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Interval Observers for Time-Varying Discrete-Time Systems
Denis Efimov, Wilfrid Perruquetti, Tarek Raïssi, Ali Zolghadri

Abstract—This paper deals with interval state observer design for time-
varying discrete-time systems. The problem of a similarity transformation
computation which connects a (time-varying) matrix and its nonnegative
representation is studied. Three solutions are proposed: for a generic
time-varying system, a system with positive state, and for a particular
class of periodical systems. Numerical simulations are provided to
demonstrate advantages of the developed techniques.

I. INTRODUCTION

Observer design is a central problem in many engineering appli-
cations where estimated states or outputs are required for designing
control laws or monitoring system variables. Many important con-
tributions are available in the literature, see for instance and among
others [1], [2], [3], [4] and the references therein. When it deals
with uncertain and disturbed systems, the classical nonlinear local
filtering techniques (for example, the Extended Kalman Filter and
its variants) could be useful to solve the estimation problem (see
for instance [5]). However it is well known that, in general, only
local convergence can be expected [6]. If the uncertainty cannot be
neglected, another alternative solution based on the set-membership
(or interval) estimation has been recently developed to solve the
observation problem for systems subject to bounded perturbations.
The basic idea is to compute the set of admissible values for the
state at each instant of time.

There exist many interval observers proposed for continuous-time
(linear and nonlinear) systems based on the monotone systems theory
[7], [8], [9], [10], [11], [12]. One of the most restrictive assumptions
for design of interval observers corresponds to cooperativity of
the estimation error dynamics. To overcome this drawback, it has
been recently shown that under some mild conditions, by applying
a similarity transformation, a Hurwitz matrix can be transformed
into a Hurwitz and Metzler (cooperative) matrix [9], [13], [10].
This transformation is time varying in [9], [13], while in [10] the
transformation matrix is constant and real (a constructive procedure
for calculation of the transformation matrix is also given in [10]).
In [14] this result has been extended to the class of time-varying
systems, where constant and time-varying similarity transformations
have been proposed to represent a time-varying interval matrix in a
Metzler form.

For discrete-time models, several set-membership state estimators
have been also developed using simple geometrical forms (parallelo-
topes, ellipsoids, zonotopes or intervals) [15], [16], [17], [18], [19],
[20]. The solutions are based on the well-known prediction/correction
approach (also called open-loop observers, framers or predictors,
where the system equations are solved starting from a set of initial
conditions taking on each step the values consistent with the output
measurements). The main drawback of these techniques is that the
convergence rate cannot be tuned since no observer gain is used. In
this paper, we propose to extend the interval observer methodology,
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initially developed for continuous-time systems [7], [13], [10], to
uncertain discrete-time systems. The recent papers [21], [22] have
been devoted to constructions of closed-loop interval observers for
Linear Time-Invariant (LTI) discrete-time systems. In this work we
will focus our attention on the time-varying case, which is much more
complex from both analysis and design points of view.

The main contribution of this work is to extend the approach of
interval observer design [21], [10] to Linear Time-Varying (LTV)
discrete-time systems described by

x(t+ 1) = A(t)x(t) + b(t), (1)

y(t) = C(t)x(t) + v(t), t ∈ Z+,

where x(t) ∈ Rn and y(t) ∈ Rp are the state and the output signal
available for measurements; b : Z+ → Rn is an unknown input; v :
Z+ → Rp is the measurement noise, the matrix functions A : Z+ →
Rn×n, C : Z+ → Rp×n of appropriate dimensions are given (the
real and integer numbers are denoted by R and Z respectively, R+ =
{τ ∈ R : τ ≥ 0} and Z+ = Z∩R+). In order to ensure cooperativity
of the estimation error, a similarity transformation of a stable (time-
varying) matrix to a stable and nonnegative (time-varying) matrix has
to be constructed. Both constant and time-varying periodic similarity
transformations are investigated.

The paper is organized as follows. Some basic facts from the theory
of interval estimation are given in Section 2. The main result is
described in Section 3. Two examples of computer simulation are
presented in Section 4: a third order time-varying periodical system
and the repressilator (a model from biology).

II. PRELIMINARIES

Euclidean norm of a vector x ∈ Rn will be denoted by |x|, and for
a measurable and locally essentially bounded input u : Z → R the
symbol ||u||[t0,t1] denotes its L∞ norm ||u||[t0,t1] = sup{|u(t)|, t ∈
[t0, t1]}, if t1 = +∞, then we will simply write ||u||. We will
denote by L∞ the set of all inputs u with the property ||u|| < ∞.
Denote the sequence of integers 1, ..., k by 1, k. The symbols In
and En×m denote the identity matrix and the matrix with all
entries equal 1 respectively (with dimensions n × n and n × m).
For a matrix A ∈ Rn×n, we denote respectively by λ(A) the
vector of its eigenvalues, ||A||max = maxi=1,n,j=1,n |Ai,j | is the
elementwise maximum norm (which is not sub-multiplicative) and
||A||2 =

√
maxi=1,n λi(A

TA) is the induced L2 matrix norm. For
these norms the following relations are satisfied:

||A||max ≤ ||A||2 ≤ n||A||max. (2)

The relation P � 0 (P � 0) means that the matrix P ∈ Rn×n is
positive (nonnegative) definite.

A. Interval analysis

For two vectors x1, x2 ∈ Rn or matrices A1, A2 ∈ Rn×n, the
relations x1 ≤ x2 and A1 ≤ A2 are understood elementwise. Given
a matrix A ∈ Rm×n, define A+

i,j = max{0, Ai,j} for all i = 1, n

and j = 1, n, and A− = A+ − A. Let x, x, x ∈ Rn be vectors
satisfying x ≤ x ≤ x and A ∈ Rm×n be a constant matrix, then

A+x−A−x ≤ Ax ≤ A+x−A−x. (3)

Since Ax = (A+ −A−)x, then for x ≤ x ≤ x we obtain (3).
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B. Cooperative discrete-time linear systems

A matrix A ∈ Rn×n is called Schur stable if all its eigenvalues
have the norm less than one, it is called nonnegative if all its
elements are nonnegative, and it is called Metzler if all its off-
diagonal elements are nonnegative. Any solution of the system

x(t+ 1) = Ax(t) + ω(t), ω : Z+ → Rn+, t ∈ Z+,

with x ∈ Rn and a nonnegative matrix A ∈ Rn×n+ , is elementwise
nonnegative for all t ≥ 0 provided that x(0) ≥ 0 [23]. Such systems
are called cooperative (monotone) [23].

In the sequel we are interested in a Luenberger-like observer design
with the gain L such that the matrix A − LC (the closed loop
matrix of the estimation error dynamics) would be Schur stable and
nonnegative. Usually it is not possible to find such a matrix L.
However a change of variables z(t) = Sx(t) with a nonsingular
matrix S can be proposed such that, in the new coordinates, the
matrix S(A − LC)S−1 would satisfy the required properties. An
idea how to design such a matrix S is given in the lemma below.

Lemma 1. [10] Given the matrices A ∈ Rn×n, R ∈ Rn×n and
C ∈ Rp×n. If there exists a matrix L ∈ Rn×p such that λ(A−LC) =
λ(R), and there exist vectors %1 ∈ R1×n, %2 ∈ R1×n such that
the pairs (A− LC, %1) and (R, %2) are observable, then there is a
nonsingular S ∈ Rn×n such that R = S(A− LC)S−1.

This result was used in [10] to design interval observers for
continuous-time LTI systems with a Metzler matrix R. The main
difficulty is to prove existence of a real and nonsingular matrix
S, and to provide a constructive approach of its calculation. In
[10] the matrix S = ORO

−1
A−LC , where OA−LC and OR are

respectively the observability matrices of the pairs (A − LC, %1)
and (R, %2). Another (more strict) condition is that for p = 1
the pair (A,C) is observable (in this case there exists a matrix
L such that λ(A) 6= λ(A − LC) = λ(R), that is equivalent to
the existence of a unique S = ORO

−1
A−LC [24], where OA−LC

and OR are observability matrices of (A − LC,C) and (R, %2)
respectively). In addition, for any fixed matrices A, R, C the equation
SA − RS = QC is linear with respect to unknowns S and Q, and
it can be solved using an LMI routine. In the present work we will
apply Lemma 1 to a nonnegative matrix R. Note that if the matrix
A−LC has only real positive eigenvalues, then R can be chosen as
diagonal or Jordan representation of A− LC.

The application of Lemma 1 is related to the inverse eigenvalue
problem for nonnegative matrices (i.e. the problem of existence of a
nonnegative matrix R with the predefined eigenvalues λ(A− LC)),
see the monograph [25] (section 11.2) for the necessary and sufficient
conditions, which have to be imposed on λ(A−LC) in order that a
nonnegative R exists. In [26] the fast Fourier transformation is used
to design a real symmetric R with a given vector of eigenvalues.

C. Floquet theory for discrete-time systems

Consider the LTV discrete-time system

x(t+ 1) = A(t)x(t), (4)

where x(t) ∈ Rn is the state and A : Z+ → Rn×n. The system (4)
is called reducible if there exists a matrix sequence G : Z+ → Rn×n
such that for all t ∈ Z+

G−1(t+ 1)A(t)G(t) = N, det{G(t)} 6= 0,

sup
t∈Z+

||G(t)||2 + ||G−1(t)||2 < +∞

for some matrix N ∈ Rn×n. In other words, if the system (4) is
reducible, then the time-varying transformation of coordinates z(t) =

G−1(t)x(t) represents the system in the time-invariant form

z(t+ 1) = Nz(t). (5)

Since G(t) and G−1(t) are bounded, stability of (4) follows (5).
The system (4) is called periodical if there exists a τ > 1 such

that A(t+ τ) = A(t) for all t ∈ Z+. Define the system fundamental
matrix X(t) = A(t − 1) . . . A(0) and the monodromy matrix U =
X(τ). Obviously X(t+ τ) = X(t)U .

Lemma 2. [27] A periodical system (4) is reducible if det{A(t)} 6=
0 for all t ∈ Z+.

In this case N = eτ
−1 lnU (i.e. U = Nτ ) and G(t) = N tX(t)−1

(G(t) is periodical, indeed G(t + τ) = N t+τX−1(t + τ) =
N tNτU−1X−1(t) = N tX−1(t) = G(t)) [27]. Some solutions also
exist in the irreducible case [28].

A canonical representation of the reducible system (4) with possi-
ble singular matrices A(t) is studied in [29], where it is shown that
any reducible system admits a canonical representation with a matrix
N in a Jordan canonical form with only nonnegative eigenvalues (the
matrix N is complex in [29], using the transformation proposed in
[22] the matrix N can be chosen real).

D. LTI systems

In this subsection we briefly review the main result of [21] for an
LTI discrete-time system:

x(t+ 1) = Ax(t) + b(t), y(t) = Cx(t) + v(t), t ∈ Z+, (6)

where all variables have the same dimensions and meaning as for the
system (1); in this work we assume that b ∈ L∞, v ∈ L∞; A and
C are real matrices with appropriate dimensions.

Assumption 1. Let x ∈ L∞ and ||v|| < V , the constant 0 ≤ V <
+∞ is known.

Assumption 2. There exists a matrix L ∈ Rn×p such that the matrix
A− LC is Schur stable.

Assumption 3. There exist two functions b, b : Z+ → Rn, b, b ∈ L∞
such that b(t) ≤ b(t) ≤ b(t) for all ∈ Z+.

Assumption 1 is rather common in the estimation literature. As-
sumption 2 is standard [3], [1]. Assumption 3 states that the input is
not exactly known, but it belongs to the interval [b(t), b(t)].

Theorem 1. [21] Let assumptions 1–3 be satisfied and there exist
a matrix R ∈ Rn×n+ such that λ(A − LC) = λ(R) and the pairs
(A − LC, %1), (R, %2) are observable for some %1 ∈ R1×n, %2 ∈
R1×n. Then for all t ∈ Z+ the estimates x(t), x(t) are bounded and

x(t) ≤ x(t) ≤ x(t) (7)

provided that x(0) ≤ x(0) ≤ x(0), where x(t) = S+z(t)−S−z(t),
x(t) = S+z(t)− S−z(t), and

z(t+ 1) = Rz(t) + Fy(t)− FV (8)

+(S−1)+b(t)− (S−1)−b(t),

z(t+ 1) = Rz(t) + Fy(t) + FV

+(S−1)+b(t)− (S−1)−b(t);

z(0) = (S−1)+x(0)− (S−1)−x(0),

z(0) = (S−1)+x(0)− (S−1)−x(0),

where S = ORO
−1
A−LC (OA−LC and OR are the observability

matrices of the pairs (A−LC, %1), (R, %2) respectively), F = S−1L
and F = (F+ + F−)Ep×1.
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Proof: Consider the system (6), let us add and subtract the signal
Ly, then in the new coordinates z = S−1x we obtain:

z(t+ 1) = Rz(t) + F [y(t)− v(t)] + S−1b(t),

y(t) = CSz(t) + v(t).

The dynamics of errors e = z − z, e = z − z obey the equations:

e(t+ 1) = Re(t) + d(t), e(t+ 1) = Re(t) + d(t),

where d(t) = [FV −Fv(t)]+[S−1b(t)−(S−1)+b(t)+(S−1)−b(t)],
d(t) = [FV + Fv(t)] + [(S−1)+b(t)− (S−1)−b(t)− S−1b(t)].

By construction the matrix A − LC is Schur stable due to the
choice of L, then the matrix R = S−1(A−LC)S is Schur stable and
nonnegative. Therefore, the variables e(t) and e(t) are bounded, and
taking in mind Assumption 1 we get the boundedness of z(t), z(t).
According to assumptions 1, 3 and the relations (3), we have d, d ∈
L∞ and d(t) ≥ 0, d(t) ≥ 0 for all t ∈ Z+. Next, since the matrix
R is nonnegative, and e(0) ≥ 0, e(0) ≥ 0 (by construction z(0) ≤
z(0) ≤ z(0)), then e(t) ≥ 0 and e(t) ≥ 0 for all t ∈ Z+ since d, d
have the same property. This fact implies the required order relation
z(t) ≤ z(t) ≤ z(t) for all t ∈ Z+. Finally, using the relations (3)
we get the theorem claim that x(t) ≤ x(t) ≤ x(t) for all t ∈ Z+.

If in Assumption 2 we impose observability of the pair (A,C),
then formulation of Theorem 1 can be simplified skipping conditions
of Lemma 1 (see the discussion after this lemma).

III. MAIN RESULT

The main result deals with an extension of Theorem 1 to the
LTV case. For this purpose we need to build a transformation of
a time-varying matrix to a time-varying nonnegative one. In this
work two variants are analyzed: time-invariant and time-varying
transformations.

A. Time-invariant similarity transformation

In this case Assumption 2 is replaced by the following one.

Assumption 4. There exist matrix functions L : Z+ → Rn×p, P :
Z+ → Rn×n, P (·) = P (·)T � 0 and κ > 0 such that for all t ∈ Z+:

p1In � P (t) � p2In, p1, p2 > 0; (9)

(1 + κ)D(t)TP (t+ 1)D(t)− P (t) +Q = 0,

where D(t) = A(t)− L(t)C(t) and Q = QT � 0.

The condition (9) is satisfied for a matrix P with bounded entries.
An approach for such P and L computation can be found in [30],
[31]. Next we are going to propose a similarity transformation
S ∈ Rn×n, which maps a stable matrix D(t) to a stable and non-
negative matrix STD(t)S. For the continuous-time case, a similarity
transformation of the matrix D(t) into a Metzler form was developed
in [14], the discrete-time version of that result is presented in Lemma
3 below, which needs the following assumption.

Assumption 5. Let D(t) ∈ Ξ ⊂ Rn×n, ∀t ∈ Z+, where Ξ = {D ∈
Rn×n : Da−∆ ≤ D ≤ Da + ∆} for some DT

a = Da ∈ Rn×n and
∆ ∈ Rn×n+ . Let R = RT ≥ µEn×n be a nonnegative matrix with
λ(R) = λ(Da) and µ > n||∆||max.

Under Assumption 5, if ||∆||max is sufficiently small, then in
Assumption 4 it is possible to look for a solution P (t) = P , which
can be computed for Da using the robustness theory [32].

Lemma 3. Let Assumption 5 be satisfied, then there exists an
orthogonal matrix S ∈ Rn×n such that the matrices STDS are
nonnegative for all D ∈ Ξ.

Proof: The matrices Da and R are symmetric due to Assumption
5. Since λ(R) = λ(Da) by the same assumption, then there exist
two orthogonal matrices OD ∈ Rn×n, OR ∈ Rn×n such that
OT
DDaOD = OT

RROR (the matrices OD and OR may be composed
respectively by eigenvectors of Da and R). In addition, the matrices
OD and OR can be chosen to satisfy ||OD||2 = ||OR||2 = 1. Let
S = ODO

T
R be another orthogonal matrix with ||S||2 = 1, then

R = STDaS. For any D ∈ Ξ, we have STDS = ST(Da + Π)S
for a matrix Π ∈ Rn×n satisfying −∆ ≤ Π ≤ ∆. Then
STDS = R+STΠS. Using (2) we get ||STΠS||max ≤ ||STΠS||2 =
||Π||2 ≤ n||Π||max ≤ n||∆||max. Since all elements of the matrix
R are bigger than µ > n||∆||max, then all elements of the matrix
R+ STΠS are nonnegative.

A useful algorithm for a symmetric nonnegative matrix R design
is proposed in [26]. The matrix µEn×n has one eigenvalue µn
and the rests are equal to zero. Since for nonnegative matrices
µn = maxλ(µEn×n) ≤ maxλ(R), if µEn×n ≤ R [25], and
for a Schur stable matrix R we necessarily have maxλ(R) ≤ 1,
then we obtain the relation µ ≤ n−1, that leads to a restriction
||∆||max < n−2, which has not been met for Metzler matrices in
[14]. This restriction means that Lemma 3 can be used if the system
uncertainty is not big. Note that this lemma can be applied to systems
with an uncertain matrix D since it is based on the average matrix
Da and the dispersion ∆.

Under Assumption 5 there is an orthogonal matrix S ∈ Rn×n such
that STD(t)S ∈ Rn×n+ for all D(t) ∈ Ξ. By introducing a new state
variable z = STx the system (1) is transformed to

z(t+ 1) = STD(t)Sz(t) + F (t)[y(t)− v(t)] + β(t), (10)

y(t) = C(t)Sz(t) + v(t),

where β(t) = STb(t) and F (t) = STL(t). Using (3) we have the
following relations

x = S+z − S−z ≤ x = Sz ≤ S+z − S−z = x, (11)

where z ≤ z ≤ z are the interval estimates for the variable z.
Similarly under assumption 3 we obtain:

β(t) = S+Tb(t)− S−Tb(t) ≤ (12)

β(t) ≤ S+Tb(t)− S−Tb(t) = β(t).

In the new coordinates the observer takes form similar to (8):

z(t+ 1) = STD(t)Sz(t) + β(t)− F (t)V + F (t)y(t), (13)

z(t+ 1) = STD(t)Sz(t) + β(t) + F (t)V + F (t)y(t),

where F (t) = [F+(t) + F−(t)]Ep×1. Now we are in position to
prove the following extended variant of Theorem 1.

Theorem 2. Let assumptions 1, 3–5 be satisfied. Then the variables
x(t) and x(t) in (1), (11), (13) are bounded for all t ∈ Z+ and the
relations (7) are satisfied for z(0) = S+Tx(0) − S−Tx(0), z(0) =
S+Tx(0)− S−Tx(0) provided that x(0) ≤ x(0) ≤ x(0).

Proof: Consider the dynamics of the interval estimation errors
e = z − z, e = z − z:

e(t+ 1) = STD(t)Se(t) + d(t), e(t+ 1) = STD(t)Se(t) + d(t),

where d(t) = [β(t)−β(t)]+[F (t)V +F (t)v(t)] and d(t) = [β(t)−
β(t)]+[F (t)V −F (t)v(t)]. According to assumptions 1, 3 the signals
d, d are nonnegative for all t ∈ Z+ and d, d ∈ L∞. By (12) the
discrepancies β(t)−β(t), β(t)−β(t) are positive, and for all t ≥ 0

we have F (t)V +F (t)v(t) = V [F+(t) +F−(t)]Ep×1 + [F+(t)−
F−(t)]v(t) = F+(t)[V Ep×1 + v(t)] + F−(t)[V Ep×1 − v(t)] ≥
0 and F (t)V − F (t)v(t) = V [F+(t) + F−(t)]Ep×1 − [F+(t) −
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F−(t)]v(t) = F+(t)[Ep×1V − v(t)] + F−(t)[Ep×1V + v(t)] ≥ 0.
By construction e(0) ≥ 0, e(0) ≥ 0 (from (3)), therefore since
STD(t)S ∈ Rn×n+ (from Lemma 3) we obtain that e(t) ≥ 0, e(t) ≥
0 for all t ∈ Z+, which leads to

z(t) ≤ z(t) ≤ z(t) ∀t ∈ Z+.

Finally, the order relation x(t) ≤ x(t) ≤ x(t) follows from (3).
To prove boundedness of z(t), z(t) (x(t) and x(t)) consider

the Lyapunov functions V1(t) = eT(t)STP (t)Se(t) and V2(t) =
eT(t)STP (t)Se(t). Below only V1 is analyzed (similarly for V2):

V1(t+ 1)− V1(t) = eT(t)STDT(t)P (t+ 1)D(t)Se(t)+

2d
T
(t)STP (t+ 1)D(t)Se(t) + d

T
(t)STP (t+ 1)Sd(t)

−eT(t)STP (t)Se(t)

≤ eT(t)ST[(1 + κ)DT(t)P (t+ 1)D(t)− P (t)]Se(t)

+(κ−1 + 1)p2||d||2

≤ −eT(t)STQSe(t) + (κ−1 + 1)p2||d||2,

that gives boundedness of z, z (p2, κ come from Assumption 4).
This theorem proposes an interval observer for an LTV system

explicitly skipping the requirement on positivity of the closed loop
matrix D (according to assumption 4 it is only stable).

In addition, if the system state is nonnegative (that is a usual
situation in many biological applications), then it is possible to design
the interval observer without any knowledge of the exact values of
the matrix function D. Under these conditions the interval observers
can be also applied for uncertain time-varying systems. This result
is formulated below as a corollary of Theorem 2.

Corollary 1. Let assumptions 1, 3 and 5 be satisfied, Π ≤
STD(t)S ≤ Π for Schur stable matrices Π, Π, and z(t) ∈ Rn+
in (10) for all t ∈ Z+. Consider the interval observer:

z(t+ 1) = Π z(t) + β(t)− F (t)V + F (t)y(t), (14)

z(t+ 1) = Π z(t) + β(t) + F (t)V + F (t)y(t).

Then the variables x(t) and x(t) in (1), (11), (14) are bounded for
all t ∈ Z+ and (7) is satisfied for z(0) = S+Tx(0) − S−Tx(0),
z(0) = S+Tx(0)− S−Tx(0) provided that x(0) ≤ x(0) ≤ x(0).

Proof: According to conditions of Theorem 2 and Assumption
1, the system (14) is stable linear time-invariant with bounded inputs,
therefore the variables z(t), z(t) (and hence x(t), x(t) from (11)) are
bounded. The dynamics of the interval estimation errors e = z − z,
e = z − z can be written as follows:

e(t+ 1) = Πe(t) + d(t), e(t+ 1) = Πe(t) + d(t),

where d(t) = [β(t) − β(t)] + [F (t)V + F (t)v(t)] + [Π −
STD(t)S]z(t), d(t) = [β(t) − β(t)] + [F (t)V − F (t)v(t)] +

[STD(t)S − Π]z(t) are positive inputs. Since the matrices Π, Π
are nonnegative by Assumption 5 and e(0) ≥ 0, e(0) ≥ 0, then
e(t) ≥ 0, e(t) ≥ 0 for all t ∈ Z+.

B. Time-varying transformation

The objective of this subsection is to build a time-varying trans-
formation of coordinates z(t) = G−1(t)x(t) with det{G(t)} 6= 0
for all t ∈ Z+ and supt∈Z+

||G(t)||2 + ||G−1(t)||2 < +∞, which
maps the system (1) to the following one:

z(t+ 1) = R(t)z(t) +G−1(t+ 1)[b(t) + L(t){y(t)− v(t)}],
y(t) = C(t)G(t)z(t) + v(t), t ∈ Z+,

where R(t) = G−1(t+ 1)[A(t)−L(t)C(t)]G(t) should be a stable
and nonnegative matrix, and L : Z+ → Rn×p is an observer

gain matrix to be calculated. Therefore, in the common case the
transformation matrix G is a solution of the following discrete-time
dynamical equation:

G(t+ 1)R(t) = D(t)G(t), t ∈ Z+

with an initial condition G(0) ∈ Rn×n and D(t) = A(t)−L(t)C(t).
For an invertible matrices R, using the Kronecker product ⊗, this
equation can be rewritten as follows:

vec{G(t+ 1)} = vec{D(t)G(t)R(t)−1} (15)

= Γ(t)vec{G(t)},
Γ(t) = [R(t)−1]T ⊗D(t),

where vec{S} = [S1,1, . . . Sm,1, S2,1 . . . Sn,n]T is the vectorization
transformation of a matrix S ∈ Rn×n, and λ[Γ(t)] = λ[R(t)−1] ⊗
λ[D(t)]. Thus it is necessary to select the matrices L(t) and R(t) in a
way that the system (15) has a bounded solution G(t) with a bounded
inverse G−1(t), which is a hardly solving problem. An admissible
solution can be an oscillating bounded matrix G(t), which is the case
of periodical systems, for example.

Further this subsection deals with periodical systems (1), i.e. we
will assume that there is a τ > 1 such that A(t + τ) = A(t),
C(t+ τ) = C(t) for all t ∈ Z+.

Assumption 6. There exists a matrix function L : Z+ → Rn×p such
that for all t ∈ Z+:

i) L(t+ τ) = L(t);
ii) det{D(t)} 6= 0, D(t) = A(t)− L(t)C(t);
iii) N = eτ

−1 lnU is Schur stable and nonnegative, where U =
X(τ), X(t) = D(t) . . . D(0).

This is a standard assumption [28]. By adding and subtracting
L(t)y(t) in (1) we obtain:

x(t+ 1) = D(t)x(t) + L(t)[y(t)− v(t)] + b(t).

Under Assumption 6 this system is reducible via the coordinate
transformation z(t) = G−1(t)x(t), G(t) = N tX(t)−1 to the
following cooperative system:

z(t+ 1) = Nz(t) + F (t)[y(t)− v(t)] + β(t), (16)

where F (t) = G−1(t + 1)L(t) is a periodical matrix and β(t) =
G−1(t+ 1)b(t).

Note that the part (iii) of Assumption 6 can be relaxed assuming
that N is only Schur stable. Thereby if there exists a matrix R ∈
Rn×n+ such that λ(N) = λ(R) and the pairs (N, %1), (R, %2) are
observable for some %1 ∈ R1×n, %2 ∈ R1×n then according to
Lemma 1 there is an invertible matrix S ∈ Rn×n such that the
conditions of Assumption 6 are satisfied for Ñ = R and G̃(t) =
SG(t). Another way to relax the part (iii) of Assumption 6 is to
modify the time-varying transformation G(t) using the time-varying
transformation proposed in [22], that maps a time-invariant matrix to
a nonnegative one.

Finally, the interval observer for the system (16) has the form:

z(t+ 1) = Nz(t) + F (t)y(t)− F (t)V + β(t), (17)

z(t+ 1) = Nz(t) + F (t)y(t) + F (t)V + β(t),

where F (t) = [F+(t) + F−(t)]Ep×1 and from (3) we obtain

β(t) = [G−1(t+ 1)]+b(t)− [G−1(t+ 1)]−b(t) ≤ β(t)

≤ [G−1(t+ 1)]+b(t)− [G−1(t+ 1)]−b(t) = β(t).

Theorem 3. Let assumptions 1, 3 and 6 be satisfied. Then for all
t ∈ Z+ the estimates

x(t) = G+(t)z(t)−G−(t)z(t), x(t) = G+(t)z(t)−G−(t)z(t)
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are bounded for (1), (17) and the relations (7) are satisfied for all
t ∈ Z+ with z(0) = [G−1(t)]+x(0) − [G−1(t)]−x(0), z(0) =
[G−1(t)]+x(0)−[G−1(t)]−x(0) provided that x(0) ≤ x(0) ≤ x(0).

Proof: The proof essentially repeats the steps of Theorem 2
proof.

For the case of periodical systems this theorem is less restrictive
than Theorem 2, where implicitly ||∆||max < n−2 is assumed (the
deviation of D(t) from its average has to be sufficiently small).

Remark 1. It is worth to stress that b or β could be a function of the
state x provided that there exist known bounded signals b, b satisfying
Assumption 3. Similarly for the matrix functions A and C, they can
be nonlinear functions of the system input/output variables available
for measurements. Therefore, the presented interval observers (8),
(13), (17) can be applied to nonlinear systems in the output canonical
form, for instance. A mild reformulation of theorems 1–3 for this case
is skipped for brevity of exposition. Application of these theorems
to nonlinear systems is illustrated on examples in Section 4.

IV. EXAMPLES

To illustrate the proposed results consider two examples.

A. Repressilator system

Following [33], [34] consider a model of an oscillatory network
of transcriptional regulators with three genes:

ṁi = −mi +
α(t)

1 + pni−1

+ α0
i (t),

ṗi = ν(t)mi − µ(t)pi, i = 1, 2, 3,

where the convention p0 = p3 is used, x =
[m1, p1,m2, p2,m3, p3] ∈ R6

+ is the state, mi represents the
mRNA concentration of a gene, pi is the corresponding protein
concentration. In this work (contrarily to [33], [34]) it is assumed
that all parameters are functions of time:

α ≤ α(t) ≤ α, ν ≤ ν(t) ≤ ν, µ ≤ µ(t) ≤ µ;

α0 ≤ α0
i (t) ≤ α0, i = 1, 2, 3; n = 1,

and only the bounds α = 0.5, α = 1.5, ν = 1.9, ν = 2.1, µ = 1.9,
µ = 2.1, α0 = 25, α0 = 35 are available for estimation. Such
an assumption allows us to simulate a larger class of uncertainties
presented in the repressilator model. For simulation we will use

α(t) = 1 + 0.5 cos(0.2t), ν(t) = 2 + 0.1 sin(0.1t),

µ(t) = 2 + 0.1 sin(0.2t),

α0
1(t) = 30 + 3 cos(0.4t) + 2 sin(0.3t),

α0
2(t) = 30− 3 cos(0.3t) + 2 sin(0.4t),

α0
3(t) = 30 + 3 cos(0.3t)− 2 sin(0.4t).

The values of m1, m2, m3 are available for measurements at the
discrete instants of time with the period T = 5 [min].

In order to apply the proposed theoretical results we discretize the
model with the period of measurements T using the Euler method
for all i = 1, 2, 3 (tk = Tk, k ∈ Z+):[

mi(k + 1)
pi(k + 1)

]
= A(tk)

[
mi(k)
pi(k)

]
+ βi(tk, pi−1(k)),

A(t) =

[
1− T 0
Tν(t) 1− Tµ(t)

]
, βi(t, p) = T

[
α(t)
1+pn

+ α0
i (t)

0

]
.

Assumption 1 is satisfied with V = 0 (it is assumed that there
is no measurement noise). The only nonlinear term βi is always
bounded by construction for positive concentrations pi−1 (confirming
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Figure 1. The protein concentration interval estimation

Remark 1). In addition, the time-varying matrix A(t) is nonnegative
(Assumption 5 is satisfied). For each i = 1, 2, 3 we have the following
overlaying and underlying matrices:

A ≤ A(t) ≤ A,

A =

[
1− T 0
Tν 1− Tµ

]
, A =

[
1− T 0
Tν 1− Tµ

]
.

For L = [0.9 0.15]T and C = [1 0] the matrices Π = A − LC and
Π = A− LC are Schur stable and nonnegative, the state is positive
and Assumption 3 is satisfied for

β(k) = T

[ α
1+max{0,pn(k)} + α0

0

]
,

β(k) = T

[
α

1+max{0,pn(k)} + α0

0

]
.

All conditions of Corollary 1 are valid. The results of simulation for
the obtained interval observer (14) are presented in Fig. 1 for the
unmeasured concentrations pi.

B. Time-varying nonlinear system

Consider a third order discrete-time system:

x(t+ 1) = A(t)x(t) + φ(y(t)) + d(t) + δd(t), y(t) = x1(t),

A(t) =

 1.1 δ cos(2ωt)− 0.1 r − δ sin(0.5ωt)
0.9 + δ cos(ωt) a− δ sin(0.5ωt) δ sin(ωt)− a

0.85 δ cos(ωt)− a 0.25

 ,
φ(y) = [−0.1|y|2sign(y) 0 5 sin(y)]T, δ = 0.05, ω = π/10,

d(t) = [sin(ωt) − cos(0.5ωt) sin(2ωt)]T,

where ||δd|| ≤ δd = 0.5 is an uncertain input (for simulation δd(t) =
0.5[− sin(2ωt) cos(ωt)−sin(4ωt)]T), a = 0.2, r = 0.35. Numerical
simulations show that for initial conditions |x(0)| ≤ 1 the system has
bounded trajectories despite of instability of A(t) (Assumption 1 is
satisfied). Define b(t) = φ(y(t)) +d(t) + δd(t), then the system can
be rewritten in the form (1) and Assumption 3 holds with

b(t) = φ(y(t)) + d(t)− δdE3×1, b(t) = φ(y(t)) + d(t) + δdE3×1.

The matrix A(t) is periodical, but the results of Theorem 3 cannot
be applied here since the monodromy matrix U is very close to a
singular (the inversion of U needed in Theorem 3 leads to a high
numerical error of computations). From another side, A(t) belongs
to the interval [Aa −∆, Aa + ∆], where

Aa =

 1.1 −0.1 r
0.9 a −a
0.85 −a 0.25

 , ∆ =

 0 δ δ
δ δ δ
0 δ 0

 .
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Figure 2. The results of interval estimation for a time-varying nonlinear
system

For L = [1 1 0.5]T the matrix Da = Aa−LC becomes Schur stable
(it is straightforward to verify that Assumption 4 is true for P = I3),
but there is no possibility to make it nonnegative for any L. Thus an
orthonormal transformation

S =

 −0.058 0.997 −0.052
0.134 −0.044 −0.99
0.989 0.064 0.131


is calculated such that

R = STDaS =

 0.157 0.346 0.173

0.346 0.156 0.163

0.173 0.163 0.237


is a nonnegative matrix with µ = 0.156 (||∆||max = δ) and
Assumption 5 is satisfied. Therefore, all conditions of Theorem 2
are verified, the results of interval estimation using (13) for the
unmeasured coordinates x2 and x3 are shown in Fig. 2.

V. CONCLUSION

The paper presents a new solution for designing an interval
observer for time-varying discrete-time systems. The approach can be
also applied to nonlinear systems in the output canonical form (like
in the repressilator example). Static and dynamic transformations of
coordinates are proposed mapping a stable LTV system to another
LTV system that is stable and cooperative. Simulation results are
provided to show the efficiency of the proposed method.

With respect to already existing design methods for continuous-
time systems, the paper has demonstrated that the discrete-time
interval observers admit a relaxation of some applicability conditions.
The relaxation of symmetry of the matrix Da introduced in the
conditions of the Lemma 3 and the stability conditions used in
Assumption 4 are future directions of research. This would provide
possibility for an extension of the proposed techniques to more
complex systems.
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