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Abstract

In this paper, a new nonlinear identification framework is proposed to address the issue of off-line

computation of moving-horizon observer estimate. The proposed structure merges the advantages of

nonlinear approximators with the efficient computation of constrained quadratic programming problems.

A bound on the estimation error is proposed and the efficiency of the resulting scheme is illustrated

using two state estimation examples.

I. INTRODUCTION

State estimation is a key issue in nonlinear systems control and diagnosis. Algorithms that achieve

this task are called observers. These algorithms attempt to reconstruct the evolution of the state

vector by using the only measured (and generally noisy) quantities. As far as nonlinear systems

are concerned, many observation techniques have been developed during the last four decades.

This includes high-gain observers [7], sliding-modes observers [15], Moving-Horizon Observers

(MHOs) [11] and naturally, the widely used Extended-Kalman-Filter (EKF). Excellent reviews

of nonlinear observer design techniques can be found in [14] and [6].

Amongst all possible observer design alternatives, MHO technique has witnessed an increasing

interest these last years because of its ability to handle constraints and to fully exploit precise and

generally nonlinear models of the dynamic processes under study. This observer requires on-line

solution of non convex optimization problems in which the cost function is the integral output

prediction error while the decision variable is the set of unknown quantities to be recovered
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(state and unknown parameter vectors).

Despite encouraging recent advances on the issue of real-time computation of MHOs (see [3],

[5] and the references therein for a recent survey on the topics), the highly demanding on-line

computation involved may question the feasibility of the algorithm when system needing high

sampling rate are involved or when the use of highly involved optimization software is prohibited

by real-life context. When the combination of such obstacles and the absence of mathematical

structure that renders impossible the use of analytical observers, something has to be done in

order to achieve the estimation task.

The ideas proposed in this paper follow a suggestion made by [1] aiming at identifying off-line

the relationship between the sequence of (input/output) measurements and the corresponding

initial state at the beginning of the moving observation window. By doing so, the cumbersome

on-line optimization step involved in Moving-Horizon Observers [11] (MHOs) can be avoided.

Concrete implementation of such an idea using Neural Networks (NNs) identification structure

has been proposed in [2]. As pointed out in [1], NNs structures, like all standard nonlinear

approximators offer high approximation capabilities at the price of non convex optimization

schemes which generally suffer from convergence and computation time issues. In the present

paper, a novel nonlinear identification scheme is proposed, which after a suitable change in the

decision variables, can be solved using constrained quadratic programming. Such a feature is

crucial if this optimization problem lies in the inner loop of a whole static game optimization

formulation (such as the one proposed in [1]) that may be needed to assess the convergence of the

resulting MHO. More precisely, the solution of the static game is needed to compute the set of

approximator parameters that achieves sufficiently small maximum error over all possible initial

states (and initial estimation error). The price to pay in order to gain computational efficiency is a

theoretical restriction of the class of situations that can be addressed as the proposed identification

structure possesses no universal approximation property. For this reason, the comparison between

the two identification schemes is problem-dependent.

It is important to underline that in the scheme proposed in [1], [2] a set of non convex optimiza-

tion problems are solved off-line (using different initial conditions and initial state estimation

errors) in order to built the learning data for the identification step. Instead, the scheme of the



present paper avoids the use of such non convex optimization by focusing on the model-based

state/output relationship that can be discovered using system simulation providing the learning

data followed by an identification step using specific class of nonlinear structures. This so iden-

tified function gives the output-related guess of the state which can then be amended by a model

related term in a rather trivial way in order to recover a kind of classical measurement/model

confidence trade-off. By doing so, one can avoid the risk of local minima that may corrupt the

quality of the learning data.

The paper is organized as follows. First, section II defines the state estimation-related iden-

tification problem. Section III describes the proposed nonlinear identification setting and gives a

bound on the state estimation error. The way the learning data used in the identification scheme

is built is shown in section IV. Illustrative examples are given in section V while section VI

summarizes the contribution of the paper and suggests hints for further investigations.

II. STATE ESTIMATION AS AN IDENTIFICATION PROBLEM

Let us consider a nonlinear system given by:

x(k + 1) = f(x(k), u(k)) ; y(k) = h(x(k), u(k)) (1)

where x ∈ Rn, u ∈ Rnu and y ∈ Rny represent the state, the measured input and the measured

output vectors respectively. The integer k refers to the sampling instant kτ for some sampling

period τ > 0. Regardless of the algorithm that may be used to reconstruct the state vector using

the measured quantities, the implicit assumption that underlines the possibility of state recon-

struction is that there is an integer N ∈ N and a map F such that the following approximation

holds:

x(k) ≈ F(Z(k)) (2)

where Z(k) is the regressor built up with the past measured quantities according to:

Z(k) :=

ỹ(k)

ũ(k)

 ∈ RN(nu+ny)=:nz (3)

where: ỹ(k) := (yT (k), · · · , yT (k − N + 1))T and ũ(k) := uT (k), · · · , uT (k − N + 1))T . Note

that in the absence of measurement noise, the implicit definition of the map F involved in (2)



is given by the solution of the following optimization problem:

F(Z(k)) := X(k, k −N + 1, x∗, ũ(k)) (4)

x∗ := arg min
x
J(x, Z(k)) :=

N−1∑
i=0

‖y(k − i)− Y (k − i, k −N + 1, x, ũ(k))‖2 (5)

where X(j, k−N+1, x, ũ(k)) [resp. Y (j, k−N+1, x, ũ(k))] refers to the model-based predicted

value at instant j of the state [resp. output] when the state at instant k−N + 1 is equal to x and

when the sequence of controls defined by ũ(k) is applied on the time interval [k −N + 1, k].

It results that if one obtains through off-line computations a good approximation of the map

F involved in (2), then the measurement-related part of the MHOs would be obtained without

on-line optimization. This is obviously a static identification problem. More precisely, since this

identification is to be obtained for each component of the state vector one needs to reconstruct,

the basic generic problem one has to solve is the one consisting of finding a nonlinear map F

that links a scalar quantity r (a component of the state vector) to a regression vector Z, namely:

r ≈ F (Z) ; r ∈ R ; Z ∈ Rnz (6)

Remark 1: Note that, as suggested in [1] the cost function involved in (5) may contain a

regularization term ‖x−x̄‖2 where x̄ stands for the predicted value of the decision variable based

on the state space model and the last estimate. This enables a regularization of the estimation

process and enhance more stability of the iterates. Such regularization can be decoupled from the

identification process by introducing afterward the following final estimation which represents

a trade-off between the measurement related estimation and the model related estimation based

on the previous solution:

x̂ = λF(Z) + (1− λ)x̄ (7)

where F(Z) is the measurement-based identified part while x̄ is the model predicted part based

on the past value of the estimation. In the sequel, we focus on F(Z) term which corresponds

to the choice λ = 1 in (7) .

III. A NONLINEAR IDENTIFICATION FRAMEWORK

Identification of nonlinear relationships is an open issue. Many frameworks have been proposed

including neural networks, Wiener-Hammerstein, Volterra Series based formulations [9] to cite



but few possibilities. While offering high approximation capabilities, nonlinear approximators

need non convex optimization in order to compute the approximator parameters. Such optimiza-

tion problems suffer from computation time issue and the presence of local minima that may

prevent the solver from reaching the global minimizers. In this paper, a nonlinear approximator

is proposed that can be computed through constrained QP formulation at the price of lesser

universality.

More precisely, in this paper, attention is focused on nonlinear maps F that takes the following

form:

F (Z) := Γ−1(LTZ) ; Γ(·) strictly increasing (8)

The existence of Γ−1 is guaranteed by the strict monotonicity of Γ. Note that putting together

(6) and (8) enables the identification problem to be re-formulated as the one of finding:

• the vector L ∈ Rnz and

• the monotonic increasing function Γ such that the following approximation holds:

Γ(r(k)) ≈ LTZ(k) (9)

Remark 2: Note that (8) is a nonlinear parameterization as one has to find both Γ−1 and L

which operate nonlinearly. Moreover, while this structure is adapted to the derivation of efficiently

solvable constrained QP problems, it is not universal in the sense that any function F (Z) cannot

necessarily be represented using the structure (8). Only the class of functions F for which there

exists a linear combination of the components of Z that maps to Z through a monotonic function

is eligible. This property is impossible to check a priori, but the efficiency of the QP problem

solvers makes it easy to check even for very rich parameterization. If the residual is still too

high, then the system is surely out of this class since failure cannot result from local minima as

it is the case in standard nonlinear approximators computation.

The general form of the l.h.s of (9) that is used hereafter is the one given by:

Γ(r) :=
[
B
( r − rmin
rmax − rmin

)]
· µ =:

[
B(η(r))

]
· µ =

nb∑
j=1

µj

[
B(j)(η(r))

]
(10)

where rmin and rmax are the minimum and maximum values of r over the learning data (see

section IV) while B(η) is a function basis that is hereafter defined according to:{
B(j)

}nb

j=1
:=
{

1
}
∩
{
B

(i)
1

}nm−1

i=1
∩
{
B

(i)
2

}nm

i=1
(11)



where the number of functions in the set is nb = 2nm while the functions B(i)
1 and B

(i)
2 are

defined by:

B
(i)
1 := (1 + αi)

η

1 + αiη
; B

(i)
2 :=

η

1 + αi − αiη

The coefficients αi are given by αi := exp
(
β(1− i)

)
− 1. Note that many other function basis

can be used although the author’s experience suggests that the function basis proposed above is

rather appropriate given the monotonicity character of the targeted nonlinear map.

Now by combining (9)-(10) , it follows that the unknowns L and µ may be obtained by solving

the following least squares problem:

min
L,µ

∑
(r,Z)∈E

‖B(η(r))µ− ZTL‖2 under the constraint (15) (12)

where E is the learning data including a large number of instantiations of the pairs (r, Z). Note

however that the least squares minimization invoked in (12) has to be done taking into account

the following constraints:

1) Γ must be strictly increasing. This leads to the following inequality constraint on the

parameter vector µ:

∀η ∈ [0, 1]
[dB
dη

(η)
]
µ ≥ ε (13)

for some a priori chosen lower bound of the derivative ε > 0.

2) The following normalization integral constraint has to be satisfied in order to avoid trivial

zero values trivial solution (L = 0, µ = 0):[∫ 1

0

B(η)dη
]
· µ =

1

2

[
rmin + rmax

]
(14)

Remark 3: Note that the use of (rmin + rmax)/2 in the r.h.s of (14) is arbitrary since the

solution of (12) is defined up to a multiplicative gain. Note however that the r.h.s of (14) is

inspired by the particular case where a linear function fits the learning data. In this case, Γ can

be taken to be the identity map and in this case, the integral has to equal the mean value of r.

The two sets of constraints (13) and (14) are affine in the decision variable µ. Therefore by



considering a sequence of values 0 = η1 < η2 < · · · < ηq = 1, these constraints can be

approximated by the following matrix inequalities:

[Aineq]µ ≤ Bineq ∈ Rq ; [Aeq]µ = Beq ∈ R (15)

To summarize, the quadratic function (12) in the decision variables L and µ is minimized under

the linear constraints (15) to obtain the optimal parameters Lopt and µopt.

Note that there is no loss in generality in taking Γ strictly increasing since it suffices to take L

of opposite sign to make (9) valid for a strictly decreasing map.

The following result on the estimation error is straightforward:

Proposition 1: If Let X ⊂ Rn be a subset of the state space to which belong all state of

interest. The following conditions are satisfied:

1) The admissible control sequences are bounded (i.e. ũ ∈ Ũ) and lead for any x(0) ∈ X to a

bounded sequence of output (ỹ ∈ Ỹ)

2) there is an upper bound εx > 0 on the identification residual:

sup
(x0,ũ)∈X×Ũ

∥∥x(0) −F(Z(x(0), ũ)
)∥∥ ≤ εx (16)

3) For any initial state x(0), the combined effect of noise and model mismatches on the regressor

Z is bounded according to:

‖Zreel(x
(0), ũ)− Z(x(0), ũ)‖∞ ≤ γ (17)

where Zreel denotes the real measurement matrix (which is not obtained by simulation) that may

be obtained on the real system starting from x(0) and under the control sequence ũ.

then the estimation error is of the form:

‖x̂− x‖ ≤ εx +O(γ) (18)

PROOF. First of all, note that assumption 2) implies that all nominal measurement regressors Z

of interest belong to some compact set Z. Using the assumptions (16)-(17), one clearly has:∥∥x(0) − x̂(0)∥∥ :=
∥∥x(0) −F(Zreel(x

(0), ũ)
)∥∥

≤ ‖x(0) −F(Z)‖+ ‖F(Z)−F(zreel)‖

≤ εx + max
Z∈Z

∥∥∥∥∂F∂Z (Z)

∥∥∥∥ · ‖Z − Zreel‖ ≤ εx +
√
nz ·M(γ) · γ



where Z := Z + B(0, γ) and where M(γ) is the maximum value of the continuous (by

construction) map
∂F
∂Z

over the compact set Z . �

Remark 4: Note that the upper bound εx involved in (16) can be used as a cost function

εx(N, nm, β) to be minimized in the decision variable (N, nm, β) which are the parameters of

the approximator. This obviously results in a static game in which the identification step appears

in the inner loop. This strengthens the relevance of having easy to solve identification problem

through the constrained QP formulation. Note also that the value of εx reflects to which extent

the map linking the regressor Z and the initial state is far from the set of maps described by the

structure (8). This is because no identification error can be affected to the optimization process

as the underlying problem is a quadratic programming one.

IV. BUILDING THE LEARNING DATA

Assume without loss of generality that one is focused on the identification problem associated

to the estimation of r = xi for some i ∈ {1, . . . , n}. Let us also assume that the set of relevant

values of the state vector x is contained in some hypercube, namely:

x ∈ X := Πn
i=1[x

min
i , xmaxi ] (19)

The learning data set E involved in the definition of the least squares problem (12) is obtained

through the following steps:

1) First, a set of initial states
{
x
(j)
0

}ng

j=1
is chosen. This can be obtained using uniform grid on

each interval [xmini , xmaxi ] of possible values of the i-th component of the state.

2) A set of ng control profiles
{
ũ(j)
}ng

j=1
; ũ(j) ∈ RNs·nu is also generated. Each profile

defines a control sequence over Ns > N sampling periods.

3) For each pair (x
(j)
0 , ũ(j)), the system is simulated over Ns sampling periods in order to generate

the corresponding state profiles:{
X(k, 0, x

(j)
0 , ũ(j)) , k ∈ {1, . . . , Ns}

}ng

j=1
(20)

4) The data described above enables, for each pair (j, k) ∈ {1, . . . , ng}×{N, . . . , Ns} to obtain:

• two sequences ỹ(j)(k), ũ(j)(k) that defines Z(j)(k) according to (3).

• the corresponding value of r(j)(k) according to

r(j)(k) := X
(
N, 0, X(k −N, x(j)0 , ũ(j)), ũ(j)

)



Finally, the learning data set E involved in the definition of the least squares problem (12) is

given by:

E :=
{(
r(j)(k), Z(j)(k)

)}
(j,k)∈{1,...,ng}×{N,...,Ns}

(21)

which is obviously a discrete set of cardinality nE that is given by:

nE := ng · (Ns −N + 1) (22)

V. ILLUSTRATIVE EXAMPLES

In this section, illustrative examples are proposed in order to give concrete instantiations of the

different steps of the proposed framework.

A. Example 1

Let us consider the famous Van der Pol oscillator which is governed by:

ẋ1 = −x2 ; ẋ2 = 4x1 + (1− x21)x2 ; y := x1 + x2 + w (23)

where w is a measurement noise assumed here to be white, Gaussian with variance σ = 0.2.

Typical behavior of the resulting noisy measurement is shown in Figure 1 (left subplot) together

with typical corresponding level of the noise (right subplot). The basic sampling period is taken

equal to τ = 0.1 sec. The bounds on the state components leading to the definition of the subset

X are given by X := [−2,+2]× [−5,+5] which obviously enhances the nonlinear character of

the resulting identification problem (as 22 is not negligible when compared to 1 in the expression

of ẋ2). The learning data has been defined using a uniform grid containing ng = 42 = 16 initial

states. For each state, the system is simulated during Ns = 100 sampling period (10 sec) which,

according to (22) leads to a learning data E of cardinality nE = 16 × (100 − 10 + 1) = 1456.

Note that since there are two states x1 and x2 to be estimated, two identification problems are

solved and two nonlinear maps F (1) and F (2) are obtained for the reconstruction of these two

states according to x̂i(k) = F (i)(Z(k)), i ∈ {1, 2} The identification parameters N = 10 and

nm = 5 are used which leads to an observation horizon of N × τ = 1 sec and a functional basis

containing nb = 10 elements.

The quality of the resulting matching between the identified and the true values are shown in

the upper subplots of Figure 2 (left plots). Note that the identified values are obtained using



Fig. 1. Example 1. Typical behavior of the measured output and the corresponding noise. The Gaussian noise used in (23) is

generated with a variance σ = 0.2

an intentionally noised simulation data which enables one to inject the noise already in the

identification process resolving the trade-off at this early stage. The lower subplots of Figure 2

(Left) shows the gradient of the resulting nonlinear functions Γ(1) and Γ(2) that are involved in

(8) for the two components of the state respectively. One may note the highly nonlinear character

of the map Γ(1) in particular. An estimation scenario is shown in Figure 2 (right plots) where

the initial state of the system and the observer are respectively given by x(0) = (2, 0.5)T and

x̂(0) = (1, 0.7)T and where a new generation of the measurement noise is used (different from

the ones used to construct the learning data set). Note that the correction of the observer begins

only when data is obtained that covers the observer horizon length. This means that the first

correction occurs at t = (N − 1)τ = 0.9 sec. It is worth emphasizing here that the observer

design is done using only the output measurement related correction in order to concentrate

on the contribution of the present paper. It goes without saying that a balanced estimation in

which the output-related estimation and the state equation related estimation can be implemented

following (7) or more generally the standard ideas of [8], [13] and the references therein.

B. Example 2

Let us consider the problem of estimating the state of a dynamic model describing the Escherichia

Coli Strain. Many knowledge-based model derivation attempts have been investigated in order to



Fig. 2. Example 1. (Left): A picture showing the results of the nonlinear identification procedure using a learning set of

cardinality nE = 1456. The upper plots compares the estimated states based on the identified maps F (1) and F (2) while the

lower plots show the gradient of the corresponding monotonic functions Γ(1) and Γ(2) (Right) : Typical results of the state

estimation using a purely output-related estimation. The observer begins once the first N = 10 first measurements are acquired

(first correction at t = 0.9 sec). This estimation is obtained while a Gaussian measurement noise w of variance σ = 0.2 is

injected (see figure 1 for a typical behavior of the noise)

better understand the mechanisms that underline the evolution of the population [4], [10] or to

develop model-based state observers [12]. The dynamic model that is commonly used in deriving

dynamic state estimation involves the E. Coli strain X that grows on the limiting substrate S

while yielding a final intracellular product: the β-galactosidae P . The model is given by:

Ẋ = µ(S)X − kd exp(−kp
P

)X (24)

Ṡ = −ysµ(S)X − kmX (25)

Ṗ = ypµ(S)
I

I + kI
X − kd exp(−kp

P
)P (26)

where µ is the growth rate that is modelled using classical Monod-type relation such as µ(S) :=
µmS

ks + S
where µm is the maximum specific growth rate for the cell growth (in h−1). ks is the

half saturation constant; kp and kd are constants involved in the Arrhenius-type death kinetic that

depends on P . km is a maintenance rate that describes the energy required for normal upkeep and

repair. ys, yl [used in the measurement equation (27) below] and yp are identified coefficients.

I stands for the arabinose inducer that is assumed to be constant (no degradation). The output

measurement vector is given by y := (X + w1, L + w2)
T where L is the light produced by the



bioluminescence that is linked to the state variables by the following expressions:

L = yl · µ(S)
I

I + kl
XP (27)

while w1 and w2 are measurement noises that are taken here white, Gaussian and of variances

σ1 and σ2 respectively. The values of the model parameters used in the sequel can be found in

[12].

For this example, the framework described above can be used to construct a reduced observer.

More precisely, it is shown hereafter that there is a satisfactory solution to the underlined

identification problem for any learning set that is constructed using an admissible set of ini-

tial conditions of the form X(X0) := {X0} × [0, 5] × [0, 0.3] with the following parameters

τ = 0.2 ; Ns = 40 ; N = 3 ; nm = 5 ; ng = 25. This means that for each initial value X0 of the

E. Coli strain, ng = 25 simulations of the system with different initial states (sharing all the same

value X0 and different values of P0 and S0) is simulated during 8 time units (= Nsτ = 40×0.2)

hence generating a learning set of cardinality nE given by nE = 25× (40− 3) = 925. Note that

two identification problems are to be defined and solved using the following definition of the

quantities r1 and r2 to be identified:

r1 := P ; r2 = µ(S) ·X (28)

Note that if r1 and r2 are well estimated then µ(S) can also be well estimated since X is

assumed to be measured (reduced observer). Note also that since only µ(S) is involved in the

system equation, S is necessarily estimated through µ(S).

The identification results are shown on Figure 3 for two different values of X0 ∈ {0.5, 2}. One

can appreciate that a good match between the estimated r̂i and the simulated ri for i = 1, 2 is

obtained over the 925 learning set while using a rather economic parametrization (N = 3 and

nm = 5). This clearly shows that the proposed methodology enables us to perform the estimation

scheme provided that the initial value of the state component X is measured at the beginning

of the batch.

Figure 4 shows typical behavior of the output-based state estimation that used the two nonlinear

maps identified above. Note that the noises w1 and w2 that affect the measured signals used in

the construction of the regressor are given by σ1 = 0.1 and σ2 = 20. This leads to a noise level

that can be observed in Figure 5.



(a) Identification results for X(0) = 0.5 (b) Identification results for X(0) = 2.0

Fig. 3. Example 2. Examples of Identification results for r1 = P and r2 = µ(S) ·X for two different values of the E. Coli

strain X0 ∈ {0.5, 2}.

Fig. 4. Example 2. Behavior of the output-based estimation of

r1 = P and r2 = µ(S) ·X . The measurement noise variances

are respectively given by σ1 = 0.1 and σ2 = 20. Typical

behavior of the measurement noise can be observed oin Figure

5.

Fig. 5. Example 2: Typical behavior of the measurement noise

used in the simulation of the state estimation depicted in Figure

4.

VI. CONCLUSION AND FUTURE WORK

In this paper, a nonlinear approximator has been proposed for a class of nonlinear relationships

and has been applied in the context of moving-horizon observer design. The proposed scheme

offers the advantage of requiring only a constrained QP problem solution and can therefore be



efficiently integrated in the inner loop of a global scheme aiming at optimizing the approximator

parameters.

A potential research line is to investigate a systematic computation of the optimal triplet (N, τ, β)

defining the nonlinear approximator. Indeed, a convenient (optimal) choice of these parameters

is intimately linked to the noise level as well as the uncertainty structure. A good knowledge of

the latter is crucial to obtain pertinent choice of these parameters which had been found in this

paper by trial and error approach.

Another research track concerns the use of sparse identification techniques in order to derive low

dimensional parameter vector. This can be greatly facilitated by the availability of the Lagrange

multipliers of the QP problem that underline the identification step.
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