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Design of Optimal Sparse Feedback Gains via
the Alternating Direction Method of Multipliers

Fu Lin, Makan Fardad, and Mihailo R. Jovanović

Abstract

We design sparse and block sparse feedback gains that minimize the variance amplification (i.e.,

the H2 norm) of distributed systems. Our approach consists of two steps. First, we identify sparsity

patterns of feedback gains by incorporating sparsity-promoting penalty functions into the optimal con-

trol problem, where the added terms penalize the number of communication links in the distributed

controller. Second, we optimize feedback gains subject to structural constraints determined by the

identified sparsity patterns. In the first step, the sparsity structure of feedback gains is identified using

the alternating direction method of multipliers, which is a powerful algorithm well-suited to large

optimization problems. This method alternates between promoting the sparsity of the controller and

optimizing the closed-loop performance, which allows us to exploit the structure of the corresponding

objective functions. In particular, we take advantage of the separability of the sparsity-promoting penalty

functions to decompose the minimization problem into sub-problems that can be solved analytically.

Several examples are provided to illustrate the effectiveness of the developed approach.

Index Terms

Alternating direction method of multipliers, communication architectures, continuation methods, `1

minimization, optimization, separable penalty functions, sparsity-promoting optimal control, structured

distributed design.

I. INTRODUCTION

We develop methods for the design of sparse and block sparse feedback gains that minimize the

variance amplification of distributed systems. Our approach consists of two steps. The first step,

which can be viewed as a structure identification step, is aimed at finding sparsity patterns that

strike a balance between the H2 performance and the sparsity of the controller. This is achieved

by incorporating sparsity-promoting penalty functions into the optimal control problem, where

the added sparsity-promoting terms penalize the number of communication links. We consider

several sparsity-promoting penalty functions including the cardinality function and its convex
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relaxations. In the absence of sparsity-promoting terms, the solution to the standard H2 problem

results in centralized controllers with dense feedback gains. By gradually increasing the weight

on the sparsity-promoting penalty terms, the optimal feedback gain moves along a parameterized

solution path from the centralized to the sparse gain of interest. This weight is increased until

the desired balance between performance and sparsity is achieved. In the second step, in order

to improve the H2 performance of the structured controller, we solve an optimal control problem

subject to the feedback gain belonging to the identified structure.

We demonstrate that the alternating direction method of multipliers (ADMM) [1] provides an

effective tool for the design of sparse distributed controllers whose performance is comparable to

the performance of the optimal centralized controller. This method alternates between promoting

the sparsity of the feedback gain matrix and optimizing the closed-loop H2 norm. The advantage

of this alternating mechanism is threefold. First, it provides a flexible framework for incorporation

of different penalty functions that promote sparsity or block sparsity. Second, it allows us

to exploit the separability of the sparsity-promoting penalty functions and to decompose the

corresponding optimization problems into sub-problems that can be solved analytically. These

analytical results are immediately applicable to other distributed control problems where sparsity

is desired. Finally, it facilitates the use of descent algorithms for H2 optimization, in which a

descent direction can be formed by solving two Lyapunov equations and one Sylvester equation.

The `1 norm is widely used as a proxy for cardinality minimization in applied statistics, in

sparse signal processing, and in machine learning; see [1]–[4]. In the controls community, recent

work inspired by similar ideas includes [5]–[7]. In [5], an `0 induced gain was introduced to

quantify the sparsity of the impulse response of a discrete-time system. In [6], the weighted `1

framework was used to design structured dynamic output feedback controllers subject to a given

H∞ performance. In [7], an `1 relaxation method was employed for the problem of adding a

fixed number of edges to a consensus network.

Our presentation is organized as follows. We formulate the sparsity-promoting optimal control

problem and compare several sparsity-promoting penalty functions in Section II. We present

the ADMM algorithm, emphasize the separability of the penalty functions, and provide the

analytical solutions to the sub-problems for both sparse and block sparse minimization problems

in Section III. Several examples are provided in Section IV to demonstrate the effectiveness of

the developed approach. We conclude with a summary of our contributions in Section V.
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II. SPARSITY-PROMOTING OPTIMAL CONTROL PROBLEM

Consider the following control problem

ẋ = Ax + B1 d + B2 u

z = C x + Du (1)
u = −F x

where d and u are the disturbance and control inputs, z is the performance output, C =[
Q1/2 0

]T , and D =
[

0 R1/2
]T , with standard assumptions that (A,B2) is stabilizable and

(A,Q1/2) is detectable. The matrix F is a state feedback gain, Q = QT ≥ 0 and R = RT > 0

are the state and control performance weights, and the closed-loop system is given by

ẋ = (A − B2F )x + B1 d

z =

[
Q1/2

−R1/2F

]
x.

(2)

The design of the optimal state feedback gain F , subject to structural constraints that dictate

its zero entries, was recently considered by the authors in [8], [9]. Let the subspace S embody

these constraints and let us assume that there exists a stabilizing F ∈ S. References [8], [9] then

search for F ∈ S that minimizes the H2 norm of the transfer function from d to z,

minimize J(F )

subject to F ∈ S
(SH2)

where

J(F ) =

{
trace

(
BT

1 P (F )B1

)
, F stabilizing

∞, otherwise.
(3)

The matrix P (F ) in (3) denotes the closed-loop observability Gramian

P (F ) =

∫ ∞
0

e(A−B2F )T t (Q+ F TRF ) e(A−B2F )t dt (4)

which can be obtained by solving the Lyapunov equation

(A−B2F )T P + P (A−B2F ) = −
(
Q+ F TRF

)
. (5)

While the communication architecture of the controller in (SH2) is a priori specified, in this

note our emphasis shifts to identifying favorable communication structures without any prior
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assumptions on the sparsity patterns of the matrix F . We propose an optimization framework in

which the sparsity of the feedback gain is directly incorporated into the objective function.

Consider the following optimization problem

minimize J(F ) + γ g0(F ) (6)

where

g0(F ) = card (F ) (7)

denotes the cardinality function, i.e., the number of nonzero elements of a matrix. In contrast to

problem (SH2), no structural constraint is imposed on F ; instead, our goal is to promote sparsity

of the feedback gain by incorporating the cardinality function into the optimization problem. The

positive scalar γ characterizes our emphasis on the sparsity of F ; a larger γ encourages a sparser

F , while γ = 0 renders a centralized gain that is the solution of the standard LQR problem. For

γ = 0, the solution to (6) is given by Fc = R−1BT
2 P , where P is the unique positive definite

solution of the algebraic Riccati equation, ATP + PA+Q− PB2R
−1BT

2 P = 0.

A. Sparsity-promoting penalty functions

Problem (6) is a combinatorial optimization problem whose solution usually requires an in-

tractable combinatorial search. In optimization problems where sparsity is desired, the cardinality

function is typically replaced by the `1 norm of the optimization variable [10, Chapter 6],

g1(F ) = ‖F‖`1 =
∑
i, j

|Fij|. (8)

Recently, a weighted `1 norm was used to enhance sparsity in signal recovery [4],

g2(F ) =
∑
i, j

Wij|Fij| (9)

where Wij are non-negative weights. If Wij’s are chosen to be inversely proportional to the

magnitude of Fij , i.e., {Wij = 1/|Fij|, Fij 6= 0; Wij = 1/ε, Fij = 0, 0 < ε � 1}, then the

weighted `1 norm and the cardinality function of F coincide,
∑

i, jWij |Fij| = card (F ) . This

scheme for the weights, however, cannot be implemented, since the weights depend on the un-

known feedback gain. A reweighted algorithm that solves a sequence of weighted `1 optimization

problems in which the weights are determined by the solution of the weighted `1 problem in the

previous iteration was proposed in [4], [11]. This reweighted scheme was recently employed by
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the authors to design sparse feedback gains for a class of distributed systems [12], [13].

Both the `1 norm and its weighted version are convex relaxations of the cardinality function.

On the other hand, we also examine utility of the nonconvex sum-of-logs function as a more

aggressive means for promoting sparsity [4]

g3(F ) =
∑
i, j

log (1 + |Fij|/ε) , 0 < ε � 1. (10)

Remark 1: Design of feedback gains that have block sparse structure can be achieved by

promoting sparsity at the level of the submatrices instead of at the level of the individual elements.

Let the feedback gain F be partitioned into submatrices Fij ∈ Rmi×nj that need not have the

same size. The weighted `1 norm and the sum-of-logs can be generalized to matrix blocks by

replacing the absolute value of Fij in (9) and (10) by the Frobenius norm ‖·‖F of Fij . Similarly,

the cardinality function (7) should be replaced by
∑

i,j card (‖Fij‖F ) , where ‖Fij‖F does not

promote sparsity within the Fij block; it instead promotes sparsity at the level of submatrices.

B. Sparsity-promoting optimal control problem

Our approach to sparsity-promoting feedback design makes use of the above discussed penalty

functions. In order to obtain state feedback gains that strike a balance between the quadratic

performance and the sparsity of the controller, we consider the following optimal control problem

minimize J(F ) + γ g(F ) (SP)

where J is the square of the closed-loop H2 norm (3) and g is a sparsity-promoting penalty

function, e.g., given by (7), (8), (9), or (10). When the cardinality function in (7) is replaced by

(8), (9), or (10), problem (SP) can be viewed as a relaxation of the combinatorial problem (6)-(7),

obtained by approximating the cardinality function with the corresponding penalty functions g.

As the parameter γ varies over [0,+∞), the solution of (SP) traces the trade-off path between

the H2 performance J and the feedback gain sparsity g. When γ = 0, the solution is the

centralized feedback gain Fc. We then slightly increase γ and employ an iterative algorithm –

the alternating direction method of multipliers (ADMM) – initialized by the optimal feedback

matrix at the previous γ. The solution of (SP) becomes sparser as γ increases. After a desired

level of sparsity is achieved, we fix the sparsity structure and find the optimal structured feedback

gain by solving the structured H2 problem (SH2).

Since the set of stabilizing feedback gains is in general not convex [14] and since the matrix
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exponential is not necessarily a convex function of its argument [10], J need not be a convex

function of F . This makes it difficult to establish convergence to the global minimum of (SP).

Even in problems for which we cannot establish the convexity of J(F ), our extensive computa-

tional experiments suggest that the algorithms developed in Section III provide an effective means

for attaining a desired trade-off between the H2 performance and the sparsity of the controller.

III. IDENTIFICATION OF SPARSITY-PATTERNS VIA ADMM

Consider the following constrained optimization problem

minimize J(F ) + γ g(G)

subject to F − G = 0
(11)

which is clearly equivalent to the problem (SP). The augmented Lagrangian associated with the

constrained problem (11) is given by

Lρ(F,G,Λ) = J(F ) + γ g(G) + trace
(
ΛT (F − G)

)
+ (ρ/2)‖F − G‖2F

where Λ is the dual variable (i.e., the Lagrange multiplier), ρ is a positive scalar, and ‖ · ‖F
is the Frobenius norm. By introducing an additional variable G and an additional constraint

F −G = 0, we have simplified the problem (SP) by decoupling the objective function into two

parts that depend on two different variables. As discussed below, this allows us to exploit the

structures of J and g.

In order to find a minimizer of the constrained problem (11), the ADMM algorithm uses a

sequence of iterations

F k+1 := arg min
F

Lρ(F,Gk,Λk) (12a)

Gk+1 := arg min
G

Lρ(F k+1, G,Λk) (12b)

Λk+1 := Λk + ρ(F k+1 − Gk+1) (12c)

until ‖F k+1−Gk+1‖F ≤ ε and ‖Gk+1−Gk‖F ≤ ε. In contrast to the method of multipliers [1], in

which F and G are minimized jointly, (F k+1, Gk+1) := arg min
F,G

Lρ(F,G,Λk), ADMM consists of

an F -minimization step (12a), a G-minimization step (12b), and a dual variable update step (12c).

Note that the dual variable update (12c) uses a step-size equal to ρ, which guarantees that one

of the dual feasibility conditions is satisfied in each ADMM iteration; see [1, Section 3.3].

ADMM brings two major benefits to the sparsity-promoting optimal control problem (SP):
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• Separability of g. The penalty function g is separable with respect to the individual elements

of the matrix. In contrast, the closed-loop H2 norm cannot be decomposed into compo-

nentwise functions of the feedback gain. By separating g and J in the minimization of the

augmented Lagrangian Lρ, we can determine analytically the solution to the G-minimization

problem via decomposition of (12b) into sub-problems that only involve scalar variables.

• Differentiability of J . The square of the closed-loop H2 norm J is a differentiable function

of F [9]; this is in contrast to g which is a non-differentiable function. By separating g and

J in the minimization of the augmented Lagrangian Lρ, we can utilize descent algorithms

that rely on the differentiability of J to solve the F -minimization problem (12a).

We next provide the analytical expressions for the solutions of the G-minimization prob-

lem (12b) in Section III-A, describe a descent method to solve the F -minimization problem (12a)

in Section III-B, present Newton’s method to solve the structured problem (SH2) in Section III-C,

and discuss the convergence of ADMM in Section III-D.

A. Separable solution to the G-minimization problem (12b)

The completion of squares with respect to G in the augmented Lagrangian Lρ can be used to

show that (12b) is equivalent to

minimize φ(G) = γ g(G) + (ρ/2)‖G − V k‖2F (13)

where V k = (1/ρ)Λk +F k+1. To simplify notation, we drop the superscript k in V k throughout

this section. Since both g and the square of the Frobenius norm can be written as a summation

of componentwise functions of a matrix, we can decompose (13) into sub-problems expressed in

terms of the individual elements of G. For example, if g is the weighted `1 norm, then φ(G) =∑
i,j (γ Wij |Gij|+ (ρ/2)(Gij − Vij)2) . This facilitates the conversion of (13) to minimization

problems that only involve scalar variables Gij . By doing so, the solution of (13) can be

determined analytically for the weighted `1 norm, the sum-of-logs, and the cardinality function.

1) Weighted `1 norm: The unique solution to (13) is given by the soft thresholding opera-

tor (e.g., see [1, Section 4.4.3])

G?
ij =

{
(1 − a/|Vij|)Vij, |Vij| > a

0, |Vij| ≤ a
(14)

where a = (γ/ρ)Wij . For given Vij , G?
ij is obtained by moving Vij towards zero with the amount

(γ/ρ)Wij . In particular, G?
ij is set to zero if |Vij| ≤ (γ/ρ)Wij , implying that a more aggressive

August 20, 2018 To appear in IEEE Trans. Automat. Control



8

scheme for driving G?
ij to zero can be obtained by increasing γ and Wij and by decreasing ρ.

2) Cardinality function: The unique solution to (13) is given by the truncation operator

G?
ij =

{
Vij, |Vij| > b

0, |Vij| ≤ b
(15)

where b =
√

2γ/ρ. For given Vij , G?
ij is set to Vij if |Vij| >

√
2γ/ρ and to zero if |Vij| ≤

√
2γ/ρ.

3) Sum-of-logs function: As shown in [15], the solution to (13) is given by

G?
ij =


0, ∆ ≤ 0 or {∆ > 0 and r+}
r+ Vij, ∆ > 0 and r− ≤ 0 and 0 < r+ ≤ 1

G0, ∆ > 0 and 0 ≤ r± ≤ 1

(16)

where
∆ = (|Vij|+ ε)2 − 4(γ/ρ)

r± =
(
|Vij| − ε ±

√
∆
)
/ (2 |Vij|)

(17)

and G0 := arg min {φij(r+Vij), φij(0)}. For fixed ρ and ε, (16) is determined by the value of

γ. For small γ, (16) resembles the soft thresholding operator and for large γ, it resembles the

truncation operator.

Remark 2: In block sparse design, g is determined by
{∑

i,jWij‖Gij‖F ;
∑

i,j card (‖Gij‖F );∑
i,j log(1 + ‖Gij‖F/ε)

}
, and the minimizers of (13) are obtained by replacing the absolute

value of Vij in (14), (15), and (17) with the Frobenius norm ‖ · ‖F of the corresponding block

submatrix Vij .

B. Anderson-Moore method for the F -minimization problem (12a)

We next employ the Anderson-Moore method to solve the F -minimization problem (12a).

The advantage of this algorithm lies in its fast convergence (compared to the gradient method)

and in its simple implementation (compared to Newton’s method); e.g., see [9], [16], [17]. When

applied to the F -minimization problem (12a), this method requires the solutions of two Lyapunov

equations and one Sylvester equation in each iteration. We next recall the first and second order

derivatives of J ; for related developments, see [17].

Proposition 1: The gradient of J is determined by

∇J(F ) = 2 (RF −BT
2 P )L

August 20, 2018 To appear in IEEE Trans. Automat. Control
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where L and P are the controllability and observability Gramians of the closed-loop system,

(A − B2F )L + L (A − B2F )T = −B1B
T
1 (NC-L)

(A − B2F )T P + P (A − B2F ) = − (Q + F TRF ). (NC-P)

The second-order approximation of J is determined by

J(F + F̃ ) ≈ J(F ) + 〈∇J(F ), F̃ 〉 + (1/2) 〈H(F, F̃ ), F̃ 〉

where H(F, F̃ ) is the linear function of F̃ ,

H(F, F̃ ) = 2
(

(RF̃ −BT
2 P̃ )L + (RF −BT

2 P ) L̃
)

and L̃, P̃ are the solutions of the following Lyapunov equations

(A−B2F ) L̃ + L̃ (A−B2F )T = B2F̃L + (B2F̃L)T

(A−B2F )T P̃ + P̃ (A−B2F ) = (PB2 − F TR) F̃ + F̃ T (BT
2 P −RF ).

By completing the squares with respect to F in the augmented Lagrangian Lρ, we obtain the

following equivalent problem to (12a)

minimize ϕ(F ) = J(F ) + (ρ/2)‖F − Uk‖2F

where Uk = Gk − (1/ρ)Λk. Setting ∇ϕ := ∇J + ρ(F − Uk) to zero yields the necessary

conditions for optimality

2
(
RF − BT

2 P
)
L + ρ

(
F − Uk

)
= 0 (NC-F)

where L and P are determined by (NC-L) and (NC-P).

Starting with a stabilizing feedback F , the Anderson-Moore method solves the two Lyapunov

equations (NC-L) and (NC-P), and then solves the Sylvester equation (NC-F) to obtain a new

feedback gain F̄ . In other words, it alternates between solving (NC-L) and (NC-P) for L and P

with F being fixed and solving (NC-F) for F with L and P being fixed. It can be shown that

the difference between two consecutive steps F̃ = F̄ −F forms a descent direction of ϕ; see [9]

for a related result. Thus, line search methods [18] can be employed to determine step-size s in

F + sF̃ to guarantee closed-loop stability and the convergence to a stationary point of ϕ.

Remark 3 (Closed-loop stability): Since theH2 norm is well defined for causal, strictly proper,

stable closed-loop systems, we set J to infinity if A−B2F is not Hurwitz. Furthermore, J is a
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smooth function that increases to infinity as one approaches the boundary of the set of stabilizing

gains [9]. Thus, the decreasing sequence of {ϕ(F i)} ensures that {F i} are stabilizing gains.

C. Solving the structured H2 problem

We next turn to the H2 problem subject to structural constraints on the feedback gain. Here, we

fix the sparsity patterns F ∈ S identified using ADMM and then solve (SH2) to obtain the optimal

feedback gain that belongs to S. This procedure, commonly used in optimization [10, Section

6.3.2], can improve the performance of sparse feedback gains resulting from the ADMM algorithm.

As noted in Remark 3, the sparse feedback gains obtained in ADMM are stabilizing. This

feature facilitates the use of descent algorithms (e.g., Newton’s method) to solve (SH2). Given

an initial gain F 0 ∈ S , a decreasing sequence of the objective function {J(F i)} is generated

by updating F according to F i+1 = F i + si F̃ i; here, si is the step-size and F̃ i ∈ S is the

Newton direction that is determined by the minimizer of the second-order approximation of the

objective function (3). Equivalently, F̃ i ∈ S is the minimizer of Φ(F̃ ) := (1/2) 〈H(F̃ )◦IS , F̃ 〉+
〈∇J ◦ IS , F̃ 〉 where structural identity IS of subspace S (under entry-wise multiplication ◦ of

two matrices) is used to characterize structural constraints

IS ij =

1, if Fij is a free variable

0, if Fij = 0 is required
⇒ F ◦ IS = F for F ∈ S.

To compute Newton direction, we use the conjugate gradient method that does not require

forming or inverting the large Hessian matrix explicitly; see [18, Chapter 5]. It is noteworthy that

techniques such as the negative curvature test [18, Section 7.1] can be employed to guarantee

the descent property of the Newton direction; consequently, line search methods, such as the

Armijo rule [18, Section 3.1], can be used to generate a decreasing sequence of J .

D. Convergence of ADMM

For convex problems the convergence of ADMM to the global minimizer follows from standard

results [1]. For nonconvex problems, where convergence results are not available, extensive

computational experience suggests that ADMM works well when the value of ρ is sufficiently

large [19], [20]. This is attributed to the quadratic term (ρ/2)‖F − G‖2F that tends to locally

convexify the objective function for sufficiently large ρ; see [21, Chapter 14.5].

For problem (SP) with g determined by the weighted `1 norm (9), we next show that when

ADMM converges, it converges to a critical point of (SP). For a convergent point (F ?, G?,Λ?) of
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the sequence {F k, Gk,Λk}, (12c) simplifies to F ?−G? = 0. Since F ? minimizes Lρ(F,G?,Λ?)

and since G? minimizes Lρ(F ?, G,Λ?), we have {0 = ∇J(F ?) + Λ?, 0 ∈ γ ∂g(G?) − Λ?}
where ∂g is the subdifferential of the convex function g in (9). Therefore, (F ?, G?) satisfies the

necessary conditions for the optimality of (SP) and ADMM converges to a critical point of (SP).

IV. EXAMPLES

We next use three examples to illustrate the utility of the approach developed in Section III.

The identified sparsity structures result in localized controllers in all three cases. Additional

information about these examples, along with MATLAB source codes, can be found at

www.ece.umn.edu/∼mihailo/software/lqrsp/

A. Mass-spring system

For a mass-spring system with N masses on a line, let pi be the displacement of the ith mass

from its reference position and let the state variables be x1 := [ p1 · · · pN ]T and x2 := ẋ1. For

unit masses and spring constants, the state-space representation is given by (1) with

A =

[
O I

T O

]
, B1 = B2 =

[
O

I

]
,

where T is an N × N tridiagonal Toeplitz matrix with −2 on its main diagonal and 1 on its

first sub- and super-diagonal, and I and O are N × N identity and zero matrices. The state

performance weight Q is the identity matrix and the control performance weight is R = 10I .

We use the weighted `1 norm as the sparsity-promoting penalty function, where we follow [4]

and set the weights Wij to be inversely proportional to the magnitude of the solution F ? of (SP)

at the previous value of γ, Wij = 1/(|F ?
ij| + ε). This places larger relative weight on smaller

feedback gains and they are more likely to be dropped in the sparsity-promoting algorithm. Here,

ε = 10−3 is introduced to have well-defined weights when F ?
ij = 0.

The optimal feedback gain at γ = 0 is computed from the solution of the algebraic Riccati

equation. As γ increases, the number of nonzero sub- and super-diagonals of both position F ?
p

and velocity F ?
v gains decreases; see Figs. 1a and 1b. Eventually, both F ?

p and F ?
v become

diagonal matrices. It is noteworthy that diagonals of both position and velocity feedback gains

are nearly constant except for masses that are close to the boundary; see Figs. 1c and 1d.

After sparsity structures of controllers are identified by solving (SP), we fix sparsity patterns

and solve structured H2 problem (SH2) to obtain the optimal structured controllers. Comparing
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(a) γ = 10−4 (b) γ = 0.0105

(c) (d)

Fig. 1: Sparsity patterns of F ? = [F ?
p F ?

v ] ∈ R50×100 for the mass-spring system obtained
using weighted `1 norm with (a) γ = 10−4 and (b) γ = 0.0105. As γ increases, the number
of nonzero sub- and super-diagonals of F ?

p and F ?
v decreases. The diagonals of (c) F ?

p and (d)
F ?
v for different values of γ: 10−4 (◦), 0.0281 (+), and 0.1 (∗). The diagonals of the centralized

position and velocity gains are almost identical to (◦).

(a) card (F ?)/card (Fc) (b) (J(F ?) − J(Fc))/J(Fc)

γ 0.01 0.04 0.10

card (F ?)/card (Fc) 9.4% 5.8% 2.0%

(J(F ?) − J(Fc))/J(Fc) 0.8% 2.3% 7.8%

(c)

Fig. 2: (a) The sparsity level and (b) the performance degradation of F ? compared to the
centralized gain Fc for mass-spring system. (c) Sparsity vs. performance: using 2% of nonzero
elements, H2 performance of F ? is only 7.8% worse than performance of Fc.

the sparsity level and the performance of these controllers to those of the centralized controller

Fc, we see that using only a fraction of nonzero elements, the sparse feedback gain F ? achieves

H2 performance comparable to the performance of Fc; see Fig. 2. In particular, using about 2%

of nonzero elements, H2 performance of F ? is only about 8% worse than that of Fc.

B. Network with 100 unstable nodes

Let N = 100 nodes be randomly distributed with a uniform distribution in a square region of

10× 10 units. Each node is an unstable second order system coupled with other nodes through

the exponentially decaying function of the Euclidean distance α(i, j) between them [22][
ẋ1i

ẋ2i

]
=

[
1 1

1 2

][
x1i

x2i

]
+
∑
j 6= i

e−α(i,j)

[
x1j

x2j

]
+

[
0

1

]
(di + ui)
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(a) γ = 12.6 (b) γ = 26.8 (c) γ = 68.7 (d)

Fig. 3: (a)-(c) The localized communication graphs of distributed controllers obtained by solv-
ing (SP) for different values of γ for the network with 100 nodes. Note that the communication
graph does not have to be connected since the nodes are dynamically coupled to each other and
allowed to measure their own states. (d) The optimal trade-off curve between the H2 performance
degradation and the sparsity level of F ? compared to the centralized gain Fc.

with i = 1, . . . , N . The performance weights Q and R are set to identity matrices.

We use the weighted `1 norm as the penalty function with the weights given in Section IV-A. As

γ increases, the underlying communication graphs gradually become localized; see Figs. 3a, 3b,

and 3c. With about 8% of nonzero elements of Fc, H2 performance of F ? is about 28% worse

than performance of the centralized gain Fc. Figure 3d shows the optimal trade-off curve between

the H2 performance and the feedback gain sparsity.

We note that the truncation of the centralized controller could result in a non-stabilizing feed-

back matrix [22]. In contrast, our approach gradually modifies the feedback gain and increases the

number of zero elements, which plays an important role in preserving the closed-loop stability.

C. Block sparsity: A bio-chemical reaction example

Consider a network of N = 5 systems coupled through the following dynamics

ẋi = [A]ii xi −
1

2

N∑
j=1

(i− j) (xi − xj) + [B1]ii di + [B2]ii ui

where [ · ]ij denotes the ijth block of a matrix and

[A]ii =


−1 0 −3

3 −1 0

0 3 −1

 , [B1]ii =


3 0 0

0 3 0

0 0 3

 , [B2]ii =


3

0

0

 .
The performance weights Q and R are set to identity matrices. Systems of this form arise in

bio-chemical reactions with a cyclic negative feedback [23].
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(a) (b)

(c) (d)

Fig. 4: The sparse feedback gains obtained by solving (SP) using (a) the weighted sum of
Frobenius norms with γ = 3.6 and (b) the weighted `1 norm (9) with γ = 1.3. Here, F ∈ R5×15

is partitioned into 25 blocks Fij ∈ R1×3. Both feedback gains have the same number of nonzero
elements (indicated by dots) and close H2 performance (less than 1% difference), but different
number of nonzero blocks (indicated by boxes). Communication graphs of (c) the block sparse
feedback gain in (a), and (d) the sparse feedback gain in (b) (red color highlights the additional
links). An arrow pointing from node i to node j indicates that i uses measurements from j.

We use the weighted sum of Frobenius norms as the sparsity-promoting penalty function and

we set the weights Wij to be inversely proportional to the Frobenius norm of the solution F ?
ij

to (SP) at the previous value of γ, i.e., Wij = 1/(‖F ?
ij‖F +ε) with ε = 10−3. As γ increases, the

number of nonzero blocks in F decreases. Figure 4 shows sparsity patterns of feedback gains

and the corresponding communication graphs resulting from solving (SP) with sparse and block

sparse penalty functions. Setting γ to values that yield the same number of nonzero elements

in these feedback gains results in the block sparse feedback gain with a smaller number of

nonzero blocks. In particular, the first two rows of the block sparse feedback gain in Fig. 4a

are identically equal to zero (indicated by blank space). This means that the subsystems 1 and

2 do not need to be actuated. Thus, the communication graph determined by the block sparse

feedback gain has fewer links; cf. Figs. 4c and 4d.

V. CONCLUDING REMARKS

We design sparse and block sparse state feedback gains that optimize the H2 performance

of distributed systems. The design procedure consists of a structure identification step and a

“polishing” step. In the identification step, we employ the ADMM algorithm to solve the sparsity-

promoting optimal control problem, whose solution gradually moves from the centralized gain to
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the sparse gain of interest as our emphasis on the sparsity-promoting penalty term is increased.

In the polishing step, we use Newton’s method in conjunction with a conjugate gradient scheme

to solve the minimum variance problem subject to the identified sparsity constraints.

Although we focus on the H2 performance, the developed framework can be extended to

design problems with other performance indices. We emphasize that the analytical solutions to

the G-minimization problem are independent of the assigned performance index. Consequently,

the G-minimization step in ADMM for (SP) with alternative performance indices can be done

exactly as in Section III-A. Thus, ADMM provides a flexible framework for sparsity-promoting

optimal control problems of the form (SP).

We have recently employed ADMM for selection of an a priori specified number of leaders

in order to minimize the variance of stochastically forced dynamic networks [24], for creation

of new social links to maximize public awareness in social networks [25], and for identification

of sparse representations of consensus networks [26]. We also aim to extend the developed

framework to the observer-based sparse optimal feedback design. Our results on the identification

of classes of convex optimal control problems will be reported elsewhere.
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