gξ(θ2)| < ǫ if |θ1 − θ2| < γ
for all θ1, θ2 ∈ T, andξ ∈ K.

Remark 8:A more general family of distances are of the
form

δ(dµ0, dµ1) = sup
g0(θ) ∈ K0, g1(φ) ∈ K1,

g0(θ) + g1(φ) ∈ K

∫

T

g0dµ0 +

∫

T

g1dµ1

whereK0,K1 ⊂ C(T) andK ⊂ C(T × T). By selecting the
setsK0,K1, andK properly,δ (or a monotone function ofδ)
will be a weakly continuous metric. One such example is the
metrics based on optimal transportation treated in [19], where
the metrics have non-local properties such as geodesics which
preserve lumpedness. 2

Next we consider three ways for devising weakly continuous
metrics. The first uses smoothing of power spectra to be
compared by suitable test functions in a way that is analo-
gous to the use of classical window kernels in periodogram
estimation [48]. The second is based on Monge-Kantorovich
optimal mass transportation where a cost is associated with
mismatch in the frequency range where power resides. In
this geometry, optimal-transport geodesics may be used to
model slow time-varying drift in the spectral power of non-
stationary time-series [19] — such models for non-stationarity
lessen artifacts present when using ordinary interpolation (e.g.,
fade-in fade-out [30]). The third is based on Poisson kernels
and is more suitable for differentiating spectra based on their
content on specified frequency bands. The connection between
Poisson kernels and the analytic and harmonic functions in (2)
and (3) allows for evaluating bounds and the diameter of the
uncertainty set with respect to the corresponding distances.
This will be explored in the case where finitely many error-
free covariances are known in Sections V to VIII.

A. Metrics based on smoothing

A simple way to devise weakly continuous metrics which
has a classical flavor is to first smoothing the measures via
convolution with a fixed suitable continuous function, and
then to compare the smoothed spectral densities. This echoes
the use of windowing Fourier techniques in the time domain
[48] where a suitable choice of a window is used to trade-off
resolution and variance of the estimator. Likewise here, the
choice of a windowing function determines the resolution of
the metric.

Thus, let g ∈ C(T) be such a windowing function, and
define

δsmooth,g(dµ0, dµ1) := ‖g ∗ (dµ0 − dµ1)‖∞.

Here,

(g ∗ dµ)(ξ) =

∫ π

−π

g(ξ − θ)dµ(θ)

denotes the circular convolution and‖ · ‖∞ theL∞ norm. In
the view of Proposition 7,δsmooth,g is of the form

‖g∗(dµ0−dµ1)‖∞ = sup
ξ∈(−π,π]

∣

∣

∣

∣

∫ π

−π

g(ξ − θ)(dµ0(θ) − dµ1(θ))

∣

∣

∣

∣

,

and hence, condition (b) of the proposition holds. In addition,
the chosen convolution-kernel functions must not have any
zero Fourier coefficient, otherwise the approach will fail to
differentiate between certain measures. To see this, letg(θ) =
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∑∞
k=−∞ gke

ikθ and let(. . . , a−1, a0, , a1, . . .) be the Fourier
coefficients ofdµ0(θ) − dµ1(θ), then

g ∗ (dµ0 − dµ1)(ξ) =
∞
∑

k=−∞

g−kake
ikξ.

If gk 6= 0 for all k ∈ Z, the above expression cannot vanish
identically unless all theak ’s are zero, in which casedµ0 =
dµ1. In this case (a) holds and it follows from Proposition 7
that δsmooth,g(dµ0, dµ1) is a weakly continuous metric. This
leads to the next proposition.

Proposition 9: Let g ∈ C(T) be a windowing function with
non-vanishing Fourier coefficients. Thenδsmooth,g(dµ0, dµ1)
is a weakly continuous metric.

B. Metrics based on optimal transportation

A rapidly growing literature [50] on a classical problem,
known as the Monge-Kantorovich transportation problem, has
impacted a wide range of disciplines, from probability theory
to fluid dynamics and economy [42]. Optimal transportation
refers to the correspondence between distributions of masses
that induce the least amount of transportation cost3. The opti-
mal transportation cost between two probability distributions
induces weakly continuous metrics, known as Wasserstein
metrics, which are extensively used in probability theory.In
order to handle more general distributions we need a suitable
modification to compare unequal masses. This we do next and
connect with the formalism in (8).

The Monge-Kantorovich transportation problem amounts to
minimizing the cost of transportation between two distribu-
tions of equal mass, e.g.,dµ0 anddµ1 where

∫

T
dµ0 =

∫

T
dµ1.

In this, a transportation plandπ(θ, φ) is sought which corre-
sponds to a non-negative distribution onT × T and is such
that
∫

θ∈T

dπ(θ, φ) = dµ0(φ) and
∫

φ∈T

dπ(θ, φ) = dµ1(θ). (9)

Then, the minimal cost

min

{∫

T×T

|θ − φ|dπ(θ, φ) : dπ satisfies (9)

}

is the Wasserstein-1 distance betweendµ0 and dµ1, and is
a weakly continuous metric (see, e.g., [50, chapter7]). This
problem admits a dual formulation, known as the Kantorovich
duality:

W1(dµ0, dµ1) = max
‖g‖L≤1

∫

g(dµ0 − dµ1),

where‖f‖L = supθ,φ
|f(θ)−f(φ)|

|θ−φ| denotes the Lipschitz norm.
Power spectra, in general, cannot be expected to have the

same total mass. In this case,δ1,κ(dµ0, dµ1) defined by

inf
∫

dν0=
∫

dν1

W1(dν0, dν1) + κ
1

∑

i=0

∫

T

|dµi − dνi|, (10)

is a weakly continuous metric for an arbitrary but fixedκ > 0.
The interpretation is thatdµ0 and dµ1 are perturbations of
the two underlying measuresdν0 anddν1, respectively, which

3L. Kantorovich received the1975 Nobel Prize for the impact of this theory
on allocation of economic resources.

have equal mass. Then, the cost of transportingdµ0 anddµ1

to one another can be thought of as the cost of transporting
dν0 anddν1, to one another, plus the size of their respective
perturbations fromdµ0 and dµ1. This is introduced in [19]
and this metric admits a dual formulation

δ1,κ(dµ0, dµ1) = max
‖g‖∞ ≤ κ
‖g‖L ≤ 1

∫

g(dµ0 − dµ1),

which is in the form of the Proposition 7. Various other
generalizations of the transportation distance that applyto
power spectra are also being proposed and studied in [19].

C. Metrics based on the Poisson kernel

Power spectra are weak limits of the real part of analytic
functions on the unit disc, as indicated earlier. Comparison
of these functions induces weakly continuous metrics which
readily fall under the framework of (8). Interestingly, this
approach allows for both the computation of explicit/analytic
bounds on uncertainty sets (see Section V) and for specifying
a frequency dependent resolution of a metric (see Remark 11
and the example in Section VII).

Recall from Section II that the harmonic function associated
with a measure is the Poisson integral, defined as

P [dµ](z) =
1

2π

∫ π

−π

Pr(t− θ)dµ(θ), z = reit.

Weak convergence of measures is equivalent to certain types
of convergence of their harmonic counterpart.

Proposition 10: Let {dµk}∞k=1 be a sequence of uniformly
bounded signed measures onT, let dµ be a bounded measure
on T, and letu(z) = P [dµ](z), uk(z) = P [dµk](z) be their
corresponding Poisson integrals. The following statements are
equivalent:

(a) dµk → dµ weakly,
(b) uk(z) → u(z) pointwise∀z ∈ D,
(c) uk(z) → u(z) in L1(D),
(d) uk(z) → u(z) uniformly on every compact subset ofD.

Proof: The proof is given in the appendix.
Each of the statements(b), (c), and (d) may be used for
devising weakly continuous metrics. We shall focus on the
statement(d), indicating that weakly continuous metrics can
be constructed by comparing the harmonic functions on a sub-
set ofD. In fact, the maximal distance between the harmonic
functions on a closed non-finite setK ⊂ D gives rise to a
weakly continuous metric

δK(dµ0, dµ1) = max
z∈K

|P (dµ0 − dµ1)(z)|. (11)

This is true, since the resulting family of the Poisson kernels
satisfies the properties in Proposition 7. To see this, first note
that any two harmonic functions which coincides onK, a
closed non-finite set insideD, must be identical, hence(a) is
satisfied. Further more, sinceK ⊂ γD for someγ < 1, the
magnitude and derivative ofPr(t − θ) is uniformly bounded
whenreit ∈ K, hence(b) holds.

Remark 11:In practice, it is often the case that one is
interested in comparing spectra over selected frequency bands.
To this end, various schemes have been considered which
rely on pre-processing with a choice of “weighting” filters
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and filter banks (see e.g., [8], [49], and [6], [16]). The
choice of the point-setK in (11) can be used to dictate
the resolution of the metric over such frequency bands. To
see how this can be done, considerK to designate an arc
{ξ = reiθ : θ ∈ [θ0 − ǫ, θ0 + ǫ]}. This satisfies the conditions
of Proposition 7 and thus,δK is a weakly continuous metric.
At the same time, the valuesP [dµ](ξ), with ξ ∈ K, represent
the variance at the output of a filter with transfer function
z/(z − ξ). These are bandpass filters with a center frequency
arg(ξ) and bandwidth which depends on the choice ofr. Thus,
in essence, the metric compares the respective variance after
the spectra have been weighted by a continuum (forξ ∈ K)
of such frequency-selective bank of filters. 2

V. THE SIZE OF THE UNCERTAINTY SET

The diameter of the uncertainty set with respect to the
distanceδK turns out to be especially easy to compute – it is
realized as the distance between two “diametrically opposite”
measures with onlyn + 1 spectral lines each (i.e., measures
having compact support). This is the content of the following
proposition.

Proposition 12: Let c0:n be a positive covariance sequence
and letK ⊂ D be closed. Then

ρδK (Fc0:n
) =

max
z∈K











2





∣

∣

∣

∣

∣

2
1−zz̄

+ 〈bz, dz〉T−1

〈bz , bz〉T−1

∣

∣

∣

∣

∣

2

−
〈dz, dz〉T−1

〈bz, bz〉T−1





1
2











,

where

bz =











z−1

z−2

...
z−n−1











, dz =











z−1(c0)
z−2(c0 + 2c1z)
...
z−n−1(c0 + 2c1z + · · ·+ 2cnz

n)











,

and 〈x, y〉T−1 denotes the inner product

〈x, y〉T−1 := y∗T−1
n x.

Furthermore,ρδK (Fc0:n
) is attained as the distance between

two elements ofFc0:n
which are both singular with support

containing at mostn+ 1 points.
Proof: The proof is given in the appendix.

Both claims in Proposition 12 can be used separately
for computing ρδK (Fc0:n

). The first one suggests finding
a maximum of a real-valued function overK. The second
claim suggests a search for a maximum ofδK(dµ1, dµ2)
over a rather small subset ofext(Fc0:n

), namely nonnegative
sequencesc0:(n+1) parametrized bycn+1; i.e., solutions of the
quadratic equation

det(Tn+1) = 0. (12)

The (complex) values forcn+1 satisfying (12), lie on a circle
in the complex plane, and hence, computation ofρδK (Fc0:n

)
requires search on a torus (each of the two extremaldµ1, dµ2

where the diameter is attained can be thought of as points on
the circle).

We elucidate this with an example. Figure 1 shows
ρδK (Fc0:n

) for
c0:2 = (1, c1, c2)
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Fig. 1. The uncertainty diameterρδK as a function ofγ1, γ2 whenc0 = 1
andK = {z : |z| ≤ 0.5}.

as a function of the correspondingpartial autocorrelation co-
efficients, also known asSchur parameters(see the appendix),

−1 < γ1 := c1 < 1,

−1 ≤ γ2 :=

det

(

c1 c2
1 c1

)

det

(

1 c1
c̄1 1

) ≤ 1,

andK is taken as{z : |z| ≤ 0.5} ⊂ D.
The plot confirms that the diameter decreases to zero as the

parameters or, alternatively, the covariancesc1 and c2, tend
to the boundary of the “positive” region (which in the Schur
coordinates corresponds to the unit square). However, it is
interesting to note that the diameter ofFc0:n

as a function of
c0:n has several local maxima. This maximal diameter may
be explicitly calculated, hence provides ana priori bound on
the uncertainty.

Theorem 13:Let r = max(|z| : z ∈ K). Then

ρδK (Fc0:n
) ≤

4c0|r|n+1

1− |r|2
. (13)

Further, (13) holds with equality if and only ifc0:n =
(c0, c0ᾱ, c0ᾱ

2, . . . , c0ᾱ
n) for someα ∈ K with |α| = r.

Proof: The proof is given in the appendix.
Remark 14:Computation of the diameterρδ(Fc0:n

) of the
uncertainty set amounts to solving the infinite-dimensional
optimization problem

sup{δ(dµ1, dµ2) : dµ1, dµ2 ∈ Fc0:n
}. (14)

If δ is a weakly continuous and jointly convex function, then
the diameter is attained as the precise distance between two
elements which are extreme pointsFc0:n

. Extreme points are
the points with the property that they themselves are not a
convex combination of other elements in the set; the set of
extreme points is denoted byext(·). Then,dµ ∈ ext(Fc0:n

)
if and only if dµ ∈ Fc0:n

and the support ofdµ consists of
at most2n + 1 points (see [31]). Thus,ext(Fc0:n

) admits a
finite dimensional characterization and (14) reduces to a finite
dimensional problem. 2
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Fig. 2. The “true” power spectrumdν.

VI. I DENTIFICATION IN A WEAK SENSE

In this section we elucidate how the uncertainty set is
affected by the number of moments and show that spectra may
be close in the weak sense even though they are qualitatively
very different.

Consider the stochastic process

yt = cos(0.5t+ ϕ1) + cos(t+ ϕ2) + wt +
1

3
wt−1

wherewt is a white noise process andϕ1, ϕ2 are random
variables with uniform distribution on(−π, π]. The power
spectrumdν is depicted in Figure 2 and the spectrum has
both an absolutely continuous part as well as a singular part.
We would like to identify this spectrum relying on covariance
data and derive bounds on the estimation error. We will use
the metricδK whereK = {z : |z| = 0.9}, i.e.,

δK(dµ0, dµ1) = sup
|z|=0.9

|P (dµ0 − dµ1)(z)|.

Let c be the covariance sequence ofdν and let dµ5 and
dµ20 be the power spectra with highest entropy in the sets
Fc0:5

andFc0:20
, respectively. Figure 3 comparesdµ5 anddν

where the estimation error and the uncertainty diameter are

δK(dν, dµ5) = 5.66, ρδK (Fc0:5
) = 20.79.

The first subplot shows and compares these two power spectra.
The second subplot displaysP [dν](0.9eiθ), P [dµ5](0.9e

iθ),
along with bounds onP [dµ](0.9eiθ) whenµ ∈ Fc0:5

. It is seen
that the spectrumdµ5 does not distinguish the two peaks. In
order to distinguish the two spectral lines, the information in
c0:5 is clearly not sufficient as theδK-bounds are substantial.

Figure 4 now comparesdµ20 anddν in a similar manner.
The estimation error and the uncertainty diameter are

δK(dν, dµ20) = 0.29, ρδK (Fc0:20
) = 2.52.

Here, dµ20 has two peaks close to the spectral lines and
P [dµ20](0.9e

iθ) resemblesP [dν](0.9eiθ) quite closely. In
fact, the bounds/envelops already reflect the presence of the
two peaks.

To amplify the point made above, considerdµline to be the
(unique) power spectrum inFc0:20

having Schur parameter
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Fig. 3. Subplot 1: The power spectrumdν (solid), dµ5 (dashed). Subplot 2:
P [dµ](0.9eiθ) (solid), P [dµ5](0.9eiθ) (dashed), along with bounds based
on c0:5.

γ21 = 1; this corresponds to a deterministic process (having
only spectral lines) and is depicted in Figure 5. Subplot2
showsP [dµline](0.9e

iθ) and how it “sits” within the respective
bounds. In the absence of additional information,dµline,
dµ20, or any other power spectrum inFc0:20

is admissible.
The “worst case” distance between any two is the diameter
computed above.

Remark 15:Even though the three spectradν, dµ20, and
dµline, have identical covariancesc0:20, they are quite different
in terms of their respective singular and continuous parts.
However, they are similar in their distribution of spectral-mass
– they have most of their mass located around the frequency
pointsθ = 0.5 andθ = 1, and this is what the weak topology
captures.

Remark 16:Standard pointwise distances betweendν,
dµ20, anddµline do not provide a meaningful comparison. For
instance, the Itakura-Saito distance [23], the Kullback-Leibler
divergence [20], and the Cepstral distance [24], because they
contain a logarithmic term, give the value of∞ when com-
paring dµ20 and dµline. On the other hand, theL2 metric
does not apply to the present context because spectral lines
cannot be viewed as “L2 functions” and if approximated the
norm diverges to infinity. Finally, the total variation doesnot
differentiate when spectral lines are nearby or far apart (c.f.,
Remark 5).

VII. G ENERALIZED STATISTICS

Our analysis extends readily to the case of generalized
statistics [7], [15], [6], [14]. The formalism in these references,
nicknamed THREE (for “tunable high resolution estimation”)
allows for the possibility of tunable filter-banks and was
shown to provide improved resolution, albeit, quantitative
assessments of the benefits exist only in special cases [2].
We briefly sketch the formalism here, for lack of space, and
we refer to the aforementioned references for more detailed
accounts.

We explain the formalism of generalized statistics in the
setting of “filter-banks”, i.e., we consider the stochasticpro-
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Fig. 4. Subplot 1: Power spectrumdν (solid), dµ20 (dashed). Subplot 2:
P [dµ](0.9eiθ) for the true spectrum (solid),P [dµ20](0.9eiθ) for dµ20

(dashed), along with bounds based onc0:20.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

Angle (θ)

M
ag

ni
tu

de
 o

f s
pe

ct
al

 li
ne

s

0 0.5 1 1.5 2 2.5 3

10
0

10
1

Angle (θ)

M
ag

ni
tu

de
 a

t r
=

0.
9

 

 
Deterministic spectrum
Bound

Fig. 5. Subplot 1: Power spectrumdµline (line spectrum). Subplot 2:
P [dµline](0.9e

iθ) for the line spectrum, along with bounds based onc0:20 .

cessyt as driving a bank of first-order dynamical systems with
transfer functions

Gk(z) :=
z

z − zk
, for k = 0, 1, . . . , n, with |zk| < 1

as shown in Figure 6. The joint covariance matrix of the filter-
bank outputs is

P = E{u(t)u(t)∗},

whereu := (u0(t), u1(t), . . . , un(t))
T . As indicated earlier

t ∈ Z is the time index. The covariance matrix takes the form

G0(z)

G1(z)

Gn(z)

✲

✲

✲

✲

✲

✲

❵

❵

❵

u0

u1

un

y

Fig. 6. Bank of filters.

of a Pick matrix

P :=

[

wk + w̄ℓ

1− zkz̄ℓ

]n

k,ℓ=0

(15)

where

wk =
1

2
(1− z2k)E{u

2
k}

(see [7, Equations (2.8), (2.10)] and [15, page 783, Equation
(7)]). The matrixP replaces the ordinary Toeplitz covariance
in the previous sections. Certain observations are in place:
given the filter-bank dynamics, i.e., thezk ’s, i) P depends only
on the valueswk, and ii) the cross-covariances between filter-
bank elements can be computed from the output covariances
of all elements individually, that is, from thewk ’s.

A rather complete theory has been developed to characterize
power spectra for the input process that are consistent with
output-covariance (more generally, state-covariance) statistics.
This theory provides among other things a construction of the
unique input spectrum of maximal entropy, spectral envelops
that are reminiscent of the Capon pseudo-spectra, and the
identification of spectral lines with techniques analogousto
the theory of the Pisarenko Harmonic Decomposition, MUSIC,
ESPRIT, etc., and has been worked out in detail for matrix-
valued power spectra as well (see e.g., [15], [16], [17], [18],
[43], [44]).

We restrict our attention to the present setting where{yt}t∈Z

is scalar as before and so are the filters. We assume estimates
for the output covariances, hence, the valueswk ’s. Like before,
we now denote byFz,w the family of power spectra for the
process{yt}t∈Z which are consistent with these values and we
are interested in assessing the size of this family as a measure
of our spectral uncertainty.

The following proposition can be derived almost verbatim
as Proposition 12. See [32] for an independent proof.

Proposition 17: Let z0, . . . , zn andw0, . . . , wn be such that
the Pick matrixP in (15) is positive and letK ⊂ D be closed.
Then

ρδK (Fz,w) =

max
z∈K











2





∣

∣

∣

∣

∣

1
1−zz̄

+ 〈bz, dz〉P−1

〈bz, bz〉P−1

∣

∣

∣

∣

∣

2

−
〈dz, dz〉P−1

〈bz, bz〉P−1





1
2











,

where

bz =











1
1−z0 z̄

1
1−z1 z̄
...

1
1−znz̄











, dz = −











w0

1−z0z̄
w1

1−z1z̄

...
wn

1−znz̄











,

and 〈x, y〉P−1 denote the inner product

〈x, y〉P−1 := y∗P−1x.

As before, ρδK (Fz,w) is attained as the distance between
two elements ofFz,w which are both singular with support
containing at mostn+ 1 points.

As in the covariance casea priori bounds on the uncertainty
may be calculated.
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Theorem 18:Following the notation of Proposition 17, let
z0 = 0 and

Bz(z) =

n
∏

k=0

z − zk
1− z̄kz

.

Then

ρδK (Fz,w) ≤ max
z∈K

4w0|Bz(z)|

1− |z|2
. (16)

Further, (16) holds with equality if and only if

wk = w0(1 + zkᾱ)/(1− zkᾱ) for k = 1, . . . , n

for someα ∈ K maximizing |Bz(α)|/(1 − |α|2).
Proof: The proof is given in the appendix.

Here thea priori bound depends on the interpolation pointsz,
in addition toK, the model ordern, and the total spectral mass
w0. Therefore, by minimizing the right hand side of (16) with
respect to thez, one can find the filter bank with the smallest
a priori uncertainty in the metricδK . This will be exploited
in the following example to tune the filter-bank poles.

VIII. U NCERTAINTY IN THE THREE FRAMEWORK WITH

OPTIMAL FILTER SELECTION

From this vantage point we now take up an example
as before, with closely spaced sinusoids, and compare two
alternative formalisms, one based on Toeplitz covariancesand
the other based on generalized statistics.

Consider the stochastic process

yt =
cos(0.5t+ ϕ1) + cos(0.6t+ ϕ2)

2
+cos(t+ϕ3)+wt+

1

3
wt−1,

with two closely-spaced spectral lines at0.5 rad/s and0.6 rad/s
superimposed with a spectral line in1 and colored noise. We
choose as metricδK , with K ⊂ D proximal to the region
where high resolution is desired – i.e., near0.5 rad/s where
the two closely-spaced sinusoids reside. More specifically, we
take4

K := {0.65e±0.5i + 0.25T}.

This is depicted by the two circles in Figure 8.
We compare the maximum entropy spectral estimatedµME

constructed using the covariancesc0, c1, . . . , c20, with the
spectral estimatedµ

THREE
which is based on the output

statistics of the filter bank ofGk(z)’s. We selectn = 10 and
filter-bank poles that minimize5 thea priori uncertainty bound
(16). The filter poles, indicated by “×” in Figure 8, are

zk ∈{0, 0.581± 0.480i, 0.681± 0.470i,

0.738± 0.422i, 0.755± 0.271i, 0.765± 0.357i}.

The THREE-spectrum is a “maximum entropy” distribution
which is now consistent with statistics other than the usual
autocorrelation ones (dµ

THREE
is the so called “central solu-

tion” of the Nevanlinna-Pick analytic interpolation theory6 to
distributions inFz,w).

4T denotes as before the unit circle.
5The polez0 = 0 and total spectral massw0 = 1 are assumed fixed.

The bound in (16) is then minimized overz1, . . . , zn. Since RHS of (16) is
nonconvex inz only local minimum is guaranteed.

6Software is available at
http://www.ece.umn.edu/∼georgiou/code/spec_analysis.tar
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The a priori bounds on the uncertainty provided by Theo-
rems 13 and 18 are

ρδK (Fz,w) ≤ 0.151w0 = 0.468 and

ρδK (Fc0:n
) ≤ 2.304 c0 = 7.167,

respectively. In our examplew0 = c0 = 28/9. This shows that
thea priori bound on the uncertainty set with respect toδK is
considerably smaller when the THREE formalism is applied.

The two spectral estimates together with the true power
spectrum are depicted in Figure 7. It can be seen that the two
closely-spaced lines are not discernible indME. On the other
hand, they are quite clearly distinguishable via THREE. This
is due to the choice of the dynamicsz. As can be seen from
the figure, the resolution ofdµ

THREE
is substantially higher

than that ofdµME in the vicinity of 0.5 rad/s. We would also
like to compare the size of the uncertainty set for the two
scenarios. The size of the respective diameters are

ρδK (Fz,w) = 0.194 andρδK (Fc0:n
) = 2.831.

Thus, when measured usingδK , the uncertainty set using the
THREE formalism is considerably smaller. Figure 9 displays
the Poisson integral of the true power spectrum evaluate on
K, and the corresponding bounds7.

http://www.ece.umn.edu/~georgiou/code/spec_analysis.tar
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Fig. 9. Bounds on estimates onK based on covariances (top) and the THREE
formalism (bottom), respectively.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

The choice of a metric is key to any quantitative scientific
theory. Identification of power spectra is often based on
second-order statistics (moments), and therefore, it is natural
to metrize the space of power spectra in a way that respects
continuity of moments. There is a variety of such weakly
continuous metrics —metrics which localize “spectral mass”.
We presented various choices and focused on a particular
metric, δK , which is amenable to quantifying the size of the
uncertainty set. We envision that this, and similar metrics, can
be used as tools for assessing uncertainty and robustness in
modeling and spectral analysis. We further expect that the
theory will be of use in filter design and in quantifying the
notion of resolution–as this is naturally connected to the size
of the spectral uncertainty set. Finally, we expect that these
metrics will conform with other subjective measures rootedin
perceptual qualities of signals (cf. [19, Example 10]).

Interest in weak continuity is not new. Indeed, a classical
weakly continuous metric is the Lévy-Prokhorov metric [41]
and it is well known that the periodogram converges weakly
as the sample size goes to infinity (see, e.g., [39]). Yet,
appropriate weakly continuous metrics that can be used to
quantify uncertainty have not received much attention —
the commonly used “total variation,” Itakura-Saito, and other
distance measures are not weakly continuous. Besides the
relevance in uncertainty quantification and in filter design
(cf. Section VIII), computationally amenable and easy-to-use
metrics may provide a useful geometric setting for modeling
slowly time-varying processes and for integrating data from
disparate sources (see, e.g., [28], [29], [30], [46], [47]).

APPENDIX

Proof: [Theorem 1]
The canonical neighborhood basis for a pointdν in the weak
topology onM consists of sets of the type

N(dν, {gk}
n
k=1, ǫ)

=
{

dµ ≥ 0 :

∣

∣

∣

∣

∫

T

gk(dν − dµ)

∣

∣

∣

∣

< ǫ, k = 0, 1, . . . , n
}

,

7SinceK is formed out of two circles symmetrically located with respect to
the real axis of the complex plane, plots are identical for the two components
of K.

wheregk are continuous functions onT for k = 0, . . . , n. To
establish the theorem we prove that the neighbourhood basis

N(dν) = {N(dν, {gk}
n
k=0, ǫ) : ǫ > 0, n ∈ N, {gk}

n
k=0 ⊂ C(T)}

is equivalent to the basis

F(dν) =

{

Fc0:n,ǫ : ǫ > 0, n ∈ N, ck =

∫

T

z−kdν, k = 0, . . . , n

}

.

First note thatN(dν) ⊃ F(dν), and hence the weak topology
is at least as strong as the topology induced byF(dν). To
establish the other direction, letN be an arbitrary set inN(dν).
To show the equivalence, it is enough to show that there exists
n ∈ N such thatF

c0:n,n−1 ⊂ N.
Let δ be a weakly continuous metric forM and chooseǫ so

that theBδ(dν, ǫ) = {dµ ≥ 0 : δ(dµ, dν) < ǫ} ⊂ N . Next,
takedµℓ ∈ F

c0:ℓ,ℓ−1 with

δ(dµℓ, dν) ≥
1

2
sup{δ(dµ, dν) : dµ ∈ F

c0:ℓ,ℓ−1} (17)

for ℓ ≥ 1. SinceF
c0:ℓ,ℓ−1 ⊂ {dµ : µ(T) ≤ ν(T) + 1),

which is weakly compact, there is a convergent subsequence of
dµk that converges todµ̂ (by Banach-Alaoglu [45]). Note that
F

c0:ℓ,ℓ−1 ⊃ closure(F
c0:ℓ+1,(ℓ+1)−1) ⊃ F

c0:ℓ+1,(ℓ+1)−1 , hence
dµ̂ ∈ F

c0:ℓ,ℓ−1 for any ℓ. It then follows thatdµ̂ = dν since
the trigonometric moment problem is determinate (by Riesz-
Herglotz, see [1]). Letn be such thatδ(dµn, dν) < ǫ/2, then
by (17) we have thatF

c0:n,n−1 ⊂ Bδ(dν, ǫ) ⊂ N . We have
thus shown that the topology induced by the neighbourhood
basisF(dν) is the weak topology, and henceδ is weakly
continuous if and only if (4) holds.

Proof: [Proposition 7]
It is clear that condition (a) holds if and only ifδ(dµ0, dµ1)
is positive wheneverdµ0 6= dµ1. The triangle inequality and
symmetry always holds for suchδ, so we only need to show
that condition (b) holds if and only ifδ is weakly continuous.

We will show that condition (b) implies thatδ is weakly
continuous by contradiction. Assume therefore that condition
(b) holds, but thatδ is not weakly continuous. Then there exists
dµk → dµ weakly such thatδ(dµk, dµ) > ǫ, k = 1, 2, . . . ,
and hence there existsgξk , ξk ∈ K, such that

ǫ <

∣

∣

∣

∣

∫

T

gξk(dµk − dµ)

∣

∣

∣

∣

, k = 1, 2, . . . .

To this end we use the Arzelà-Ascoli theorem (see e.g., [33,
page 102]) which states that a set of functions is relatively
compact8 in C(T) if and only if the set of functions is
uniformly bounded and equicontinuous. Therefore, since (b)
holds, the set{gξ}ξ∈K is relatively compact inC(T), and
there is a subsequence(gℓ, dµℓ) of (gξk , dµk) such that
gℓ → g ∈ C(T). A contradiction follows, since

ǫ <

∣

∣

∣

∣

∫

T

gℓ(dµℓ − dµ)

∣

∣

∣

∣

≤ ‖gℓ − g‖∞

∫

T

|dµℓ − dµ|+

∣

∣

∣

∣

∫

T

g(dµℓ − dµ)

∣

∣

∣

∣

→ 0 asℓ→ ∞,

and henceδ is weakly continuous whenever condition (b)
holds.

8A set is relatively compact if its closure is compact.
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Next, we show that (b) holds ifδ is weakly continuous, and
once again we use contradiction. That is, we show that if (b)
fails to be true thenδ is not weakly continuous. If{gξ}ξ∈K

is not equicontinuous, then there exists anǫ > 0 such that for
any k = 1, 2, . . . one can findθk, φk ∈ T, and ξk ∈ K, that
satisfies

|θk − φk| <
1

k
and |gξk(θk)− gξk(φk)| > ǫ. (18)

Let (θℓ, φℓ) be a subsequence of(θk, φk) such thatθℓ → θ0 ∈
T asℓ→ ∞, and letdµℓ anddνℓ be the measures that consist
of a unit mass inθℓ andφℓ, respectively. From (18) it follows
that φℓ → θ0, and hence thatdµℓ → dµ0 and dνℓ → dµ0

weakly, wheredµ0 is the measure that consists of a unit mass
in θ0. From (18) it follows that

δ(dµℓ, dµ0) + δ(dνℓ, dµ0) ≥ δ(dµℓ, dνℓ)

≥ |gξℓ(θℓ)− gξℓ(φℓ)| > ǫ.

From this, it is evident thatδ is not weakly continuous since
both δ(dµℓ, dµ0) andδ(dνℓ, dµ0) cannot converge to0.

Similarly, if {gξ}ξ∈K is not uniformly bounded, then for
any k = 1, 2, . . . one can findθk ∈ T andξk ∈ K such that

|gξk(θk)| > k. (19)

Let dµk be the measures that consist of a unit mass in
θk. Therefore, the metricδ is not weakly continuous since
1
k
dµk → 0 weakly, whileδ( 1

k
dµk, 0) > 1 for all k.

Proof: [Proposition 10]
(a) ⇒ (b) µk → µ weakly is equivalent to

∫ π

−π
f(t)dµk(t) →

∫ π

−π
f(t)dµ(t) for all periodic continuous functionsf(t). For

all z = reiθ ∈ D, Pr(θ− t) is periodic and continuous, hence

uk(z) =
1

2π

∫ π

−π

Pr(θ − t)dµk(t)

→
1

2π

∫ π

−π

Pr(θ − t)dµ(t) = u(z).

(b) ⇒ (c). For r < 1, |uk(reiθ)| ≤ 1+r
1−r

|µk|(T). Since
uk(re

iθ) → u(reiθ) pointwise for all θ, it follows from
bounded convergence that

∫ π

π
|uk(re

iθ) − u(reiθ)|dθ → 0.
Further more,∀k, r,

∫ π

π
|uk(reiθ)−u(reiθ)|dθ ≤ 2π(|µk|(T)+

|µ|(T)) which is uniformly bounded, hence
∫ 1

0

∫ π

−π

|uk(re
iθ)− u(reiθ)|dθrdr → 0

by dominated convergence.
(c) ⇒ (d). Let K ⊂ D be a compact set. Then there exist

an ǫ > 0 such thatBǫ(z0) = {z : |z − z0| < ǫ} ⊂ D for
all z0 ∈ K. Now by the mean value property of harmonic
functions we have

u(z0) =
2

ǫ2

∫ ǫ

0

u(z0)rdr

=
2

ǫ2

∫ ǫ

0

1

2π

∫ π

π

u(z0 + reiθ)dθrdr

=
1

πǫ2

∫

Bǫ(z0)

u(z)dxdy.

Of course the same equality holds foruk(z0)

uk(z0) =
1

πǫ2

∫

Bǫ(z0)

uk(z)dxdy.

For anyz0 ∈ K the difference between the harmonic functions
is bounded by

|uk(z0)− u(z0)| ≤
1

πǫ2

∫

Bǫ(z0)

|uk(z)− u(z)|dxdy

≤
1

πǫ2

∫

D

|uk(z)− u(z)|dxdy.

By (c) the difference goes to zero uniformly inK.
(d) ⇒ (a). Let f ∈ C(T). For any bounded measureν ∈ F

and corresponding harmonic functionv(z) = P [ν](z) Fubini’s
theorem gives
∫ π

−π

f(t)v(reit)dt =

∫ π

−π

1

2π

∫ π

−π

Pr(θ − t)f(t)dtdν(θ)

=

∫ π

−π

P [f(t)dt](reiθ)dν(θ).

Sincef is periodic and continuous,P [f(t)dt](reiθ) converges
uniformly to f(θ), hence

∣

∣

∣

∣

∫ π

−π

f(t)v(reit)dt−

∫ π

−π

f(t)dν(t)

∣

∣

∣

∣

≤

‖P [f ](reit)− f(t)‖∞|ν|(T)

converges to zero independent of the measureν. This shows
that for an arbitraryǫ > 0 there exists an0 < r < 1 such that

∣

∣

∣

∣

∫ π

−π

f(t)v(reit)dt−

∫ π

−π

f(t)dν(t)

∣

∣

∣

∣

<
ǫ

3

for ν ∈ {µ, µ1, µ2, . . .}. Further more, sinceuk → u
uniformly on {z : |z| ≤ r}, it is possible to find ankr,ǫ
be such that

∣

∣

∣

∣

∫ π

−π

f(t)uk(re
it)dt−

∫ π

−π

f(t)u(reit)dt

∣

∣

∣

∣

<
ǫ

3

for all k > kr,ǫ. By the triangle inequality we have
∣

∣

∣

∣

∫ π

−π

f(t)dµk(t)−

∫ π

−π

f(t)dµ(t)

∣

∣

∣

∣

< ǫ

for all k > kr,ǫ. Since ǫ was chosen arbitrarily,
∣

∣

∣

∫ π

−π
f(t)dµk(t)−

∫ π

−π
f(t)dµ(t)

∣

∣

∣ → 0 ask → ∞, and weak
convergence follows.

Proof: [Proposition 12]
There exists an analytic functionf(z) = H [dµ](z), dµ ∈
Fc0:n

, such thatf(z) = wz if and only if its associated Pick
matrix is nonnegative [34], i.e.

(

2Tn bzwz − dz
w̄zb

∗
z − d∗z

wz+w̄z

1−zz̄

)

≥ 0. (20)

By using Schur’s lemma and completing the square, we arrive
at

∣

∣

∣

∣

∣

wz −
2

1−zz̄
+ 〈dz, bz〉T−1

〈bz, bz〉T−1

∣

∣

∣

∣

∣

2

≤

∣

∣

∣

∣

∣

2
1−zz̄

+ 〈bz , dz〉T−1

〈bz, bz〉T−1

∣

∣

∣

∣

∣

2

−
〈dz , dz〉T−1

〈bz, bz〉T−1

, (21)

where equality holds if and only if the Pick matrix (20) is
singular. From this, the first part of Proposition 12 follows.
Since the maximum is obtained when equality holds in (21),
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the associated Pick matrices are singular. Hence the solutions
are unique and correspond to measures with support onn+1
points [15, Proposition 2].

Background on orthogonal polynomials and Schur coefficients

Let c be a nonnegative covariance sequence with corre-
sponding measuredµ and consider the inner product

〈a(z), b(z)〉 =
1

2π

∫

T

a(eiθ)b(eiθ)dµ(θ).

The so-calledorthogonal polynomials (of the first kind)
φk(z) [22] are (uniquely defined) monic polynomials with
deg φk(z) = k, k = 0, 1 . . ., which are orthogonal with respect
to 〈·, ·〉. They are shown [22] to satisfy the recursion

φk+1(z) = zφk(z)− γ̄kφk(z)
∗,

φk+1(z)
∗ = φk(z)

∗ − zγkφk(z),
(22)

whereφk(z)∗ = zkφk(z̄−1) and {γk}∞k=1 are the so-called
Schur parameters.

The orthogonal polynomials of the second kindare defined
by

ψk(z) =
1

c0
[(f(z̄−1))φk(z)]+,

where[·]+ denote “the polynomial part of”. They are also “or-
thogonal polynomials” but with respect to a certain “inverted”
covariance (corresponding to the negative of the original Schur
parameters, cf. [22]) and satisfy the recursion

ψk+1(z) = zψk(z) + γ̄kψk(z)
∗,

ψk+1(z)
∗ = ψk(z)

∗ + zγkψk(z).
(23)

The positive-real functionf(z) = H [dµ](z) may be ex-
pressed using the orthogonal polynomials as

f(z) = c0
ψk(z)

∗ + zsk+1(z)ψk(z)

φk(z)∗ − zsk+1(z)φk(z)
, (24)

wheresk+1(z) belong to the Schur classS, i.e. the class of
analytic functions onD uniformly bounded by1. Equations
(22-23) lead to

f(z) = c0
1 + zs1(z)

1− zs1(z)
, sk(z) =

γk + zsk+1(z)

1 + zγ̄ksk+1(z)
, (25)

for k = 1, 2, . . .. For a complete exposition on orthogonal
polynomials and Schur’s algorithm see [1], [22], [25].

Proof: [Theorems 13 and 18]
Following our earlier notation, let

ρδα(Fc0:n
) = max{|P [dµ0](α)−P [dµ1](α)| : dµ0, dµ1 ∈ Fc0:n

}

be the uncertainty diameter at the pointα ∈ K. By using (24)
and noting that

P [dµ](α) = ReH [dµ](α) = Ref(α),

the diameterρδα(Fc0:n
) is equal to the diameter of the disc

c0
ψn(α)

∗ + αsn+1(α)ψn(α)

φn(α)∗ − αsn+1(α)φn(α)
: sn+1(α) ∈ D, (26)

whereφn andψn are specified via (22), (23), by the Schur se-
quence(γ1, . . . , γn) corresponding toc0:n (see [25]). Denote
by rn the radius of (26), and henceρδα(Fc0:n

) = 2rn.

For n = 0, we haveφ0(z) = ψ0(z) = 1. The expression in
(26) is

c0
1 + αs1
1− αs1

= c0
1 + |α|2

1− |α|2
+

2c0α

1− |α|2
−ᾱ+ s1
1− αs1

,

hencer0 = 2c0α/(1 − |α|2), where sk without argument
denotessk(α). Next, consider the radius of (26) forn = k − 1.
The set (26) is the range of a Möbius transform applied to
sk ∈ D, and may be represented as

Mk−1 + eiθk−1rk−1
vk−1 + sk
1 + v̄k−1sk

(27)

whereMk−1 and rk−1 are the center and radius of the disc,
respectively, and whereθk−1 ∈ (−π, π], vk−1 ∈ D. From the
recursion (25), is can be seen that

vk−1 + sk
1 + v̄k−1sk

=
1 + γ̄kvk−1

1 + γkv̄k−1

ηk + αsk+1

1 + η̄kαsk+1
,

where
ηk =

vk−1 + γk
1 + γ̄kvk−1

.

The set (26) forn = k is therefore

Mk−1 + eiθk−1
1 + γ̄kvk−1

1 + γkv̄k−1
rk−1

ηk + αsk+1

1 + η̄kαsk+1
: sk+1 ∈ D.

A Möbius transformation(a + bs)/(c + ds), with |c| > |d|,
maps the unit disc to a disc of radius|ac− bd|/(|c2| − |d|2).
Therefore, the radius

rk = rk−1|α|
1− |ηk|2

1− |ηk|2|α|2
= rk−1|α|

(

1−
|ηk|2(1− |α|2)

1− |ηk|2|α|2

)

is maximized whenηk = 0, or equivalently whenγk =
−vk−1. Hence,rk ≤ rk−1|α| with equality if γk = −vk−1.
By induction, the maximal radius is given by

rn = r0|α|
n = 2c0|α|

n+1/(1− |α|2).

Furthermore,γk = −vk−1 in the recursion (25) correspond
to the Schur parametersγ1 = ᾱ, and γk = 0 for k =
2, . . . , n. This leads to the covariance sequencec0:n =
(c0, c0ᾱ, . . . , c0ᾱ

n). Since δK is defined as the maximal
diameter over allα ∈ K, the inequality

ρδK (Fc0:n
) = max

α∈K
ρδα(Fc0:n

) ≤ max
α∈K

4|α|n+1c0
1− |α|2

holds and is achieved forc0:n = (c0, c0ᾱ, . . . , c0ᾱ
n) where

α ∈ K maximizes|α|n+1/(1− |α|2).
In the Nevalinna-Pick case, the recursion is identical to (25)

except thatz is replaced by the inner factorξk(z) = (zk −
z)/(1− z̄kz)

f(z) = w0
1 + zs1(z)

1− zs1(z)
, sk(z) =

γk + ξk(z)sk+1(z)

1 + γ̄kξk(z)sk+1(z)
,

for k = 1, 2, . . . , n [13]. The argument here is analogous
to the covariance case. The shrinkage of the radius isrk ≤
rk−1|ξk(α)|, with equality when the parameters in the recur-
sion are(ᾱ, 0, . . . , 0), as in the covariance case. The bound of
the uncertainty diameter atα then becomes

2rn ≤
4w0|α|

∏n

z=1 |ξk(α)|

1− |α|2
=

4w0|Bz(α)|

1− |α|2
(28)

which is attained whenwk = w0(1 + zkᾱ)/(1 − zkᾱ) for
k = 1, . . . , n. Sinceρδα(Fz,w) = 2rn, maximizing (28) for
α ∈ K gives the bound (16).
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[17] T. T. Georgiou, “The Carathéodory-Fejér-Pisarenkodecomposition and
its multivariable counterpart,”IEEE Trans. on Automatic Control,52(2):
212-228, February 2007.

[18] T. T. Georgiou, “Relative Entropy and the multi-variable multi-
dimensional Moment Problem,”IEEE Trans. on Information Theory,
52(3): 1052-1066, March 2006.

[19] T. T. Georgiou, J. Karlsson, and M. S. Takyar, “Metrics for power
spectra: an axiomatic approach,”IEEE Trans. on Signal Processing,
57(3): 859-867, March 2009.

[20] T. T. Georgiou and A. Lindquist, “Kullback-Leibler approximation of
spectral density functions,”IEEE Trans. on Information Theory, 49(11):
2910-2917, November 2003.

[21] T. T. Georgiou and A. Lindquist, “A Convex OptimizationApproach
to ARMA Modeling,” IEEE Trans. on Automatic Control,53(5): 1108-
1119, June 2008.

[22] Ya. L. Geronimus,Orthogonal Polynomials, Consultants Bureau, 210
pages, 1961.

[23] R. Gray, A. Buzo, A. Gray Jr., and Y. Matsuyama, “Distortion measures
for speech processing,”IEEE Trans. on Acoustics, Speech and Signal
Processing,28(4): 367-376, August 1980.

[24] A. Gray Jr. and J. Markel, “Distance measures for speechprocessing,”
IEEE Trans. on Acoustics, Speech and Signal Processing,24(5): 380-
391, October 1976.
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