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Abstract

For a closed-loop system, which has a contention-based multiple access network on its sensor link, the Medium Access
Controller (MAC) may discard some packets when the traffic on the link is high. We use a local state-based scheduler to select
a few critical data packets to send to the MAC. In this paper, we analyze the impact of such a scheduler on the closed-loop
system in the presence of traffic, and show that there is a dual effect with state-based scheduling. In general, this makes the
optimal scheduler and controller hard to find. However, by removing past controls from the scheduling criterion, we find that
certainty equivalence holds. This condition is related to the classical result of Bar-Shalom and Tse, and it leads to the design of
a scheduler with a certainty equivalent controller. This design, however, does not result in an equivalent system to the original
problem, in the sense of Witsenhausen. Computing the estimate is difficult, but can be simplified by introducing a symmetry
constraint on the scheduler. Based on these findings, we propose a dual predictor architecture for the closed-loop system, which
ensures separation between scheduler, observer and controller. We present an example of this architecture, which illustrates a
network-aware event-triggering mechanism.

Index Terms

state-based schedulers, event-based systems, networked control systems

I. INTRODUCTION

CONSIDER a network of control systems, where the communication between the individual sensors and controllers of
different control loops occurs through a shared network, as shown in Fig. 1. This is an important scenario, in the context

of wireless Networked Control Systems (NCS), for industrial and process control [1]. A medium access control layer is
required in the sensor’s protocol stack to arbitrate access to the shared network. To focus on the implications of a Medium
Access Controller (MAC) on the sensor link, we assume that the communication between the controllers and the corresponding
actuators occurs over a point-to-point network, not a shared network. This is a common architecture, in practice [2], [3]. The
MAC can implement a contention-free or a contention-based multiple access method, both of which have their own challenges
[4]. A contention-free multiple access method requires a dynamic scheduler to prevent poor channel utilization, and such a
scheduler is hard to construct and implement on an interference-constrained shared network [5], [6]. Contention-based methods
have proven popular in standards such as IEEE 802.15.4 [7], as they facilitate an easy deployment on sensor nodes. However,
such methods result in random access, which could significantly deteriorate the performance of a closed-loop system [8]. Thus,
the design of a MAC for networked control systems is a challenging problem, and calls for innovative solutions [9].

In this paper, we explore the design of a state-aware contention-based MAC, as opposed to an agnostic contention-based
MAC. The state-aware MAC is capable of influencing the randomness of channel access in favour of the state of the plant in
the closed-loop system. However, directly using the state of the plant to determine an access probability may result in a MAC
that is difficult to implement and analyze [10]. Instead, we use the state of the plant to select packets to send to the MAC,
motivated by an understanding of the two roles played by a MAC: Any random access method works by resolving contention
between simultaneous channel access requests, thus spreading traffic that arrives in bursts. The carrier sense multiple access
with collision avoidance (CSMA/CA) method does this by assigning a random back-off to packets that attempt to access a
busy channel, thus spreading the traffic over a longer interval of time. Similarly, the p-persistent CSMA method does this by
probabilistically limiting access to the channel and permitting a number of retransmissions if the channel is busy [11]. However,
all of these methods permit only a finite number of retransmissions, beyond which the packet is discarded. We appropriate this
latter role of discarding packets to a local state-based scheduler, which sends fewer, but more important packets to the MAC
for transmission across the network.

A similar strategy has previously been proposed from the more general perspective of reducing network traffic [3]. When
applied to the newly posed NCS problem [12], this approach has driven the design of event-based sampling systems [13], [14],
which have been shown to outperform periodically sampled systems under certain conditions [15], [16], [17]. We approach
the same problem from a different perspective, but one that leads to a network-aware design of event triggering methods.

There are two main contributions in this paper. The first contribution is an analysis of the impact of having a state-based
scheduler in the closed-loop. Primarily, a state-based scheduler permits the information available at the controller to be altered
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Fig. 1. A network of M control loops, with each loop consisting of a plant P(j) and a controller C(j) for j ∈ {1, . . . ,M}. The loops share access
to a common medium on the sensor link, along with N other communication flows from generic source-destination pairs. The controllers and actuators
communicate over dedicated networks, not shared links.

with the plant state. This information is not entirely random, like in the case of packet losses due to a noisy channel [18], [19],
and it can result in a sharply asymmetrical estimation error, unlike in the case of encoder design over limited data rate channels
[20], [21]. It seems reasonable to ask if we can use the controller to move the plant state across the threshold and force a
transmission? If this is possible, the controller plays two roles: the first one being to control the plant, and the second one being
to control the information available at the next time step. This relates to the classical concept of a dual effect, as described in
[22], [23]. The answer to this question determines the ease of optimal controller design, as the Certainty Equivalence Principle
would not hold if there is a dual effect [24]. We examine our system and find that there is a dual effect with a state-based
scheduler in the closed-loop, and thus, that the certainty equivalence principle does not hold. Hence, the optimal state-based
scheduler, estimator and controller designs are coupled. A restriction on the input arguments to the state-based scheduler, such
that these arguments are no longer a function of the past control actions, renders the setup free of a dual effect, and enables
the certainty equivalence principle to hold. These results can be seen as an interpretation, within the state-based scheduler
setup, of the classical work on information patterns [25], dual effect, certainty equivalence and separation by Witsenhausen
[26], Bar-Shalom and Tse [24], and on adaptive control by Feldbaum [22], Åström and Wittenmark [23] and others [27].

The second contribution of this paper is on the dual predictor architecture, which is our proposed solution to the state-based
scheduler design problem. In this architecture, the state-based scheduler thresholds the squared difference of the innovation
contained in the latest measurement to the estimator across the network. This results in an optimal certainty equivalent controller,
and a simple observer which generates the minimum mean-squared error (MMSE) estimate. Tuning parameters in the state-based
scheduler in this architecture based on the current network traffic could result in a scheduling law that guarantees a probabilistic
performance. This is not easy to show, in general, as the performance analysis of a closed-loop system with a state-based
scheduler in a multiple access network is a difficult problem [16], [17]. However, we illustrate the guaranteed performance using
simulations, and thus claim that the state-based scheduler we propose results in a network-aware event-triggering mechanism.

The rest of the paper is organized as follows. In Section II, we present the problem formulation. In Section III, we derive
theoretical results for the case when full state information is available, with and without exogenous network traffic. In Section IV,
we present the dual predictor architecture. We look at an extension to output-based systems in Section V. We present an
example, which illustrates our notion of network-aware event-triggering, in Section VI. Providing performance guarantees
remains a difficult problem, as we indicate under future work, along with the conclusions, in Section VIII.

II. PRELIMINARIES

WE present the problem setup and a few important definitions, along with a review of the classical concepts of dual
effect and certainty equivalence in this section.

A. Problem Formulation

We consider a network of M control loops, as shown in Fig. 2(a). Each control loop, for j ∈ {1, . . . ,M}, consists of a
plant P (j) , a state-based scheduler S(j) and a controller C(j) . The loops share access to a common medium on the sensor link.
A closed-loop system in this network can be modelled as shown in Fig. 2(b), with the index j dropped for simplicity. The
block N represents the network as seen by this loop, and the block R denotes the Contention Resolution Mechanism (CRM),
which determines access to the network. Each of the blocks in Fig. 2(b) is explained below.
Plant: The plant P has state dynamics given by

xk+1 = Axk +Buk + wk, (1)

where A ∈ Rn×n, B ∈ Rn×m and wk is i.i.d. zero-mean Gaussian with covariance matrix Rw. The initial state x0 is zero-mean
Gaussian with covariance matrix R0.
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(a) A multiple access (MA) scenario for NCSs (b) The MA model for each closed-loop system

Fig. 2. A plant (P(1)), state-based scheduler (S(1)) and controller (C(1)) share the network (N ) with M − 1 other closed-loop systems with
state-based schedulers (S(j), j ∈ {2, . . . ,M}), and N generic sources (S(i), i ∈ {1, . . . , N}), in (a). A model, from the perspective of a
closed-loop system in the network, is depicted in (b).

State Based Scheduler: There is a local scheduler S, situated in the sensor node, between the plant and the controller, which
decides if the state is to be sent across the network or not. The scheduler output is denoted γk, where γk ∈ {0, 1}. It takes a
value 1 when the state xk is scheduled to be sent and 0 otherwise. The scheduling criterion is denoted by the policy f , which
is defined on the information pattern of the scheduler I

S

k , and is given by

γk = fk(uk−1
0 , ωsk) , (2)

where, fk is a non-trivial function of uk−1
0 , ωsk ∈ Ωsk, and Ωsk is the sigma-algebra generated by the information set at

the scheduler, given by I
S

k =
{
xk0 ,y

k−1
0 ,γk−1

0 , δk−1
0

}
. Here, we use bold font to denote a set of variables such as aTt =

{at, at+1, . . . , aT }. Note that an explicit acknowledgement (ACK) of a successful transmission is required for δk to be available
to the scheduler.
Network: The network N generates exogenous traffic, as is indicated by nk ∈ {0, 1}. It takes a value 1 when the network
traffic attempts to access the channel, and 0 otherwise. The network traffic is considered to be stochastic, as it could be
generated by another such control loop, or by any other communicating node in the network. Thus, nk is a binary random
variable, which is not required to be i.i.d. We say that there is no exogenous network traffic if nk ≡ 0, for all k.
CRM: The CRM block R resolves contention between multiple simultaneous channel access requests, i.e., when γk = 1 and
nk = 1. If the CRM resolves the contention in favour of our control loop, δk = 1, and otherwise 0. The CRM can be modelled
as the MAC channel response R, with MAC output δk given by

δk = R(γk, nk) (3)

For brevity, we also define δ̄k = 1− δk, which takes a value 1 when the packet is not transmitted. The MAC channel response
R is modelled as a discrete memoryless channel at the sampling time scale, requiring the CRM to resolve contention with
respect to this packet before the next sampling instant. This translates to a limitation on the sampling rates supported by the
model.
Measurement: The measurement across the network is denoted yk. It is a non-linear function of the state xk, and is given by

yk = δkxk =

{
xk δk = 1

0 δk = 0
(4)

A successful transmission results in the full state being sent to the controller. However, even non-transmissions convey
information as the scheduler output δk can be treated as a noisy and coarsely quantized measurement of the state xk.
Controller: The control law g denotes an admissible policy for the finite horizon N defined on the information pattern of
the controller, I

C

k , and is given by
uk = gk(ωck) , (5)

where, ωck ∈ Ωck, and Ωck is the sigma-algebra generated by the information pattern I
C

k =
{
yk0 , δk0 ,u

k−1
0

}
. The objective

function, defined over a horizon N is given by

J(f, g) = E

[
xTNQ0xN +

N−1∑
s=0

(xTs Q1xs + uTs Q2us)

]
(6)

where Q0 and Q1 are positive semi-definite weighting matrices and Q2 is positive definite.



4

In the rest of the paper, we address the following questions -
1) For a NCS with a state-based scheduler, what is the optimal control policy which minimizes the cost J in (6)?
2) Can we find a simple, but sub-optimal, closed-loop system architecture for the given NCS?

To answer the first question, we need to examine whether the system exhibits a dual effect. This also requires us to check if
we can find an equivalent system, in the sense of Witsenhausen, for which certainty equivalence holds. The second question
requires us to identify restrictions on the scheduling policy f , which can ensure separation of the scheduler, controller and
observer.

B. Definitions and Properties

We present a few definitions and properties that are used in the rest of the chapter.
Definition 2.1 (Uncontrolled Process): An auxiliary uncontrolled process (P̄) can be defined for any closed-loop system, by

removing the effect of the applied control signals from the state. The resulting uncontrolled state is denoted x̄k, and given by

x̄k = xk −
k∑
`=1

A`−1Buk−` = Akx0 +

k∑
`=1

A`−1wk−` . (7)

Last Received Packet Index: The time index of the last received packet is denoted τk at time k (illustrated in Fig. 3(a)), and
is given by

τk = max{t : δt = 1, for − 1 ≤ t ≤ k} and δ−1 = 1,−1 ≤ τk ≤ k (8)

An iterative relationship for τk can be found as

τk = δ̄kτk−1 + δkk, τ−1 = −1 (9)

If a packet arrives at current time k, the last received packet index τk = k. But, if there is no packet at time k, then the
last received packet index is the same as the last received packet index from time k − 1, i.e., τk = τk−1. This implies that
τk ∈ {−1, . . . , k}.

Dual Effect: Note that the control uk might affect the future state uncertainty, in addition to its direct effect on the state.
This is called the dual effect of control [22], and is discussed for state-based schedulers in Section III-A.

Definition 2.2 (No dual effect [24]): A control signal is said to have no dual effect of order r ≥ 2, if

E[Mr
k,i|I

C

k ] = E[Mr
k,i|x0,w

τk
0 ,nk0 ] (10)

where Mr
k,i = (xk,i − E[xk,i|I

C

k ])r is the rth central moment of the ith component of the state xk,i conditioned on I
C

k and τk
is the time index of the last received measurement at time k.
Note that Mr

k,i in (10) must specifically not be a function of the past control policies gk−1
0 for the control signal to have no

dual effect of order r. In other words, if there is no dual effect, the expected future uncertainty is not affected by the controls
uk−1

0 . In the presence of a dual effect, the optimal control laws are hard to find [23].

Certainty Equivalence: There are two closely related terms: a certainty equivalent controller and the Certainty Equivalence
Principle. We define both these terms with respect to the deterministic optimal controller, with full state information, for the
above problem setup [28], [24]. These properties are discussed for state-based schedulers in Section III-C.

Definition 2.3 (Certainty Equivalent Controller): A certainty equivalent controller uses the deterministic optimal controller,
with the state xk replaced by the estimate x̂k|k = E[xk|I

C

k ], as an ad hoc control procedure.
Sometimes, there is no loss in optimality in using a certainty equivalent controller. Then, we say that the Certainty Equivalence

Principle holds.
Definition 2.4 (Certainty Equivalence Principle): The Certainty Equivalence Principle holds if the closed-loop optimal con-

troller has the same form as the deterministic optimal controller with the state xk replaced by the estimate x̂k|k .

Correlated Network Noise: We state a property of feedback systems with a state-based scheduler which share a contention-
based multiple access network. Even if the initial states and disturbances of all the plants in the network are independent, the
contention-based MAC introduces a correlation between the traffic sources in the network, as noted in [16], [17].

Lemma 2.1: For a closed-loop system defined by (1)–(5), the exogenous network traffic indicated by nk is correlated to the
state of the plant xk.

Proof: The MAC output δk−1 is a function of the state xk−1 and the indicator of network traffic nk−1, from (2) and
(3). The control signal uk−1 is a function of the MAC output δk−1 from (5), and is applied through feedback to the plant.
Thus, xk and γk are correlated to δk−1. Similarly, the network traffic from other closed-loop systems (and its indicator nk) is
correlated to δk−1, and consequently, xk.
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(a) Delay and Index of Last Received Packet (b) Dual Control Incentives

Fig. 3. An illustration of the delay since the last received packet (dk) and the index of the last received packet (τk) in (a). In (b), the shaded area represents
the non-scheduled region for a state x ∈ R2, as defined by the scheduling policy f . States in this region are not considered to be events and correspondingly
result in a non-zero estimation error. Outside this region, the estimation error is zero. Thus, the controller has an incentive to move some states along path 2,
as compared to path 1.

III. OPTIMAL CONTROLLER DESIGN

WE present the main results of this paper in this section. We first analyze the effects of a state-based scheduler on a
control loop with no exogenous network traffic, i.e., nk = 0. As a consequence of this, the MAC output is equal to

the scheduler output, i.e., δk = γk. We show that there is a dual effect of the control signal, and that the scheduling policy
must be restricted from using the past control inputs for the Certainty Equivalence Principle to hold. We illustrate this for a
second order system with a state-based scheduler in Fig. 3(b), and show that the controller is not oblivious to the scheduler
boundaries. We extend our results to the case with exogenous network traffic.

A. Dual Effect with State-based Scheduling

For the problem defined in Section II-A, we observe the following result.
Theorem 3.1: For the closed-loop system defined by (1)–(5), with no exogenous network traffic, the control signal has a

dual effect of order r = 2.
Proof: We examine the estimation error, and show that it is not equivalent to the estimation error generated by the

uncontrolled process (P̄ from Definition 2.1) in the place of the plant P . Thus, we proove that the estimation error covariance
is a function of the applied controls uk−1

0 .
From (4), we know that a successful transmission results in the full state being sent to the controller, whereas a non-

transmission conveys only a single-bit of information (δk is binary) about the state to the controller. Thus, the estimate,
x̂k|k , E[xk|I

C

k ], is given by
x̂k|k = δkxk + δ̄k E[xk|I

C

k , δk = 0] .

This estimate always depends on δk, due to the asymmetry in the resolution of the received information with and without a
transmission. The scheduler outcome, and consequently δk, are influenced by the applied control inputs uk−1

0 in a state-based
scheduler such as (2). The estimation error, defined as x̃k|k , xk − E[xk|I

C

k ], is given by

x̃k|k = (xk − E[xk|I
C

k , δk = 0]) · δ̄k , (11)

and can also be seen to depend on δk. The estimation error when there is no transmission is defined as x̃0
k|k , xk−E[xk|I

C

k , δk =
0], and is given by

x̃0
k|k = Akx0 +

k∑
`=1

A`−1(Buk−` + wk−`)− E[Akx0 +

k∑
`=1

A`−1(Buk−` + wk−`)|I
C

k , δk = 0]

= x̄k − E[x̄k|I
C

k , δk = 0] ,

where x̄k is the state of the uncontrolled process (see Definition 2.1). Thus, the first term of the product in (11) remains
unchanged if the plant is replaced by the uncontrolled process. However, the effect of the applied controls cannot be removed
from δ̄k = (1− δk), which is the second term of the product in (11).

Thus, the estimation error is always dependent on the applied controls and this distinguishes the current problem from other
related problems, such as in [20], [21]. The error covariance, Pk|k , E[x̃k|k x̃Tk|k |I

C

k ], is given by

Pk|k = δ̄k · (E[x̃k|k x̃Tk|k |I
C

k , δk = 0]) . (12)

The covariance Pk|k is zero if the scheduling criterion in (2) is fulfilled, and non-zero otherwise. Clearly, Pk|k is a function of
the past controls. Hence, Pk|k does not satisfy the condition (10) required to have no dual effect. Thus, we see that the system
(1)–(5) exhibits a dual effect of order r = 2.
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In this setup, there is an incentive for the control policy to modify the estimation error along with controlling the plant, as
illustrated in Fig. 3(b). Thus, the controller might prefer to move some states along path 2, as compared to path 1, to improve
the estimation error.

B. Equivalent Schedulers vs. Equivalent Systems

Every state-based scheduler f , defined in (2), can be transformed into an equivalent scheduler f̃ , such as

γk = f̃k(ω̃sk) , (13)

where, ω̃sk ∈ Ω̃sk, and Ω̃sk is the sigma-algebra generated by the information pattern Ĩ
S

k = {x0,w
k−1
0 }. The applied controls

uk−1
0 can be reconstructed at the scheduler at time k, and hence, such a transformation can always be accomplished. We now

examine the question of whether the closed-loop system with this equivalent scheduler, is equivalent to the original system.
Witsenhausen [26] defines an equivalent design, which gives us the following definition when applied to our problem.

Definition 3.1: An equivalent (in the sense of Witsenhausen) control design geq for the optimal controller g∗ , which minimizes
the cost criterion (6) for the system defined by (1)–(5), satisfies the equivalence relationship given by

u∗ = Υ(ω, g∗) = Υ(ω, geq) , (14)

where Υ is obtained by recursive substitution for the control signals in the system equations with the respective control policy
and the primitive random variables ωk = [x0,w

k−1
0 ].

For brevity, we adopt the following notation. Let {P, f1, g1} denote a system with the plant given by (1), with f1 as the
given scheduler and g1 as the optimal controller for the cost criterion (6) applied to this system. We now note the following
result.

Theorem 3.2: For two schedulers f , given by (2), and f̃ , given by (13), which result in the same schedules for the closed-
loop system given by (1), (3)–(5), with no exogenous network traffic, {P, f̃ , g̃} is not an equivalent system to {P, f, g∗}, in
the sense of Witsenhausen.

Proof: Definition 3.1 requires the control signals obtained using the policies g∗ and g̃ to be equal. In this proof, we find
the optimal control policies for {P, f̃ , g̃} and {P, f, g∗}, and show that they do not result in the same control signals.

For the optimal control policy, which minimizes the quadratic cost J in (6), to be certainty equivalent, we need to find a
solution to the Bellman equation [28], which is a one-step minimization of the form

Vk = min
uk

E[xTkQ1xk + uTkQ2uk + Vk+1|I
C

k ] . (15)

In general, without defining a structure for the estimator, the solution to the functional is given [24] in the form of

Vk = E
[
xTk Skxk|I

C

k

]
+ sk , (16)

where Sk is a positive semi-definite matrix and both Sk and sk are not functions of the applied control signals uk−1
0 . We now

prove that a solution of this form can be found for {P, f̃ , g̃}, but not for {P, f, g∗}.
First consider the system {P, f̃ , g̃}. We denote the state and control signals of this system as x̃k and ũk. At time N , the

functional has a trivial solution with SN = Q0 and sN = 0. This solution can be propagated backwards, in the absence of a
dual effect. To show this, we use the principle of induction, and assume that a solution of the form (16) holds at time k + 1.
Then, at time k, we have

Vk = min
uk

E[x̃TkQ1x̃k + ũTkQ2ũk + x̃Tk+1Sk+1x̃k+1 + sk+1|I
C

k ]

= min
uk

E[x̃Tk (Q1 +ATSk+1A)x̃k|I
C

k ] + tr{Sk+1Rw}+ E[sk+1|I
C

k ]

+ ũTk (Q2 +BTSk+1B)ũk + ˆ̃xTk|kA
TSk+1Bũk + ũTkB

TSk+1Aˆ̃xk|k ,

where ˆ̃xk|k , E[x̃k|I
C

k ]. The optimal control is found to be

ũk = −Lk ˆ̃xk|k , Lk = (Q2 +BTSk+1B)−1BTSk+1A . (17)

Substituting the expression for ũk into Vk gives us a solution of the form in (16), with

Sk = Q1 +ATSk+1A−ATSk+1B(Q2 +BTSk+1B)−1BTSk+1A ,

sk = tr{Sk+1Rw}+ E[sk+1|I
C

k ] + tr{ATSk+1B(Q2 +BTSk+1B)−1BTSk+1APk|k} , (18)

where the matrix Sk is positive semi-definite and not a function of the applied controls ũk−1
0 . The scalar sk is not a function

of the applied controls ũk−1
0 if and only if Pk|k has no dual effect [24]. From the expression for the error covariance Pk|k

(12), it is clear that a scheduling criterion that is not a function of the past control actions, such as (13), results in no dual
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effect. Under this condition, sk is not a function of the applied controls ũk−1
0 and the proof by induction is complete. Since

the optimal control signal (17) is a function of only the estimate ˆ̃xk|k , the Certainty Equivalence Principle holds.
Now, consider the system {P, f, g∗} with state xk and control u∗k. Solving the backward recursion as we did above, we

find that VN and VN−1 have a solution of the form (16), with SN = Q0 and sN = 0, and SN−1 and sN−1 given by (18)
with k = N − 1. However, VN−2 results in a different minimization problem for this system because of the dual effect in
{P, f, g∗}, as indicated next. The optimal control signal u∗N−2 can be obtained by solving

∂VN−2

∂u∗N−2

= 2u∗TN−2(Q2 +BTSN−1B) + 2x̂TN−2|N−2A
TSN−1B

+
∂

∂u∗N−2

(
tr{ATSNB(Q2 +BTSNB)−1BTSNA · E[PN−1|N−1 |I

C

N−2]}
)

= 0 .

Multiplying the above expression with (Q2+BTSN−1B)−1 from the right and using (17) to denote uCEN−2 = −LN−2x̂N−2|N−2 ,
we obtain the simpler equation

∂VN−2

∂u∗N−2

= 2(u∗TN−2 − u
CE,T
N−2 ) +

∂

∂u∗N−2

(
tr{KN−2 E[PN−1|N−1 |I

C

N−2]}
)

= 0 , (19)

where, we set KN−2 = (Q2 + BTSN−1B)−1ATSNB(Q2 + BTSNB)−1BTSNA. The last term in (19), related to the
estimation error covariance PN−1|N−1 , is not equal to zero as implied by the dual effect property from Theorem 3.1. Due to
this term, the above minimization problem is not linear, and thus, the solutions uCEN−2 and u∗N−2 are not equal. Since uCEN−2

has the same form as ũN−2, we also note that ũN−2 and u∗N−2 have very different forms. From this point on, the cost-to-go
for the optimal control policy g∗ does not have a solution of the form given by (16). Hence, the control signals {ũ}N−3

0 and
{u∗}N−3

0 will not be equal. Now, the joint distribution of all system variables could be quite different for schedulers f̃ and f .
Thus, the described transformation of the scheduling criterion does not result in an equivalent class construction.

Due to the dual effect, the optimal control action takes on two roles. One, to control the plant, and the other, to probe the
plant state which could result in an improved estimate [23]. In the certainty equivalent setup, the probing action cannot be
implemented due to the lack of a dual effect and the resulting control actions will not remain the same.

C. Conditions for Certainty Equivalence

From the previous discussions, it is clear that a scheduling criterion independent of the past control actions results in no
dual effect. This result is presented below.

Corollary 3.3: For the closed-loop system defined by (1)–(5), with no exogenous network traffic, the optimal controller,
with respect to the cost in (6), is certainty equivalent if and only if the scheduling decisions are not a function of the applied
control actions, such as in (13).

Proof: In the proof of Theorem 3.2, it is clear from (17) that the optimal control policy g̃ for the system {P, f̃ , g̃} is
certainty equivalent.

To show the necessity of this condition for certainty equivalence, we need to show that if the optimal control signal has the
form in (17) at time k, then the scheduling policy is not a function of the controls for n < k, for all k. Accordingly, assume
that the optimal control signal is given by (17) for k = N − 1, . . . , n+ 1. Then, the optimal cost-to-go is of the form in (16),
at time n+ 1 and

sn+1 =

N−1∑
k=n+1

E[tr{ATSk+1B(Q2 +BTSk+1B)−1BTSk+1APk|k + Sk+1Rw}|I
C

k ] ,

when written out explicitly. We know that the optimal control signal un is obtained by minimizing (15) at time n. This control
signal will have the form in (17) for all Q2 > 0 only if sn+1 is independent of un, or if the estimation error covariances
Pk|k , for k = {n + 1, . . . , N − 1}, are not a function of un. From the result in Theorem 3.1, this is only possible when the
scheduling policy is not a function of un. Since this is true for n = 0, . . . , N −1, the scheduling policy must not be a function
of uk−1

0 .
Corollary 3.3 provides us with a restriction on the scheduler to guarantee certainty equivalence. Note that the resulting

closed-loop system is not equivalent to the original problem setup, as shown in Theorem 3.2.

D. Effect of State-based Schedulers with exogenous network traffic

In this subsection, we re-analyze the effects of a state-based scheduler on the control loop in the presence of exogenous
network traffic. Thus, we have nk 6= 0 and a channel output given by (3). Recall from Lemma 2.1, that the network traffic
indicator nk is correlated to the state of the plant xk. The Certainty Equivalence Principle need not hold for plants where the
measurement noise is correlated to the process noise [24]. To focus on the effect of state-based schedulers on the closed-loop
system, the results presented in the previous subsection did not include exogenous network traffic. Now, we re-derive some of
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the above results for the system in the presence of exogenous network traffic.

Lemma 3.4: For the closed-loop system defined by (1)–(5), the control signal has a dual effect of order r = 2.
Proof: The MAC output δk (3) is clearly still a function of the applied controls, through the state-based scheduler outcome.

Thus, the estimation error covariance Pk|k , in (12), remains a function of the applied controls uk−1
0 . Since Pk|k does not satisfy

the condition (10) required to have no dual effect, we see that the system (1)–(5) exhibits a dual effect of order r = 2.
With the above result, Theorem 3.2 can be easily extended to include the case with exogenous network traffic. However,

it is not as straightforward to extend Corollary 3.3. When the measurement noise is correlated to the process noise, certainty
equivalence need not hold. To see why, recall the proof of Theorem 3.2, where we derive a solution of the form Vk =
E[xTk Skxk|I

C

k ] + sk for the Bellman equation (15). Now, if wk is correlated to the variables in the information set I
C

k ,
specifically nk0 , the minimization with respect to uk in (17) must include the term tr{Sk+1Rw}. Then, the optimal controller
will not have the form shown in (17), and certainty equivalence will not hold.

We need to prove that wk is independent of nk0 for the Certainty Equivalence Principle to hold, which we do below.
Corollary 3.5: For the closed-loop system defined by (1)–(5), the optimal controller, with respect to the cost criterion (6), is

certainty equivalent if the exogenous network traffic indicator nk is independent of the process noise wk, and, if the scheduling
decisions are not a function of the applied controls, i.e., if

γk = f̌k(ω̌sk) , (20)

where, ω̌sk ∈ Ω̌sk, and Ω̌sk is the sigma-algebra generated by the information set Ǐ
S

k = {x0,w
k−1
0 ,nk−1

0 }.
Proof: Note that nk is only correlated to δk0 and thus, to the signals wk−1

0 , from Lemma 2.1. As the process noise is
i.i.d, nk is independent with respect to wk. A scheduler of the form (20) is not a function of the applied controls, and thus,
Certainty Equivalence holds.

IV. CLOSED-LOOP SYSTEM ARCHITECTURE

IN this section, we identify a property of the scheduling policy that results in a simplification of the design of the closed-loop
system. This enables us to propose a dual predictor architecture for the closed-loop system, which results in a separation

of the scheduler, observer and controller designs.

A. Observer Design

In this section, we propose a structure for the estimator at the controller. Due to the non-linearity of the problem, the estimate
in general can be hard to compute.

The estimation error is reset to zero with every transmission, as we send the full state. Consider one such reset instance, a
time k such that δk = 1. The state is sent across the network, yk = xk, so the estimate x̂k|k = xk. A suitable control signal uk
is found and applied to the plant, which results in the next state xk+1. Now, the scheduler can generate one of two outcomes.
We consider each case, and find an expression for the estimate, below:

a) δk+1 = 0: We need an estimate of wk. We use the scheduler output as a coarse quantized measurement to generate
this, as follows:

x̂k+1|k+1 = E[xk+1|I
C

k+1, δk+1 = 0]

= Axk +Buk + E[wk|f̀(wk) = 0] , (21)

x̃k+1|k+1 , xk+1 − x̂k+1|k+1 = wk − E[wk|f̀(wk) = 0] ,

where, f̀(wk) ≡ f(Axk +Buk + wk|xk, uk).
b) δk+1 = 1: The estimation error is zero as x̂k+1|k+1 = xk+1.

The transformation to f̀ in (21), is not intended to remove the dual effect, but merely serves to remove the known variables
from the expression. The dual effect has influenced the packet’s transmission, i.e., the value of δk+1.

To see this more clearly, we look at the next time instant. Now a signal uk+1 is generated, and applied to the plant. We
note that xk+2 = A2xk +ABuk +Buk+1 +Awk +wk+1. The state xk+2 is either sent to the controller or not depending on
the scheduler outcome δk+2. Again, we look at both cases, and derive an expression for the estimate:

i) δk+2 = 0: We now need to estimate Awk +wk+1, as the rest is completely known from xk+2. We use both scheduler
outputs δk+1 and δk+2 to generate an estimate of the unknown variables as

x̂k+2|k+2 = A2xk +ABuk +Buk+1 + E[Awk + wk+1|f̀(wk) = 0, f̀(Awk + wk+1) = 0] ,

x̃k+2|k+2 = Awk + wk+1 − E[Awk + wk+1|f̀(wk) = 0, f̀(Awk + wk+1) = 0] .

ii) δk+2 = 1: The estimation error is zero as x̂k+2|k+2 = xk+2.
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Fig. 4. State-based Dual Predictor Architecture: the innovations to the observer serve as input to the scheduler. The resulting setup is certainty equivalent.
The observer is simple, and computes the MMSE estimate.

This process can be continued recursively through a non-transmission burst, until finally a measurement is received and the
estimation error is reset to zero. Thus, the observer computes the estimate at any time k as

x̂k|k =


xk, δk = 1,

Ak−τkxτk +

k−τk∑
s=1

As−1Buk−s + E[

k−τk∑
s=1

As−1wk−s|f̀k, .., f̀τk+1 = 0], δk = 0,
(22)

where τk is the time index of the last received measurement at time k, as defined in (8), and the argument to the function f̀t
is given by the term

∑t−τt
s=1 A

s−1wt−s.

B. State-based Scheduler Design: Symmetric Schedulers

The computation of the term E[
∑k−τk
s=1 As−1wk−s|f̀k, .., f̀τk+1 = 0], for a burst of non-transmissions of length greater than

one, makes the estimate given in (22) hard to evaluate. This is because the quantized noise is not Gaussian. As a sub-optimal,
but simplified approach, consider the scheduling criterion given by any symmetric map fsym(r) = fsym(−r) with

γk = fsym(

k−τk−1∑
s=1

As−1wk−s) . (23)

Since τk is not defined without the MAC output δk in (8), we replace it with τk−1, which is also a measure of the non-
transmission burst. Choosing the scheduler in this manner results in a zero mean estimate from the quantized noise when
there is no transmission. Now, the estimate is easy to compute and the observer can be designed without knowledge of the
scheduling policy. Also, a certainty equivalent control can be applied. This observation is summarized below, and is used to
design the scheduler presented in Section IV-C.

Proposition 4.1: For the closed-loop system defined by (1)–(6), the use of the symmetric scheduling policy defined in (23)
implies that certainty equivalence holds, and it also results in separation in design, between the estimator and scheduler.

C. The Dual Predictor Architecture

In this section, we examine closed-loop design of the complete system, including scheduler, observer and controller. From
the results of Lemma 3.4 and Proposition 4.1, it is clear that the scheduler, observer and controller designs are coupled. It is
not possible to design the optimal scheduling policy independently and combine it with a certainty equivalent controller and
optimal observer to get the overall optimal closed-loop system. At the same time, solving for the jointly optimal scheduler,
observer and controller is a hard problem.

Thus, we propose an architecture, shown in Fig. 4, for a design of the state-based scheduler, and the corresponding optimal
controller and observer. There are two estimators in this architecture, and hence, we call it a dual predictor architecture [29].
This architecture has been referred to previously in [30], in the context of mobile networks. The scheduler, observer and
controller blocks are described below.
Scheduler (S): The scheduler output γk is given by

γk = f(xk, x̂k|τk−1 ) =

{
1, |xk − x̂k|τk−1 |2 > ε,

0, otherwise.
(24)

Here, x̂k|τk−1 is the estimate at the controller at time k if the current packet is not scheduled for transmission. To realize such a
scheduling policy, the observer must be replicated within the scheduler, and for the observer to be able to subtract the applied
control, the controller must also be replicated within the scheduler. An explicit ACK is required to realize this information
pattern.
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Observer (O): The input to the observer is the signal yk = δkxk. The observer generates the estimate x̂k|k as given by

x̂k|k = δ̄kx̂k|τk + δkxk . (25)

Recall that δ̄k = 1 − δk takes a value 1 when the packet is not transmitted. In such a case, the estimate is given by x̂k|τk , a
model based prediction from the last received data packet at time τk. This estimate is given by

x̂k|τk = Ax̂k−1|k−1 +Buk−1 . (26)

Controller (C): The controller generates the signal uk based on the estimate alone, as given by

uk = −Lkx̂k|k , (27)

where Lk is defined in (17).
Note that the scheduling criterion described in (24) can be rewritten as

|xk − x̂k|τk−1 |2 = |Axk−1 +Buk−1 + wk−1 −Ax̂k−1|k−1 −Buk−1|2

= |Ax̃k−1|k−1 + wk−1|2 = |x̃k|τk−1 |2 .

Here, we use x̂k|τk−1 as τk is not defined without δk. The scheduling criterion |x̃k|τk−1 |2 ≤ ε captures the per-sample variance
of the estimation error, when no transmission is scheduled. Taking expectations on both sides, we get tr{Pk|τk−1 } ≤ ε. The
scheduler attempts to threshold the variance of the estimation error, but this cannot be guaranteed in a network with multiple
traffic sources. Also, note that the scheduling policy is a symmetric function of its arguments, as in Proposition 4.1. We now
state the main result of this section.

Theorem 4.2: For the closed-loop system given by the plant in (1), the state-based dual predictor architecture in (24)–(27),
and the cost criterion in (6), it holds that

i. The estimate (25) minimizes the mean-squared estimation error.
ii. The control signal does not have a dual effect.
iii. The Certainty Equivalence Principle holds and the optimal control law is given by (27).
iv. The LQG cost is given by

JDP = x̂T0 S0x̂0 + tr{S0P0}+

N−1∑
n=0

tr{Sn+1Rw + (LTn (Q2 +BTSn+1B)Ln)Pn|n} , (28)

where Pk|k is the error covariance of the estimate at the observer, with SN = Q0 and Sk obtained by backward iteration
of (18).
Proof: Evaluating the expression E[xk|I

C

k ], we get

E[xk|I
C

k ] =


xk, δk = 1,

E[Ak−τkxτk +
∑k−τk

`=1 (A`−1Buk−` +A`−1wk−`)

|δτk = 1, δkτk+1 = 0, yτk = xτk ,u
k−1
0 ], δk = 0.

Due to the use of a symmetric scheduling policy (23), we know that

Ak−τkxτk +

k−τk∑
n=1

An−1Buk−n = Ax̂k−1|k−1 +Buk−1 , E[

k−τk∑
`=1

A`−1wk−`|δkτk+1 = 0] = 0 .

We use the above equations to obtain

E[xk|I
C

k ] =

{
xk, δk = 1,

Ax̂k−1|k−1 +Buk−1, δk = 0.

Thus, the estimate in (25) is the MMSE estimate [31].
The error covariance at the estimator is given by (12), where, from (24) and (3), it is clear that the scheduler outcome γk

and the MAC output δk do not depend on the applied controls uk−1
0 . Thus, the error covariance satisfies the definition in (10),

and the control signal in this architecture does not have a dual effect.
From the above conclusion, note that the scheduling policy in (24) is of the form (20). Thus, from Corollary 3.5, we know

that the optimal controller for this setup is certainty equivalent. Then, the optimal control signal is given by (17), which has
the same form as the controller in this architecture (27). The expression for the control cost remains the same as in the case
with partial state information, and is given by (28).

Thus, the dual predictor architecture results in a simplified design for the closed-loop system, which is optimal within its
class (as seen from Corollaries 3.3 and 3.5), but not optimal among all possible architectures.
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V. EXTENSIONS AND DISCUSSIONS

IN this section, we extend the above results to an output-based system. We also identify the existence of a dual effect when
the cost function penalizes network usage and when the transmission, with a state-based scheduler, occurs over limited

data-rate channels. Finally, we discuss the dual effect property that we have encountered in this problem with respect to other
NCS architectures.

A. Measurement-based Scheduler

We now consider a system without full state information, but with co-located measurements. We show that by placing an
optimal observer, a Kalman Filter (KF) at the sensor, to estimate the state of the linear plant, and basing the scheduler decisions
on this estimate, instead of on the measurement, we are able to re-establish the same problem formulation as before.

Consider a linear plant with a state zk, and a measurement mk given by

zk+1 = Azk +Buk + wz,k , mk = Czk + vz,k , (29)

where wz,k is i.i.d. zero-mean Gaussian with covariance matrix Rw,z . The initial state z0 is zero-mean Gaussian with covariance
matrix Rz,0. Also, the measurement m ∈ Rm and the matrix C ∈ Rnxm. The measurement noise vz,k is a zero mean i.i.d
Gaussian process with covariance matrix Rv,z ∈ Rmxm, and it is independent of wz,k.

We can always place a Kalman Filter at the sensor node, which receives every measurement mk from the sensor and updates
its estimate (ẑsk|k ) as

ẑsk|k = Aẑsk−1|k−1 +Buk−1 +Kf,kek , (30)

where, Kf,k denotes the gain of the Kalman filter and ek denotes the innovation in the measurement. The innovation can be
shown to be Gaussian with zero-mean and covariance Re,k. The error covariances for the predicted estimate and the filtered
estimate are denoted P sk and P sk|k respectively. These terms are given by

ek = mk − C(Aẑsk−1|k−1 +Buk−1) ,Kf,k = P skC
TR−1

e,k , Re,k = CP skC
T +Rv,z ,

P sk = AP sk−1|k−1A
T +Rw,z , P

s
k|k = P sk −Kf,kRe,kK

T
f,k .

Now, if we use the estimate to define a new state, such that xk , ẑsk|k , we have a linear plant disturbed by i.i.d Gaussian
process noise wk = Kf,kek. Thus, we have re-established the problem setup from section II-A, and the results from before
can be applied to this plant. Note that the scheduler is now defined with respect to the estimate ẑsk|k and not the measurements
mk.

B. Penalizing Network Usage

We have shown, in the proofs of Theorem 3.1 and Theorem 3.2, that the applied controls play a significant role in a state-
based scheduler and cannot be removed from the scheduler inputs to create an equivalent setup without a dual effect. However,
the minimizing solution to a cost criterion can render the effect of the applied controls redundant. To see an example of this,
consider the problem of finding the jointly optimal scheduler-controller pair for the classical LQG cost criterion in (6). Since
there is no penalty on using the network, the optimal scheduler policy is to transmit all the time. Now, the structure of the
closed-loop system does not resemble the one presented in Theorem 3.1, and consequently, that result does not hold. In this
scenario, there is no incentive for the controller to influence the transmissions and the jointly optimal scheduler-controller pair
(f1, g1) is given by

f1 : δ1k = 1 ∀ k , g1 : u1k = −Lkxk ∀ k , (31)

where Lk is given in (17). Note that in the rest of this paper, we do not consider finding the jointly optimal scheduler-controller
pair, as the use of a contention-based MAC does not permit us to choose the schedule sequence.

Now, consider a cost criterion which penalizes the use of the network, such as

JΛ = min
u
N−1
0 ,δ

N−1
0

E

[
xTNQ0xN +

N−1∑
s=0

(
xTs Q1xs + uTs Q2us + Λδs

)]
, (32)

where Q0,Q1 and Q2 are positive definite weighting matrices and Λ > 0 is the cost of using the network. The optimal
state-based scheduling policy chooses a schedule in relation to the penalty Λ, such that the average network use, i.e., E[δk],
decreases as Λ increases. Thus, we state the following result.

Lemma 5.1: For the closed-loop system defined by (1)–(5), with no exogenous network traffic, the control signals derived
from the jointly optimal scheduler-controller pair, which minimize the cost criterion in (32), exhibit a dual effect of order
r = 2.

Proof: It is easy to show that the scheduler-controller pair (f1, g1) does not minimize the cost in (32). Now, the scheduler
uses the policy in (2) to select packets to send across the network. Thus, the closed-loop system has the same structure as in
Theorem 3.1, and there is a dual effect of order r = 2 for any control signal in this setup.
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(a) Packet Losses (dk) (b) Encoder-Decoder (E − D) Design (c) State-based Scheduler

Fig. 5. The estimate is not influenced by the applied controls in (a) and (b), with knowledge of the applied controls. In contrast, the applied controls cannot
be removed from the decision process in (c).

This provides the controller an incentive to modify the transmission outcome. As a result, the optimal scheduler and controller
designs in this problem are coupled. Using the results of Lemma 3.4, the above results can be extended to include the effect
of exogenous network traffic.

C. Using a rate constrained channel

Our proof of the dual effect in Theorem 3.1 relies on the asymmetry in the resolution of the received information; the full
state is sent with a transmission and only a single-bit quantized encoding of the state is sent when there is no transmission.
However, data channels are generally rate-constrained, and a full state can never be sent. If the encoder-decoder pair on the
sensor link uses R bits of information, the estimation error at the controller can be written as x̃k|k = δk · (xk −E[xk|I

C

k , δk =

1]) + δ̄k · (xk − E[xk|I
C

k , δk = 0]), in place of (11). Again, note that the estimation error is a function of δk due to the
asymmetry in the number of bits in the received information with and without a transmission. Also, the applied controls
cannot be removed from the above expression, unless the estimation error with and without a transmission result in the same
expression, i.e., xk − E[xk|I

C

k , δk = 1] = xk − E[xk|I
C

k , δk = 0]. Hence, there is a dual effect with a state based scheduler,
even while using a rate constrained channel for transmission.

D. Relation to Other NCS Architectures

The dual effect and certainty equivalence properties have been noted previously in other NCS problems. We discuss these
occurrences and the connections to our problem setup below.

Packet Drops over a Lossy Network: Packet drops in a lossy network are not influenced by the applied controls (Fig. 5(a)).
Hence, certainty equivalence holds, when there are packet drops on the sensor link [19]. However, when there are packet drops
on the actuator link, separation holds only if there is an ACK of packets received or lost [18].

Importance of Side Information: In any NCS problem, the classical information pattern must be reconstructed for the
Certainty Equivalence Principle to hold [32]. This may require one or more explicit side information channels to convey
acknowledgements of received packets back to the transmitters [33], [18].

Encoder Design over Limited Data Rate Channels: In this problem, the encoder output is the only measurement available
across the channel, which always contains the same number of information bits. Thus, the applied controls can be removed
from the decision process, and they do not influence the estimation error, as shown in [20].

Event-based Systems: The results we have encountered in this paper show that the applied controls can push the state across
the scheduler threshold, and influence the transmission outcome, as illustrated in Fig 3(b). This is a consequence of the unequal
information in the measurement yk, with and without a transmission.

A similar problem with a cost function such as (32), has been dealt with in [34], [35]. They use a transformation similar to
the one presented for the encoder design problem in [21]. There are, however, subtleties in defining an equivalence class for
a state-based scheduler. Using an equivalent scheduler need not result in an equivalent system, as shown in Theorem 3.2.

The dual effect is visible in any control signal applied to the plant, not just the optimal one, as the control signal will always
influence the estimation error, irrespective of whether it has been designed to do so or not. Also, the dual effect exists despite
knowledge of the applied controls at the scheduler, and knowledge of the scheduling decisions at the controller. In this context,
the dual effect can be best explained as a coupling between the control and scheduling policies.

VI. EXAMPLES

WE present three examples in this section. The first example describes the problem setup, and illustrates the motivation
for the problem. The second example illustrates the results of Theorem 3.1 and Theorem 3.2, which identify the dual

role of the applied controls towards the information available to the controller. The third example illustrates the dual predictor
architecture and provides an example of network-aware event triggering.
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TABLE I

A COMPARISON OF CONTROL COSTS WITH (JSS ) AND WITHOUT (JCN ) A STATE-BASED SCHEDULER IN THE CLOSED-LOOP, FROM EXAMPLE VI-A

Plant Type P [T1] P [T2] P [T3]

JCN 45.3074 10.0028 6.1213
JSS 23.5785 8.3489 5.3803

Fig. 6. The state and the control signal with the channel use pattern: the red circles denote transmission requests, the white circles denote
MAC re-transmission attempts, and the green circles denote transmission success. Note that the requested bound on the state, which is
marked with a dotted line, is sometimes exceeded due to network traffic. Also, the control signal corresponds closely to the state only when
there is a successful transmission.

A. An Example of a Multiple Access NCS

This example illustrates the role of a state-based scheduler in our problem formulation in Section II-A, where a number
of closed-loop systems share a contention-based multiple access network on the sensor link. We use a p-persistent CSMA
protocol in the MAC. The observer and controller are chosen for simplicity of design, not as optimizers of any cost. We look
at the performance of this network of control loops, with and without the state-based scheduler.

Example We consider a heterogenous network of 20 scalar plants, indexed by j ∈ {1, . . . , 20}. There are three different types
of plants, P [T1],P [T2] and P [T3], given by

x
(j)
k+1 = a[i]x

(j)
k + u

(j)
k + w

(j)
k , (33)

where a[i] ∈ {1, 0.75, 0.5}, and R[i]
w ∈ {1, 1.5, 2}, for the plant P [Ti]. The systems numbered j ∈ {1, . . . , 6} are of type P [T1],

j ∈ {7, . . . , 13} are of type P [T2] and j ∈ {14, . . . , 20} are of type P [T3]. The plants are sampled with different periods given
by T [i] ∈ {10, 20, 25}, for the different types of plants, respectively. The state-based scheduler uses the criterion x(j)2

k > ε(j).
A p-persistent MAC, with synchronized slots, which permits three retransmissions is used. The persistence probability is given
by p(r)

α , where r denotes the retransmission index, and p(r)
α = {1, 0.75, 0.5} for r ∈ {1, . . . , 3}. The LQG criterion in (6), with

N = 10 and Q0 = Q1 = Q2 = 1 is used to design a certainty equivalent controller (17) as an ad hoc policy, not an optimal
one, as we know from Corollary 3.5. The observer calculates a simple estimate as given by (25)-(26).

We look at the performance of a closed-loop system in this network without a state-based scheduler, i.e., when ε(j) = 0 for
all j. The cost of controlling the plants in the contention-based network, is denoted J [i]

CN, and the values are listed in Table I.
We compare these to the costs obtained with a state-based scheduler in the closed-loop system, denoted J [i]

SS , when ε(j) = 2.5.
There is a marked improvement with a state-based scheduler in the closed-loop. Fig 6 depicts the state and the control signal
for the first plant in this network. The above improvement is obtained due to fewer collisions in the contention-based MAC.
The non-zero scheduling threshold reduces the traffic in the network, and increases the probability of a successful transmission
for all the plants in the network.
B. A 2-Step Horizon Example

We now look at a simple example to see the computational difficulties in identifying optimal estimates and controls for a
system with a state-based scheduler in the closed-loop. We also show that for an equivalent scheduler such as f̃ in Section III-B,
which renders the control signal free of a dual effect, the entire plant is altered, so the equivalence construction does not work.

Example Consider a scalar plant, given by xk+1 = axk + buk + wk, with a, b ∈ R and x0, wk ∼ N (0, 1). The scheduling
law is given by

δk =

{
1 xk ≥ 0.5

0 otherwise
.
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Our aim is to find both the optimal controller, with dual effect, and the certainty equivalent controller for the equivalent
scheduler and show that these result in different control actions for the same scheduling sequence. The controllers are designed
to minimize the LQG cost (6), for a horizon of two steps, i.e., N = 2, and with Q0, Q1, Q2 ∈ R. We first derive the
optimal controller with dual effect. Then, for the same schedule, we define the certainty equivalent controller, assuming that
an equivalent scheduler of the form f̃ in (13) has been designed. We compare the resulting control actions, and comment on
the differences.
Estimator: The estimates x̂0|0 and x̂1|1 are obtained using (22). The estimation error covariances P0|0 and P1|1 are presented in
the Appendix. Since the estimation error is non-Gaussian, we need to derive the probability density functions of the estimation
errors at each time instant. This makes the computation of the estimation errors and the error covariances hard.
Optimal Controller: To solve for the optimal control signals, we use V1 and V0 from (15). The complete derivations of V1

and V0 are presented in [36]. We find the control signal u1 that minimizes V1, and get

u1 = − abQ0

Q2 + b2Q0
x̂1|1 . (34)

Then, to find u0, we take a partial derivative of the expression for V0 with respect to u0 and get

∂V0

∂u0
= 2u0(Q2 + b2S1) + 2x̂0|0abS1 +

a2Q2
0b

2

Q2 + b2Q0
· ∂

∂u0

(
E[P1|1|I

C

0 ]
)

= 0 . (35)

This can be simplified using the expression for P1|1. When δ0 = 1, we have

∂V0

∂u0
= 2u0(Q2 + b2S1) + 2x̂0|0abS1 −

a2Q2
0b

2

Q2 + b2Q0
b(w0,max − w̄0)2φw0

(w0,max) = 0 ,

where w0,max = 0.5− ax0 − bu0. The final equation is obtained using Leibnitz rule. For the case when δ0 = 0, we have

∂V0

∂u0
= 2u0(Q2 + b2S1) + 2x̂0|0abS1 −

a2Q2
0b

2

Q2 + b2Q0
b(emax − ēδ0)2φeδ0(emax) = 0 ,

where emax = 0.5 − bu0 and again, Leibnitz rule was used. Solving these equations give the optimal u0 for δ0 = 1 and 0,
respectively.
CE Controller: For the same scheduler outcomes δ0, δ1 obtained through an equivalent scheduler which has no dual effect,
the certainty equivalent controller gives us the control signals

u1 = − AbQ0

Q2 + b2Q0
x̂1|1 ,

u0 = − AbS1

Q2 + b2S1
x̂0|0 .

(36)

Note that the u1 is found by minimizing V1, which results in the same expression as for the optimal controller (34). However,
u0 for the CE controller is obtained by solving the equation

2u0(Q2 + b2S1) + 2x̂0|0abS1 = 0 . (37)

Discussion: A comparison of the control signals for the CE controller (36) with u1 and u0 obtained in (34) and (35), shows
that the signal u1 remains the same. However, u0 is different, and displays a dual effect in the optimal controller. From (37),
it is clear that the additional term in (35) alters the solution for the optimal controller.

This observation can be explained as follows. In a controller with a dual effect, the control signal can be chosen to probe
the plant state in order to improve the quality of the estimate. However, there is no motive in improving the estimate in a
one-step optimization process. Thus, u1 is the same for both controllers. When the optimization is performed over two steps,
a probing effect in the first step can improve the estimate and the corresponding control applied in the next step. Thus, u0 is
different in the optimal controller for a state-based scheduler.

This example shows us that even the same schedule can result in a different control sequence for a system without a dual
effect. Thus, an equivalent construction for the scheduler does not result in an equivalent system in our setup.

C. An Example of the Dual Predictor Architecture

In this example, we present the dual predictor architecture, as applied to a shared network. We tune the threshold of the
state-based scheduling law to probabilistically guarantee an achievable control performance, given the traffic over the network.
We use a homogenous network in this example to simplify the comparison of control cost versus the scheduling threshold.

Example We consider a shared network of 20 scalar plants, indexed by j ∈ {1, . . . , 20} and given by (33), where a(j) = 1

and R
(j)
w = 1 for all j. The plants are sampled with a period given by T = 10. The innovations-based scheduler uses a

similar criterion to (24), where ε is the threshold of the scheduler. A p-persistent MAC, with synchronized slots, which permits
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Fig. 7. The control cost JDP versus the scheduler threshold ε. For low thresholds, the high traffic in the network causes collisions, and a high JDP. Very
high values of ε result in an under-utilized network, and a high JDP due to insufficient transmissions.

three retransmissions is used. The persistence probability is given by p
(r)
α , where r denotes the retransmission index and

p
(r)
α = {1, 0.75, 0.5} for r ∈ {1, . . . , 3}. The LQG criterion in (6), with N = 10 and Q0 = Q1 = Q2 = 1 is used to design

the optimal certainty equivalent controller (17). The observer calculates the MMSE estimate given by (25)-(26).
The effect of varying ε on the control cost is shown in Fig. 7. For very high values of ε, the network is under-utilized, and

almost all the transmissions are successful. However, the control cost is high as the number of transmissions is low. As we
decrease ε, the control cost initially decreases due to increased use of the network. However, for very low values of ε, the
network is over-utilized and this results in collisions. Thus, the control cost increases again, due to dropped packets.

Fig. 8 depicts the state and control signal of the first plant obtained from our simulation, for the best value of ε picked from
the above plot. Note that the estimation error is bounded, with a probability of 0.94, by the scheduling threshold, for the value
ε(1) = 3.5, and the resulting control cost is JDP = 27.9235.

It is interesting to note, in Fig. 7, that the cost function is quite flat. Thus, it is not very important to use the optimal
scheduling threshold ε.
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VIII. CONCLUSIONS AND FUTURE WORK

THIS paper investigates the effects of a state-based scheduler on the design of a closed loop system. We find that the
optimal controller for a NCS with a state-based (or measurement-based) scheduler is, in general, difficult to find. This is

due to the dual effect of the control signals in the given setup, wherein the controller has an incentive to push the state past the
scheduler threshold and modify the estimation error across the network. This implies that the optimal scheduler, observer and
controller designs are coupled. However, we identify a dual predictor architecture, which results in the desired separation in
design of the scheduler, observer and controller. The scheduling function in this architecture is constrained to be a symmetric
function of its arguments, such that the resulting schedule is not a function of the past applied controls.

Fig. 8. The estimation error, state and control signal with the channel use pattern. Note that the requested bound on the predicted estimation error, which is
marked with a dotted line, is rarely exceeded. Also, the control signal corresponds closely to the state only when there is a successful transmission.
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Analyzing the performance of a network of systems using the dual predictor architecture is a challenging direction of work,
for the future. Identifying interesting, if not optimal, control policies in the more general case of state-based schedulers with a
dual effect, has been left for the future. A complete extension to include distributed measurements of the state is another task
for the future.

APPENDIX

DERIVATION OF THE 2-STEP HORIZON EXAMPLE

Here are the expressions for the estimation error covariances in Example VI-B. For a detailed derivation, refer [36].
The estimation error covariance at time k = 0 is given by

P0|0 =

{
0, δ0 = 1,

Rx̃0
, δ0 = 0,

where,
Rx̃0 = E[(x0 − x̄δ0)2|x0 < 0.5]

=

∫ 0.5−x̄δ0

−∞
x2φxδ0(x+ x̄δ0)dx ,

(38)

where x̄δ0 := E[x0|x0 < 0.5] =
∫ 0.5

−∞ xφxδ0(x)dx, φxδ0 is the conditional probability distribution function (pdf) of x0,
conditioned on x0 < 0.5. Thus, φxδ0(x) = φx0(x)/Pr(x0 < 0.5), where φx0 is the pdf of x0. The probability of a non-
transmission is given by Pr(x0 < 0.5) =

∫ 0.5

−∞ φx0
(x)dx.

Let us denote e1 as the unknown part of x1 before y1 is received:

e1 =

{
w0, δ0 = 1,

ax0 + w0, δ0 = 0,
and φe(ε) =

{
φw0(ε), δ0 = 1,

φeδ0(ε), δ0 = 0,

where, φe is the pdf of e1, φw0
is the pdf of w0 and φeδ0(ε) =

∫ 0.5

−∞ φxδ0(x)φw0
(ε − ax)dx. We denote ẽ1 as the error in

estimating e1 after y1 arrives, and ēδ0 = E[ax0 + w0|x0 < 0.5, ax0 + w0 < 0.5 − bu0]. Now, the estimation error variance
P1|1 is given by

P1|1 =

{
0, δ1 = 1,

Re1 , δ1 = 0,
(39)

where Re1 = E[ẽ2
1|δ1 = 0] is given by

Re1 =


∫ 0.5−ax0−bu0−w̄0

−∞ w2 φw0
(w+w̄0)

Pr(w0<0.5−ax0−bu0)dw, δ0 = 1,∫ 0.5−bu0−ēδ0

−∞ ε2 φδ0(ε+ēδ0)
Pr(e1<0.5−bu0)dε, δ0 = 0.

Note that increasing u0 will decrease Re1 .
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