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Conditions for detectability in distributed
consensus-based observer networks

V. Ugrinovskii

Abstract—The paper discusses fundamental detectability prop-
erties associated with the problem of distributed state esti-
mation using networked observers. The main result of the
paper establishes connections between detectability of the plant
through measurements, observability of the node filters through
interconnections, and algebraic properties of the underlying
communication graph, to ensure the interconnected filtering error
dynamics are stabilizable via output injection.

I. I NTRODUCTION

An emerging trend in the area of distributed estimation
is concerned with the development of consensus-based dis-
tributed filtering algorithms to allow each node to carry out
estimation by reaching a consensus with its neighbours. An
interest in this topic is due to advantages that distributed
processing of measurements in sensor networks offers, over
transmitting the raw data.

A number of sufficient conditions have been proposed
recently to address the design of such algorithms [9], [10],
[12]. These conditions typically make use of Linear Matrix
Inequalities or matrix Riccati equations and inequalitiesto
guarantee a suboptimal level of filter performance and/or
consensus performance between node estimators. However, the
problem of establishing feasibility of these LMI/Riccati design
conditions from graph theoretical and systems theoretical
viewpoints remains an essentially open problem.

In this paper, we consider the detectability problem for
a distributed state estimator which observes a linear plant
through a network of interconnected filters. The problem is
related to a large class of distributed estimation problemsthat
employ interconnected observers, such as Kalman filters or
H∞ filters. In particular, we are interested in the situation
where the plant is not detectable from individual node’s
measurements. For example, multi-vehicle Simultaneous Lo-
calization and Mapping (SLAM) problems exhibit this feature;
see the example in Section II-B and [4]. It was alluded in [10]
that in such situations the nodes must rely on interconnections
to ensure the state estimation problem is feasible. This paper
presents a rigorous analysis of this claim.

Our chief objective is to establish conditions which guaran-
tee detectability of a large scale system describing observer
error dynamics in consensus based distributed estimation
problems. Such a detectability property is necessary for these
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estimation problems to have a solution. The main results in this
paper characterize the detectability property of this large scale
system in terms of detectability properties of its components.
Namely, we present a necessary condition for the large scale
detectability expressed in terms of the ‘local’ detectability
of the plant through individual filter measurements, and the
observability properties of the node filters through intercon-
nections. Secondly, we show that these local properties are
also sufficient for the distributed detectability propertyto hold
if the communication graph has a spanning tree. We also
extend these results to a more general case where the graph
is weakly connected but is not spanned by a tree, and show
that in this case the problem reduces to establishing distributed
detectability of certain clusters within the system. For this, we
also give necessary and sufficient conditions.

Our results show that in the distributed estimation scenario,
the algebraic properties of the graph Laplacian must be
complemented by observability properties of the node filters
through interconnections. This observation is in contrastto
networks of one- or two-dimensional agents, and networks
consisting of identical agents, where the ability of the system
to reach consensus is determined by the graph Laplacian
matrix alone [6], [7].

One immediate outcome of the above results concerns the
design of communications between the filter nodes. In practice,
it is often desirable to keep transmission of information
between network nodes to a minimum, e.g., to improve the
data throughput, save power, etc. The results of this paper
indicate that, as far as the detectability of the entire system
is concerned, the observability of the filters through intercon-
nections must be an essential design consideration.

In regard to the role of communications, it is worthwhile
to compare our conclusions with those in [8]. The approach
undertaken in that reference is to construct interconnections
to allow separation between the agents’ closed loop control
dynamics and their estimator error dynamics. In addition
it achieves separation between the agents’ estimator error
dynamics. This leads to the conclusion that for the estimators
to be able to converge, the system dynamics must be detectable
from each individual node’s measurements; see [8, Theorem
4]. In contrast, this paper considers the case where the esti-
mator error dynamics remain coupled under communications.
Coupling between the error dynamics allows us to show that
the system can be detectable, even when the plant is not
detectable from individual node’s measurements.

The paper is organized as follows. In Section II we formu-
late the problem. The main results of the paper are given in
Section III. In Section IV, an illustrative example is presented.
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Brief conclusions are given in Section V. A conference version
of this paper was presented at the 51st IEEE CDC [11].

Notation: Throughout the paper,Rn denotes the real Eu-
clideann-dimensional vector space. The symbol′ denotes the
transpose of a matrix or a vector.KerA denotes the null-space
of a matrixA. 0k , [0 . . . 0]′ ∈ Rk, 1k , [1 . . . 1]′ ∈ Rk,
andIk and0n×k are the identity matrix and the zero matrix;
we will omit the subscripts when this causes no ambiguity. The
symbol⊗ denotes the Kronecker product of matrices, or the
tensor product of two vector spaces.

∏N
l=1 Pl will denote the

Cartesian product ofN vector spacesP1, . . . ,PN . dimX

is the dimension of a finite dimensional vector spaceX .
diag[P1, . . . , PN ] denotes the block-diagonal matrix, whose
diagonal blocks areP1, . . . , PN .

II. T HE PROBLEM FORMULATION

A. Graph theory

Consider a filter network withN nodes and a directed graph
topology G = (V,E); V = {1, 2, . . . , N}, E ⊂ V × V

are the set of vertices and the set of edges, respectively. The
notation(j, i) will denote the edge of the graph originating at
nodej and ending at nodei. In accordance with a common
convention [6], we consider graphs without self-loops, i.e.,
(i, i) 6∈ E. However, each node is assumed to have complete
information about its filter and measurements.

For eachi ∈ V, let Vi = {j : (j, i) ∈ E} be the
set of nodes supplying information to nodei, known as the
neighbourhood ofi. The cardinality ofVi, known as the in-
degree of nodei, is denotedpi; i.e., pi is equal to the number
of incoming edges for nodei. Nodei of a digraph is said to be
reachable from nodej if there exists a directed path originating
at j and ending ati. The graph is weakly connected if any
two nodes are connected by an undirected path; it is strongly
connected if its every node is reachable from any other node.

Let A = [aij ]
N
i,j=1 be the adjacency matrix of the digraph

G, i.e., aij = 1 if (j, i) ∈ E, otherwiseaij = 0. Throughout
the paper,L will denote theN × N Laplacian matrix of
the graphG, L = diag[p1, . . . , pN ] − A. Since G has
no self-loops, entries within each row ofL add up to 0.
Hence 0 is the eigenvalue ofL , and1N is the corresponding
eigenvector. This eigenvalue has multiplicity one if and only
if the interconnection graph has a spanning tree [7].

B. Motivating example: distributed estimation for SLAM

To motivate the distributed detectability problem in this
paper consider a simplified 2-D SLAM problem in which two
robotic vehicles are required to determine the position of a
static landmark as well as the position of each other. One of
the most basic models for such SLAM system is

[

ẋ
(1)
1

ẋ
(1)
2

]

=

[

ξ
(1)
x

ξ
(1)
y

]

,

[

ẋ
(2)
1

ẋ
(2)
2

]

=

[

ξ
(2)
x

ξ
(2)
y

]

,

[

ẋL
1

ẋL
2

]

=

[

0
0

]

, (1)

where x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 , xL

1 , x
L
2 are coordinates of the

robots 1, 2 and the landmark, respectively;ξx,1, ξy,1, ξx,2, ξy,2

are velocity inputs for the vehicles. The matrix form of (1) is

ẋ = Ax+B2ξ(t), x(0) = x0, (2)

where x = (x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 , xL

1 , x
L
2 )

′ is the state vec-
tor, and ξ(t) = (ξx,1, ξy,1, ξx,2, ξy,2)

′. Also in this example
A = 06×6, B2 = [I4 04×2]

′. Measurements used by each
robot consist of relative robot-to-landmark measurementsand
measurements of its own position (e.g., using GPS):

yi(t) = Cix(t) +Diξ(t) + D̄iξ
i(t), (3)

where ξ1(t), ξ2(t) are measurement noises,C1 =
[

−I2 02×2 I2
I2 02×2 02×2

]

, C2 =

[

02×2 −I2 I2
02×2 I2 02×2

]

, D1,2 = 04×4,

D̄1,2 = I4. With this notation, the SLAM problem reduces
to a state estimation problem in which each robot uses
measurements (3) to estimate the statex of the system (2).
However, it is easy to see that each of the matrix pairs(C1, A),
(C2, A) have undetectable modes, thus rendering standard
state estimation approaches infeasible.

A further analysis reveals that the undetectable subspace
of (C1, A) consists of vectors[0 0 a b 0 0]′ which indicates
that the position of robot 2 is not observable by robot 1. This
problem will not arise if the robots avail each other of their
measurements (since the pair([C′

1 C′
2]

′, A) is observable).
Another solution is to allow robot 2 to share the estimate of
its own position with robot 1, andvice versa. This leads us to
introduce the following distributed SLAM estimator,

˙̂x1 = Ax̂1 + L1(y1 − C1x̂1) +K1(ẑ2 −H1x̂1),
˙̂x2 = Ax̂2 + L2(y2 − C2x̂2) +K2(ẑ1 −H2x̂2). (4)

Here,x̂1, x̂2 denote the estimates of the vectorx computed by
robots1, 2, and ẑ1 = H2x̂1, ẑ2 = H1x̂2 are the estimates of
the robot 1 and 2 own positions, respectively, to be shared with
the neighbour;H1 = [02×2 I2 02×2], H2 = [I2 02×2 02×2].

Depending on the nature ofξ, ξi and the performance
objective, the estimators in (4) can be seen as Kalman filters
or H∞ filters. In both cases, the filter design is facilitated by
the fact that the pairs([C′

i Hi]
′, A) are observable, and0 is

the only state shared by the undetectable subspace of(Ci, A)
and the observable subspace of(Hi, A). We will show that
this condition is necessary and (under additional assumptions)
sufficient for detectability of a general class of distributed
estimator networks similar to (4).

The interconnection matricesH1, H2 given here are not
unique to guarantee detectability for the SLAM filter (4).
For example, it is easy to check that using the ‘weighted
disagreements’H(x̂2− x̂1), H(x̂1− x̂2) whereH = H1+H2,
instead of the ‘innovations’̂z2 −H1x̂1, ẑ1 −H2x̂2, will not
affect the observability and convergence properties of thefilter.
In general, we will see that the analysis of the entire observer
network and its implementation is considerably simpler if all
the agents utilize the same matrixH in their communication
protocols, and the detectabilty of the network is naturally
expressed in terms of detectability properties of each network
component. However, efficient communication protocols of
this form may not be so obvious to find. The results in this
paper aim at aiding in the development of such protocols.
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C. The distributed detectability problem

Consider the state estimation problem for a general system
of the form (2), using a network of filters connected according
to the graphG. In (2), x ∈ Rn is the state of the plant,
and ξ denotes a disturbance signal. The sensing nodei uses
measurements of the plant given by (3);ξi represents the
measurement uncertainty or the measurement noise at this
node,Ci, Di, D̄i are given matrices. Nodei computes its
estimate of the statex, denoted̂xi ∈ Rn, using the filter

˙̂xi = Ax̂i + Li(yi(t)− Cix̂i) +Ki

∑

j∈Vi

(Hix̂j −Hix̂i), (5)

x̂i(0) = 0,

HereHi, i = 1, . . . , N , are given matrices. The filter (5) is a
general form observer. According to (5), each node computes
its estimate of the plant statex from its local measurements
yi and the inputsHix̂j received from its neighbours, and also
communicates to the neighbours its outputsHkx̂i. The term
Hi(x̂j − x̂i) reflects the desire of each filter node to track the
plant by reaching consensus with its neighbours. The matrices
Li, Ki are the gain coefficients of the filter. Depending
on the nature of disturbances and performance objectives,
these coefficients can be determined so that the observers
(5) perform as distributed Kalman filters or distributedH∞

filters [9], [10].
In this paper we are not concerned with filter performance

against disturbances of a particular nature. We are interested in
necessary conditions for asymptotic convergence of every node
estimator (5) to the plant in the noise-free environment, which
is a natural requirement to ensure fidelity of the estimates.
Formally, it amounts to the existence of output injection
matricesLi, Ki, i = 1, . . . , N , such that the interconnected
system consisting of the error dynamics subsystems

ėi = (A− LiCi) ei +KiHi

∑

j∈Vi

(ej − ei) (6)

is globally asymptotically stable; hereei = x − x̂i is
the local estimation error at nodei. Let Ā = IN ⊗ A,
C̄ = diag [C1, . . . , CN ], and H̄ =

[

H̄ij

]

i,j=1,...,N
where

H̄ij = piHi if j = i, and H̄ij = −aijHi if j 6= i, then this
requirement amounts to the detectability of([C̄′, H̄ ′]′, Ā).

From now on, we will assume identical matricesHi for all
filters (5),Hi = H . ThenH̄ = L ⊗H . The intuition behind
this assumption is drawn from the example in Section II-B
where the detectability of the network was not affected when
we replaced communication protocol matrices for both agents
with judiciously selected identical matrices. In mobile net-
works with varying topology using the same matrixH may
have some merits. E.g., this enables all agents to use the same
communication protocol, irrespective their location.

In the next section, we relate detectability of([C̄′, H̄ ′]′, Ā)
with detectability properties of(Ci, A), observability of
(H,A), and properties of the graph LaplacianL .

III. T HE MAIN RESULTS

A. Geometric conditions for distributed detectability

First let us recall the definition of the undetectable subspace
of a matrix pair (G,F ), F ∈ Rn×n, G ∈ Rm×n. Let

αF (s) denote the minimal polynomial ofF , i.e., the monic
polynomial of least degree such thatαF (F ) = 0 [13], factored
asαF (s) = α−

F (s)α
+
F (s); the zeros ofα−

F (s) andα+
F (s) are

in the open left and closed right half-planes of the complex
plane, respectively. Note thatKerα−

F (F )∩Kerα+
F (F ) = {0},

andKerα−
F (F ) + Kerα+

F (F ) = Rn [13]. The undetectable
subspace of(G,F ) is the subspace

⋂n

l=1 Ker(GF l−1) ∩
Kerα+

F (F ) [2]. WhenF is the state matrixA, the notationOG

will refer to the observability matrix associated with(G,A),
OG =

[

G′ (GA)′ . . . (GAn−1)′
]′
.

Consider the undetectable subspaces of(Ci, A) and the
unobservable subspace of(H,A), which will be denotedCi,
OH . Furthermore, letŌ denote the unobservable subspace of
(H̄, Ā), Ō ,

⋂nN

l=1 Ker(H̄Āl−1). The following general result
shows that the large-scale system (6) is detectable if and only
if every combination of undetectable states of the pairs(Ci, A)
forms an observable state of(H̄, Ā).

Lemma 1: ([C̄′, H̄ ′]′, Ā) is detectable if and only if

Ō ∩

N
∏

i=1

Ci = {0}. (7)

The following lemma will be used in the proof of Lemma 1.
Lemma 2: Recall thatĀ = IN ⊗A. The following holds

Kerα+
Ā
(Ā) = (Kerα+

A(A))
N . (8)

The proof of this lemma is based on the observation that
αA(s) is the minimal polynomial forĀ, and alsoα+

Ā
(s) =

α+
A(s).
Proof of Lemma 1: Using Theorem 65 [2, p.259], and

the fact thatKer

[

P

Q

]

= KerP ∩ KerQ, the condition of

detectability of([C̄′, H̄ ′]′, Ā) can be equivalently written as
(

⋂nN

l=1 Ker(C̄Āl−1)
)

∩ Kerα+
Ā
(Ā) ∩ Ō = {0}. Therefore to

prove the lemma, we need to show that
(

nN
⋂

l=1

Ker(C̄Āl−1)

)

∩Kerα+
Ā
(Ā) =

N
∏

i=1

Ci. (9)

First, consider the set
⋂nN

l=1 Ker C̄Āl−1 and take an arbitrary
vector x in that set, partitioned asx = [x′

1 . . . x′
N ]′, xi ∈

Rn. Given thatC̄ and Ā are block diagonal, the condition
x ∈

⋂nN

l=1 Ker C̄Āl−1 is equivalent toxi ∈ KerCiA
l−1, for

all i = 1, . . . , N and all l = 1, . . . , nN . This impliesxi ∈
KerOCi

for all i = 1, . . . , N . Therefore,
⋂nN

l=1 Ker C̄Āl−1 ⊆
∏N

i=1 KerOCi
.

Conversely, takeyi ∈ KerOCi
. Using the Cayley-

Hamilton theorem, this implies thaty = [y′1 . . . y′N ]′ ∈
Ker C̄Āl−1 for all l = 1, . . . , nN . This leads to the
conclusion that

∏N

i=1 KerOCi
⊆
⋂nN

l=1 Ker C̄Āl−1. Hence,
⋂nN

l=1 Ker C̄Āl−1 =
∏N

i=1 KerOCi
.

To complete the proof, we now refer to Lemma 2, where
we showed thatKerα+

Ā
(Ā) = (Kerα+

A(A))
N . Since by

definition, Ci = KerOCi
∩ Kerα+

A(A), then (9) follows, as
required. ✷

Remark 1: One can see from this proof that Lemma 1 holds
in a more general case where the matricesHi are not identical.
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Lemma 3: Recall thatO is the unobservable subspace of
the pair(H̄, Ā). The following holds

Ō = (KerL )⊗Rn +

(

n
⋂

l=1

Ker(HAl−1)

)N

. (10)

Proof: First we observe that̄O = Ker (L ⊗OH). Indeed,
note that(L ⊗H)(I ⊗A)l−1 = L ⊗ (HAl−1). HenceŌ =
Ker

[

(L ⊗H)′ (L ⊗ (HA))′ . . . (L ⊗ (HAnN−1))′
]′
.

This implies thatx = [x′
1 . . . x′

N ] ∈ Ō if and only if
∑

j∈Vi

HAl−1(xi − xj) = 0, l = 1, . . . , nN. (11)

By the Hamilton-Caley theorem, for alll ≥ n

one can find constantsa1,l, . . . , an,l, such that Alz =
∑n

ν=1 aν,l(A
ν−1z) ∀z ∈ Rn. Using this general identity,

we establish that for alll ≥ n,

∑

j∈Vi

HAl(xi − xj) =

n
∑

ν=1

aν,l





∑

j∈Vi

HAν−1(xi − xj)



 .

Hence, (11) holds for alll = 1, . . . , nN if and only if it holds
for all l = 1, . . . , n. This proves thatŌ = Ker (L ⊗OH).

Using this representation ofŌ and the fact that
⋂n

l=1 Ker(HAl−1) = OH , the identity (10) can be re-written
as

Ker (L ⊗OH) = (KerL )⊗Rn + (OH)N . (12)

To prove (12) we first show thatKerL ⊗ Rn + (OH)N ⊆
Ker (L ⊗OH) . It suffices to check this for elements of
the subspaces(KerL ) ⊗Rn and (OH)N , separately. Every
element of(KerL )⊗Rn is a vector of the formb⊗z, where
b ∈ KerL , and z ∈ Rn. Therefore(L ⊗ OH)(b ⊗ z) =
L b ⊗ OHz = 0. Also, choose arbitrary elements ofOH , hi,
i = 1, . . . , N . Thenh = [h′

1 . . . h′
N ]′ ∈ (OH)N , and

(L ⊗OH)h =







∑

j∈V1
OH(h1 − hj)

...
∑

j∈VN
OH(hN − hj)






= 0.

The inclusionKerL ⊗Rn + (OH)N ⊆ Ker (L ⊗OH) then
follows.

To prove that this inclusion is in fact the identity, and
thus complete the proof of the lemma, we now show that
the subspaces on both sides of the inclusion have the same
dimension, that is

dim((KerL )⊗Rn+(OH)N ) = dimKer (L ⊗OH) . (13)

To prove this, letdL , dO be the dimensions of the spaces
KerL , OH , respectively. The following identity holds [13]

dim((KerL )⊗Rn + (OH)N )

= ndL +NdO − dim
(

((KerL )⊗Rn) ∩ (OH)N
)

.

To find the last term in the above equation, observe that a
nonzerox belongs to((KerL )⊗Rn) ∩ (OH)N if and only
if it admits the decompositionx = [b1z

′ . . . bNz′]′ for some
z ∈ Rn, z 6= 0 andb = [b1 . . . bN ]′ ∈ KerL , b 6= 0, and also
biOHz = 0 for all i = 1, . . . , N . Sinceb 6= 0, this implies that

z ∈ OH . Hence,((KerL )⊗Rn)∩(OH)N = (KerL )⊗OH .

Thus, we conclude thatdim((KerL ) ⊗ Rn + (OH)N ) =
ndL + (N − dL )dO .

On the other hand,dimKer(L ⊗ OH) = nN − (N −
dL )(n− dO) = ndL + (N − dL )dO . Therefore, (13) holds.
This shows that the statement of the lemma holds true.✷

Our first main result, given below, presents necessary con-
ditions for the detectability of the pair([C̄′, H̄ ′]′, Ā).

Theorem 1: Suppose the pair([C̄′, H̄ ′]′, Ā) is detectable.
Then, the following statements hold:

(i)
⋂N

i=1 Ci = {0};
(ii) OH ∩ Ci = {0} for all i = 1, . . . , N ;
(iii) rankOH ≥ maxi dimCi.

Proof: (i) Supposez ∈
⋂N

i=1 Ci. Then it follows from
Lemma 3 that1N ⊗ z ∈ (KerL ) ⊗ Rn ⊆ Ō. Also by
definition,1N⊗z ∈

∏N
i=1 Ci. Hence, it follows from Lemma 1

that1N ⊗ z = 0 which impliesz = 0. This proves claim (i).
(ii) Supposeyi ∈ OH ∩ Ci and consider the vectory =

[δ1i δ2i . . . δNi]
′ ⊗ yi, whereδsi is the Kronecker symbol.

By definition,y ∈ (OH)N ⊆ Ō andy ∈
∏N

i=1 Ci. Hence, by
Lemma 1,y = 0. This impliesyi = 0, which proves claim
(ii).

(iii) From (ii), n ≥ dim(OH + Ci) = dimOH + dimCi.

SincerankOH = n− dimOH , the claim follows. ✷

Statement (ii) of Theorem 1 means that for the distributed
output injection problem stated in Section II to have a solution,
every undetectable state of(Ci, A) must necessarily be an
observable state of(H,A). Also, every unobservable state of
(H,A) must be a detectable state of one of the pairs(Ci, A).

B. Detectability over graphs spanned by trees

Our second main result shows that the conditions given in
statements (i) and (ii) of Theorem 1 are in fact, sufficient for
the detectability of([C̄′ H̄ ′]′, Ā), provided the graph Laplacian
matrix has a zero eigenvalue of multiplicity one. As is well
known, this condition holds if and only if the interconnection
graph has a spanning tree [7]. The result given in Theorem 2
below presents conditions on the graph connectivity, which
ensure that each node observer receives a necessary comple-
mentary information through the interconnections.

Theorem 2: Suppose the interconnection graphG has a
spanning tree. If the conditions given in statements (i) and(ii)
of Theorem 1 hold, then the pair([C̄′ H̄ ′]′, Ā) is detectable.

Proof: Since G has a spanning tree, then the geometric
multiplicity of the zero eigenvalue of the graph Laplacian
matrix L is equal to 1. Hence the eigenvector1N is the
only eigenvector (modulo scaling) corresponding to the zero
eigenvalue ofL . From this fact and Lemma 3, it follows that
every element ofŌ has the form[(z + h1)

′ . . . (z + hN )′]′,
whereh1, . . . , hN ∈ OH , andz is an arbitrary vectorz ∈ Rn.

Suppose there exists a vector of the above form which also
belongs to

∏N
j=1 Cj . This implies the existence ofz ∈ Rn,

andh1, . . . , hN ∈ OH such that∀i = 1, . . . , N,

OCi
z = −OCi

hi, α+
A(A)z = −α+

A(A)hi. (14)

However, property (i) of Theorem 1 means that the matrix
[O′

C1
. . . O′

CN
α+
A(A)

′ . . . α+
A(A)

′]′ of the system (14) has
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full row rank. Therefore, ifz ∈ Rn, andh1, . . . , hN ∈ OH

satisfy (14), thenz must be a linear combination of the vectors
h1 . . . , hN . Thus,z ∈ OH and alsoz + hi ∈ OH for all i.
Using property (ii) of Theorem 1, we conclude thatz+hi = 0
for all i = 1, . . . , N . Hence (7) holds. According to Lemma 1,
this means that the pair([C̄′ H̄ ′]′, Ā) is detectable. ✷

We now specialize Theorem 2 to some special distributed
observer topologies commonly considered in the literature.
The result of Corollary 2 applies in the situation where the root
node of the graph plays the role of the leader who estimates
the plant and then passes its estimates to other nodes [5]. On
the contrary, Corollary 1 applies to leaderless observer net-
works such as the networks connected over balanced strongly
connected graphs considered in [10].

Corollary 1: Suppose(H,A) is observable. Also, suppose
the interconnection graphL has a spanning tree. If prop-
erty (i) of Theorem 1 holds, then the pair([C̄′ H̄ ′]′, Ā) is
detectable.

An immediate implication of Corollary 1 is that the observ-
ability of the pair (H,A) must be an essential design con-
sideration when choosing a suitable matrixH for information
exchange between the nodes in a leaderless network.

Corollary 2: Suppose the graphG has a spanning tree, with
nodei being the root node of the tree. Also, suppose(Ci, A)
is detectable at the root node. If property (ii) of Theorem 1
holds, then the pair([C̄′ H̄ ′]′, Ā) is detectable.

C. Detectability over graphs which are not spanned by a tree

We now restrict attention to weakly connected graphs which
fail to satisfy the connectivity assumptions of Section III-B1.
We show that in this case the system (6) is stabilizable via
output injection if and only if certain observer clusters within
the system have this property.

To characterize these clusters of observers, we first discuss
the relation between the structure of the interconnection graph
and the multiplicity of the zero eigenvalue ofL . The classical
result in the graph theory states that the multiplicity of the
zero eigenvalue of the Laplace matrix of an undirected graph
is equal to the number of connected components of the graph.
Recently, this result was extended to directed graphs [1], [3]. It
was shown in these references that the multiplicity of the zero
eigenvalue ofL is equal to the number of maximal reachable
subgraphs within the graph. To present these results, some
terminology from [3] is needed. For any vertexj, the reachable
subgraph ofj, R(j), is defined to be the vertex subgraph
containing nodej and all nodes reachable fromj. A vertex
subgraphR is a reach if it is a maximal reachable subgraph;
i.e., if R = R(i) for somei and there is noj 6= i such that
R(i) ⊂ R(j). A graph may consist of several reaches. For
each reachRs, the exclusive part ofRs is the vertex subgraph
Ps = Rs\ ∪r 6=s Rr. The common part ofRs is the vertex
subgraphQs = Rs\Ps.

It follows from these definitions that reaches have no
outgoing edges. The estimators within a reachRs do not share
information with estimators at nodesj 6∈ Rs but can receive

1If the graph is disconnected, the estimation problem decouples into
separate estimation problems [10, Proposition 1].

information from these nodes. On the other hand, the observers
at nodesi ∈ Ps do not receive information from nodesj 6∈ Ps

since by definitioni ∈ Ps is not reachable fromj 6∈ Ps.
Lemma 4 (Corollary 4.2, [3]): The algebraic and geomet-

ric multiplicity of the eigenvalue 0 ofL is equal to the number
of reaches in the graphG. Furthermore,KerL has a basis
b1, . . . , bk whose elements satisfy the conditions:

(i) bsi = 0 for i ∈ G\Rs, s = 1, . . . , k;
(ii) bsi = 1 for i ∈ Ps, s = 1, . . . , k;
(iii) 0 < bsi < 1 for i ∈ Qs, s = 1, . . . , k;
(iv)

∑k
s=1 b

s = 1N .

Theorem 3.2 in [3] shows that by permuting rows and
columns,L can be represented as

L =











L1 . . . 0 0

0
. . . 0 0

0 . . . Lk 0
F1 . . . Fk R











, (15)

where the firstk rows of blocks correspond to exclusive
subgraphsPs ⊂ G, and the remaining rows correspond to
the vertices from∪k

s=1Qs. Since exclusive subgraphsPs are
not reachable from the nodes outsidePs, each matrixLs,
s = 1, . . . , k, is a Laplacian matrix of the corresponding
subgraphPs, and its zero eigenvalue has multiplicity 1.
Also, R is shown to be invertible. In accordance with this
partition, after the permutation the vectorsbs have the form
bs =

[

0′
l1+...+ls−1

1′
ls

0′
ls+1+...+lk

(f s)′
]′
, where lq =

dimLq is the cardinality of the vertex set ofPq. Also,
f s = −R−1Fs1ls ∈ Rr, r being the cardinality of the vertex
set of∪k

s=1Qs. From Lemma 4, the vectorf s can be further
partitioned f s = [(f s

1 )
′ . . . (f s

k)
′]′, where f s

q designates
the component corresponding to the nodes ofQq after the
permutation. Therefore,f s

q = 0 for q 6= s, and all the entries
of f s

s = [f s
s,1 . . . f s

s,rs
]′ corresponding to the vertices inQs

satisfy 0 < f s
s,i < 1; rs denotes the cardinality of the vertex

set ofQs.
Theorem 3: Suppose the pair([C̄′, H̄ ′]′, Ā) is detectable.

Then, for every reachRs ⊂ G:

(i)
⋂

i∈Rs
Ci = {0};

(ii) OH ∩ Ci = {0} for all i ∈ Rs.

Proof: Statement (ii) follows from Theorem 1. Now sup-
pose that there exists a reach which fails to satisfy condition
(i). Without loss of generality, takeR1 to be this reach,
with the exclusive partP1, and the common partQ1. Our
assumption means that there existsz ∈ Rn such thatz 6= 0

andz ∈
(
⋂

i∈P1
Ci

)
⋂

(

⋂

i∈Q1
Ci

)

. Note that this impliesz ∈
⋂

i∈P1
KerOCi

, z ∈
⋂

i∈Q1
KerOCi

, andz ∈ Kerα+
A(A).

Consider the vectory = b1 ⊗ z ∈ RnN . From Lemma 3,
y ∈ Ō, and y 6= 0 since z 6= 0. We now show thaty ∈
∏N

i=1 Ci. According to the discussion preceding the theorem,
this vector can be partitioned as followsy = [y′1 . . . y

′
N ]′,

whereyi = z for i ∈ P1, yi = f1
1,iz for i ∈ Q1, andyi = 0

for i ∈ V\R1. Therefore, for every nodei ∈ V\R1, we have
OCi

yi = 0. Also, for i ∈ P1, OCi
yi = OCi

z = 0 since
z ∈

⋂

i∈P1
KerOCi

. Similarly, OCi
yi = 0 for i ∈ Q1. Since

z ∈ Kerα+
A(A), thenyi ∈ Kerα+

A(A). Thus,yi ∈ Ci ∀i.
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We have shown thaty ∈ Ō ∩
∏N

i=1 Ci. This leads to a con-
tradiction with the condition that([C̄′, H̄ ′]′, Ā) is detectable;
see (7). This proves the statement of the theorem. ✷

Theorem 4: Suppose the pair(H,A) is observable. If
for every reachR in G,

⋂

i∈R Ci = {0}, then the pair
([C̄′, H̄ ′]′, Ā) is detectable.

Proof: Suppose([C̄′, H̄ ′]′, Ā) is not detectable, and there-
fore there exists a nonzero vectory ∈ ŌH ∩

∏N
i=1 Ci.

From Lemma 3, since the pair(H,A) is observable, then
ŌH = KerL ⊗Rn. Hence, the vectory can be represented
asy = b ⊗ z, wherez ∈ Rn, andb =

∑k

s=1 csb
s; c1, . . . , ck

are scalar constants. Furthermore, using Lemma 4, we have
bi = cs if i ∈ Ps, bi = csf

s
s,i if i ∈ Qs, and bi = 0

otherwise. Sincey 6= 0, this implies that in the representation
y = b ⊗ z, the vectorsz, b are nonzero. It further follows
from the conditionb 6= 0 that for at least ones ∈ {1, . . . , k},
cs 6= 0 and csf

s
s,i 6= 0 for all i ∈ Qs. Since the condition

y ∈
∏N

i=1 Ci implies csz ∈ Kerα+
A(A), csOCi

z = 0 for
i ∈ Ps and csf

s
s,iOCi

z = 0 for i ∈ Qs, this leads to the
conclusion thatz ∈ ∩i∈Rs

Ci, which contradicts the condition
∩i∈Rs

Ci = {0}. Hence([C̄′, H̄ ′]′, Ā) must be detectable.✷
Remark 2: Since a digraph spanned by a tree is a reach,

the result of Corollary 1 can be seen as a special case of
Theorem 4.

IV. EXAMPLE

In this section, we revisit Example 1 presented in [10]. The
state equation of the reference plant in that example is 6-
dimensional and is governed by the6× 6 state matrix

A =

















0.3775 0 0 0 0 0
0.2959 0.3510 0 0 0 0
1.4751 0.6232 1.0078 0 0 0
0.2340 0 0 0.5596 0 0

0 0 0 0.4437 1.1878 −0.0215
0 0 0 0 2.2023 1.0039

















.

The plant is observed by the network consisting of sixH∞

filters of the form (5) connected in the topology of a directed
ring. The 1st filter measures the 1st and the 2nd coordinates
of the state vector, the 2nd filter measures the 2nd and the 3rd
coordinates, etc, with the last filter taking measurements of the
6th and the 1st coordinates. In particular,C2 = [02 I2 02×3],
C4 = [02×3 I2 02].

It can be directly verified that all eigenvalues ofA are
in the right half-plane, hence at every node of the network,
the unobservable modes ofA are not detectable. That is,
Ci = KerOCi

. Furthermore,KerOC2
is spanned by the

vectorsd4, d5, andd6, while KerOC4
is spanned byd2, d3;

here di is the ith vector in the canonical orthogonal basis
in Rn. Hence,∩6

i=1Ci = 0. Also, H = I6 in Example 1 of
[10]. This guarantees that(H,A) is observable. Finally, the 6-
node directed ring has a spanning tree. Thus, we have verified
all conditions of Corollary 1. According to Corollary 1, the
pair ([C̄′ H̄ ′]′, Ā) in this example is detectable, despite all
the individual pairs(Ci, A) having nontrivial undetectable
subspaces.

To confirm this finding, the detectability of the matrix pair
([C̄′, H̄ ′], Ā) was verified directly using Matlab. Also in [10],

a set of stabilizing output injection gains was found and the
stability of the system (6) was verified directly, thus confirming
our conclusion based on Corollary 1.

It follows from Corollary 1 that the detectability of
([C̄′, H̄ ′], Ā) will be preserved even if the filters transmit,
e.g., only the third and fifth coordinates of their respective
estimate vectors, that is, if instead ofH = I6, we take

H =

[

0 0 1 0 0 0
0 0 0 0 1 0

]

. With this H , (H,A) is observable,

and Corollary 1 is still applicable. This creates a potential for
reducing the amount of information transmitted by the nodes,
since only two coordinates of the estimate vectorsx̂j need
to be transmitted instead of all six coordinates. However, if
the filters transmit the 2nd and the 5th coordinates ofx̂j , the
pair (H,A) will not be observable and the system cannot be
guaranteed to be detectable. In fact, one can check directly
that the corresponding pair([C̄′, H̄ ′], Ā) is not detectable.
Therefore, the distributed filter of the form (5) cannot be
constructed in this case.

V. CONCLUSIONS

The paper presents necessary and sufficient conditions for
detectability of a linear plant via a network of state estima-
tors. We showed that the detectability of the entire system
can be ascertained from the detectability properties of the
filters’ pairs (Ci, A), along with the matching properties of
interconnections. Our results complement the existing results
on distributed consensus-based estimation by elucidatingthe
relationship between the network topology and detectabil-
ity/observability properties of the plant and filters. Future work
will investigate a similar relationship between the network
topology and controllability of multi-agent systems.
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