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Abstract

Using methods from algebraic graph theory and convex optimization, we study the relationship

between local structural features of a network and spectral properties of its Laplacian matrix. In

particular, we derive expressions for the so-called spectral moments of the Laplacian matrix of a

network in terms of a collection of local structural measurements. Furthermore, we propose a series of

semidefinite programs to compute bounds on the spectral radius and the spectral gap of the Laplacian

matrix from a truncated sequence of Laplacian spectral moments. Our analysis shows that the Laplacian

spectral moments and spectral radius are strongly constrained by local structural features of the network.

On the other hand, we illustrate how local structural features are usually not enough to estimate the

Laplacian spectral gap.

I. INTRODUCTION

Understanding the relationship between the structure of a network and the behavior of dynam-

ical processes taking place in it is a central question in the research field of network science [1].

Since the behavior of many networked dynamical processes is closely related with the Laplacian

eigenvalues (see [2], [3] and references therein), it is of interest to study the relationship between

structural features of the network and its Laplacian eigenvalues.
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In this technical note, we study this relationship, focusing on the role played by structural

features that can be extracted from localized samples of the network structure. Our objective is

then to efficiently aggregate these local samples of the network structure to infer global properties

of the Laplacian spectrum. We propose a graph-theoretical approach to relate structural features

of a network with algebraic properties of its Laplacian matrix. Our analysis reveals that there

are certain spectral properties, such as the so-called spectral moments, that can be efficiently

computed from these structural features. Furthermore, applying a recent result by Lasserre [4],

we propose a series of semidefinite programs to compute bounds on the Laplacian spectral radius

and spectral gap from a truncated sequence of spectral moments.

The paper is organized as follows. In the next subsection, we define terminology needed in

our derivations. In Section II, we introduce a graph-theoretical methodology to derive closed-

form expressions for the so-called Laplacian spectral moments in terms of structural features of

the network. In Section III, we use semidefinite programming to derive optimal bounds on the

Laplacian spectral radius and spectral gap from a truncated sequence of spectral moments. We

validate our results numerically in Section IV.

A. Notations & Preliminaries

Let G = (V , E) be an undirected graph, where V = {v1, . . . , vn} denotes a set of n nodes and

E ⊆ V ×V denotes a set of e undirected edges. If {vi, vj} ∈ E , we call nodes vi and vj adjacent

(or first-neighbors), which we denote by vi ∼ vj . We define the set of first-neighbors of a node

vi as Ni = {w ∈ V : {vi, w} ∈ E}. The degree di of a vertex vi is the number of nodes adjacent

to it, i.e., di = |Ni|. We consider three types of undirected graphs: (i) A graph is called simple

if its edges are unweighted and it has no self-loops1, (ii) a graph is loopy if it has self-loops,

and (iii) a graph is weighted if there is a real number associated with every edge in the graph.

More formally, a weighted graph H can be defined as the triad H = (V , E ,W), where V and

E are the sets of nodes and edges in H, and W = {wij ∈ R, for all {vi, vj} ∈ E} is the set of

(possibly negative) weights.

The adjacency matrix of a simple graph G, denoted by AG = [aij], is an n × n symmetric

matrix defined entry-wise as aij = 1 if nodes vi and vj are adjacent, and aij = 0 otherwise. In

1A self-loop is an edge of the type {vi, vi}.
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the case of weighted graphs (and possibly non-simple), the weighted adjacency matrix is defined

by WG = [wij], where wij = 0 if vi is not adjacent to vj . We define the degree matrix of a

simple graph G as the diagonal matrix DG = diag (di). We define the Laplacian matrix LG (also

known as combinatorial Laplacian, or Kirchhoff matrix) of a simple graph as LG = DG−AG . For

simple graphs, LG is a symmetric, positive semidefinite matrix, which we denote by LG � 0 [5].

Thus, LG has a full set of n real and orthogonal eigenvectors with real nonnegative eigenvalues

0 = λ1 ≤ λ2 ≤ ... ≤ λn. The second smallest and largest eigenvalues of LG , λ2 and λn,

are called the spectral gap and spectral radius of LG , respectively. Given a n × n real and

symmetric matrix B with (real) eigenvalues σ1, ..., σn, we define the k-th spectral moment of

B as mk (B) , 1
n

∑n
i=1 σ

k
i . As we shall show in Section II, there is an interesting connection

between the spectral moments of the Laplacian matrix, mk (LG), and structural features of the

network.

We now define a collection of structural properties that are important in our derivations. The

degree sequence of a simple graph G is the ordered list of its degrees, (d1, ..., dn). A walk of length

k from vi1 to vik+1
is an ordered sequence of nodes

(
vi1 , vi2 , ..., vik+1

)
such that vij ∼ vij+1

for

j = 1, 2, ..., k. One says that the walk touches each of the nodes that comprises it. If vi1 = vik+1
,

then the walk is closed. A closed walk with no repeated nodes (with the exception of the first

and last nodes) is called a cycle. Given a walk p =
(
vi1 , vi2 , ..., vik+1

)
in a weighted graph H,

we define the weight of the walk as, ω (p) = wi1i2wi2i3 ...wikik+1
.

II. MOMENT-BASED ANALYSIS OF THE LAPLACIAN MATRIX

In this paper, we use algebraic graph theory to study the relationship between structural

properties of a network and its Laplacian spectrum based on the spectral moments. A well-

known result in algebraic graph theory relates the diagonal entries of the k-th power of the

adjacency matrix,
[
Ak
G
]
ii

, to the number of closed walks of length k in G that start and finish

at node vi [5]. Using this result, it is possible to relate algebraic properties of the adjacency

matrix AG to the presence of certain subgraphs in the network [6]. We can generalize this result

to weighted graphs as follows:

Proposition 1: LetH = (V , E ,W) be a weighted graph with weighted adjacency matrix WH =

[wij]. Then,
[
W k
H
]
ii

=
∑

p∈Pk,i
ω (p) ,where Pk,i is the set of closed walks of length k from vi

to itself in H.
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Proof: By recursively applying the multiplication rule for matrices, we have the following

expansion [
W k
H
]
ii

=
n∑

i=1

n∑
i2=1

· · ·
n∑

ik=1

wi,i2wi2,i3 · · · wik,i. (1)

Using the graph-theoretic nomenclature introduced in Section I-A, we have that wi,i2wi2,i3 ...wik,i =

ω (p), for p = (vi, vi2 , vi3 , ..., vik , vi). Hence, the summations in (1) can be written as
[
W k
H
]
ii

=∑
1≤i,i2,...,ik≤n ω (p). Finally, the set of closed walks p = (vi, vi2 , vi3 , ..., vik , vi) with indices

1 ≤ i, i2, ..., ik ≤ n is equal to the set of closed walks of length k from vi to itself in H (which

we have denoted by Pk,i in the statement of the Proposition).

The above Proposition allows us to write the relate moments of the weighted adjacency matrix

of a weighted graph H to closed walks in H, as follows:

Lemma 2.1: Let H = (V , E ,W) be a weighted graph with weighted adjacency matrix WH =

[wij]. Then,

mk (WH) =
1

n

∑
vi∈V

∑
p∈Pk,i

ω (p) ,

where Pk,i is the set of closed walks of length k from vi to itself in H.

Proof: Let us denote by µ1, ..., µn the set of (real) eigenvalues of the (symmetric) weighted

adjacency matrix WH. We have that the moments can be written as

mk (WH) ,
1

n

n∑
i=1

µk
i =

1

n
Trace

(
W k
H
)
,

since WH is a symmetric (and diagonalizable) matrix. We then apply Proposition 1 to rewrite

the moments as follows,

mk (WH) =
1

n

n∑
i=1

[
W k
H
]
ii

=
1

n

∑
vi∈V

∑
p∈Pk,i

ω (p) .

In Subsections II-B, we shall apply this result to compute spectral moments of the Laplacian

matrix in terms of structural features of the network. First, we need to introduce a weighted

graph that is useful in our derivations:
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Definition 2.1: Given a simple graph G = (V , E), we define the Laplacian graph of G as the

weighted graph L (G), (V , E ∪ Sn,Γ), where Sn = {{v, v} for all v ∈ V} (the set of all self-

loops), and Γ = [γij] is a set of weights defined as:

γij ,


−1, for {vi, vj} ∈ E

di, for i = j

0, otherwise.

Remark 2.1: Note that the weighted adjacency matrix of the Laplacian graph L (G) is equal

to the Laplacian matrix of the simple graph G. Hence, we can apply Lemma 2.1 to express the

spectral moments of the Laplacian matrix LG in terms of weighted walks in the Laplacian graph

L (G).

Before we apply Lemma 2.1 to study the Laplacian spectral moments, we must introduce the

concept of subgraph covered by a walk.

Definition 2.2: Consider a walk p =
(
vi1 , vi2 , ..., vik+1

)
of length k in a (possibly loopy) graph.

We define the subgraph covered by p as the simple graph C (p) = (Vc (p) , Ec (p)), with node-set

Vc (p) =
⋃k+1

r=1 vir , and edge-set Ec (p) =
⋃

vir 6=vir+1

{
vir , vir+1

}
, for 1 ≤ r ≤ k + 1.

Based on the above, we define triangles, quadrangles and pentagons as the subgraphs covered

by cycles of length three, four, and five, respectively. Notice that self-loops are excluded from

Ec (p) in Definition 2.2. For example, consider a walk p = (v1, v2, v2, v3, v3, v1, v3, v1) in a

graph with self-loops. Then, C (p) has node-set Vc (p) = {v1, v2, v3} and edge-set Ec (p) =

{{v1, v2} , {v2, v3} , {v3, v1}}. In other words, C (p) is a simple triangle.

In what follows, we build on the above results to derive closed-form expressions for the first

five spectral moments of the Laplacian matrix in terms of relevant structural features of the

network.

A. Low-Order Laplacian Spectral Moments

The following theorem, proved in [7] via algebraic techniques, allows us to compute the first

three Laplacian spectral moments in terms of the degree sequence and the number of triangles

in the graph.

Theorem 2.2: Let G be a simple graph with Laplacian matrix LG . Then, the first three spectral
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moments of the Laplacian matrix are

m1 (LG) =
1

n
S1, (2)

m2 (LG) =
1

n
(S1 + S2) ,

m3 (LG) =
1

n
(3S2 + S3 − 6∆) ,

where Sp ,
∑

vi∈V d
p
i , and ∆ is the total number of triangles in G.

In [7], Theorem 2.2 was proved using a purely algebraic approach. This algebraic approach

presents the limitation of not being applicable to compute moments of order greater than three.

In what follows, we propose an alternative graph-theoretical approach that allows to compute

higher-order spectral moments of the Laplacian matrix, beyond the third order. In particular,

according to Lemma 2.1, we can compute the k-th spectral moment of the Laplacian of G by

analyzing the set of closed walks of length k in the Laplacian graph L (G).

B. Higher-Order Laplacian Spectral Moments

In this Subsection, we apply the set of graph-theoretical tools introduced above to compute the

fourth- and fifth-order spectral moments of the Laplacian matrix. We first define the collection

of structural measurements that are involved in our expressions. Let us denote by ti, qi, and pi

the number of triangles, quadrangles, and pentagons touching node vi in G, respectively. The

total number of quadrangles and pentagons in G are denoted by Q and P , respectively. The

following terms define structural correlations that are relevant in our analysis:

Cdd ,
1

n

∑
vi∼vj

didj, Cd2d ,
1

n

∑
vi∼vj

d2
i dj, (3)

Cdt ,
1

n

∑
vi∈V

diti, Cd2t ,
1

n

∑
vi∈V

d2
i ti,

Cdq ,
1

n

∑
vi∈V

diqi, Ddd ,
1

n

∑
vi∼vj

didj |Ni ∩Nj| ,

where |Ni ∩Nj| is the number of common neighbors shared by vi and vj . The main result in this

section relates the fourth and fifth Laplacian spectral moments to local structural measurements

and correlation terms, as follows:

May 21, 2018 DRAFT



7

Theorem 2.3: Let G be a simple graph with Laplacian matrix LG . Then, the fourth and fifth

Laplacian moments can be written as

m4 (LG) =
1

n
(−S1 + 2S2 + 4S3 + S4 + 8Q) (4)

+4Cdd − 8Cdt,

m5 (LG) =
1

n
(−5S2 + 5S3 + 5S4 + S5 + 30∆− 10P )

+10 (Cdd + Cd2d − Cdt − Cd2t + Cdq −Ddd)

where Sp ,
∑

vi∈V d
p
i , and the correlation terms Cdd, Cdt, Cdq, Cd2d, Cd2t, and Ddd are defined

in (3).

Proof: In the Appendix.

Remark 2.2: Theorem 2.2 relates purely algebraic properties – the spectral moments – to

structural features of the network, namely the degree sequence, the number of cycles of length 3

and 5, and all the correlation terms defined in (3). The key steps behind the proof are: (i) Relate

the spectral moments m4 (LG) and m5 (LG) with closed walks of length four and five in the

Laplacian graph L (G), and (ii) classify the set of closed walks in L (G) into subsets according

to the subgraph covered by each walk.

In the next section, we present a series of semidefinite programs (SDP’s) whose solutions

provide optimal bounds on the Laplacian spectral radius and spectral gap in terms of Laplacian

spectral moments.

III. OPTIMAL LAPLACIAN BOUNDS FROM SPECTRAL MOMENTS

In this section, we introduce a novel approach to compute bounds on the spectral gap and the

spectral radius of the Laplacian matrix from a truncated sequence of Laplacian spectral moments.

More explicitly, the problem solved in this section can be stated as follows:

Problem 1 (Moment-based bounds): Given a truncated sequence of Laplacian spectral mo-

ments (mk (LG))
K
k=1, find bounds on the spectral gap and the spectral radius of the Laplacian

matrix LG .

In this section, we propose a solution to the above problem based on a recent result in [4].

In [4], Lasserre developed an approach to find bounds on the support of an unknown density

function when only a sequence of its moments is available. In order to adapt Problem 1 to
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this framework, we need to introduce some definitions. Given a simple connected graph G

with Laplacian eigenvalues {λi}ni=1, we define the spectral density of the nontrivial eigenvalue

spectrum as

ρG (λ) ,
1

n− 1

∑
i≥2

δ (λ− λi) , (5)

where δ (·) is the Dirac delta function. Notice how we have excluded the trivial eigenvalue,

λ1 = 0, from the spectral density; hence, the support 2 of ρG (λ) is equal to supp(ρG) = {λi}ni=2.

The moments of the spectral density in (5), denoted by mk (LG), can be written in terms of the

spectral moments of LG , as follows

mk (LG) ,
∫
R
λk

1

n− 1

n∑
i=2

δ (λ− λi) dλ

=
1

n− 1

n∑
i=2

λki =
n

n− 1
mk (LG) , (6)

for all k ≥ 1 (where we have used the fact that λ1 = 0, in our derivations).

In what follows, we propose a solution to Problem 1 using a technique proposed by Lasserre

in [4]. In that paper, the following problem was addressed:

Problem 2: Consider a truncated sequence of moments (Mk)1≤r≤K corresponding to an un-

known density function µ (λ), i.e., Mk ,
∫
λkdµ (λ). Denote by [a, b] the smallest interval

containing the support of µ. Compute an upper bound α ≥ a and a lower bound β ≤ b when

only the truncated sequence of moments is available.

In the context of Problem 1, we have access to a truncated sequence of five spectral moments,

(mk(LG))1≤k≤5, corresponding to the unknown spectral density function ρG and given by the

expressions (2), (4), and (6). In this context, the smallest interval [a, b] containing supp(ρG) is

equal to [λ2, λn]. Therefore, a solution to Problem 2 would directly provide an upper bound on

the spectral gap, α ≥ λ2, and a lower bound on the spectral radius, β ≤ λn. We now describe

a numerical scheme proposed in [4] to solve Problem 2. This solution is based on a series of

semidefinite programs in one variable. In order to formulate this series of SDP’s, we need to

introduce some definitions. For any s ∈ N, let us consider a truncated sequence of moments

2Recall that the support of a density function µ on R, denoted by supp (µ), is the smallest closed set B such that µ (R\B) = 0.
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M = (Mk)2s+1
k=1 , associated with an unknown density function µ. We define the following Hankel

matrices of moments:

R2s (M) ,


1 M1 · · · Ms

M1 M2 · · · Ms+1

...
... . . . ...

Ms Ms+1 · · · M2s

 , R2s+1 (M) ,


M1 M2 · · · Ms+1

M2 M3 · · · Ms+2

...
... . . . ...

Ms+1 Ms+2 · · · M2s+1

 . (7)

We also define the localizing matrix3 Hs (x,M) as,

Hs (x,M) , R2s+1 (M)− x R2s (M) . (8)

Using the above matrices, Lasserre proposed in [4] the following series of SDP’s to find a

solution for Problem 2:

Solution to Problem 2: Let M = (Mk)2s+1
k=1 be a truncated sequence of moments associated

with an unknown density function µ. Then

a ≤ αs (M) , max
x
{x : Hs (x,M) � 0} , (9)

b ≥ βs (M) , min
x
{x : −Hs (x,M) � 0} , (10)

where [a, b] is the smallest interval containing the support of µ.

Therefore, we can directly apply the above result to solve Problem 1 by considering the

sequence of moments m , (mr (LG))
2s+1
r=1 = ( n

n−1
mr (LG))

2s+1
r=1 in the statement of the solution

to Problem 2. Since this sequence of moments corresponds to the spectral density ρG , with

support {λi}ni=2, the solutions in (9) and (10) directly provide the following bounds on the

spectral radius and spectral gap:

Solution to Problem 1: Let m , ( n
n−1

mr (LG))
2s+1
r=1 be a truncated sequence of (scaled)

Laplacian spectral moments associated with a graph G. Then the Laplacian spectral gap and

spectral radius of G satisfy the following bounds:

λ2 ≤ αs (m) , max
x
{x : Hs (x,m) � 0} , (11)

λn ≥ βs (m) , min
x
{x : −Hs (x,m) � 0} . (12)

3A more general definition of localizing matrix can be found in [?]. For simplicity, we restrict our definition to the particular

form used in our problem.
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In Section II, we derived expressions for the first five Laplacian spectral moments, (mr (LG))
5
r=1,

in terms of structural features of the network, namely, the degree sequence, the number of

triangles, quadrangles and pentagons, and the correlation terms in (3). Therefore, we can apply

the Solution to Problem 1 to find bounds on λ2 and λn.

In this section, we have presented an optimization-based approach to compute optimal bounds

on the Laplacian spectral gap and spectral radius from a truncated sequence of Laplacian spectral

moments. The truncated sequence of spectral moments (mk (LG))
5
k=1 can be written in terms

of local structural measurements using (2) and (4). Hence, the above methodology allows to

compute bounds on the spectral radius and spectral gap of the Laplacian matrix given a collection

of local structural features of the network. In the following section, we illustrate the usage of

this approach with numerical examples.

IV. STRUCTURAL ANALYSIS AND SIMULATIONS

In this section, we apply the moment-based approach herein proposed to study the relationship

between structural and spectral properties of an unweighted, undirected graph representing the

structure of the high-voltage transmission network of Spain (the adjacency of this network is

available, in MATLAB format, in [8]). The number of nodes (buses) and edges (transmission

lines) in this network are n = 98 and e = 175, respectively. From this dataset, we compute

the set of structural properties involved in (2) and (4), namely, the power-sums of the degrees

(Sr)
5
r=1 = (350, 1692, 9836, 64056, 44942), the number of cycles ∆ = 79, Q = 134, P = 232,

and the correlation terms Cdd = 42.58, Cd2d = 249.41, Cdt = 13.98, Cd2t = 88.69, Cdq =

33.11, and Ddd = 80.77. Using this collection of structural measurements, we use (2) and

(4) to compute the first five Laplacian spectral moments of the Spanish transmission network:

(mk (LG))
5
k=1 = (3.571, 20.83, 147.33, 1155.5, 9686.6). Using this sequence of spectral moments

and the methodology described in Section III, we compute bounds on the spectral gap and spectral

radius, α2 and β2, solving the SDP’s in (11) and (12). The numerical values for these bounds,

as well as the exact values for the spectral gap and spectral radius are: β2 = 9.18 ≤ λn = 10.66

and λ2 = 0.077 ≤ α2 = 0.86.

Our numerical analysis reveals that the Laplacian spectral radius and spectral moments of

the electrical transmission network are strongly constrained by local structural features of the

network. On the other hand, the spectral gap cannot be efficiently bounded using local structural
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features only, since the spectral gap strongly depends on the global connectivity of the network.

This limitation is inherent to all spectral bounds based on local structural properties (see [9] for

a wide collection of spectral bounds). In the following example, we illustrate this limitation with

a simple example.

Example 4.1: Consider a ring graph with n = 12 nodes, which we denote by R12. The

eigenvalues of the Laplacian matrix of a ring graph of length l, Rl, are equal to λi = 2 −

2 cos(2πi/l), for i = 0, ..., l − 1 [5]. Therefore, the Laplacian spectral gap and spectral radius

of R12 are λ2 = 2 − 2 cosπ/6 ≈ 0.2679 and λn = 4, respectively. We can also compute the

moment-based bounds α2 and β2 using local structural measurements, as follows. The degrees

of all the nodes in R12 are di = 2; thus, the power sums of the degrees are equal to Sk = 2k12.

The number of triangles, quadrangles and pentagons are ∆ = Q = P = 0. The correlation terms

are Cdd = 4, Cd2d = 8, and the rest of correlation terms in (3) are equal to zero. Based on these

structural measurements, we have from (2) and (4) that the first five Laplacian spectral moments

are (mr (LG))
5
r=1 = (2, 6, 20, 70, 252), and the resulting moment-based bounds from (11) and

(12) are β2 = 3.732 ≤ 4 and α2 = 0.2679 ≈ λ2. Therefore, both the bounds on the spectral

radius and the spectral gap are very tight for R12. In particular, α2 is remarkably close to λ2.

On the other hand, we can construct graphs with the same local structural properties (and,

therefore, the same first five spectral moments, and bounds α2 and β2), but very different spectral

gap, as follows. Consider a graph of 12 nodes consisting in two disconnected rings of length 6.

It is easy to verify that this (disconnected) graph presents the same local structural features as

a connected ring of length 12, namely, the degrees of all the nodes are di = 0, the number of

cycles ∆ = Q = P = 0, and the correlation terms are the same as the ones computed above. In

contrast to R12, the spectral gap of this disconnected graph is equal to zero, λ2 = 0, which is

very different than the moment-based bound α2.

In general, the Laplacian spectral gap is a global property that quantifies how ‘well-connected’

a network is [10]. Since the structural measurements used in our bounds (degree sequence,

correlation terms, etc.) have a local nature, they do not contain enough information to determine

how well connected the network is globally. In other words, it is often possible to find two

different graphs with identical local structural features but radically different global structure, as

we have illustrated in the above example.
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V. CONCLUSIONS

This paper studies the relationship between local structural features of large complex networks

and global spectral properties of their Laplacian matrices. In Section II, we have proposed a

graph-theoreical approach to compute the first five Laplacian spectral moments of a network from

a collection of local structural measurements. In Section III, we have proposed an optimization-

based approach, based on a recent result by Lasserre [4], to compute bounds on the Laplacian

spectral radius and spectral gap of a network from a truncated sequence of spectral moments. Our

bounds take into account the effect of important structural properties that are usually neglected in

most of the bounds found in the literature, such as the distribution of cycles and other structural

correlations. Our analysis shows that local structural features of the network strongly constrain

the Laplacian spectral moments and spectral radius. On the other hand, local structural features

are not enough to characterize the Laplacian spectral gap, since this quantity strongly depends

on how ‘well-connected’ the network is globally.

APPENDIX

Theorem 2.3 Let G be a simple graph with Laplacian matrix LG . Then, the fourth and fifth

Laplacian moments can be written as

m4 (LG) =
1

n
(−S1 + 2S2 + 4S3 + S4 + 8Q)

+4Cdd − 8Cdt,

m5 (LG) =
1

n
(−5S2 + 5S3 + 5S4 + S5 + 30∆− 10P )

+10 (Cdd + Cd2d − Cdt − Cd2t + Cdq −Ddd)

where Sr =
∑

vi∈V d
r
i , and the correlation terms Cdd, Cdt, Cdq, Cd2d, Cd2t, and Ddd are defined

in (3).

Proof: As in Theorem 2.2, we use Lemma 2.1 to compute the Laplacian spectral moments

in terms of weighted sums of closed walks in the weighted Laplacian graph LG. In order to

compute the fourth Laplacian spectral moment, we classify the types of possible closed walks

of length 4 into subsets according to the structure of the underlying graph covered by the walk.

Specifically, two walks p1 and p2 belong to the same type if the subgraphs covered by the

walks, denoted by C (p1) and C (p2) according to Definition 2.2, are isomorphic. We enumerate
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Fig. 1. Collection of possible graphs covered by closed walks of length 4.

Fig. 2. Collection of possible graphs covered by closed walks of length 5.

the possible types in Fig. 1 and we denote the corresponding sets of walks as P (i)
4a , P (i)

4b , P (i)
4c ,

P
(i)
4d , and P

(i)
4e . These sets P (i)

4a ,...,P (i)
4e partition the set of closed walks P (i)

4,n. Hence, we have

m4 (LG) = 1
n

∑
vi∈V

∑
x∈{a,b,c,d,e}

∑
p∈P (i)

4x
ω (p) .

We now analyze each one of the terms in the above summations. For convenience, we define

T4x , 1
n

∑
vi∈V

∑
p∈P (i)

4x
ω (p) , and analyze the term T4x for x ∈ {a, b, c, d}:

(a) For x = a, we have that the weights ω (p) of the walks in P (i)
4a are all the same, and equal

to d4
i . Hence, T4a = 1

n

∑
i d

4
i = S4/n.

(b) For x = b, the weights of the walks in P
(i)
4b are equal to 2 + 4

(
d2
i + d2

j + didj
)
. Hence,

T4b = 1
n

∑
vi∼vj 2 + 4

(
d2
i + d2

j + didj
)

= 1
n

(S1 + 4S3) + 4Cdd.

(c) For x = c, the weights of the walks in P
(i)
4c (i.e., walks that cover the two-chain graph)

are equal to 4. Hence, T4c = 1
n

∑
vj∼vi∼vk 4

(i)
= 1

n

∑n
i=1

(
di
2

)
4 = 2

n
(S2 − S1) , where in equality

(i) we have used the fact that the number of two-chain graphs whose center node is vi is equal

to
(
di
2

)
.

(d) For x = d, the weights of the walks in P
(i)
4d are equal to −8 (di + dj + dk). Hence,

T4d = 1
n

∑
vi∼vj∼vk∼vi −8 (di + dj + dk) = − 8

n

∑n
i=1

∑n
j=1

∑n
k=1 3tijkdi,where tijk is an indica-

tor function that takes value 1 if vi ∼ vj ∼ vk ∼ vi. Since
∑n

j=1

∑n
k=1 3tijk = ti (the number of

triangles touching node vi), we have that T4d = − 8
n

∑n
i=1 tidi = −8Cdt.
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(e) For x = e, the weights of the walks in P (i)
4e are equal to 8. Hence, T4e = 1

n

∑
vi∼vj∼vk∼vr∼vi
s.t. 1≤i<j<k<r≤n

8 =

8Q/n.

Finally, since m4 (LG) = T4a+T4b+T4c+T4d, we obtain the expression for the fourth Laplacian

spectral moment in the statement of the theorem after simple algebraic simplifications.

In order to derive a similar expression for the fifth-order Laplacian spectral moments, we

follow an identical approach. Below, we provide the main steps in the derivations. As before,

we partition the set of closed walks P (i)
5,n according to the subgraph covered by the walk. We

show the structure of the possible subgraphs in Fig. 2.

We now analyze each one of the terms T5x , 1
n

∑
vi∈V

∑
p∈P (i)

5x
ω (p) for x ∈ {a, b, ..., g}:

(a) For x = a, we have T5a = 1
n

∑n
i=1 d

5
i = S5/n.

(b) For x = b, we can determine all possible closed walks of length 5 using the edge graph in

Fig. 2(b) and derive that T5b = 1
n

∑
vi∼vj 5

(
di + dj + d3

i + d3
j + d2

i dj + did
2
j

)
= 5

n
(S2 + S4) +

10Cd2d.

(c) For x = c, the weights of walks covering the two-chain graph are di, dj , dk. Count-

ing the multiplicities of each type of walk, we have that T5c = 1
n

∑
vj∼vi∼vk 10di + 5dj +

5dk = 10
n

∑n
i=1

(
di
2

)
di + 5

n

∑n
i=1

∑n
j=1 aij (di − 1) dj,where we have used that

∑
vi∼vj∼vk di =∑n

i=1

(
di
2

)
di and

∑
vj∼vi∼vk dj = 1

2

∑n
i=1

∑n
j=1 aij (di − 1) dj . Thus, T5c = 5

n

∑n
i=1 d

3
i− 5

n

∑n
i=1 d

2
i +

5
n

∑
1≤i,j≤n aijdidj −

5
n

∑n
j=1 d

2
j = 5

n
(S3 − 2S2) + 10Cdd

(d) For x = d, we can determine all possible closed walks of length 5 using the edge graph

in Fig. 2(d) and derive that where bij ,
∑n

k=1 aikajk = |Ni ∩Nj|, the number of common

neighbors shared by vi and vj . Hence, T5d = −30∆
n
− 10

n

∑n
i=1 tid

2
i − 10

n

∑
i∼j aijbij (didj) =

−30∆/n− 10Cd2t − 10Ddd

(e) For x = e, the weights of walks covering the quadrangle graph are di, dj , dk, and dr. Count-

ing the multiplicities of each type of walk we have that T5e = 1
n

∑
vi∼vj∼vk∼vr∼vi 10 (di + dj + dk + dr) =

10
n

∑n
i=1

∑n
j=1

∑n
k=1

∑n
r=1 4qijkrdi,where qijkr is an indicator function that takes value 1 if

vi ∼ vj ∼ vk ∼ vr ∼ vi. Since
∑

1≤j,k,r≤n 4qijkr = qi (the number of quadrangles touching

node vi), we have that T5e = 10
n

∑n
i=1 qidi = 10Cdq.

(f ) For x = f , we have 10 possible walks covering the subgraph in Fig. 2(f). Since each walks

has a weight equal to −1, we have that T5f = 1
n

∑
vi∼vj∼vk∼vi∼vr −10 = −10

n

∑n
i=1 (di − 2) ti,

where in the last equality we take into account that the number of subgraphs of the type depicted

in Fig. 2(f) and centered at node vi is equal to the number of triangles touching node vi,
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ti, multiplied by (di − 2) (where we have subtracted −2 to the degree to discount the two

edges touching vi that are part of each triangle counted in ti). Hence, we have that T5f =

−10
n

∑n
i=1 diti + 10

n

∑n
i=1 2ti = −10Cdt + 60∆/n.

(g) For x = f , we have 10 possible walks on the pentagon and the associated weight of each

walk is −1. Hence, T5g = 1
n

∑
vi∼vj∼vk∼vr∼vs∼vi −10 = −10P/n,where P is the total number of

pentagons in G.

Finally, since m5 (LG) = T5a +T5b + ...+T5g, we obtain the expression for the fifth Laplacian

spectral moment in the statement of the theorem after simple algebraic simplifications.
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