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Robust Self-Triggered Coordination
With Ternary Controllers
Claudio De Persis and Paolo Frasca, Member, IEEE

Abstract—This paper regards the coordination of networked
systems, studied in the framework of hybrid dynamical systems.
We design a coordination scheme which combines the use of
ternary controllers with a self-triggered communication policy.
The communication policy requires the agents to measure, at each
sampling time, the difference between their states and those of
their neighbors. The collected information is then used to update
the control and determine the following sampling time. We show
that the proposed scheme ensures finite-time convergence to a
neighborhood of a consensus state: the coordination scheme does
not require the agents to share a global clock, but allows them to
rely on local clocks. We then study the robustness of the proposed
self-triggered coordination system with respect to skews in the
agents’ local clocks, to delays, and to limited precision in commu-
nication. Furthermore, we present two significant variations of our
scheme. First, assuming a global clock to be available, we design
a time-varying controller which asymptotically drives the system
to consensus. The assumption of a global clock is then discussed,
and relaxed to a certain extent. Second, we adapt our framework
to a communication model in which each agent polls its neighbors
separately, instead of polling all of them simultaneously. This
communication policy actually leads to a self-triggered “gossip”
coordination system.

Index Terms—Coordination, event-based control, gossip dy-
namics, hybrid systems, self-triggered control, ternary controllers.

I. INTRODUCTION

T HE key issue in distributed and networked systems re-
sides in ensuring performance with respect to a given con-

trol task (e.g., stability, coordination), in spite of communica-
tion constraints, which can be severe. In practice, although the
system would naturally be described by continuous-time dy-
namics, the control law is only updated at discrete time instants:
these can either be pre-specified (time-scheduled control), or be
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determined by certain events that are triggered depending on
the system’s behavior. In a networked system, controls and trig-
gering events regarding an agent must only depend on the states
(or the outputs) of the agent’s neighbors and of the agent itself.
For this reason, there is special interest in self-triggered poli-
cies, in which communication and control actions are planned
ahead, depending on the information available to each agent
at a given time. Indeed, the implementation of an event-based
policy, which requires continuous monitoring of a triggering
condition which depends on the state of the agents’ neighbors,
may not be suitable for networked applications when sensing
and communication resources are critical.

A. Summary of Contributions

The main contribution of this paper is the design of a new
self-triggered consensus system. At each sampling time, a cer-
tain subset of “active” agents poll their neighbors obtaining
measurements of the difference between their states and those
of their neighbors: the available information is then used by the
active agents to update their controls and compute their next
update times. In our system, controls are constrained to belong
to : the assumption of such coarsely quantized con-
trollers is motivated by methodological reasons and reasons of
opportunity.
It was shown in [2] that multi-agent systems achieve state

agreement in finite time using the sign of local averages as con-
trol laws. This result indicates that to achieve agreement each
agent only needs to keep track of the times when this local
average reaches zero: this observation inspired us to the de-
sign the sampling times of the agents. On the other hand, using
ternary controllers considerably simplifies the agent dynamics,
and this can be effectively exploited in designing a self-trig-
gering policy. Our modeling and design approach leads natu-
rally to a hybrid system which is defined in Section II. Next,
in Section II-B we prove, by a Lyapunov analysis, that the hy-
brid system converges in finite time to a condition of “practical
consensus”: that is, the solutions are within a neighborhood of a
consensus, and the size of the neighborhood can be made arbi-
trarily small by decreasing a certain parameter of the controller
quantizer. This parameter, which we denote by , represents
the sensitivity of the quantizer: the smaller the , the more the
system demands in terms of communication resources. We thus
identify a trade-off between communication and coordination
performance. This trade-off is precisely quantified: we provide
-dependent estimates of the time taken by the solution to reach
consensus and of the number of times the agents exchange in-
formation.
In self-triggered control, (pre)computation of the sampling

times requires precise knowledge of the system’s dynamics.
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Hence, uncertainty in the system can potentially disrupt the
correct operation of the control algorithm. Nevertheless we
show that the closed-loop system we propose is robust to a
variety of uncertainties and disturbances which are relevant
in networked systems such as imprecise clocks, delays, and
limitations in data rates. This robustness can be enhanced by
introducing a conservativeness parameter in the triggering
functions which determine the sampling times: the smaller
the , the shorter the intervals between sampling times. The
robustness of the control algorithm is studied in Section III,
by analyzing two extended models, both of which include the
conservativeness parameter .
In view of the need for predictions, it is also notable that

our controllers do not need to be aware of any global informa-
tion about the network (such as its algebraic connectivity or the
number of agents). Furthermore, they only rely on relative mea-
surements between neighbors: this feature contrasts with other
approaches in the literature, which require a knowledge of ab-
solute state information.
As an additional contribution, we show that a suitable

time-varying controller, designed as a modification of the
model introduced in Section II, can asymptotically drive the
system to a consensus state. In this modified version, pre-
sented in Section IV, we introduce a time-dependent sensitivity
threshold and a time-dependent gain parameter, which both
decrease with time. In this framework, the time-dependent gain
is used to scale down the ternary controllers used previously.
In contrast with the previous one, this scheme does require the
agents to access a global clock. We then propose two modifica-
tions of the algorithm that aim to mitigate the need for a global
clock, either by changing the conservativeness parameter or by
using some additional communication.
In the control scenarios considered in Section II–Section IV,

every time an agent needs new information, it collects it from all
of its neighbors simultaneously. In Section V, we show that this
simultaneous action is not necessary. We design a self-triggered
policy, in which the agents are free to poll their neighbors one by
one, and find convergence results similar to those found before.
This system involves variables, which correspond to the edges
of the graph of the communication network, and these variables
are updated synchronously by both agents insisting on an ac-
tive edge. This feature makes the scheme the first example of
self-triggered “gossip” coordination system. Correspondingly,
in this protocol each node is subject to a sum of ternary con-
trollers, each of them corresponding to an edge insisting on the
node.

B. Literature Review

The reference literature for this paper includes quantized and
self-triggered controls for distributed systems. Many papers
have studied quantization issues in coordination, including
[3]–[6]: specifically, binary controllers are used to stabilize
consensus in [2]. In a centralized nonlinear setting, the use of
ternary controllers in connection with quantized communica-
tion has been investigated in [7].
Since the seminal work in [7], the control community has

been interested in investigating event-based and self-triggered
control policies, as opposed to time-scheduled (or time-trig-
gered) policies. In this framework, we note that robustness

issues—with respect to parameter uncertainties, delays, and
communication losses—are studied in [9]–[12]. Relevant pa-
pers focusing on networked systems include [13]–[19]. The
work in [20] is also related, as it presents a hybrid coordina-
tion dynamics requiring communication only when specific
thresholds are met. Recent closely related work includes the
solution of coordination problems using self-triggered broad-
cast communication in [21]. Compared to this reference, the
present manuscript proposes a different communication policy,
which is based on polling the neighbors upon need, instead of
broadcasting to them.
An approach which involves polling neighbors has also been

considered in the recent paper [22]. Our contribution differs
from [22] in a number of aspects, including the following
ones. First, our approach relies on relative measurements and
not on absolute ones. Second, in [22] the computation of the
next sampling time by an agent requires information not only
from the agent’s neighbors, but also from the neighbors of the
agent’s neighbors (i.e., two-hop neighbors). Third, while in [22]
zero execution time is allowed (this happens when an agent’s
local average converges to zero in finite time), in our approach
inter-execution times are guaranteed to be bounded away from
zero, and the lower bounds are explicitly characterized. Another
work on event-based coordination is [23], that uses copies of
the neighbors’s dynamical models to generate the triggering
events. Furthermore, we note that a broad class of self-triggered
asynchronous consensus systems can be studied by the tools in
[24]: however, this framework does not accommodate to the
use of ternary controllers and does not include our setup.
Self-triggered policies can also be used for other control

tasks, such as deployment of robotic networks: in [25], the
authors exploit the knowledge of the speed of the deploying
robots in order to design the self-triggering policy. A similar
idea features in our work.
Notation: We denote by , , the sets of real, posi-

tive, and nonnegative numbers, respectively; by the set of
nonnegative integers.

II. SYSTEM DEFINITION AND MAIN RESULT

We assume to have a set of nodes and an undi-
rected1 connected graph with a set of unordered
pairs of nodes, called edges. We denote by the Laplacian ma-
trix of , which is a symmetric matrix. For each node , we
denote by the set of its neighbors, and by its degree, that
is, the cardinality of
We consider the following hybrid dynamics on a triplet of
-dimensional variables involving the consensus variable ,
the controls , and the local clock variables . All these vari-
ables are defined for time . Controls are assumed to be-
long to . The specific quantizer of choice is

, defined according to

if
otherwise

(1)

where is a sensitivity parameter.

1We note that this assumption entails communication in both directions be-
tween pairs of connected nodes. However, our communication protocol—de-
scribed in Protocol A— does not require synchronous bidirectional communi-
cation.
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The system satisfies the following continuous
evolution

(2)

except for every such that the set
is non-empty. At such time instants the system satisfies the

following discrete evolution

if
otherwise

if
otherwise

(3)

where for every the map is defined by

(4)

and for brevity of notation we let

(5)

The intuition behind the design of the above controller is the
following: as we shall verify later, (4) is such that at each time
and for each , the sign of is consistent with the sign
of the “ideal” coordination control , i.e.,
. This consistency is key to ensure the desired convergence
properties.
It is worth to remark that, although an absolute time variable
is used in the system’s definition, and in the analysis which
follows, the agents implementing Protocol A do not need to be
aware of such an absolute time. Instead, they rely on their local
clocks . Actually, the jump times of each variable naturally
define a sequence of local switching times, which we denote by

, by taking

Then, we immediately argue that, by (4), for every , the
sequence of local switching times has the following
“dwell time” property: for every

(6)

This property is very relevant for the applications, as it en-
sures that information exchange needs not to be arbitrarily fast.
Mathematically, it guarantees the existence, completeness, and
uniqueness of classical solutions to the system. Initial condi-
tions can be chosen as , ,

. With this choice of initial conditions, we note that
, that is, every agent undergoes a discrete update

at the initial time: for every . We also remark
that inherent in the definition of the discrete evolution (3), (4)
is the property that the period between two consecutive updates
of agent ’s controller is never smaller than .
The model (2)–(3) describes the following protocol, which is

implemented by each agent to collect information and compute
the control law:

Protocol A (for each )

1: initialization: set and ;

2: while do

3: applies the control ;

4: end while

5: if then

6: for all do

7: polls and collects the information ;

8: end for

9: computes ;

10: computes ;

11: computes by (3);

12: end if

After these remarks, we are ready to state our first conver-
gence result:
Theorem 1 (Practical Consensus): For every initial condition
, let be the solution to (2)–(3) such that . Then
converges in finite time to a point belonging to the set

(7)

This result can be seen as a practical consensus result: in-
deed the magnitude of the local “disagreement” can be made as
small as desired by choosing . Moreover, the connectivity of
the graph implies that, as goes to zero, the set reduces to the
usual consensus subspace.
Additionally, we can estimate the time cost of the consensus

system, as follows:
Proposition 1 (Time Cost): Let be the solution to system

(2)–(3). Define the time cost .
Then,

where is the initial condition.
One can also define the communication cost

In view of (6), each agent
polls its neighbors not more often than every units
of time, thus implying that the number of communication
events involving any agent is not larger than

Since each polling action involves polling at most neigh-
bors, we also conclude that the total number of messages to be
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Fig. 1. Two sample evolutions of the states in (2)–(3) starting from the same initial condition and on the same graph (a cycle graph with nodes). Left
plot assumes , right plot assumes .

exchanged in the whole network in order to achieve (practical)
consensus is not larger than

Our theoretical results suggest that, by choosing the sensi-
tivity , we are trading between precision and cost, both in terms
of time and of communication effort. However, simulations in-
dicate that the role of in controlling the speed of convergence
is limited, as long as is far from . Before approaching the
limit set, solutions are qualitatively similar to the solutions of
consensus dynamics with (binary) controls in : indeed
the proposed control scheme may be seen as a self-triggered im-
plementation of the binary controllers in [2]. This remark is con-
firmed if we compare Fig. 1 with Fig. 1 (rightmost) in [2]. Con-
sistently, Fig. 2 demonstrates that the state trajectories “brake”,
and the controls switch between zero and non-zero, as the states
approach the region of convergence. Once this is reached (in fi-
nite time), the controls stop switching and remain constantly to
zero, as the analysis in the next section shows.
The similarity with the dynamics in [2] also gives useful

insights about the convergence values. Indeed, system (2)–(3)
does not preserve the average of states, and simulations
show that the states converge to values which are close to

This observation is again con-
sistent with the results in [2], but we are not able so far to
provide a tight formal statement about the distance between the
consensus value and .

A. Convergence Analysis

This subsection is devoted to the proofs of Theorem 1 and
Proposition 1.

Proof of Theorem 1: First of all, we recall that

if

if
(8)

Fig. 2. Sample evolutions of states and corresponding controls in (2)–(3)
on a cycle with nodes, .

Inequality (6) implies that there exists a positive dwell time
between subsequent switches and this fact in turn implies that
for each initial condition, (2) has a piecewise constant right-
hand side. Hence the system has a unique solution , which
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is an absolutely continuous function of its time argument. Fur-
thermore, solutions are bounded, since one can show that for all

it holds that and
We are interested in studying the convergence prop-

erties of such solutions. For every , we let

We note that and we consider the evolution of
along the solution. Since is symmetric, and letting

, we have

Using Equation (8) we observe that, for , if
, then

(9)

Similarly, if , then

These inequalities imply that, if , then
preserves the sign during continuous

flow by continuity of , and consequently

(10)

Moreover

(11)

Hence, using (10) and (11) we deduce

(12)

This inequality implies there exists a finite time such that
for all and all such that . In-

deed, otherwise there would be an infinite number of time in-
tervals whose length is bounded away from zero and on which

, contradicting the positivity of . For all ,
let and define

Note that and thus if . Moreover, by
definition of , for and for all , the controls

are zero and the states are constant and such that
for all .

We conclude that there exists a point such that
for , and

The above proof shows that convergence is reached in finite
time: obtaining an estimate of this convergence time requires a
deeper look into the dynamics of the system.
Proof of Proposition 1: In order to prove Proposition 1, we

recall that Equation (12) implies that for every

We want to use this fact to estimate the time taken by to
reach the set . First of all, note that if for all ,
then the set is not empty and we can argue
that the Lyapunov function decreases by at least per time
unit, until convergence is reached.
Let us then consider the more interesting case in which there

exists such that . For all , define
, and consider

Clearly and for all .
Note that for to be zero, necessarily , and
then for all . If
for all as well, then we can see that for all ,
implying that convergence is reached and contra-
diction. It must then exist2 such that .

Note that , whereas

for The discussion above yields
the following conclusion. Before convergence is reached, con-
trols may possibly be zero and the set may
be empty: however, this condition may only persist for a dura-
tion smaller than , after which the set is
not empty for a time not shorter than . Consequently,
we argue that every units of time, de-
creases by at least . Hence, if

2We remark that the existence of such is permitted because, although
when , actually needs not to be zero for
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then the Lyapunov function would become negative,
which is a contradiction. This implies that within

units of time, the system must
converge to the set of states (7) where is constant.
The thesis follows if we recall that is the initial condition

and that .
We conclude this section with a significant remark about the

versatility of Protocol A.
Remark 1 (Heterogeneous Sensitivities): It is apparent from

the proof of Theorem 1 that convergence does not depend on the
sensitivity to be the same for all the agents. We may thus think
of allowing each agent the freedom to have its own sensitivity
: our arguments would thus ensure convergence to the set

.
This freedom may very well be understood as a robust-

ness property against uncertain specification of the sensitivity
threshold: this remark thus leads us to the topic of the next
section.

III. ROBUSTNESS

In this section we discuss the robustness of Protocol A to
some typical non-idealities which can occur in its implemen-
tation. We consider the issues of clock skew, delays, and lim-
ited precision of data: while these are not the only issues which
can arise, we believe they are the most significant to our exposi-
tion, which regards networked problems. We do not study these
three issues together, but we instead consider clock skews first
in combination with delays, and then with quantization. This
choice is made both for simplicity of presentation and in order
to highlight the interest of robustness against clock skews. A
model including all three issues can be studied using the same
tools: a detailed analysis is left to future research.
The key idea to quantify the robustness properties, which are

inherent to Protocol A, involves introducing a design parameter
which represents how conservative the agents are when plan-

ning their next sampling time. By proving convergence condi-
tions for such extended model, we shall show that, provided the
design parameters and are properly chosen, our protocol can
always be made robust to quantization errors, clock rate vari-
abilities, and delays. The analysis reveals natural trade-offs be-
tween robustness and accuracy performance.

A. Clock Skews and Delays

In this section, we discuss the intrinsic robustness of Pro-
tocol A against model uncertainties in local clock specifications,
combinedwith delays, whichmay occur during communication,
computation, or actuation. To this goal, we extend the protocol
to include a certain class of delays and clock rate variabilities.
We thus generalize system (2)–(3) by considering the system

satisfying the continuous evolution

(13)

where is the rate of the local clock at agent , and the dis-
crete evolution defined as follows. The set of switching agents is
again defined as and each agent

polls its neighbors at time : since implementing
communication and actuation entails a nonnegative delay
each switching agent undergoes the following up-
date at time :

if
otherwise

if
otherwise

(14)

where is defined as in (5), and for every the map
is defined by

where is a design parameter. The initial conditions are
chosen as before, namely , ,

. Note that system (2)–(3) is a special case of the above
definition, assuming , , and for all .
Next, we move on to analyze the behavior of this system. In

view of the presence of delays, for each we define two se-
quences of time instants, namely the sequence
of times at which the controller polls its neighbors, and the se-
quence of times at which the variables
are updated. More precisely, at time node polls its neigh-
bors to receive the information needed to compute the quantity

. Next, a positive time elapses between the time
when the node polls its neighbors and the time it updates the

variables . Hence, the new control becomes effective only
at time and the control unit schedules the next
sampling operation at time

Due to the clock skew, however, the actual next sampling time
at which the controller polls the nodes is

This quantity satisfies

Similarly

These bounds imply that solutions to (13)–(14) are well defined,
and are useful to prove that, provided the system parameters
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and are chosen appropriately, the system ensures practical con-
sensus according to the same definition as the ideal case studied
before.
Proposition 2 (Clock Skew and Delay Robustness): Consider

system (13)–(14) and assume that and
for all . If and

then converges to a point in the set defined in (7) in finite
time.

Proof: Let be a sampling time for node , and the
corresponding update time. We observe that if at time
the control is being applied, then

and

Using this inequality we observe that, if , then

(15)

By symmetry, an analogous inequality holds if
. As in the proof of Theorem 1, we let

for every , and we consider the evo-
lution of along the solution.
We then have

(16)

From here on, the same reasoning as in the proof of Theorem
1 can be applied to show that

From this inequality, a similar Lyapunov argument as in the
proof of Theorem 1 implies the desired convergence property.

We note that, according to Proposition 2, any (bounded) delay
can be tolerated, but entails a proportionally large loss in the
achievable precision.
Moreover, our result implies that convergence is guaranteed

for clocks subject to an arbitrarily large but finite perturbation
with respect to a perfect clock, provided the “time arrow” is
preserved and as long as is chosen to be small

enough. Specifically, there is no limitation on how large can
be. Indeed, a large means a fast clock, which implies a faster
sampling: while oversampling is certainly a drawback from the
point of view of an efficient use of network resources, it does not
prevent convergence. Instead, a low means a slower clock,
which implies a delayed sampling: this kind of error may dis-
rupt the proper behavior of the system, and result in a loss of
convergence.
Remark 2 (Local Robustness Condition): The robustness

condition in Proposition 2 involves uniform bounds on node
degrees, as well as clock skews and delays. We note however
that this restriction is only made for simplicity: if we allow
each node to choose its own robustness parameter (and
sensitivity), an analogous argument leads to the condition

where is an upper bound on the delay affecting controller
. As a matter of fact, the inequality (15) can be replaced by

and (16) can be replaced by

We then argue that

which shows convergence in finite time to a set where
for all .

B. Clock Skews and Quantized Information

A variation of the control scenario considered so far considers
the possibility in which when an agent polls its neighbors it re-
ceives quantized information. This scenario can raise when the
agent is endowed with a sensor which provides coarse (quan-
tized) measurements of the neighbors’ relative states. We adopt
for our analysis a standard uniform quantizer, defined as

where is a parameter inversely proportional to the pre-
cision of the quantizer.
To take into account the presence of quantizedmeasurements,

model (2)–(3) is modified as follows. The continuous evolution
obeys the equations

(17)
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where are the local clock rates. At every such that the
set is non-empty, the system instead
satisfies the following discrete evolution:

if
otherwise

if
otherwise

(18)

where for every and the map is
defined by

if

otherwise

and we have used the notation

We are now ready to state a second robustness result.
Proposition 3 (Clock Skew and Quantization Robustness):

Consider system (17)–(18) and assume that
for all . If and

(19)

then converges in finite time to a point in

Proof: Similarly to the previous protocols, this algorithm
ensures a guaranteed minimum inter-sampling time given by

. Hence, the solutions to the system are well-de-
fined and unique. Along these solutions, the Lyapunov function

satisfies

where as earlier denotes the largest time at which agent polls
its neighbors before time .
Observe that for all ,

(20)

and also

(21)

For and

Using this fact and (20), we argue that, if , then

An analogous inequality holds in the case .
Using the inequalities above, arguments similar to those in the
proof of Theorem 1 lead to

and ultimately to prove convergence in finite time to the set such
that

The result thus follows from (21) and the condition on .
We conclude from Proposition 3 that the system is robust to

quantized communication, and the achievable precision is pro-
portional to the precision of the quantizer.
We remark that similarly to the robustness condition for de-

lays and clock skews, also condition (19) can be reformulated
in terms of quantities that are available locally at the agents (cf.
Remark 2).

IV. ASYMPTOTICAL CONSENSUS

In this section we propose a modification of system (2)–(3),
which drives the system to asymptotical consensus.
The key idea involves decreasing the sensitivity threshold

with time and concurrently introducing a time-varying de-
creasing gain in the control loop.
Let and be non-increasing

functions such that

We consider the system which satisfies the
following continuous evolution

(22)

except for every such that the set
is non-empty. At such time instants the system satisfies the

following discrete evolution

if
otherwise

if

otherwise

(23)
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where for
every .
We also adopt the same initial conditions as before, namely

, , . As a result
for every .

The corresponding protocol is the following:

Protocol B (for each )

1: initialization : set and ;

2: while do

3: applies the control ;

4: end while

5: if then

6: for all do

7: polls and collects the information ;

8: end for

9: computes ;

10: computes ;

11: computes by (23);

12: end if

In this new protocol we let the parameter , which—as es-
tablished in the previous sections—gives a measure of the size
of the region of practical convergence, to be time-varying and
converging to zero. The obvious underlying rationale is that if
the size of the convergence region goes to zero as time elapses,
one might be able to establish asymptotical convergence rather
than practical. However, letting go to zero does not suffice
and may induce agents to poll their neighbors infinitely often in
a finite interval of time (Zeno phenomenon). To prevent this oc-
currence we slow down both the process of requesting informa-
tion to the neighbors and the velocity of the system. The former
is achieved via a factor multiplying the map , the
latter via the factor which weights the control value .
It is intuitive that to fulfill the purpose, the function must
be “comparable” with . This is achieved assuming that there
exists such that

(24)

Before stating the main result of this section, we briefly com-
ment on the assumptions of the new algorithm.We note that that
in order to implement Protocol B the agents need to evaluate
and as functions of . Hence absolute time is assumed to be
known to the agents. For this reason, the robustness properties of
(22)–(23) do not trivially follow from the analysis in Section III:
while some results covering clocks errors are given below, a
complete study including delays and quantized communication
is left to future work. We also note that one of the features of
the practical coordination algorithm of the previous sections is
the use of ternary control inputs, namely controls taking values

Fig. 3. Sample evolution of (22)–(23) starting from the same initial condition
and on the same graph as Fig. 1. Top plot shows the state , bottom plot shows
the Lyapunov function on a logarithmic scale. Simulation assumes

, .

in the set . Instead, in the asymptotical coordination
algorithm every control is weighted by the time-varying factor

, and thus belongs to . One could think to
modify the algorithm in the following way: each node applies
a constant ternary control input during each time interval of
continuous evolution , where the control input takes
values in the set . With this modification,
the control laws are ternary on each inter-sampling time with
a magnitude that asymptotically vanishes to zero. The analysis
of such a modified algorithm does not follow from that given
below and goes beyond the scope of this paper.
Theorem 2 (Asymptotical Consensus): Let be the solu-

tion to (22)–(23) under condition (24). Then, for every initial
condition there exists such that
for all , if and only if is divergent.
Before the proof, we discuss some illustrative simulation re-

sults, collected in Figs. 3 and 4. Simulations show that the evo-
lution of (22)–(23) can be qualitatively divided into two phases.
During a first phase of fast convergence, plays a little role and
the behavior of is reminiscent of Fig. 1. The first phase lasts
until the states become close enough to consensus for to be
comparable with the differences between the ’s. During the
second phase, we can observe that the control actions (i.e., the
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Fig. 4. Sample evolutions of states and corresponding controls in (22)–(23)
on a ring with nodes, , . The
guaranteedminimal inter-switching time of the controllers is 0.025 units of time.

intervals of non-zero control) become sporadic and convergence
depends on the decrease of : its speed is thus slow. Indeed, we
are assuming that has divergent integral, so that it may not
decrease faster than . We want to stress that this technical
condition is not due to a limitation of our analysis, but is in-
herent to the system. Indeed, assumption (24) relates and ,
so that may not be larger than (a constant times) . In
turn, as we shall see in the proof below, if had bounded
integral, the control would not be large enough to stabilize the
system to practical consensus from an arbitrary initial condition.

Proof of Theorem 2: First of all, we note that by (24), there
exists a unique solution for every initial condition. In fact, ob-
serve that

if

if
(25)

and hence for all and each .
Next, we introduce the following notation. For every and

, we consider the sequence of switching times and let

(26)

We now start a Lyapunov analysis to show that
is sufficient for convergence. For every , we let

, and we note that and

since (resp. ) is non-increasing
in time (respectively, non-decreasing). Indeed, let

and and note that
also Protocol B ensures that at all times

for every . In particular the latter is
true for . Since , then

and therefore . It follows by (23) that

, which implies that . Hence,
during continuous evolution cannot increase and during
discrete transitions it remains constant. This shows the non-in-
creasing monotonicity of . Similarly, one proves
the non-decreasing monotonicity of .
After proving these bounds on , we study along the

solution to the system. Similarly to the proof of Theorem 1, we
have that if , then

(27)

Since we deduce that for all ,

which in particular implies that is non-increasing.
It is also useful to notice that for all if

, then

Similarly, if , then

This inequality implies that for all

Next, we claim that for all and , there ex-
ists such that for all . Indeed,
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by contradiction there would exist and such
that for all , for some , im-

plying and thus contradicting the positivity
of if . Since the above claim holds
true and converges to zero as goes to infinity, we argue
that for every it is possible to choose such
that . To com-
plete the argument, we claim that for any , there exists
such that for all . To show the latter, choose
such that , and fix accord-

ingly. Then by (8), . As we have shown that
is monotone non-increasing, it is also true that for
all , which proves the claim with . Hence
goes to zero as goes to infinity. This fact in turn implies that

as
Finally, we need to show that each trajectory converges to

one point in the subspace satisfying the above condition. To
this goal, recall from the first part of the proof that

is monotonically non-increasing and that
. Hence, exists finite, which to-

gether with the result above implies convergence of all ’s to a
common limit point.
In order to conclude the proof, we still need to show that

is necessary. As above, let
and analogously

Note that and . Then, for all

If we assume by contradiction that ,
then which contradicts
convergence for any initial condition such that

.
We note that, while it is clear from the proof that for every

the quantity is finite, our
analysis is not able so far to understand whether
(that can be viewed as an estimate of the “control effort”) is
always finite as well. This intriguing question is left as an open
problem. In the rest of this section, we provide a preliminary
analysis of the robustness of Protocol B.

A. Robustness Against Clock Errors

As we already remarked, Protocol B asks the agents to know
the absolute time in order to evaluate the functions and .
It is thus clear that inconsistent clocks may potentially disrupt
the operation of the algorithm. In this section, we are going to
quantify the robustness margin to this source of uncertainty and
to propose suitable countermeasures. Other robustness issues,
such as delays or quantized communications, are left out of the
scope of this subsection.
Preliminary, let us note that an incorrect evaluation of the

time results in local time variables ’s, which are available
at the agents and are different from . Consequently, instead
of the common weight functions and , some local copies
and are available to the agents as weight functions, namely

and . Hence, a clock error is
equivalent to an error in the protocol gains. In such a case, the

resulting implementation of Protocol B requires the control law
in the first equation of (22) to be replaced by

(29)

and the update law for to be replaced by

if
otherwise.

(30)

Consistently and in view of Section III, the update law for is
replaced by

if
otherwise

(31)

where

for every and is the conservativeness parameter.
This implementation may still be effective, provided certain

conditions are met. We state this fact as the following result:
Proposition 4 (Clocks Error Robustness): Assume that non-

increasing functions and are used as above by each node
to implement (22)–(23), according to (29), (30), and (31),

and assume that for every , (i) ; (ii)
; and (iii) . If there

exists such that

(32)

and is chosen to satisfy

(33)

then, for every initial condition there exists such
that for all .

Proof: The proof goes as the proof of Theorem 2, mutatis
mutandis. Here we only explicitly verify the following key in-
equality [cf. (27)], where to make the notation compact we are
using instead of as defined in (26). If ,
then
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Then, the Lyapunov function com-
puted along the solutions of the system satisfies

and the result follows thanks to (33).
In some applications, assumption (32) can be satisfied by con-

trolling the clock errors by means of some clock-syn-
chronization protocol. Indeed, many clock-synchronization al-
gorithms have been proposed in the literature (cf. [26]), but
their implementation with self-triggered communication is not
trivial. For all cases in which (32) can not be guaranteed, we
propose a scheme which is intrinsically able to compensate for
the errors induced by the clock skews. This scheme involves a
different update rule for the variable , as follows:

if

otherwise
(34)

where

(35)

It is clear that this update law requires the sampling node
to receive from its neighbors the values of their gain func-
tions at the time of sampling ( ). The following result
shows that this communication overhead is sufficient to ensure
convergence.
Proposition 5 (Compensating Clock Errors): Let be the

solution to (22)–(23), modified according to (29), (30), (34), and
(35). Assume that for every , (i) ; (ii)

; and (iii) . Then,
there exists such that for all

Proof: The arguments follow the lines of the proof of The-
orem 2: hence, most details are omitted and can be found in [27].
As in the proof of the previous result, we only explicitly verify
the following key inequality [cf. (27)]. If , then

V. INDEPENDENT POLLING OF NEIGHBORS

In Protocol A, each time an agent polls its neighbors, it polls
all of them simultaneously. However, it is possible to design
a similar protocol so that each agent collects information from

a neighbor independently of its other neighbors. This modifica-
tion leads to similar convergence results, as we shall see in what
follows.
Let us adopt a new set of state variables , which take

value in the state space , where is the sum
of the neighbors of all the agents, namely . The
continuous evolution of the system obeys the equations

(36)

where and . The system satisfies the differential
equation above for all except for those values of the time at
which the set

is non-empty.We denote the th time at which
by . At these times a discrete transition occurs, which is gov-
erned by the following discrete update:

if

otherwise
if
otherwise

(37)
where for every and , the map is
defined by

(38)

The new protocol can be described as follows:

Protocol C (for each )

1: initialization: For all , set ,
, and ;

2: for all do

3: while do

4: applies the control ;

5: end while

6: if then

7: polls and collects the information ;

8: updates ;

9: updates ;

10: end if

11: end for

In contrast with Protocol A, we note that in this case the con-
trol applied by each agent is a sum of ternary controls.
Remark 3 (Self-Triggered Gossip): Note that for all
that and for all . This

edge synchrony is essential to the analysis which follows, and
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points to the fact that (36)–(37) is actually an edge-based al-
gorithm, although the active entities Protocol C are the agents,
i.e., the nodes of the network. An equivalent implementation, in
which the active entities are the edges, is to be presented in the
forthcoming paper [28]. This feature is reminiscent of several
pairwise gossip approaches which have recently appeared in the
literature: references include randomized [29] and deterministic
[30] protocols, with applications ranging from signal processing
[31] to optimal deployment of robotic networks [32]. In view of
these works, we may term Protocol C as a self-triggered gossip
algorithm.
The following convergence result holds:
Theorem 3 (Practical Consensus): For every initial condition
, let be the solution to (36)–(37) such that . Then,
converges in finite time to a point in the set

Moreover, if we define , then

Proof: In this proof we adopt the Lyapunov function
. For a given , let

. Along the solution of (36), the function satisfies

During the continuous evolution , and
at the jumps does not change its value. This implies
that cannot differ from in absolute
value for more than . Exploiting this fact, if

, then by (38) for all , we
have

and . Hence

This implies that there exists a finite time such that, for all
, for all , because if this

were not true then there would exist and an infinite
subsequence of the sequence of switching times such that

, which would contradict the positiveness
of .
Hence for , for all .

Moreover, if , , the state stops
evolving and satisfies , that is the first part
of the thesis.
As far as the second part of thesis is concerned, similarly

to the proof of Proposition 1, we observe that if for some ,
, then either for some and some
(where denotes the smallest switching time larger

than at which agents update their variables), or
for all . In the latter case, the state has already reached
the set . Since we are interested in characterizing the time
by which convergence is achieved, we focus on the former case.
Then we see that for at most units of time (the
maximal length of an interval of time over which before
the state has reached ) and that the interval must be followed
by an interval of at least units of time over which

. These estimates imply for the bound given in
the statement.
A bound for , the communication cost, can be easily ob-

tained starting from following a similar argument as the one
after Proposition 1.
Remark 4 (Comparing Convergence Sets): We note that The-

orem 3 proves convergence to a set which is different from
Theorem 1. Writing the dependence on explicitly, we may ob-
serve that

where Further-
more, if , then for each pair of agents , the distance

is smaller than times the diameter of the network. In
these respects, we may argue that the practical consensus condi-
tion of Protocol C is more precise than that of Protocol A. This
performance is achieved by employing time variables and
controls per agent, instead of a single one as in Protocol A.

A. Asymptotical Consensus

In the rest of this section, we present a modification of Pro-
tocol C leading to asymptotical consensus. While its design is
largely inspired by Section IV, its analysis is partly different:
hence we include a proof of convergence.
In order to yield asymptotical consensus, the protocol is mod-

ified as follows. The continuous evolution (36) is replaced by

(39)

whereas the discrete evolution (37) is replaced by

if

otherwise

if

otherwise

(40)
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where is defined in (38) and the functions are
as in Section IV. The protocol just introduced leads to the fol-
lowing result:
Theorem 4 (Asymptotical Consensus): Let be the solu-

tion to (39)–(40) under condition (24). Then for every initial
condition there exists such that
for all , provided that is divergent.
Proof: As in the proof of Theorem 2, one shows the

equality

From the latter and the properties and
, it follows that for each , for each , there exists
such that for all ,

where .
Consider now the function .

The function is non-increasing along the solu-
tions to (39), (40). Indeed, Protocol C guarantees that,
for all , the sign of
and the sign of are the same for all

. Furthermore we notice that
. Bearing in mind the argu-

ments above, we now prove that .
Indeed, for each , fix and choose
sufficiently large that for

all –the existence of such has been dis-
cussed in the first part of the proof. Then

. Since
is non-increasing then

for all . Hence we have shown that for any ,
there exists a time such that for all

, which proves . By definition
of the thesis follows.
The two protocols presented in this section can also be studied

in terms of robustness: quantized communication, delays, and
clock errors can bemanaged, as we have done in Sections III and
IV-A, as long as synchrony and symmetry are preserved at the
edge level: indeed we recall that these assumptions are crucial
to the protocol. A detailed robustness analysis, however, is left
to future research.

VI. CONCLUSIONS

In this paper we have addressed the problem of achieving
consensus when agents collect information from the neighbors
only at times which are designed iteratively and independently
by each agent on the basis of its current local measurements.
Following existing literature, this process can be termed
self-triggered information collection. Compared with existing
results, our approach presents a number of remarkable fea-
tures. Our self triggered control policy, based on the use of
relative measurements and ternary controls, achieves practical
consensus with a guaranteed minimal inter-sampling time
which can be freely tuned by the designer. Remarkably, no
global information on the graph topology is required for either
designing or running the algorithm, and the nodes need not
even to agree on the sensitivity parameter. The approach lends

itself to an expressive characterization of the tradeoff between
controller accuracy (sensitivity) and communications costs.
We have also shown that our algorithm is inherently robust to
uncertainties commonly found in networked systems, such as
delays, quantized communication, and clock errors: the margin
of robustness is adjustable via appropriate tuning of certain
design parameters. Additionally, we have presented a modifica-
tion of our basic self-triggered control scheme, which achieves
asymptotical consensus: we have characterized its robustness
margin against clock errors, and proposed a countermeasure for
those cases in which this margin is exceeded. Finally, we have
identified a self-triggered gossiping communication protocol,
in which agents communicate in a pairwise fashion at times
which are designed iteratively. From the methodological point
of view, most of our results descend from Lyapunov-like anal-
ysis of the class of hybrid systems used to model our distributed
self-triggered control schemes.
We believe that this paper can provide inspiration for future

research in self-triggered algorithms for distributed and net-
worked control. Besides some collateral open questions, which
have been mentioned in the text, we envisage three main av-
enues for new research stemming from this work. First, we re-
call that the ternary nature of controllers has a key role in our
approach, as it provides implicit information on the dynamics:
this information is exploited in the computation of the sam-
pling times. Thus, a natural extension would be to consider
constrained controllers taking values in larger sets, for instance
quantized or saturated controllers. Second, further investigation
and extensions of the self-triggered gossip algorithm introduced
in this paper may contribute to the rich literature on gossip al-
gorithms, which has focused so far on time-triggered protocols.
Third, it is worth to explore how similar approaches can be ap-
plied to coordination of higher dimensional systems and to more
complex coordination tasks, such as formation control and col-
laborative tracking.
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