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Abstract—It is well known that the nonlinear filtering problem
has important applications in both military and civil industries.
The central problem of nonlinear filtering is to solve the Duncan-
Mortensen-Zakai (DMZ) equation in real time and in a mem-
oryless manner. In this paper, we shall extend the algorithm
developed previously by S.-T. Yau and the second author to the
most general setting of nonlinear filterings, where the explicit
time-dependence is in the drift term, observation term, and the
variance of the noises could be a matrix of functions of both time
and the states. To preserve the off-line virture of the algorithm,
necessary modifications are illustrated clearly. Moreover, it is
shown rigorously that the approximated solution obtained by
the algorithm converges to the real solution in the L1 sense.
And the precise error has been estimated. Finally, the numerical
simulation support the feasibility and efficiency of our algorithm.

Index Terms—Nonlinear filtering, Duncan-Mortensen-Zakai
equation, time-varying systems, convergence analysis.

I. INTRODUCTION

TRACING back to 1960s, two most influential mathemat-
ics papers [11], [12] have been published in ASME’s

Journal of Basic Engineering. These are so-called Kalman
filter (KF) and Kalman-Bucy filter. They addressed a signifi-
cant question: How does one get accurate estimate from noisy
data? The applications of KF are endless, from seismology to
bioengineering to econometrics. The KF surpasses the other
filtering in, at least, the following two aspects:
• The KF uses each new obervation to update a probability

distribution for the state of the system without refering
back to any earlier observations. This is so-called “mem-
oryless” or “without memory”.

• The KF makes the decisions of the state on the spot,
while the observation data keep coming in. This property
is called “real time” application.

Despite its success in many real applications, the limitations
on the nonlinearity and Gaussian assumption of the initial
probability density of the KF push the mathematicians and
scientists to seek the optimal nonlinear filtering. One direction
is to modify KF to adapt the nonlinearities. The researchers
developed extended Kalman filter (EKF), unscented Kalman
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filter, ensemble Kalman filter, etc., which can handle weak
nonlinearities (that is almost linear). But for serious nonlinear-
ities, they may completely fail. The failure of EKF is shown in
our numerical experiment, see the 1D cubic sensor in section
VII.A.

Another direction, and also the most popular method nowa-
days, is the particle filter (PF), refer to as [1], [3] and
reference therein. It is developed from sequential Monte Carlo
method. On the one hand, the PF is appliable to nonlinear,
non-Gaussian state update and observation equations. As the
number of particles goes to infinity, the PF estimate becomes
asymptotically optimal. On the other hand, it is hard to be
implemented as a real time application, due to its essence of
Monte Carlo simulation.

Besides the widely used two methods above, the partial
differential equaitons (PDE) methods are introduced to the
nonlinear filtering in 1960s. These methods are based on the
fact that the unnormalized conditional density of the states
is the solution of Duncan-Mortensen-Zakai (DMZ) equation,
refer to as [6], [16] and [23]. The classical PDE methods could
be applied to this stochastic PDE to obtain an approximation
to the density. Yet, the main drawback of PDE methods are
the intensive computation. It is almost impossible to achieve
the “real time” performance. To overcome this shortcoming,
the splitting-up algorithm is introduced to move the heavy
computation off-line. It is like the Trotter product formula
from semigroup theory. This operator splitting algorithm is
proposed for the DMZ equation by Bensoussan, Glowinski,
and Rascanu [5]. More research articles follow this direction
are [9], [15] and [10], etc. Unfortunately, it is pointed out in
[5] that the soundness of this algorithm is verified only to the
filtering with bounded drift term and observation term ( i.e.,
f and h in (2.1)). Essentially with the similar idea, Yau and
Yau [22] developed a novel algorithm to the “pathwise-robust”
DMZ equation (see (2.6)), where the boundedness conditions
are weakened by some mild growth conditions on f and h.
The two nice properties of the KF have also been kept in
this algorithm: “without memory” and “real time”. But their
algorithm has only been rigorously proved in theory, when
the drift term, the observation term (f , h in (2.1)) are not
explicitly dependent on time, the variance of the noises (G
in (2.1)) is the identity matrix, and the noises are standard
Brownian motion processes (S = Ir×r, Q = Im×m in (2.1)) .

In this paper, we shall extend the algorithm in [22] to the
most general settings of nonlinear filtering problems, in the
sense that the drift term, the observation term could explicitly
depend on time, the variance of the noises S, Q are time-
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dependent, and G could be a matrix of functions of both time
and the states. We shall validate our algorithm under very
mild growth conditions on f , h and G, see (3.5), (3.6) and
(3.8). These are essentially time-dependent analogue of those
in [22]. First of all, this extension is absolutely necessary.
Many real applications have explicit time-dependence in their
models, say the target orientation angles estimation from target
position/velocity in constant turn model, where the angular ve-
locities are piecewise constant functions in time [18]. Second,
this extension is nontrivial from the mathematical point of
view. More trickier analysis of PDE is required. For instance,
we need to take care of the more general elliptic operator D2

w,
see (2.5), rather than the Laplacian.

This paper is organized in the following. The detailed
formulation of our algorithm is described in section II; In
section III, we state our main theorems which validate our
algorithm in theory. Notations and prelimilary are in section
IV. Section V is devoted to the proofs of the main theorems.
The lower bound of the density function is investigated in
section VI. Numerical simulations are included in section VII.
Finally, we arrive the conclusion. The appendices is consisted
of the proof of the well-posedness theorem and the proof of
an interesting property of the density function.

II. MODEL AND ALGORITHM

The model we are considering is the signal observation
model with explicit time-dependence in the drift term, obser-
vation term and the variance of the noises:{

dxt = f(xt, t)dt+G(xt, t)dvt,

dyt = h(xt, t)dt+ dwt,
(2.1)

where xt and f are n-vectors, G is an n×r matrix, and vt is an
r-vector Brownian motion process with E[dvtdv

T
t ] = Q(t)dt,

yt and h are m-vectors and wt is an m-vector Brownian
motion process with E[dwtdw

T
t ] = S(t)dt and S(t) > 0.

We refer to xt as the state of the system at time t with some
initial state x0 (not necessarily obeying Gaussian distribution)
and yt as the observation at time t with y0 = 0. We assume that
{vt, t ≥ 0}, {wt, t ≥ 0} and x0 are independent. For the sake
of convenience, let us call this system is the “time-varying”
case, while in [22] the “time-invariant” case is studied.

Throughout this paper, we assume that f , h and G are C2

in space and C1 in time. Some growth conditions on f and h
are expected to guaratee the existence and uniqueness of the
“pathwise-robust” DMZ equation.

The unnormalized density function σ(x, t) of xt conditioned
on the observation history Yt = {ys : 0 ≤ s ≤ t} satisfies the
DMZ equation (for the detailed formulation, see [6]){

dσ(x, t) = Lσ(x, t)dt+ σ(x, t)hT (x, t)S−1(t)dyt

σ(x, 0) = σ0(x),
(2.2)

where σ0(x) is the probability density of the initial state x0,
and

L(∗) ≡ 1

2

n∑
i,j=1

∂2

∂xi∂xj

[(
GQGT

)
ij
∗
]
−

n∑
i=1

∂(fi∗)
∂xi

. (2.3)

In this paper, we don’t solve the DMZ equation directly,
due to the following two reasons. On the one hand, the DMZ
equation (2.2) is a stochastic partial differential equation due
to the term dyt. There is no easy way to derive a recursive
algorithm to solve this equation. On the other hand, in real
applications, one may be more interested in constructing robust
state estimators from each observation path, instead of having
certain statistical data of thousands of repeated experiments.
Here, the robustness means our state esitmator is not sensitive
to the observation path. This property is important, since in
most of the real applications, the observation arrives and is
processed at discrete moments in time. The state estimator is
expected to still perform well based on the linear interpolation
of the discrete observations, instead of the real continuous
observation path. For each “given” observation, making an
invertible exponential transformation [19]

σ(x, t) = exp [hT (x, t)S−1(t)yt]ρ(x, t), (2.4)

the DMZ equation is transformed into a deterministic partial
differential equation (PDE) with stochastic coefficients, which
we will refer as the “pathwise-robust” DMZ equation

∂ρ

∂t
(x, t) +

∂

∂t
(hTS−1)T ytρ(x, t)

= exp (−hTS−1yt)

[
L− 1

2
hTS−1h

]
· [exp (hTS−1yt)ρ(x, t)]

ρ(x, 0) =σ0(x).

(2.5)

Or equivalently,
∂ρ

∂t
(x, t) =

1

2
D2
wρ(x, t) + F (x, t) · ∇ρ(x, t) + J(x, t)ρ(x, t)

ρ(x, 0) = σ0(x),
(2.6)

where

D2
w =

n∑
i,j=1

(GQGT )ij
∂2

∂xi∂xj
, (2.7)

F (x, t) =

 n∑
j=1

∂

∂xj

(
GQGT

)
ij

+

n∑
j=1

(GQGT )ij
∂K

∂xj
− fi

n
i=1

, (2.8)

J(x, t) = − ∂

∂t
(hTS−1)T yt +

1

2

n∑
i,j=1

∂2

∂xi∂xj

(
GQGT

)
ij

+

n∑
i,j=1

∂

∂xi

(
GQGT

)
ij

∂K

∂xj

+
1

2

n∑
i,j=1

(GQGT )ij

[
∂2K

∂xi∂xj
+
∂K

∂xi

∂K

∂xj

]

−
n∑
i=1

∂fi
∂xi
−

n∑
i=1

fi
∂K

∂xi
− 1

2
(hTS−1h), (2.9)

in which

K(x, t) = hT (x, t)S−1(t)yt. (2.10)
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The existence and uniqueness of the “pathwise-robust”
DMZ equation (2.6) has been investigated by Pardoux [17],
Fleming-Mitter [7], Baras-Blankenship-Hopkins [2] and Yau-
Yau [21], [22]. The well-posedness is guaranteed, when the
drift term f ∈ C1 and the observation term h ∈ C2 are
bounded in [17]. Fleming and Mitter treated the case where
f and ∇f are bounded. Baras, Blankenship and Hopkins
obtained the well-posedness result on the “pathwise-robust”
DMZ equation with a class of unbounded coefficients only
in one dimension. In [21], Yau and Yau established the well-
posedness result under the condition that f , h have at most
linear growth. In the appendices of [22], Yau and Yau obtained
the existence and uniqueness results in the weighted Sobolev
space, where f and h satisfy some mild growth condition. It
is necessary to point out that there is a gap in their proof of
existence (Theorem A.4). In this paper, we circumvent the gap
by more delicate analysis to give a time-dependent analogous
well-posedness result to the “pathwise-robust” DMZ equation
under some mild growth conditions on f and h in Theorem
4.3.

The exact solution to (2.5) or (2.6), generally speaking,
doesn’t have a closed form. So many mathematicians pay their
effort on seeking an efficient algorithm to construct a good ap-
proximation. In this paper, we will extend the algorithm in [22]
to the “time-varying” case (cf. (2.1)). We will not only give the
theoretical proof of the soundness of our algorithm, but also
illustrate a “time-varying” numerical simulation to support our
results. The difficulties are two folds: on one hand, the well-
posedness of the “time-invariant” robust DMZ equation, under
some conditions, has been investigated by [7], [17], [22], etc.,
while that in the “time-varying” case hasn’t been established
yet; on the other hand, the “time-varying” case will lead to
more involved computations and more delicate analysis. For
instance, the Laplacian in “time-invariant” case is replaced by
a time-dependent elliptic operator D2

w in (2.7). Furthermore,
the two nice properties of KF, namely “memoryless” and “real
time”, are preserved in our algorithm.

Let us assume that we know the observation time sequence
0 = τ0 < τ1 < · · · < τk = T apriorily. But the
observation data {yτi} at each sampling time τi, i = 0, · · · , k
are unknown until the on-line experiment runs. We call the
computation “off-line”, if it can be performed without any
on-line experimental data (or say pre-computed); otherwise,
it is called “on-line” computations. One only concerns the
computational complexity of the on-line computations, since
this hinges the success of “real time” application.

Let us denote the observation time sequence as Pk = {0 =
τ0 < τ1 < · · · < τk = T}. Let ρi be the solution of the robust
DMZ equation with yt = yτi−1

on the interval τi−1 ≤ t ≤ τi,

i = 1, 2, · · · , k

∂ρi
∂t

(x, t) +
∂

∂t

(
hTS−1

)T
yτi−1

ρi(x, t)

= exp
(
−hTS−1yτi−1

) [
L− 1

2
hTS−1h

]
·
[
exp

(
hTS−1yτi−1

)
ρi(x, t)

]
ρ1(x, 0) = σ0(x),

or
ρi(x, τi−1) =ρi−1(x, τi−1), for i = 2, 3, · · · , k.

(2.11)
Define the norm of Pk by |Pk| = sup1≤i≤k(τi − τi−1).
Intuitively, as |Pk| → 0, we have

k∑
i=1

χ[τi−1,τi](t)ρi(x, t)→ ρ(x, t)

in some sense, for all 0 ≤ t ≤ T , where ρ(x, t) is
the exact solution of (2.5). That is to say, intuitively, the
denser the sampling time sequence is, the more accurate the
approximate solution should be obtained. Even though the
intuition is shown rigorously to be true, it is impractical to
solve (2.11) in the “real time” manner, since the “on-line”
data {yτi}, i = 1, · · · , k, are contained in the coefficients
of (2.11). Therefore, we have to numerically solve the time-
consuming PDE on-line, every time after the new observation
data coming in. Yet, the proposition below helps to move the
heavy computations off-line. This is the key ingredient of the
algorithm in [22], so is in ours.

Proposition 2.1: For each τi−1 ≤ t < τi, i = 1, 2, · · · , k,
ρi(x, t) satisfies (2.11) if and only if

ui(x, t) = exp
[
hT (x, t)S−1(t)yτi−1

]
ρi(x, t), (2.12)

satisfies the Kolmogorov forward equation (KFE)

∂ui
∂t

(x, t) =

(
L− 1

2
hTS−1h

)
ui(x, t), (2.13)

where L is defined in (2.3).
It is clear that (2.13) is independent of the observation path

{yτi}ki=0, and the transformation between ui and ρi is one-to-
one. It is also not hard to see that (2.13) could be numerically
solved beforehand. Observe that the operator

(
L− 1

2h
TS−1h

)
is time-varying, unlike that studied in [22]. Let us denote it
as U(t) for short and emphasis its time-dependence. But this
doesn’t affect the “off-line” virture of our algorithm. Under
certain conditions, {U(t)}t∈[0,T ] forms a family of strong
elliptic operators. Furthermore, the operator U(t) : D(U(t)) ⊂
L2(Rn) → L2(Rn) is the infinitesimal generator of the two-
parameter semigroup U(t, τ), for t ≥ τ . In particular, with
the observation time sequence known {τi}ki=1, we obtain a
sequence of two-parameter semigroup {U(t, τi−1)}ki=1, for
τi−1 ≤ t < τi. Let us take the initial conditions of KFE (2.13)
at t = τi as a set of complete orthonormal base in L2(Rn),
say {φl(x)}∞l=1. We pre-compute the solutions of (2.13) at
time t = τi+1, denoted as {U(τi+1, τi)φl}∞l=1. These data
should be stored in preparation of the on-line computations.
Compared with the “time-invariant” case, the price to pay is
that the “time-varying” case requires more storage capacity,
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since {U(τi+1, τi)φl}∞l=1 differs from each τi, i = 1, · · · , k,
and all of them need to be stored. In general, the longer
simulation time is the more storage it requires in the “time-
varying” case. While the storage of the data is independent of
the simulation time in the “time-invariant” case. Nevertheless,
it won’t affect the off-line virture of our algorithm.

The on-line computation in our algorithm is consisted of
two parts at each time step τi−1, i = 1, · · · , k.
• Project the initial condition ui(x, τi−1) ∈ L2(Rn) at
t = τi−1 onto the base {φl(x)}∞l=1, i.e., ui(x, τi−1) =∑∞
l=1 ûi,lφl(x). Hence, the solution to (2.13) at t = τi

can be expressed as

ui(x, τi) =U(τi, τi−1)ui(x, τi−1)

=

∞∑
l=1

ûi,l [U(τi, τi−1)φl(x)] , (2.14)

where {U(τi, τi−1)φl(x)}∞l=1 have already been com-
puted off-line.

• Update the initial condition of (2.13) at τi with the new
observation yτi . Let us specify the observation updates
(the initial condition of (2.13) ) for each time step. For
0 ≤ t ≤ τ1, the initial condition is u1(x, 0) = σ0(x). At
time t = τ1, when the observation yτ1 is available,

u2(x, τ1)
(2.12)
= exp [hT (x, τ1)S−1(τ1)yτ1 ]ρ2(x, τ1)

(2.12),(2.11)
= exp [hT (x, τ1)S−1(τ1)yτ1 ]u1(x, τ1),

with the fact y0 = 0. Here, u1(x, τ1) =∑∞
l=1 û1,l [U(τ1, 0)φl(x)], where {û1,l}∞l=1 is computed

in the previous step, and {U(τ1, 0)φl(x)}∞l=1 are prepared
by off-line computations. Hence, we obtain the initial
condition u2(x, τ1) of (2.13) for the next time interval
τ1 ≤ t ≤ τ2. Recursively, the initial condition of (2.13)
for τi−1 ≤ t ≤ τi is

ui(x, τi−1) = exp [hT (x, τi−1)S−1(τi−1)(yτi−1 − yτi−2)]

· ui−1(x, τi−1), (2.15)

for i = 2, 3, · · · , k, where ui−1(x, τi−1) =∑∞
l=1 ûi−2,l [U(τi−1, τi−2)φl(x)].

The approximation of ρ(x, t), denoted as ρ̂(x, t), is obtained

ρ̂(x, t) =

k∑
i=1

χ[τi−1,τi](t)ρi(x, t), (2.16)

where ρi(x, t) is obtained from ui(x, t) by (2.12). And σ(x, t)
could be recovered by (2.4).

A natural question comes to us:
Is ρ̂(x, t), obtained by our algorithm, a good approx-
imation of the exact solution ρ(x, t) to (2.5), for
(x, t) ∈ Rn × [0, T ], as |Pk| → 0? If it is, then in
what sense?

III. STATEMENTS OF THE MAIN THEOREMS

In this section, we shall state the main theorems in this
paper, which validate our algorithm in theory. Notice that ui
in (2.13) and ρi in (2.11) are one-to-one. Hence, we shall deal
with ρi in the sequel.

We first show that the exact solution ρ of the “pathwise-
robust” DMZ equation (2.5) is well approximated by ρR as
R→∞, for any t ∈ [0, T ], where ρR is the solution to (2.5)
restricted on BR (the ball centered at the origin with the radius
R):

∂ρR
∂t

(x, t) =
1

2
D2
wρR(x, t) + F (x, t)∇ρR(x, t)

+ J(x, t)ρR(x, t)

ρR(x, 0) =σ0,BR(x)

ρR(x, t) =0 for (x, t) ∈ ∂BR × [0, T ],

(3.1)

where D2
w, F (x, t) and J(x, t) are defined in (2.7)-(2.9) and

σ0,Ω is defined as

σ0,Ω(x) =


σ0(x), x ∈ Ωε

smooth, x ∈ Ω \ Ωε

0, x ∈ Rn \ Ω,

(3.2)

in which Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}. Next, it is left to
show that ρR is well approximated by the solution obtained
by our algorithm restricted on BR. In fact, on the time interval
[0, τ ], 0 < τ ≤ T . Let us denote the time partition Pτk = {0 =
τ0 < τ1 < · · · < τk = τ}. ρR(x, τ) is well approximated by
ρk,R(x, τ), as k → +∞, in the L1 sense, where ρk,R is the
solution of (2.11) restricted on BR.

For the notational convenience, let us denote

N(x, t) ≡− ∂

∂t

(
hTS−1

)
yt −

1

2
D2
wK

+
1

2
DwK · ∇K − f · ∇K −

1

2

(
hTS−1h

)
, (3.3)

where

Dw∗ =

 n∑
j=1

(
GQGT

)
ij

(x, t)
∂∗
∂xj

n
i=1

, (3.4)

and D2
w and K are defined in (2.7) and (2.10), respectively.

The error estimate between ρ and ρR is given by the
following theorem.

Theorem 3.1: For any T > 0, let ρ(x, t) be a solution of
the “pathwise-robust” DMZ equation (2.6) in Rn× [0, T ]. Let
R� 1 and ρR be the solution to (3.1). Assume the following
conditions are satisfied, for all (x, t) ∈ Rn × [0, T ]:

1) N(x, t) + 3
2n
∣∣∣∣GQGT ∣∣∣∣∞ + |f −DwK| ≤ C, (3.5)

2) e−
√

1+|x|2 [14n
∣∣∣∣GQGT ∣∣∣∣∞ + 4 |f −DwK|

]
≤ C̃,

(3.6)
where N , Dw and K are defined in (3.3), (3.4) and (2.10),
respectively, and C, C̃ are constants possibly depending on T .
Let v = ρ− ρR, then v ≥ 0 for all (x, t) ∈ BR × [0, T ] and∫

BR
2

v(x, T ) ≤ C̄e− 9
16R

∫
Rn
e
√

1+|x|2σ0(x), (3.7)

where C̄ is some constant, which may depend on T .
The next theorem tells us that ρR is well approximated by

the solution obtained by our algorithm restricted on BR. More
generally, BR is replaced by any bounded domain Ω ⊂ Rn in
the theorem.
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Theorem 3.2: Let Ω be a bounded domain in Rn. Assume
that

1) |N(x, t)| ≤ C, (3.8)
2) There exists some α ∈ (0, 1), such that

|N(x, t)−N(x, t; t̄)| ≤ C̃|t− t̄|α, (3.9)

for all (x, t) ∈ Ω × [0, T ], t̄ ∈ [0, T ], where N(x, t) is in
(3.3), and N(x, t; t̄) denotes N(x, t) with the observation yt =
yt̄. Let ρΩ(x, t) be the solution of (2.6) on Ω × [0, T ] with
0−Dirichlet boundary condition:

∂ρΩ

∂t
(x, t) =

1

2
D2
wρΩ(x, t) + F (x, t) · ∇ρΩ(x, t)

+ J(x, t)ρΩ(x, t)

ρΩ(x, 0) =σ0,Ω(x)

ρΩ(x, t)|∂Ω =0,

(3.10)

where D2
w, F (x, t) and J(x, t) are defined in (2.7)-(2.9) and

σ0,Ω is defined in (3.2). For any 0 ≤ τ ≤ T , let Pτk = {0 =
τ0 < τ1 < τ2 < · · · < τk = τ} be a partition of [0, τ ], where
τi = iτ

k . Let ρi,Ω(x, t) be the approximate solution obtained
by our algorithm restricted on Ω× [τi−1, τi]. Or equivalently,
ρi,Ω is the solution on Ω× [τi−1, τi] of the equation

∂ρi,Ω
∂t

(x, t) =
1

2
D2
wρi,Ω(x, t) + F (x, t; τi−1) · ∇ρi,Ω(x, t)

+ J(x, t; τi−1)ρi,Ω(x, t)

ρi,Ω(x, τi−1) =ρi−1,Ω(x, τi−1)

ρi,Ω(x, t)|∂Ω =0,
(3.11)

for i = 1, 2, · · · , k, with the convention that ρ1,Ω(x, 0) =
σ0,Ω(x). Here, F (x, t; τi−1), J(x, t; τi−1) denote F (x, t),
J(x, t) with the observation yt = yτi−1

, respectively. Then

ρΩ(x, τ) = lim
k→∞

ρk,Ω(x, τ),

in the L1 sense in space and the following estimate holds:∫
Ω

|ρΩ − ρk,Ω|(x, τ) ≤ C̄ 1

kα
, (3.12)

where C̄ is a generic constant, depending on T ,
∫

Ω
σ0,Ω. The

right-hand side of (3.12) tends to zero as k →∞.

IV. NOTATIONS AND PRELIMINARY

Throughout the paper, let QT = Rn × [0, T ]. Let H1(Rn)
be the Sobolev space, equipped the norm

||u(x)||21 =

∫
Rn

(u2 + |∇xu|2)dx.

And let H1;1(QT ) be the functional space of both t and x,
with the norm

||v(x, t)||21;1 =

∫
QT

(v2 + |∇xv|2 + |∂tv|2)dxdt.

The subspace of H1;1(QT ) consisting of functions v(x, t)
which have compact supports in Rn for any t is denoted as
H1;1

0 (QT ).

Definition 4.1: The function u(x, t) in H1;1
0 (QT ) is called

a weak solution of the initial value problem

n∑
i,j=1

∂

∂xi

(
Aij(x, t)

∂u

∂xj

)
+

n∑
i=1

Bi(x, t)
∂u

∂xi

+ C(x, t)u =
∂u

∂t
,

u(x, 0) = u0(x)

if for any function Φ(x, t) ∈ H1;1
0 (QT ) the following relation

holds:∫ ∫
QT

 n∑
i,j=1

Aij
∂u

∂xi

∂Φ

∂xj

−

(
n∑
i=1

Bi
∂u

∂xi
+ Cu+

∂u

∂t

)
Φ

]
dxdt = 0

and u(x, 0) = u0(x).
We assume that the following conditions hold throughout

the paper:
1) The operator L defined in (2.3) is a strong elliptic

operator and it is bounded from above on QT . That is,
there exists a constant λ > 0 such that

λ|ξ|2 ≤
n∑

i,j=1

(GQGT )ijξiξj ,

for any (x, t) ∈ QT , for any ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn.
And

||GQGT ||∞ = sup
(x,t)∈QT

|GQGT |∞ <∞,

where | · |∞ is the sup-norm of the matrix.
2) The initial density function σ0(x) ∈ H1(Rn) decays fast

enough. To be more specific, we require that∫
Rn
e
√

1+|x|2σ0(x) <∞.

A. Existence and uniqueness of the non-negative weak solu-
tion

For the sake of completeness, we state the existence and
uniqueness of the non-negative weak solution to (2.6) on QT
below.

Theorem 4.3: Under the conditions 1)-2) and the conditions
(A.1)-(A.5) in Theorem A.1, the “pathwise-robust” DMZ
equation (2.6) on QT with the initial value σ0 ∈ H1(Rn)
admits a non-negative weak solution ρ ∈ H1;1(QT ). Assume
further that the conditions (A.21)-(A.23) in Theorem A.2 are
satisfied, then the weak solution ρ on QT is unique.

To avoid the distraction from our main theorems, we leave
the detailed proof of this theorem in Appendix A.

B. Technical lemma

In the proofs of our main theorems, we will repeatedly adopt
the following lemma with suitably chosen test functions. Let
us state the lemma and sketch the proof here.
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Lemma 4.1: Assume that ρΩ satisfies the “pathwise-robust”
DMZ equation (2.6) on some bounded domain Ω ∈ Rn, for
0 ≤ t ≤ T . Then, for any test function ψ(x) ∈ C∞(Ω), we
have

d

dt

∫
Ω

ψρΩ =
1

2

∫
Ω

D2
wψρΩ +

∫
Ω

(f −DwK) · ∇ψρΩ

+

∫
Ω

ψρΩN +
1

2

∫
∂Ω

ψ (DwρΩ · ν)

− 1

2

∫
∂Ω

ρΩ (Dwψ · ν)

+
1

2

∫
∂Ω

ψρΩ

n∑
i,j=1

∂

∂xi

(
GQGT

)
ij
νj

+

∫
∂Ω

ψρΩ (DwK · ν)−
∫
∂Ω

ψρΩ(f · ν),

(4.1)

where ν = (ν1, ν2, · · · , νn) is the exterior normal vector of
Ω, and D2

w, K and Dw are defined in (2.7), (2.10) and (3.4),
respectively.

Sketch of the proof: Multiply ψ(x) on both sides of (2.6)
and integrate over the domain Ω, it yields
d

dt

∫
Ω

ψρΩ =

∫
Ω

ψ

[
1

2
D2
wρΩ + F (x, t) · ∇ρΩ + J(x, t)ρΩ

]
,

(4.2)

where F (x, t) and J(x, t) are defined in (2.8) and (2.9),
respectively. After applying integration by parts to the first
two terms on the right-hand side of (4.2), (4.1) is obtained by
written in compact notations.

V. PROOFS OF THE MAIN THEOREMS

A. Reduction to the bounded domain case
In this section we shall prove that the solution ρ to the

“pathwise-robust” DMZ equation (2.6) in Rn can be well
approximated by the solution ρR of (3.1) in a large ball BR.
Moreover, the error estimate with respect to the radius R is
given explicitly in the L1 sense. Let C, C̃ and Ĉ denote the
generic constants, which may differ from line to line.

We first show an interesting proposition, which reflects how
the density function in the large ball changing with respect to
time. It is also an important ingredient of the error estimate
in Theorem 3.1.

Proposition 5.2: For any T > 0, let ρR(x, t) be a solution
of the “pathwise-robust” DMZ equation restricted on BR (3.1).
Assume that condition (3.5) is satisfied. Then∫

BR

e
√

1+|x|2ρR(x, t) ≤ eCt
∫
Rn
e
√

1+|x|2σ0(x). (5.1)

Proof: Choose the test function in Lemma 4.1 ψ = eφ1 ,
where φ1 ∈ C∞(BR), BR = {x ∈ Rn : |x| ≤ R}. Let ρR be
the solution of the “pathwise-robust” DMZ equation (3.1) on
the ball BR. By Lemma 4.1, we have

d

dt

∫
BR

eφ1ρR =

∫
BR

eφ1ρR

[
1

2

(
D2
wφ1 +Dwφ1 · ∇φ1

)
+(f −DwK) · ∇φ1 +N ]

+
1

2

∫
∂BR

eφ1(DwρR · ν). (5.2)

All the boundary integrals in (4.1) vanish, except the first term
in (4.1), since ρR|∂Ω = 0. Moreover, recall that ρR ≥ 0 in
BR and vanishes on ∂BR implies that ∂ρR

∂ν |∂BR ≤ 0. Hence,
on ∂BR,

(DwρR · ν) =

n∑
i=1

 n∑
j=1

(GQGT )ij
∂ρR
∂r

∂r

∂xj

 νi
=
∂ρR
∂r

 n∑
i,j=1

(GQGT )ij
xj
r

xi
r

 ≤ 0,

by the positive definite assumption of (GQGT ). Thus, (5.2)
can be reduced further

d

dt

∫
BR

eφ1ρR ≤
∫
BR

eφ1ρR

[
1

2

(
D2
wφ1 +Dwφ1 · ∇φ1

)
+(f −DwK) · ∇φ1 +N ] .

(5.3)

Choose φ1(x) =
√

1 + |x|2 and estimate the terms containing
φ1 on the right-hand side of (5.3) one by one:

D2
wφ1 =

n∑
i=1

(
GQGT

)
ii

1√
1 + |x|2

−
n∑

i,j=1

(
GQGT

)
ij

xixj

(1 + |x|2)
3
2

≤
∣∣∣∣GQGT ∣∣∣∣∞

[
n√

1 + |x|2
+

n|x|2

(1 + |x|2)
3
2

]
≤2n

∣∣∣∣GQGT ∣∣∣∣∞ , (5.4)

Dwφ1 · ∇φ1 =

n∑
i,j=1

(
GQGT

)
ij

xixj
1 + |x|2

≤
∣∣∣∣GQGT ∣∣∣∣∞

∑n
i,j=1 xixj

1 + |x|2
≤ n

∣∣∣∣GQGT ∣∣∣∣∞ ,

(5.5)

and

|(f −DwK) · ∇φ1| ≤|f −DwK| ·
|x|√

1 + |x|2

≤|f −DwK|, (5.6)

where | · | is the Euclidean norm. Substitute the estimate (5.4)-
(5.6) back into (5.3), we get

d

dt

∫
BR

eφ1ρR

≤
∫
BR

eφ1ρR

[
3

2
n
∣∣∣∣GQGT ∣∣∣∣∞ + |f −DwK|+N

]
≤C

∫
BR

eφ1ρR,

by condition (3.5). Hence,∫
BR

eφ1ρR(x, t) ≤eCt
∫
BR

eφ1ρR(x, 0) ≤ eCt
∫
Rn
eφ1ρ(x, 0)

=eCt
∫
Rn
eφ1σ0(x),

for 0 ≤ t ≤ T .



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. X, XXXX 2013 7

We are ready to show Theorem 3.1, i.e. the solution ρR to
(3.1) on BR is a good approximation of ρ, the solution to (2.6)
in Rn.

Proof of Theorem 3.1: By the maximum principle (cf.
Theorem 1, [8]), we have v = ρ− ρR ≥ 0 for (x, t) ∈ BR ×
[0, T ], since v|∂BR ≥ 0 for 0 ≤ t ≤ T . Let us choose ψ in
Lemma 4.1 as

%(x) = e−φ2(x) − e−R,

where φ2 is a radial symmetric function such that
φ2(x)|∂BR = R, ∇φ2|∂BR = 0 and φ2 is increasing in |x|.
Hence, %|∂BR = 0 and ∇%|∂BR = 0. Apply Lemma 4.1 to v,
taking the place of ρΩ, with the test function ψ = %, we have

d

dt

∫
BR

%v =

∫
BR

v

[
1

2
D2
w%+ (f −DwK) · ∇%+ %N

]
=

∫
BR

v

{
1

2
e−φ2

(
Dwφ2 · ∇φ2 −D2

wφ2

)
−e−φ2 (f −DwK) · ∇φ2 + %N

}
=

∫
BR

v%

[
−1

2
D2
wφ2 +

1

2
Dwφ2 · ∇φ2

− (f −DwK) · ∇φ2 +N ]

+ e−R
∫
BR

e
√

1+|x|2v
[
e−
√

1+|x|2

·
(
−1

2
D2
wφ2 +

1

2
Dwφ2 · ∇φ2

− (f −DwK) · ∇φ2)]

,
∫
BR

v%I1 + e−R
∫
BR

e
√

1+|x|2vI2.

Let us choose φ2(x) in %(x) to be φ2(x) = Rϑ( |x|
2

R2 ), where
ϑ(x) = 1 − (1 − x)2. It is easy to check that φ2(x) satisfies
all the conditions we mentioned before. Direct computations
yield, for any x ∈ BR, R >> 1,

∣∣D2
wφ2

∣∣ =

∣∣∣∣∣∣
n∑

i,j=1

(
GQGT

)
ij

(
−8xixj

R3

)

+

n∑
i=1

(
GQGT

)
ii

4

R

(
1− |x|

2

R2

)∣∣∣∣∣
≤
∣∣∣∣GQGT ∣∣∣∣∞(8n|x|2

R3
+

4n

R

)
≤ 12n

∣∣∣∣GQGT ∣∣∣∣∞ ,

(5.7)

|Dwφ2 · ∇φ2| =

∣∣∣∣∣∣
(

1− |x|
2

R2

)2 n∑
i,j=1

(
GQGT

)
ij

4xi
R

4xj
R

∣∣∣∣∣∣
≤16n

∣∣∣∣GQGT ∣∣∣∣∞ , (5.8)

and

|(f −DwK) · ∇φ2| =
∣∣∣∣(f −DwK)

4x

R

(
1− |x|

2

R2

)∣∣∣∣
≤4 |f −DwK| . (5.9)

It follows that

sup
BR

|I1| ≤ 14n
∣∣∣∣GQGT ∣∣∣∣∞ + 4 |f −DwK|+N ≤ C,

by condition (3.5). Similarly,

sup
BR

|I2| ≤ sup
BR

[
e−
√

1+|x|2 (14n
∣∣∣∣GQGT ∣∣∣∣∞

+4 |f −DwK|)]

≤C̃,

by condition (3.6). In the view of Proposition 5.2, one gets

d

dt

∫
BR

%v ≤C
∫
BR

%v + e−RC̃

∫
BR

e
√

1+|x|2ρ

≤C
∫
BR

%v + e−R+ĈT C̃

∫
Rn
e
√

1+|x|2σ0(x).

(5.10)

Multiply e−Ct on both sides of (5.10) yields

d

dt

[
e−Ct

∫
BR

%v

]
≤ e−R+ĈT−CtC̃

∫
Rn
e
√

1+|x|2σ0(x).

Integrate from 0 to T and multiply eCT on both sides gives
us∫

BR

%v(x, T ) ≤||v(x, 0)||∞eCT
∫
BR

%dx

+
eCT − 1

C
e−R+ĈT C̃

∫
Rn
e
√

1+|x|2σ0(x),

where v(x, 0) = σ0 − σ0,R. Recall that %(x) =

e
−R

[
−(|x|2/R2−1)

2
+1

]
−e−R, |x| ≤ R, we arrive the following

estimates: ∫
BR

% ≤
∫
BR

(
1− e−R

)
≤ CRn

and∫
BR

%v(x, T ) ≥
∫
BR

2

(
e
−R

[
−(|x|2/R2−1)

2
+1

]
− e−R

)
v(x, T )

≥1

2
e−

7
16R

∫
BR

2

v(x, T ).

It is easy to see that ||v(x, 0)||∞
∫
BR

% ≤ C(n)εRn is
arbitrarily small, since ε is independent of R. It yields that∫

BR
2

v(x, T ) ≤ Ce− 9
16R

∫
Rn
e
√

1+|x|2σ0(x), (1.28)

where C is a generic constant, depending on T .
By refining the proofs of Proposition 5.2 and Theorem

3.1, we obtain an interesting property of the density function
ρ(x, t). It asserts that ρ captures almost all the density in a
large ball. And we could give an precise estimate of the density
outside the large ball.

Theorem 5.4: Let ρ(x, t) be a solution of the “pathwise-
robust” DMZ equation (2.6) in QT . Assume that

1) Condition (3.5) is satisfied;
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2) A stronger version of condition (3.6) is valid. To be more
precise,

e−
1
2

√
1+|x|2 [16n

∣∣∣∣GQGT ∣∣∣∣∞ + 4 |f −DwK|
]
≤ C,
(5.11)

for all (x, t) ∈ QT .
Then∫

|x|≥R
ρ(x, T ) ≤ Ce− 1

2

√
1+R2

∫
Rn
e
√

1+|x|2σ0(x), (5.12)

where C is a generic constant, which depends on T .
To avoid the distraction, we leave the detailed proof in

Appendix B.

B. L1 convergence

In this section, we shall show that, for any 0 < τ ≤ T ,
with the partition Pτk = {0 = τ0 < τ1 < · · · < τk = τ}, the
L1 convergence of ρk,R(x, τ) to ρR(x, τ) holds, as k → +∞,
where ρk,R is the solution of (3.11) obtained by our algorithm,
and ρR is the solution to (3.1). For the clarity, we state the
technique lemma will be used in the proof of Theorem 3.2
below.

Lemma 5.2: (Lemma 4.1, [22]) Let Ω be a bounded domain
in Rn and let v : Ω × [0, T ] → R be a C1 function. Assume
that v(x, t) = 0 for (x, t) ∈ ∂Ω× [0, T ]. Let Ω+

t = {x ∈ Ω :
v(x, t) ≥ 0}. Then

d

dt

∫
Ω+
t

v(x, t) =

∫
Ω+
t

∂v

∂t
(x, t),

for almost all t ∈ [0, T ].
Proof of Theorem 3.2: For the notational convenience,

we omit the subscript Ω for ρΩ and ρi,Ω in this proof. Let
Ω+
t = {x ∈ Ω : ρ(x, t)− ρi(x, t) ≥ 0}. Apply Lemma 4.1 to

(ρ− ρi) taking place of ρΩ, with the test function ψ ≡ 1, we
have

d

dt

∫
Ω+
t

(ρ− ρi) ≤
∫

Ω+
t

(ρ− ρi)N(·, t)

+

∫
Ω+
t

ρi[N(·, t)−N(·, t; τi−1)], (5.1)

by Lemma 5.2. All the boundary integrals vanish, except∫
∂Ω+

t
Dw(ρ − ρi) · ν, since (ρ − ρi)|∂Ω+

t
= 0. Moreover,∫

∂Ω+
t
Dw(ρ − ρi) · ν ≤ 0, due to the similar argument for∫

∂BR
Dwρ · ν ≤ 0 in Proposition 5.2. Combine the conditions

(3.8) and (3.9), (5.1) can be controlled by

d

dt

∫
Ω+
t

(ρ− ρi) ≤ C
∫

Ω+
t

(ρ− ρi) + C̃(t− τi−1)α
∫

Ω

ρ.

(5.2)

To estimate
∫

Ω
ρ, we apply Lemma 4.1 to ρ, with the test

function ψ ≡ 1, we get

d

dt

∫
Ω

ρ ≤
∫

Ω

ρN ≤ C
∫

Ω

ρ,

which implies ∫
Ω

ρ ≤ C
∫

Ω

σ0,Ω, (5.3)

where C is a generic constant, depending on T , for all 0 ≤
t ≤ T . Thus,

d

dt

∫
Ω+
t

(ρ− ρi) ≤ C
∫

Ω+
t

(ρ− ρi) + C̃(t− τi−1)α
∫

Ω

σ0,Ω.

Multiply e−C̃(t−τi−1) on both sides and integrate from τi−1

to t, we get∫
Ω+
t

(ρ− ρi)(x, t) ≤eC̃(t−τi−1)

∫
Ω+
τi−1

(ρ− ρi)(x, τi−1)

+ C
(t− τi−1)1+α

1 + α
eC̃(t−τi−1),

where C is a constant, which depends on T ,
∫

Ω
σ0,Ω. Similarly,

one can also get, for Ω−t = {x ∈ Ω : ρ(x, t)− ρi(x, t) < 0},
that∫

Ω−t

(ρi − ρ)(x, t) ≤eC̃(t−τi−1)

∫
Ω−τi−1

(ρi − ρ)(x, τi−1)

+ C
(t− τi−1)1+α

1 + α
eC̃(t−τi−1).

Consequently, we have∫
Ω

|ρ− ρi|(x, t)

≤eC̃(t−τi−1)

[∫
Ω

|ρ− ρi|(x, τi−1) + C
(t− τi−1)1+α

1 + α

]
≤eC̃(t−τi−1)

[∫
Ω

|ρ− ρi−1|(x, τi−1) + C
(t− τi−1)1+α

1 + α

]
,

(5.4)

since ρi(x, τi−1) = ρi−1(x, τi−1), for i = 1, 2, · · · , k. Apply-
ing (5.4) recursively, we obtain∫

Ω

|ρ− ρk|(x, τk)

≤eC̃(τk−τk−1)

[∫
Ω

|ρ− ρk−1|(x, τk−1) + C
(τk − τk−1)1+α

1 + α

]
≤eC̃T

∫
Ω

|ρ− ρ0|(x, 0)

+
C

1 + α
[(τk − τk−1)1+αeC̃(τk−τk−1)

+ (τk−1 − τk−2)1+αeC̃(τk−τk−2)

+ · · ·+ (τ1 − τ0)1+αeC̃(τk−τ0)]

=
C

1 + α

T 1+α

k1+α

(
eC̃

T
k + eC̃

2T
k + · · ·+ eC̃

kT
k

)
≤ C

kα
,

where C is a constant, which depends on α, T and
∫

Ω
σ0,Ω.

It is clear that
∫

Ω
|ρ− ρk| → 0, as k →∞.

VI. LOWER BOUND ESTIMATE OF DENSITY FUNCTION

It is well-known that solving the “pathwise-robust” DMZ
equation numerically is not easy because it is easily vanishing.
We are also interested in whether the lower bound of the
density function could be derived in the case where the
drift term f and the observation term h are with at most
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the polynomial growth. The theorem below gives this lower
bound:

Theorem 6.5: Let ρR be the solution of (3.1), the
“pathwise-robust” DMZ equation on BR. Assume that

1) f(x, t) and h(x, t) have at most polynomial growth in
|x|, for all t ∈ [0, T ];

2) For any 0 ≤ t ≤ T , there exists positive integer m and
positive constants C ′ and C ′′ independent of R such that
the following two conditions hold on Rn:

(a)
|x|m−2

2

[
nm(m− 2)

∣∣∣∣GQGT ∣∣∣∣∞
+mTr

(
GQGT

)]
−m|x|m−2(f −DwK) · x+N(x, t) ≥ −C ′;

(6.1)

(b)
∣∣∣∣n ∣∣∣∣GQGT ∣∣∣∣∞(1

2
m2|x|2m−2

−m
(

1

2
m− 1

)
|x|m−2

)
− 1

2
mTr

(
GQGT

)
|x|m−2

−m(f −DwK) · x|x|m−2
∣∣

≤1

2
nm(m+ 1)

∣∣∣∣GQGT ∣∣∣∣∞ |x|2m−2 + C ′′, (6.2)

where Tr(∗) is the trace of ∗.
3) Condition (3.8) is satisfied.

Then for any R0 < R,

∫
BR0

ζρR(x, T )

≥e
(C−C′)T−Rm0

C ′

(
1

2
nm(m+ 1)

∣∣∣∣GQGT ∣∣∣∣∞R2m−2
0 + C ′′

)
·
(

1− eC
′T
)∫

BR

σ0,R(x) + e−C
′T

∫
BR0

ζσ0,R(x),

where ζ(x) = e−ξ(x) − e−ξ(R0), ξ(x) = |x|m.
In particular, the solution ρ of the “pathwise-robust” DMZ

equation (2.5) on Rn has the estimate

∫
Rn
e−|x|

m

ρ(x, T ) ≥ e−C
′T

∫
Rn
e−|x|

m

σ0(x).

Proof: Apply Lemma 4.1 to ρR with the test function
ψ to be ζ = e−ξ(x) − e−ξ(R0), where ξ(x) is an increasing
function in |x|, we have

d

dt

∫
BR0

ζρR =

∫
BR0

ρR

[
1

2
D2
wζ + (f −DwK) · ∇ζ + ζN

]
.

All the boundary integrals vanish, since ζ|∂BR = ρR|∂BR = 0.
Direct computations yield that

d

dt

∫
BR0

ζρR

=

∫
BR0

ρRe
−ξ(R0)

·

1

2

ξ′2(r)

r2

n∑
i,j=1

(
GQGT

)
ij
xixj −

ξ′(r)

r
(f −DwK) · x

− 1

2

n∑
i,j=1

(
GQGT

)
ij

[(
ξ′′(r)− ξ′(r)

r

)
xixj
r2

]
−1

2
Tr
(
GQGT

) ξ′(r)
r

}
+

∫
BR0

ζρR

[
1

2
Dwξ · ∇ξ −

1

2
D2
wξ − (f −DwK) · ∇ξ +N

]
,I3 +

∫
BR0

ζρR[I4].

Let ξ(r) = rm, where r = |x|, m is some positive integer
sufficiently large. Through elementary computations, we get

I4

=
1

2

ξ′2(r)

r2

n∑
i,j=1

(
GQGT

)
ij
xixj

− 1

2

m(m− 2)rm−4
n∑

i,j=1

(
GQGT

)
ij
xixj

+mrm−2Tr
(
GQGT

)]
−mrm−2(f −DwK) · x+N

≥− 1

2

[
nm(m− 2)

∣∣∣∣GQGT ∣∣∣∣∞ +mTr
(
GQGT

)]
rm−2

−mrm−2(f −DwK) · x+N ≥ C ′,

where C ′ is a positive constant independent of R0, by condi-
tion (6.1). For large enough m, we have

|I3| ≤ e−R
m
0

·
∫
BR

∣∣∣∣n ∣∣∣∣GQGT ∣∣∣∣∞ [1

2
m2r2m−2 −m

(
1

2
m− 1

)
rm−2

]
−1

2
mTr

(
GQGT

)
rm−2 −m(f −DwK) · xrm−2

∣∣∣∣ ρR
≤ e−R

m
0

(
1

2
nm(m+ 1)

∣∣∣∣GQGT ∣∣∣∣∞R2m−2
0 + C ′′

)∫
BR

ρR

≤
(

1

2
nm(m+ 1)

∣∣∣∣GQGT ∣∣∣∣∞R2m−2
0 + C ′′

)
· eCT−R

m
0

∫
BR

σ0,R , γ(R0).

The last inequality follows by the similar argument of (5.3).
Hence,

d

dt

∫
BR0

ζρR ≥ −γ(R0)− C ′
∫
BR0

ζρR.
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This implies∫
BR0

ζρR(x, T )

≥e−C
′T

∫
BR0

ζσ0,R(x) +
γ(R0)

C ′

(
e−C

′T − 1
)

≥e−C
′T

∫
BR0

ζσ0,R(x)

+

(
1

2
nm(m+ 1)

∣∣∣∣GQGT ∣∣∣∣∞R2m−2
0 + C ′′

)
· e

(C−C′)T−Rm0

C ′

(
1− eC

′T
)∫

BR

σ0,R(x). (6.3)

Let R0 →∞, we have∫
Rn
e−|x|

m

ρ(x, T ) ≥ e−C
′T

∫
Rn
e−|x|

m

σ0(x).

VII. NUMERICAL SIMULATIONS

In this section, we shall apply our algorithm to both
“time-invariant” case and “time-varying” case. The numerical
simulations support our theorems. In our implementation, we
adopt the Hermite spectral method (HSM) to get the approx-
imate solution of (2.13). Thus, the basis functions {φl}∞l=1 in
(2.14) are choosen to be the generalized Hermite functions
{Hα,β

n (x)}∞n=0. We refer the interested readers to the detailed
definitions in [14].

For N > 0, let us denote RN the subspace spanned by the
first N generalized Hermite functions:

RN =span{Hα,β
0 (x), · · · , Hα,β

N (x)}.

The formulation of HSM to (2.13) in 1-dimension is to find
uN (x, t) ∈ RN such that
〈∂tuN (x, t), ϕ〉 =− 1

2
〈∂x[(GQGT )uN ], ∂xϕ〉

+ 〈fuN , ∂xϕ〉 −
1

2
〈(hTS−1h)uN , ϕ〉

uN (x, 0) =PNu0(x),
(7.4)

for any ϕ ∈ RN , where 〈·, ·〉 denotes the scalar product in
L2(R) and PN is the projection operator such that PN :
L2(R)→ RN . Write the solution uN ∈ RN in the form

uN (x, t) =

N∑
n=0

an(t)Hα,β
n (x),

and take the test function ϕ ∈ RN in (7.4) to be Hα,β
n ,

n = 0, · · · , N . From (7.4) and the properties of generalized
Hermite functions, ~a(t) := (a0(t), a1(t), · · · , aN (t))T satis-
fies the ODE

∂t~a(t) = A~a(t), (7.5)

where A is a (N + 1) × (N + 1) matrix, may depend on t,
if G, Q, f or h is explicitly time-dependent. This ODE can
be precomputed. The only difference between “time-varying”
case and “time-invariant” case is that it costs much more

0 5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

t

E
[x

t]

1D cubic sensor, with initial data u0(x)=e−x4/4

 

 

real state
EKF
our algorithm

Fig. 1. 1D cubic sensor, with the initial condition u0(x) = e−
x4

4 . Black:
real state; Green: extended Kalman filter; Red: our algorithm.

memory to store the off-line data in the “time-varying” case,
as we explained before in section II. Nevertheless, it doesn’t
change the off-line virture of our algorithm. We refer the
interested readers of the implementation to [14], and we shall
omit the technical details in this paper.

Once uN at each step is obtained, ρ̂ can be recovered by
(2.12). The conditional expectation of the state xt is computed
by definition

E [x, {yτ}0≤τ≤t] (t) =

∫
R xρ̂(x, t)dx∫
R ρ̂(x, t)dx

.

A. “time-invariant” case: the 1D cubic sensor

Let us consider the following model{
dxt = dvt

dyt = x3
tdt+ dwt,

where xt, yt ∈ R, vt, wt are scalar Brownian motion processes
with E[dvTt dvt] = 1, E[dwTt dwt] = 1. The 1D Kolmogorov
forward equation (2.13) here is

ut =
1

2
uxx −

1

2
x6u, (7.6)

at each time step. We assume the inital density function
u0(x) = e−x

4/4 and the updated initial data are

ui(x, τi) = ex
3·dytui−1(x, τi).

In Figure 1, we see that our algorithm tracks the state’s
expectation very well, while the extended Kalman filter (EKF)
completely fails around t = 5. The total simulation time is
T = 50, and the update time step is dt = τi+1− τi = 0.01. It
costs our algorithm only around 4.88s to finish the simulation,
i.e. the updated time is less than 10−3s.
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Fig. 2. 1D “time-varying” almost linear sensor, with the initial condition

u0(x) = e−
x2

2 . Black: real state; Green: extended Kalman filter; Red: our
algorithm.

B. “time-varying” case: the 1D almost linear sensor

The 1D almost linear sensor we are considering is{
dxt =[1 + 0.1 cos (20πt)]dvt

dyt =xt[1 + 0.25 cos (xt)]dt+ dwt,
(7.7)

where xt, yt ∈ R, vt, wt are scalar Brownian motion processes
with E[dvTt dvt] = E[dwTt dwt] = 1. The Kolmogorov forward
equation (2.13) in this example is

ut =
1

2
[1 + 0.1 cos (20πt)]2uxx −

1

2
x2[1 + 0.25 cos (x)]2u,

with the initial data u0(x) = e−x
2/2 and the updated initial

data

ui(x, τi) = ex
2[1+0.25 cos (x)]·dytui−1(x, τi),

i = 1, 2, · · · , k. In Figure 2, our algorithm tracks the state’s
expectation at least as well as the EKF. The total simulation
time is T = 60, and the update time step is dt = τi+1 − τi =
0.01. It costs our algorithm only around 3.17s to complete the
simulatoin, i.e. the updated time is less than 5× 10−4s.

VIII. CONCLUSION

In this paper, we extend the algorithm developed in [22] to
the most general nonlinear filterings. We theoretically verified
that under very mild growth conditions on the drift term and
the observation term, the unique non-negative weak solution ρ
of its associated “pathwise-robust” DMZ equation can be ap-
proximated by the solution ρR of the DMZ equation restricted
on a large ball BR with 0-Dirichlet boundary condition. The
error of this approximation tends to zero exponentially as the
radius of the ball R approaching infinity. Moreover, ρR can be
efficiently approximated by our algorithm. We show that the
approximate solution ρ̂R obtained by our algorithm converges
to ρR in the L1 sense for all t ∈ [0, T ], as the partition of time
becomes finer, and a precise error estimate of this convergence
is given explicitly. Equally important, our algorithm preserves
the two advantages of KF: “memoryless” and “real time”. We

also give the detail explanation of the off-line virture of our
algorithm in the formulation. Numerical experiments support
the feasibility and efficiency of our algorithm.

APPENDIX A
EXISTENCE AND UNIQUENESS OF THE SOLUTION

Before we show the existence of the weak solution, we shall
give a priori estimations of up to the first order derivative of
the solution to the robust DMZ equation on BR × [0, T ].

Theorem A.1: Consider the “pathwise-robust” DMZ equa-
tion (3.1) on QR := BR × [0, T ], where BR = {x ∈ Rn :
|x| ≤ R} is a ball of radius R. Assume that∥∥∥∥ ddt (GQGT )

∥∥∥∥
∞
<∞, (A.1)

for all t ∈ [0, T ]. Suppose there exists a positive function g(x)
on Rn such that for all t ∈ [0, T ], g and g̃ , g + log |DwJ |
satisfy

1)
∣∣Dwg + 1

2∇(GQGT )− F
∣∣2 + 2λ1J ≤ C, (A.2)

2) D2
wg + 2Dwg · ∇g + 2[∇(GQGT ) − F ] · ∇g +

1
2∇

2(GQGT )− divF + J ≤ C, (A.3)
3) D2

wg̃ + 2Dwg̃ · ∇g̃ + 2[∇(GQGT ) − F ] · ∇g̃ +
1
2∇

2(GQGT )− divF + J ≤ C, (A.4)
4)
∫
Rn e

2g̃σ2(x) ≤ C and
∫
Rn e

2gDwσ ·∇σ ≤ C,(A.5)
where C is a generic constant, which may differ from line to
line, and ∇(∗) =

[∑n
i=1

∂(∗)ij
∂xi

]n
j=1

, ∇2(∗) =
∑n
i,j=1

∂2(∗)ij
∂xi∂xj

.

Then, for 0 ≤ t ≤ T ,∫
BR

e2gρ2
R(x, t)dx ≤ eCt

∫
BR

e2gσ2(x)dx, (A.6)

∫
BR

e2gDwρR(x, t) · ∇ρR(x, t)dx

≤eCt
∫
BR

e2gDwσ(x) · ∇σ(x)dx+ CeCt
∫
BR

e2g̃σ2(x)dx,

(A.7)

where Dw and J(x, t) is defined in (3.4)and (2.9), respectively.
Remark A.1: The conditions in Theorem A.1 are easily

checked, if the drift terms h(x) and f(x) are at most polyno-
mial growth in r = |x|. However, in general, the existence of
such g is not always available.
Proof: Let g be some positive function on Rn.
d

dt

∫
BR

e2gρ2
R =

∫
BR

e2gρRD
2
wρR + 2

∫
BR

e2gρR(F · ρR)

+ 2

∫
BR

e2gJρ2
R

,I + II + III. (A.8)

Apply integration by parts to I and II in (A.8)

I =− 2

∫
BR

ρRe
2gDwg · ∇ρR −

∫
BR

e2gDwρR · ∇ρR

−
∫
BR

e2gρR∇(GQGT ) · ∇ρR

≤− 2

∫
BR

ρRe
2gDwg · ∇ρR −

∫
BR

e2gρR∇(GQGT ) · ∇ρR

, I1 + I2.
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Integration by parts further, we have

I1 =4

∫
BR

e2gρ2
RDwg · ∇g + 2

∫
BR

e2gρRDwg · ∇ρR

+ 2

∫
BR

e2gρ2
R∇(GQGT ) · ∇g + 2

∫
BR

e2gρ2
RD

2
wg.

(A.9)

Notice that the second term of the right-hand side of (A.9) is
−I1, we have

I1 =2

∫
BR

e2gρ2
RDwg · ∇g

+

∫
BR

e2gρ2
R[∇(GQGT ) · ∇g +D2

wg]. (A.10)

The similar argument applies to I2:

I2 =

∫
BR

e2gρ2
R∇(GQGT ) · ∇g

+
1

2

∫
BR

e2gρ2
R∇2(GQGT ). (A.11)

Thus,

I ≤
∫
BR

e2gρ2
R

[
D2
wg + 2Dwg · ∇g (A.12)

+2∇(GQGT ) · ∇g +
1

2
∇2(GQGT )

]
.

(A.13)

The same trick of I1 applies to II in (A.8), we obtain

II = −
∫
BR

e2gρ2
R[2F · ∇g + divF ]. (A.14)

Substitute (A.12) and (A.14) back to (A.8), we obtain

d

dt

∫
BR

e2gρ2
R

≤
∫
BR

e2gρ2
R

{
D2
wg + 2Dwg · ∇g + 2[∇(GQGT )− F ] · ∇g

+
1

2
∇2(GQGT )− divF + J

}
≤C

∫
BR

e2gρ2
R,

by condition (A.3). (A.6) follows directly from Gronwall’s
inequality. To show (A.7), we consider

d

dt

∫
BR

e2gDwρR · ∇ρR

=

∫
BR

e2g
n∑

i,j=1

d

dt
(GQGT )ij

∂ρR
∂xi

∂ρR
∂xj

+ 2

∫
BR

e2g
n∑

i,j=1

(GQGT )ij
∂

∂xi

(
∂ρR
∂t

)
∂ρR
∂xj

,IV + V. (A.15)

Due to condition (A.1), IV of (A.15) turns out to be

IV ≤1

2

∥∥∥∥ ddt (GQGT )

∥∥∥∥
∞

∫
BR

e2g
n∑

i,j=1

[(
∂ρR
∂xi

)2

+

(
∂ρR
∂xj

)2
]

= n

∥∥∥∥ ddt (GQGT )

∥∥∥∥
∞

∫
BR

e2g|∇ρR|2

≤ n

λ1

∥∥∥∥ ddt (GQGT )

∥∥∥∥
∞

∫
BR

e2gDwρR · ∇ρR, (A.16)

since DwρR · ∇ρR ≥ λ1|∇ρR|2. Next, V in (A.15) is

V =− 2

∫
BR

e2g[(2Dwg +∇(GQGT )) · ∇ρR +D2
wρR]

·
(

1

2
D2
wρR + F · ∇ρR + JρR

)
=−

∫
BR

e2g

{
D2
wρR +

[
Dwg +

1

2
∇(GQGT ) + F

]
· ∇ρR

}2

+

∫
BR

e2g

[
Dwg +

1

2
∇(GQGT )− F

]2

|∇ρR|2

− 2

∫
BR

e2g[D2
wρR + (2Dwg +∇(GQGT )) · ∇ρR]JρR

≤
∫
BR

e2g

[
Dwg +

1

2
∇(GQGT )− F

]2

|∇ρR|2

− 2

∫
BR

e2g[D2
wρR + (2Dwg +∇(GQGT )) · ∇ρR]JρR.

(A.17)

Notice that∫
BR

e2gD2
wρRJρR

=−
∫
BR

e2g [2(Dwg · ∇ρR)JρR + JDwρR · ∇ρR

+(DwρR · ∇J)ρR +∇(GQGT ) · ∇ρRJρR
]
.

(A.18)

Take (A.18) into account, V becomes

V ≤
∫
BR

e2g

·

{
1

λ1

{[
Dwg +

1

2
∇(GQGT )− F

]2

+ 1

}
+ 2J

}
·DwρR · ∇ρR +

∫
BR

e2g|DwJ |2ρ2
R. (A.19)

Combine (A.16) and (A.19), we have
d

dt

∫
BR

e2gDwρR · ∇ρR

≤
∫
BR

e2g

{
1

λ1

{
n

∥∥∥∥ ddt (GQGT )

∥∥∥∥
∞

+

[
Dwg +

1

2
∇(GQGT )− F

]2

+ 1

}
+ 2J

}
·DwρR · ∇ρR

+

∫
BR

e2g|DwJ |2ρ2
R. (A.20)
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By conditions (A.2)-(A.5), the estimate (A.7) follows imme-
diately. �
Proof of existence in Theorem 4.3: Let Rk be a sequence
of positive number such that limk→∞Rk = ∞. Let ρk(x, t)
be the solution of the “pathwise-robust” DMZ equation (3.1)
on BRk × [0, T ], where BRk = {x ∈ Rn : |x| ≤ Rk} is a ball
of radius Rk. In view of Theorem A.1, the sequence {ρk} is a
bounded set in H1;1

0 (QRk). Thus, there exists a subsequence
{ρk′} which is weakly convergent to ρ. Moreover, ρ has the
weak derivative ∂ρ

∂xi
∈ L2(QRk), and ∂ρk′

∂xi
weakly tends to it.

Now we claim that the weak derivative ∂ρ
∂t exists. To see this,

let Φ(x, t) ∈ H1;1
0 (QRk), then∫∫

QRk

1

2

n∑
i,j=1

(GQGT )ij
∂Φ

∂xj

∂ρ

∂xi

+

 n∑
i=1

 n∑
j=1

∂(GQGT )ij
∂xj

− Fi

 ∂ρ

∂xi
− Jρ

Φ

= lim
k′→∞

∫∫
QRk

1

2

n∑
i,j=1

(GQGT )ij
∂Φ

∂xj

∂ρk′

∂xi

+

 n∑
i=1

 n∑
j=1

∂(GQGT )ij
∂xj

− Fi

 ∂ρk′

∂xi
− Jρk′

Φ

=− lim
k′→∞

∫∫
QRk

∂ρk′

∂t
Φ = lim

k′→∞

∫∫
QRk

ρk′
∂Φ

∂t

=

∫∫
QRk

ρ
∂Φ

∂t
.

Clearly, ρ(x, 0) = limk′→∞ ρk′(x, 0) = σ0(x).
Theorem A.2: Assume further that for some c > 0,

sup
0≤t≤T

∫
Rn
ecrρ2(x, t)dx <∞, (A.21)

and ∫
QT
|∇ρ(x, t)|2dxdt <∞, (A.22)

where r = |x|. Suppose that there exists a finite number α > 0
such that

2J(x, t)− 1

4λ1
[cDwr − (F (x, t) + F̃ (x, t))]2 ≤ α, (A.23)

for all (x, t) ∈ QT , where λ1 is the smallest eigenvalue of the
matrix (GQGT ),

F̃ (x, t) =

1

2

n∑
j=1

(GQGT )ij +

n∑
j=1

(GQGT )ij
∂K

∂xj
− fi

n
i=1

,

(A.24)

and J(x, t) is defined as in (2.9). Then the non-negative weak
solution ρ(x, t) of the “pathwise-robust” DMZ equation on
QT is unique.
Proof of uniqueness of Theorem 4.3 (Theorem A.2): To
show the uniqueness of the solution, we only need to show
that ρ(x, t) = 0 on QT if ρ(x, 0) = 0. Let αT < 1. For any

test function ψ(x, t) = ecrΦ(x, t), where r = |x|, c is some
constant and Φ(x, t) ∈ H1;1

0 (QT ), then ρ(x, t) satisfies∫
Rn
ρ(x, T )Φ(x, T )ecrdx−

∫ T

0

∫
Rn
ρ(x, t)

∂Φ

∂t
(x, t)ecrdxdt

=

∫
QT
−1

2
ecr∇Φ(x, t) ·Dwρ(x, t)− c

2
ecrΦ(x, t)∇r ·Dwρ(x, t)

+ F̃ (x, t) · ∇ρ(x, t)Φ(x, t)ecr

+ J(x, t)ρ(x, t)Φ(x, t)ecrdxdt. (A.25)

where F̃ is defined in (A.24). Approximate ρ(x, t) by Φ(x, t)
in the H1;1(QT )-norm, we get∫

Rn
ρ2(x, T )ecrdx

=

∫
QT

ecr [−Dwρ(x, t) · ∇ρ(x, t)− cρ(x, t)∇r ·Dwρ(x, t)

+ (F̃ (x, t) + F (x, t)) · ∇ρ(x, t)ρ(x, t)

+2J(x, t)ρ2(x, t)
]
dxdt.

≤
∫
QT

ecr[−λ1|∇ρ(x, t)|2 − cρ(x, t)Dwr · ∇ρ(x, t)

+ (F (x, t) + F̃ (x, t)) · ∇ρ(x, t)ρ(x, t)

+ 2J(x, t)ρ2(x, t)]dxdt.

=− λ1

∫
QT

ecr
{

1

2λ1
[cDwr − (F (x, t) + F̃ (x, t))]ρ(x, t)

+ |∇ρ(x, t)|}2 dxdt

+

∫
QT

ecr
{

2J(x, t)− 1

4λ1
[cDwr − (F (x, t) + F̃ (x, t))]2

}
· ρ2(x, t)dxdt

≤
∫
QT

ecr
{

2J(x, t)− 1

4λ1
[cDwr − (F (x, t) + F̃ (x, t))]2

}
· ρ2(x, t)dxdt, (A.26)

due to the positive definite of (GQGT ). By condition (A.23),
we have∫

Rn
ecrρ2(x, T )dx ≤ α

∫
QT

ecrρ2(x, t)dxdt. (A.27)

According to the mean value theorem, there exists T1 ∈ (0, T )
such that∫

QT
ecrρ2(x, t)dxdt =

∫ T

0

∫
Rn
ecrρ2(x, t)dxdt

=T

∫
Rn
ecrρ2(x, T1)dx. (A.28)
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Apply (A.27) and (A.28) recursively, there exists Tm ∈ (0, T )
such that

∫
Rn
ecrρ2(x, T )dx ≤ (αT )m

∫
Rn
ecrρ2(x, Tm)dx.

Since αT < 1, we conclude that ρ(x, t) ≡ 0 for a.e (x, t) ∈
QT . �

APPENDIX B
PROOF OF THEOREM 5.4

Proof of Theorem 5.4: Let v = ρ−ρR as in the proof of
Theorem 3.1. By the maximum principle, we have that v ≥ 0
for all (x, t) ∈ BR × [0, T ]. Choose the test function ψ in
Lemma 4.1 as

Φ(x) = γ(x)%(x),

where γ(x) = e
1
2φ1(x) and φ1(x), %(x) are defined in the proof

of Proposition 5.2 and Theorem 3.1. It follows directly that
Φ|∂BR = ∇xΦ|∂BR = 0, by the fact that %|∂BR = ∇%|∂BR =
0. Apply Lemma 4.1 to v taking place of ρΩ with the test
function Φ, we have

d

dt

∫
BR

Φv

=
1

2

∫
BR

D2
wΦv +

∫
BR

(f −DwK) · Φv +

∫
BR

ΦNv

=
1

2

∫
BR

(D2
wγ%+ 2Dwγ · ∇%+ γD2

w%)v

+

∫
BR

(f −DwK) · (∇γ%+ γ∇%)v +

∫
BR

γ%Nv.

All the boundary integrals vanish due to the similar arguments
in Theorem 3.1. Recall that γ(x) = e

1
2φ1(x) and %(x) =

e−φ2(x) − e−R. Direct computations yield that

d

dt

∫
BR

Φv

=
1

2

∫
BR

[
1

2
e

1
2φ1

(
D2
wφ1 +

1

2
Dwφ1 · ∇φ1

)
%

− e 1
2φ1Dwφ1 · e−φ2∇φ2

+ γe−φ2
(
Dwφ2 · ∇φ2 −D2

wφ2

)]
v

+

∫
BR

(f −DwK) ·
(

1

2
e

1
2φ1∇φ1%− γe−φ2∇φ2

)
v

+

∫
BR

γ%Nv

=

∫
BR

Φv

[
1

4

(
D2
wφ1 +

1

2
Dwφ1 · ∇φ1

)
− 1

2
Dwφ1 · ∇φ2

+
1

2

(
Dwφ2 · ∇φ2 −D2

wφ2

)
+(f −DwK) · (1

2
∇φ1 −∇φ2) +N

]
+ e−R

∫
BR

γv

[
−1

2
Dwφ1 · ∇φ2

+
1

2

(
Dwφ2 · ∇φ2 −D2

wφ2

)
−(f −DwK) · ∇φ2]

,
∫
BR

Φv[VI] + e−R
∫
BR

γv[VII],

By the similar estimates (5.4)-(5.6), (5.7)-(5.9), we have

sup
BR

|VI| ≤ 17n
∣∣∣∣GQGT ∣∣∣∣∞ + 5|f −DwK|+N,

sup
BR

|VII| ≤ 16n
∣∣∣∣GQGT ∣∣∣∣∞ + 4|f −DwK|.

Hence,

d

dt

∫
BR

Φv ≤C
∫
BR

Φv + e−RC̃

∫
BR

eφ1v

≤C
∫
BR

Φv + e−RC̃

∫
BR

eφ1ρ

≤C
∫
BR

Φv + C̃e−R+Ct

∫
BR

eφ1σ0(x)

≤C
∫
BR

Φv + C̃e−R+Ct

∫
Rn
eφ1σ0(x),

by condition (3.5), (3.6) and (5.1). By the similar argument
in the proof of Theorem 3.1, where we get the estimate of∫
BR

%v, we have∫
BR

Φv(x, T ) ≤ Ce−R
∫
Rn
e
√

1+|x|2σ0(x), (B.1)

where C is a generic constant, which depends on T . Recall
that %(x) = e−R[−(|x|2/R2−1)2+1] − e−R, it implies that∫

BR

Φv(x, T ) ≥ 1

2
e−

7
16R

∫
BR

2

γv(x, T ). (B.2)
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Combine (B.1) and (B.2), we obtain that∫
BR

2

γv(x, T ) ≤ Ce− 9
16R

∫
Rn
e
√

1+|x|2σ0(x).

This implies that∫
BR

2

γρ(x, T ) ≤
∫
BR

2

γρR(x, T )

+ Ce−
9
16R

∫
Rn
e
√

1+|x|2σ0(x)

≤C(1 + e−
9
16R)

∫
Rn
e
√

1+|x|2σ0(x),

by (5.1). Let R→∞,∫
Rn
γρ(x, T ) ≤ C

∫
Rn
e
√

1+|x|2σ0(x).

Consider the integration outside the large ball BR,

e
1
2

√
1+R2

∫
|x|≥R

ρ(x, T ) ≤
∫
|x|≥R

γρ(x, T )

≤C
∫
Rn
e
√

1+|x|2σ0(x).

Therefore, we reach the conclusion that∫
|x|≥R

ρ(x, T ) ≤ Ce− 1
2

√
1+|R|2

∫
Rn
e
√

1+|x|2σ0(x).

REFERENCES

[1] M. Arulampalam, S. Maskell, N. Gordon and T. Clapp, “A tutorial on
particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174-188,
2002.

[2] J. S. Baras, G. L. Blankenship and W. E. Hopkins, “Existence,
uniqueness and asymptotics behavior of solutions to a class of Zakai
equations with unbounded coefficients,” IEEE Trans. Automat. Con-
trol, vol. AC-28, pp. 203-214, 1983.

[3] A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, Stochas-
tic Modelling and Applied Probability, Vol. 60, Springer, 2009.

[4] A. Bensoussan, “Some existence results for stochastic partial dif-
ferential equations,” in Stochastic Partial Differential Equations and
Applications, Pitman Res. Notes Math., vol. 268, Longman Scientific
and Technical, Harlow, UK, 1992, pp. 37-53.

[5] A. Bensoussan, R. Glowinski and A. Rascanu, “Approximation of the
Zakai equation by the splitting up method,” SIAM J. Control Optim.,
vol. 28, pp. 1420-1431, 1990.

[6] T. E. Duncan, “Probability densities for diffusion processes with
applications to nonlinear filtering theory,” Ph.D. dissertation, Stanford
Univ., Stanford, CA, 1967.

[7] W. Fleming and S. Mitter, “Optimal control and nonlinear filtering
for nondegenerate diffusion processes,” Stochastics, vol. 8, pp. 63-77,
1982.

[8] A. Friedman, Partial differential equations of parabolic type, Prentice-
Hall, Englewood Cliffs, NJ, 1964.

[9] I. Gyongy and N. Krylov, “On the splitting-up method and stochastic
partial differential equation,” Ann. Probab., vol. 31, pp. 564-591, 2003.

[10] K. Ito, “Approxiamtion of the Zakai equation for nonlinear filtering,”
SIAM J. Control Optim., vol. 34, pp. 620-634, 1996.

[11] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” ASME Trans., J. Basic Eng., ser. D., vol. 82, pp. 35-45,
1960.

[12] R. E. Kalman and R. S. Bucy, “New results in linear prediction and
filtering theory,” ASME Trans., J. Basic Eng., ser. D., vol. 83, pp.
95-108, 1961.

[13] F. Le Gland, “Splitting-up approximation for SPDEs and SDEs with
pplication to nonlinear filtering,” Lecture Notes in Control and Inform.
Sci., Vol. 176, Springer, New York, 1992, pp. 177-187.

[14] X. Luo and S. S.-T. Yau, “Hermite Spectral Method to 1D Forward
Kolmogorov Equation and its Application to Nonlinear Filtering
Problems,” IEEE Trans. Automat. Control, 2013. arXiv:1301.1403
Accepted for publication

[15] N. Nagase, “Remarks on nonlinear stochastic partial differential equa-
tions: An application of the splitting-up method,” SIAM J. Control
Optim., vol. 33, pp. 1716-1730, 1995.

[16] R. E. Mortensen, “Optimal control of continuous time stochastic
systems,” Ph.D. dissertation, Univ. California, Berkeley, CA, USA,
1996.

[17] E. Pardoux, “Stochastic partial differential equations and filtering of
diffusion processes,” Stochastics, vol. 3, pp. 127-167, 1979.

[18] C. Rao, “Nonlinear filtering and evolution equations: fast algorithms
with applications to target tracking,” Ph. D. dissertation, Univ. South-
ern California, Los Angeles, CA, 1998.

[19] B. L. Rozovsky, “Stochastic partial differential equations arising in
nonlinear filtering problems,” Usp. Mat. Nauk., vol. 27, pp. 213-214,
1972.

[20] S. L. Sobolev, “Applications of functional analysis in mathematical
physics,” Tran. Math. Monographs, vol. 7, AMS, Providence, RI, 1963.

[21] S. Yau and S. S.-T. Yau, “Existence and uniqueness and decay
estimates for the time dependent parabolic equation with application to
Duncan-Mortensen-Zakai equation,” Asian J. Math., vol. 2, pp. 1079-
1149, 1998.

[22] S. S.-T. Yau and S.-T. Yau, “Real time solution of nonlinear filtering
problem without memory II,” SIAM J. Control Optim., vol. 47, no. 1,
pp. 163-195, 2008.

[23] M. Zakai, “On the optimal filtering of diffusion processes,” Z.
Wahrsch. Verw. Gebiete, vol. 11, pp. 230-243, 1969.

http://arxiv.org/abs/1301.1403

	I Introduction
	II Model and Algorithm
	III Statements of the main theorems
	IV Notations and preliminary
	IV-A Existence and uniqueness of the non-negative weak solution
	IV-B Technical lemma

	V Proofs of the main theorems
	V-A Reduction to the bounded domain case
	V-B L1 convergence

	VI Lower bound estimate of density function
	VII Numerical simulations
	VII-A ``time-invariant" case: the 1D cubic sensor
	VII-B ``time-varying" case: the 1D almost linear sensor

	VIII Conclusion
	Appendix A: Existence and uniqueness of the solution
	Appendix B: Proof of Theorem ??
	References

